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GENERALIZED ROTAΉONAL HYPERSURFACES
OF CONSTANT MEAN CURVATURE

IN THE EUCLIDEAN SPACES. I

WU-YI HSIANG

Introduction

In 1841, Delaunay [3] discovered a beautiful way of constructing rotational
hypersurfaces of constant mean curvature in the euclidean 3-space E3, namely,
its generating curve can be obtained as the trace of a focus by rolling a given
conic section on the axis. The above theorem of Delaunay was generalized to
higher dimensional euclidean spaces in [9], namely, the generating curves of
those O(n — l)-invariant hypersurfaces of constant mean curvature in En can
again be obtained by rolling construction. However, from the viewpoint of
equivariant differential geometry, a natural generalization of the rotational
surfaces of E3 should, at least, include those hypersurfaces which are invariant
under an isometric transformation group (G, En) with codimension two prin-
cipal orbit type. For example, in the case of E4, there is the transformation
group of type 0(2) X (9(2) acting on E2XE2 = E4 besides the "usual"
0(3)-action on E4. Of course, in the final analysis, it will all depend on what
kind of results such a generalization will lead to. As a preliminary indication,
the study to generalized rotational hypersurfaces of O(k) X O(A:)-type already
leads (here and the comparison paper [8]) to the discovery of a family of
important new examples of constant mean curvature immersions of (2 k — 1)-
spheres into E2k. This result strongly suggests that the geometry of generalized
rotational hypersurfaces definitely deserves a systematic investigation.

In this paper, we shall begin a systematic study of generalized rotational
hypersurfaces of constant mean curvatures in En. The analytical problem of
such a geometrical object can be reduced to the global solutions of certain
specific ordinary differential equations. In §1, we shall recall some known
results of [6,10], which will enable us to write down the reduced, ordinary
differential equation for each type of generalized rotational transformation
groups. One may naturally divide such transformation groups (G, En) into five
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types according to the geometric shape of their orbit spaces En/G, where
En/G are linear cones of angle π/d, d— 1,2,3,4,6, respectively. The case
of d — 1 corresponding to the usual rotational transformation group of
(O(n — 1), En) and generalized rotational hypersurfaces of constant mean
curvature of this type has already been thoroughly studied in [9]. The next case
of d — 2 corresponds to the action of O(p) X 0{q\ p, q > 2, p + q = n, on
En = Ep X Eq. In this paper, we shall mainly study generalized rotational
hypersurfaces of O(p)X 0(#)-type. We state the main results concerning
constant mean curvature hypersurfaces of this type as follows:

The generating curves of generalized rotational hypersurfaces of O(p) X
O(q)~type with constant mean curvature h are solutions of the equation

(II) d = ip + q-l)h + i p - ψ ψ

A global solution curve is a solution curve γ = {(x(^), y(s)), -oo < s < +00}
which are infinitely extendable in both directions. The following are the main
results on the geometry of global solution curves of the above equation (II), for
the general case A^O. By a simple transformation of homothety, one may
assume without loss of generality that h = 1:

(1) There are two straight line solutions of (II), namely, x = (q — l)/(p + q
— 1) and/ — (p — l)/(p + q ~ 1) whose inverse images are cylinders of type
RP X Sq~ι and Sp~ι X R^ respectively.

(2) Let y(s), -00 < s < +00, be any given global solution curve of (II). Then
x — (q — l)/(/> + q — 1) is the asymptotic line of γ as s -> +00 and y —
(p — l)/(/> 4- q — 1) is the asymptotic line of γ as s -> -00 [cf. Theorem 1
and Corollary 1 of §2].

(3) Each global solution curve, γ, of (II) can have at most one (cusp) point on
each axis. Therefore, one may classify the global solution curves of (II) into the
following types, namely,

Type A. With no cusp point.
Type B. With exactly one cusp point on the x-axis.
Type C. With exactly one cusp point on the/-axis.
Type D. With exactly two cusp points (which must be one on each axis).
Type E. With exactly one cusp point at the origin.
(4) It is natural to define the direction function σy(s) on a given global

solution curve γ(^) such that it has a jump of +τr at each cusp point and
continuous elsewhere. It follows from (2) that l i m ^ . ^ σγ(^) and l i m ^ . ^ σγ(s)
both exist and

IT

Δσ(γ) = lim σ (s) — lim σ (s) = 2n{y)π — -r,
J-++OO S->-0O *
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where n(y) is a suitable integer (called the winding number of γ). One has the
following fundamental existence theorem.

Existence Theorem, (i) Ify is of type A, then n(y) > 0. Conversely, to each
integer k> 0 there exists a global solution curve of type A with k as its winding
number.

(ϋ) // γ is of type B or C, then n(y) > 1. Conversely, to each integer k > 1,
there exists a global solution curve of type B and C respectively whose winding
number equals k.

(in) Ify is of type D, then n(y) > 2. Conversely, to each integer k > 2, there
exists a global solution curve of type D with k as its winding number.

As a corollary of the above existence theorem, one obtains the following.
Theorem. There exist infinitely many noncongruent immersions Sn -> En+ι

with constant mean curvature I, for each n > 3.
In fact, one obtains ([f ] — 1) families of new examples of constant mean

curvature immersions Sn -> En+ι, namely, one infinite family of O(p)X
O(#)-invariant immersions for each decomposition of n into p + q [cf. Theo-
rem 2 and Corollary 2 of §3]. The special case of n = 4, p,q — 2 was
announced in [7]. A different proof of the existence of such immersions for the
case/? = q > 2 was given in [8].

The analysis and the geometry of rotational hypersurfaces of other types will
be studied in succeeding papers.

1. Orbital geometry and reduced ordinary differential equations

Orthogonal transformation groups (G,Rn) with codimension two principal
orbit type were classified in [6]. They are exactly those isotropy representations
of symmetric spaces of rank 2. Following E. Cartan, it is not difficult to
compute the orbital geometry of such representations as follows.

(i) It follows from the maximal tori theorem of E. Cartan (for the case of
symmetric spaces) that there exists a 2-dimensional linear subspace, R2, which
is the fixed point set of a chosen principal isotropy subgroup H of (G, Rw) and
intersects every G-orbit perpendicularly'.

(ϋ) The Weyl group, W — N(H, G)/H, acts on R2 as a group generated by
reflections and W/G - R2/W. Therefore, the orbit space W/G can be identi-
fied with the Weyl chamber of (W,R2) and the orbital distance metric is flat,
namely, a linear cone of angle π/d, d— 1,2,3,4 or 6.

Let ρm, μm, vm be the standard representation of SO(m) (or O(m)), SU(m)
(or U(m)), Sp(m) on Rn, Cn, Hn respectively. Let the Weyl chamber be the
linear cone given by y > 0 and x sin π/d — y cos π/d ^ 0 and w(d, i) be
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the linear function (Λ: sin iπ/d — y cos iπ/d). Then the orbital distance
metric of W/G is simply given by ds2 = dx2 + dy2 and the needed geometric
invariants of the orbit structure of those orthogonal transformation groups can
be listed as follows (cf. [6]).

TABLE I

G

SO(n - 1)

SO(l) X SO(m)

5O(3)

51/(3)

Sp(3)

5O(5)

5O(2) XSO(m)

S{U(2) X U(m))

Sp(2) X Sp(m)

U(5)

U(\) X Spin(lO)

o2

SO(4)

Φ

l+P*-i

Pl+ Pm

S2p3 - 1

Ad

1

Ad

P2 < g ) Pm

[μ2 ® c μ m ] R

^2 ® H m̂

[Λ2μ5]R

[μ, (^cΔj1" ] R

Ad

1 3

n =
dimΦ

n

1+ m

5

8

14

26

10

2m

4m

8m

20

32

14

8

d{W)

1

2

3

3

3

3

4

4

4

4

4

4

6

6

/(£) = [volume of £ ] 2

c-y2"'4

c • x2m-2 • y2'-2

2

c Π W ( 3 Ό 2

/ = 0

2

c Π w@>f')4

ι = 0

2

2

c H w(3, i ) 1 6

c • x4y4 - (x2 - y2)4

c • (x • y)2m~4 - (x2 y2)2

c (x y)4^ (x2-y2)4

c(x yfm~i0 -{x2-y2Ϋ

c (xyγ<> (x2-y2)*

c (xyy*.ίx2-y2y2

5

c Π»(6>')4

/=o

c ΠoW(6(,)
2

Asso. Sym. Space
L/G

R1 X5"" 1

s'xsm

5ί/(3)/5O(3)

5ί/(3) X 5ί/(3)
5ί/(3)

SU(6)
Sp(3)

50(5) X 50(5)
5O(5)

5O(2 + m)
5O(2) XSO(m)

SU(2 + m)
5(ί/(2) X ί/(m))

Sp(2 + m)
Sp(2) X Sp(m)

50(10)

1/(5)

£/(l) X Spin(lO)

G2 X (/2

^ 2

G,/5O(4)

Next, let us recall the following proposition of [10] which reduces the
computation of the mean curvature of a G-invariant submanifold (G, N) C
(G, M) to that of its image, N/G C Λf/G, at the level of orbit space.
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Proposition 1. Let (G, N) be a G-submanifold of (G, M) with the same
principal orbit type as that of M, and let x be a point on a principal orbit
£ E N/G. Let vx be an arbitrary unit normal to N at x and vζ be its image at ξ.
Then

where H(vζ) and H\v^) are the mean curvatures of N and N/G in the directions
vx and v^ respectively, /(£) = [volume of the principal orbit ξ]2 and d/dvζ is the
directional differentiation.

Combine the above reduction with the orbital geometric invariants of Table
I, one has the following list of reduced, ordinary differential equations for
generalized rotational hypersurfaces of constant mean curvature h. We let σ
denote the angle of the tangent vector with the x-axis.

Proposition 2. The differential equation of the "generating curve" of a
generalized rotational hypersurface of constant mean curvature h in En is listed as
follows according to its type.

TypeI,d=l,(O(n-\),Rn):

— ( __ i u I / ? \ cosσ

y

Type II, d = 2, (O(p) X O(q),Rp+q):

cos o sin o

y χ

Type III, d = 3, (SO(3), R5), (5ί/(3), R8), (Sp(3), R14) or (F4, R
26):

ϋ - ( : α ι i μ ι J c o s q S i njσ + ̂ L S i Π l σ " ^ L
y x cos — — v sin — x cos -7 + y sin -7-

(̂  0 0 0 0

= 1,2,3,4 or 8 respectively.
Type IV, d - 4:

, \, , , ί c o s σ sin σ 1
II + \)h + k\ }

{ y * )
s inί σ — — I sinl σ — -r

V 4 / , V 4
x-y x+y f'
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(*,/) =

(2,2)
(5,4)
(9,6)

(m-2,1)
(2m-3,2)
(4m-5,4)

for

(S0(5),R10)

(ί/(5),R20)

(ί/(l)XSpin(10),R32)

(SO(2)XSO(m),R2m)

(5(1/(2) X U(m))Xm)

(Sp(2) X Sp(m),R8 m).

Type V, </ = 6, (50(4), R8) or (G2, R14):

σ = (6k + 1)Λ + A; cos σ sin σ
2 sinl σ + - 2 sinl σ 1- — I

]βx — fix +

x —

where k = 1,2 for (S0(4) , R 8 ) , (G2, R 1 4 ) respectively.

Proof. It follows from Propositioin 1 and the list of orbital geometric data

by straightforward computations, q.e.d.

In the special case of generalized rotational minimal hypersurfaces, i.e.,

h — 0, it is not difficult to see that all the above equations are invariant under

homotheties. Hence, it is advantageous to use polar coordinates (r, θ) to

transform them into the following first order equations in terms of θ and σ.

Proposition 2'. The differential equations of the generating curve of a gener-

alized rotational minimal hypersurface can be reduced to the following first order

equations according to its type.

Type I. sin0 sin(σ - θ) • dσ - (n - 2)cosσdθ = 0.



Type II.

Type III.
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sin0cos0sin(σ — θ) dσ +[(q — l)sinσsin0

- (p - l)cosσcos0] dθ~ 0.

343

sin(σ — θ) dσ

where k = 1,2,4,8.
Type IV.

sin σ + — sin σ — —
V o / _j V 6 / cosσ

sintf
dθ =

sin(σ - 0) ίfσ + ̂  k\ ^ r-j-
v ' L cos 0 sin θ \

+ 1
, s i n ( σ ~ i )

= 0,

where (k, I) = (2,2), (5,4), (9,6), (m - 2,1), (2m - 3,2) or (4m - 5).
Type V.

sin(σ-0)ί/σ + k\
g) ^ rin(σ-f) | rin(> + f

f) ( f ) ( f

+ •
^(^f)
-(•-?) cosβ

One substitutes Λ = 0, x = rcosβ and y = rsinθ into the equa-
tions of Proposition 2. Notice that dσ/dθ = σ ώ/ί/0 and ds/(rdθ) =
l/sin(σ — θ). It is straightforward to reduce those equations of Proposition 2
into the above first order equations respectively.

Remarks, (i) The basic reason for the existence of the above reduction to a
first order equation in terms of (0, σ) is exactly the homothetic inυariance of the
special case of minimal hypersurfaces. Indeed, each integral curve in the
(0, σ)-space corresponds exactly to a family of integral curves in the
(x, >>)-space which are equivalent under homotheties.
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(ϋ) It is not difficult to see that the singularities of the above first order
equations are quite regular. Therefore, the usual method of Poincare-Bendix-
son is readily applicable to analyze the geometry of the solution curves of the
above equations. One of the special cases (i.e. type II with/? = q) was treated
in [2] which played an imporatnt role in the study of Bernstein's problem and
minimal cones. We refer to [12] for a systematic treatment of all the above five
types of equations via Poincare-Bendixson theory.

In the general case of nonzero constant mean curvature A^O, homotheties
will change the value of A. However, the equation of type I (with nonzero h) is
still invariant under the translations in the jc-direction. Corresponding to this
invariance property of type I equation, one has the following "first integral".

Proposition 3 [11]. Up to an equivalence of translations in the x-direction, the
global solutions of the equation

(I) ό = {n-\)h + {n-

is uniquely characterized by J — j Λ ~ 2 cos σ + hyn~ι = c.
Proof.

Therefore, J — c along each integral curve of the above equation. Moreover, /
is obviously invariant under translation and it is not difficult to show that two
solution curves with the same values of / are translationally equivalent, q.e.d.

We refer to [9] for further discussion of the geometry of the above solution
curves, e.g., a generalization of Delaunay's theorem.

2. The analysis of global solutions of the equation of type II

In this section, we shall study the properties of global solutions of the
following equation of type II:

(II) d = ip + q-l)h + i p - ψ ψ
y Λ

By a proper choice of orientation and a suitable homothetic transformation, we
may assume that h = 1 in the above equation. In analyzing the behavior of
solutions of (II), it is quite natural to compare them with those solutions of
either

(HI) d = ( ^ + ί _ 1 ) _
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OΓ

(IIΓ) ό = i p + q-ι) + {p-1)Ξlίt

which are essentially equations of type (I). By Proposition 3, one has the
following "first integrals " of (III) and (IIΓ) respectively,

I = x<t-hinσ-P + q~lχ« and J ^ " ' c o s σ + P + 9 " * y'.

Following [8], one also has the following important fact of monotonicity of /
and / along any solution curve.

Proposition 4 [8]. Let γ = {x(s), y(s)} be a solution curve of (II) and s be
the arc length. Then

dl , Λ^xq-χcos2σ ^ n dJ , ^yp~λsin2 σ ^ n

— ίp—\\ ^ o and -r = (q—\)- > 0
ds y ds x^ ' x

and hence both I andJ are monotonically increasing along γ.
Proof. Straightforward differentiation will show that

q.e.d.

There are two simple-minded solutions of (II) which are characterized by the
condition σ = 0, namely,

Lemma 1. Ifό = 0, ίften

= 77", V =

p + q

It is easy to see that the above two curves are solutions of (II). Let
us prove that they are the only solutions with σ = 0. Suppose γ is such a
solution curve. Then σ = σ0 and γ satisfies the following algebraic equation,
namely

(p- I)cosσ0--(q- l)sinσ0- + (p + q - 1) = 0.
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Hence, either sin σ0 = 0 or cos σ0 = 0, for otherwise, the above equation
defines a nondegenerate hyperbola which obviously contradicts the assumption
σ = 0.

Proposition 5. To each point P(xo,0) (resp. Q(0, y0)) on the x-axis {resp.
y-axis), there exists a unique solution curve of (II) passing through P (resp. Q)
which is automatically analytic and forms a perpendicular cusp point. Conversely,
a global solution curve of (II) can have at most one point on the x-axis (resp.
y-axis).

Proof. Suppose γ is a solution curve of (II) passing through P(x0,0). Then,
it is easy to show that γ forms a perpendicular cusp point at P. If we consider
the incoming and the outgoing branches of γ separately, then their inverse
images in Ep+q are regular hypersurfaces of constant mean curvature. Hence,
they are automatically analytic and this implies that each branch of γ must also
be analytic.

P(xo,0)

In view of the above fact, it is natural to use the usual method of power
series substitution and majoration to establish the uniqueness and existence of
such a solution curve γ. We refer to [5] for a detailed proof of such a
majoration. Finally, it follows from the monotonicity of / along γ that γ
cannot have any other point of the x-axis.

Remarks, (i) It follows from the above power series substitution that the
unique solution curve yXQ (which has a cusp point at (xo,O)) depends on x0

analytically.
(ϋ) In the special case of (0,0), namely, x0 = 0 = y0, the uniqueness and the

existence of an analytic solution passing through (0,0) are still valid. However,
the automatic analyticity of such a solution needs a new proof.
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Lemma 2 [8]. Along any given solution curve γ, one has the following upper
bound (resp. lower bound) for I (resp. / ) , namely,

[respΛs)>Λ[
q\p+q-1J \ v \ f p \ p + q

Moreover, if

( j) = —2— for s>s0 (resp. y(s) = —^— for s < s0).
p i- q — l p -t q i

Proof.

q x , χ>0,

(p + q~ \)yp/q > -yp~x + (p + q~ \)yp/p>y > 0)

which reaches a maximal value of - { —-. }q~ι at x = —-. —- (resp.
q p + q — 1 p + q + \ κ *

a minimal value of - — { — ^ }p~x at ̂  = —7 --r). Hence, Lemma 2
p p+q—1 p+q+\

follows.
Theorem 1. Lei γ = {(x(s), X s)), II—00 < s < +00} fee α global solution

curve of (IT). Then

Lim

Corollary 1. x = —7 is the asymptotic line of γ as s -> +00 α«rf v
/? + ή f - 1

= — T rs the asymptotic line ofyass-* -00.
p + q- 1

Notation. From now on, we shall fix our notation to denote the upper
bound of / by U and the lower bound of / by L, namely,

0/ Corollary 1. Purely algebraically, it is easy to show that to any

given ε > 0, there exist δl9 δ2 > 0 such that

x > 0 and JC^"1 - p + | ~ l xq > U - δx impUes | x q

+~ ]_ χ |< ε,

j ^ 0 and - j ^ " 1 + P q~ yp < L + δ2 implies |^ ^ — ^ j |< ε.

Hence, Corollary 1 follows readily from Theorem 1.
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Proof of Theorem 1. Since the proof of Lim s ^ + 0 0 = U and that of
Lim^_«*,./(£) = L are essentially the same, we shall only give the proof of the
first limit in the following.

By Proposition 4 and Lemma 2, /(s) is an increasing function with U as an
upper bound. Hence Lim^ + 0 0 I(s) exists and < U. We need only to show that
it is equal to U. Suppose to the contrary that Lims_+O0I(s) = a < U. Let
δ > 0 be a positive real number which is much smaller than (U— a). Then,
there exists a sufficiently large s0 such that

a - δ < I(s) <a for all s > s0.

Observe that, for any given constant, c < t/, the differential equation

determines a family of solution curves which are periodic and translationally
invariant in the direction of y. Moreover, there exists a positive constant
depending only on c, say fc(c), such that the above curve contains two intervals
satisfying

1 . 1 I I ^ * / \

I * 1 = 1 cos σ\> k(c)
within each period. Let T(C) be the period (in>>) and l(c) be the arc length of
a single period. Since the given global solution curve γ is closely approximated
by a suitable solution curve of / = a for any stretch of length l(a) after s0, it is
not difficult to estimate the increment of I(s) along such a stretch of γ as
follows.

Let y[sv s2] = {(*($), y(s)); sλ < s ^ s2} ^ e a n interval of γ such that
(i) \x(s)\> k{ for all sx ^s<s2,

(ii) !*(.?,) — x(s2)\> k2 where kl9 k2 are two positive constants only de-
pending on a. Let Y be the maximal of {y(s)9 sλ < s < ^2} Then, it follows
from Proposition 4 that

M = I(s2) - I(sλ) = Γ^Γds = Γ(P ~ l)^—x2 dsv 2J v x) JSi ds JSι

 y y y

j , H* ds

It follows from the above simple estimate of Δ/ that

r/ \ T/ \ § ^ ^ *•

j = 0 J0
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where c', Yo and T are positive constants. This is clearly a contradiction to the
boundedness of I(s) because the series of the right-hand side diverges. Hence

^+^/ί.y) must be equal to U. Almost the same proof will show that
^.oo J(s) = L.

3. The geometry of global solutions of (II)

In this section, we shall study some basic geometric properties of the global
solution curves of (II). It was proved in §2 that every global solution curve γ
approaches x = (q - \)/(p + q - 1) (resp. y = (p - \)/(p + q - 1))
asymptotically as s -» +00 (resp. s -» -00). Moreover, a global solution curve γ
has at most one cusp point on the c-axis (resp. the^-axis). Suppose sx is such a
cusp point of γ. We shall define the direction function, σ(s), of γ in such a way
that it has a jump of +π at sx. Then Lims^+O0σ(s) and LimJ^_ooσ(.s) both
exist. We shall simply denote them by σγ(+oo) and σγ(-oo) respectively.

Definition. The total change of direction of γ is defined to be

Δσ(γ) = σγ(+oo) - σγ(-oo).

Remark. It follows from Corollary 1 of §2 that Δσ(γ) is equal to (2nπ —
π/2) for a suitable integer n. We shall call it the winding number of γ and
denote it by «(γ).

Lemma 3. Let y be a given global solution curve. If I(sγ) > 0 (resp.
J(s2) < 0) then

|σy(+«)-α r(j1)|<f (resp.|σγ(-oo)-σγ(,2)|<f).

Proof. By Proposition 4,1(s) > I(sλ) > 0 for all s > sλ9 (resp. J(s) ^ /(s2)
< 0 for s < s2). Hence sinσ(^) > 0 for all s > su (resp. cos σ(s) < 0 for all
s < s2) and Lemma 3 immediately follows.

Remark. Suppose y[s2, sx] is an interval of γ with I(sx) > 0 and J(s2) < 0.
Then n(γ) is uniquely determined by o(sx) — o(s2), namely,

I (2«(γ) -7Γ- I - [σ(*,) - σ(s2)} | < | σy(+oo) - σ(ί,) |

+ | σ y ( - o o ) - σ ( ί 2 ) | < i r .

Examples. (1) Let γ,,» = 1,2,3, be the unique global solution curve with a
cusp point at ((<? - l)/(/> + q- l),0), (0,(p - \)/(p + q-\)) and (0,0)
respectively. Then «(γ() = 1.

(2) Let γ be the unique global solution curve with x(0) — g(0) = 8 and
σ(0) = 3»/4, S < Mm{p/((p + q- l)\/2 ), q/((p + q- 1>/I)}. Then 1(0)
> 0 and /(0) < 0 and hence n(γ) = 0.
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Lemma 4. To any positive integer N, there exists a global solution curve y
with n(y) > N.

Proof. We may assume that N > 1. Let (Λ;0, y0) be a point with x0, y0 >
2(N + 1) and γ be the unique global solution curve with σ0 = 3ir/4. Let s2 < 0
be the first point of γ with y(s2) = l ί and sx > 0 be the first point with
x(sx) — \\, namely y[s2, s{] is the interval of γ which lies completely within
the region x>\{ and >> > \{. It is not difficult to show that

cosσ , i X smσ ^ \q
\p for 0

Therefore, it is easy to estimate that

Δσ[,s2, sλ] = σ(sx) - σ(s2) = Γσ ds > 2N(p + q) > ZN.

Moreover, it is easy to see that

Hence, if / ^ 0, / ^ 0 and σ < 0, then x < 0 and y > 0. Combining the above
fact with Lemma 3, it is quite straightforward to show that

Δσ(γ) > Δσ[j2, sx] - 2π > 8N - 2ττ,

which clearly implies that n(y) > N. q.e.d.
Next let us study various deformations among solution curves.
Deformation of type 1. Let β(t), 0 < t < 1, be a C2-curve in the interior of

the orbit space, i.e., consists of no points of the x or >>-axis, and V(/) be a
C2-vector field of unit length along β(t). By the existence and uniqueness
theorem of ordinary differential equations, there exists a unique family of
global solution curves yt(s) such that

γf(0) = j8(0 and γ,(0) = V(0, 0<t<l.

We shall call the above continuous family of solution curves a deformation of
typel.

Deformation of type 2. By Proposition 5, there exists a unique global
solution curve yu(s) (resp. βu(s)) with γM(0) = (w,0) (resp. βu(0) = (0, «)).
Now, let u vary between an interval [α, b], a>0. Then one obtains a
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continuous family of global solution curves {yu(s); a ^ u < b] (resp. {βu(s)',

a < w < b}). We shall call such a family a deformation of type 2.

It is obvious that two global solution curves with cusp point on the x-axis

(resp. the >>-axis) are linked by a deformation of type 2. It is not difficult to

show that two arbitrarily given global solution curves γ 0 and γ! can always be

linked by a deformation of type 1.

A deformation is called a Cι-deformation if σ(yt(s)) is continuous in / for

each fixed value of s0 if γ r(^0) are regular points and yt(s0) are all cusp points

of γ, on the x-axis (resp. the >>-axis) if it is the case for γ o(^ o).

Lemma 5. Let yt(s) be a deformation of type 1 and [s2, sx] be a given finite

interval containing 0. If the point set

Uy\s2,
 SA = Ms)> s e [*2> *iL t E [0,1]}

contains no boundary point, then y\s2, sλ] is a Cλ-deformation and hence

Δσ{yt[s2, sx]} is a continuous function oft.

Proof. Since the point set Uyt[s2, sx] is compact and assumed to be away

from the boundary, it is of a finite distance away from the boundary, say

x, y > c > 0. Within the region Ωc = {(x, y)\ x, y > c}, equation (II) satisfies

the Lipschitz condition and hence Lemma 5 follows from the standard estimate

for solutions of systems of ordinary differential equations satisfying the

Lipschitz condition.

Lemma 5'. Let yu(s% u G [a, b]9 be a deformation of type 2, i.e., γM(0) = ( w, 0)

(resp. γM(0) = (0, w)), and [0, sx] (resp. [s2,0]) be a given finite interval. If the

point set

Uyu[Q, sx] = [yu(s)9 a<u<b,0<s<s{}

(resp. Uyu[s290) = (γM(^), a < u < b, s2 < s < 0} contains no boundary point,

then yu[09sx] (resp. yu[s2,0]) is a C1-deformation. In particular, Δσ{γJ0, sx]}

(resp. Δσ{γM[52,0]}) is a continuous function ofu.

Proof. The two cases of the above lemma are essentially the same. We shall

only show the case with initial points on the x-axis. it follows from the

analytical dependence of yu(s) on the parameter u (cf. Proposition 5) that there

exists a sufficiently small δ > 0 such that β(u) = γM(δ), a < u < b, is an

analytic curve and \(u) = yu(δ) is an analytic vector field of unit length along

β(u). Hence, Lemma 5' follows directly from Lemma 5.

Proposition 6. Let yt(s) be the family of global solution curves of Lemma 5.

// no curve of the above family contains any boundary point, then Δσ(γ,) is a

constant.
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Proof, It is not difficult to see that I{yt{s)) = I(s, t) and J(yt(s)) = J(s, t)
are both continuous functions of (s, t). Moreover, there exists sufficiently large

f i n i t e i n t e r v a l s [ s 2 , s λ ] , s 2 < 0 < s l 9 s u c h t h a t I ( s λ 9 t ) > 0 a n d J ( s 2 , t ) < 0 f o r

all t E [0,1]. Therefore, Proposition 6 follows from Lemma 3 and Lemma 5.

Proposition 6'. Let yu(s) be the family of global solution curves of Lemma 5'.

// no curve of the above family contains any more boundary point other than the

initial point, then Δσ(γM) is a constant.

Proof. It follows from Lemma 3 and Lemma 5' in the same way as that of

Proposition 6.

Proposition 7. Let yt(s) be the family of global solution curves of Lemma 5.

Suppose that γ 0 is the only one which contains any boundary point and γo(^o) =

(x o ,0) (resp. (0, y0)) is the only boundary point ofy0. Then either n(yt) is still a

constant or n(yt) = «(γ 0) — 1 for 0 < ί < 1.

Proposition T. Let yu(s) be the family of global solution curves of Lemma 5'.

Suppose that γ0 is the only one which contains another boundary point. Then

either n(yu) is still a constant or n(yu) = n(y0) — 1.

Proof. The proofs of the above two propositions are quite similar. We shall

only show that of Proposition 7 as follows: By Proposition 6, one needs only to

show that

n(γ,) = * ( γ 0 ) O Γ " ( ϊo ) ~ 1

for a sufficiently small / > 0. Let (Λ: 0 ,0) = γo(^o) be the cusp point of γ0 and

W be a sufficiently small neighborhood of (JC0, 0) so that each curve γ,, t > 0,

can have at most one point with cosσ = 1. Such a neighborhood W exists

because it is not difficult to establish a lower bound (only depending on JC0) of

the distance between two consecutive points on a given solution curve γ with

cos σ = 1 and are close to (JC0, 0). [By estimating a lower bound of Δ / between

two such points on a given γ.] Since there exists a Lipschitz constant Kδ for the

equation (II) over the region Ωδ = {x, y > δ} such that Kδ -> oo as δ -> 0, it is

not difficult to show that yt(s) -> yo(s) as t -> 0 even for s — s^. Therefore,

there are only the following two possibilities.

(i) There exists a sufficiently small neighborhood, W, of (xo,0) and a

sufficiently small ε > 0 such that yt has no point with cos σ = 1 in W for each

0 < t < ε. In this case, it is easy to see that n(yt) = n(y0) — 1.

(ϋ) There exist a sufficiently small neighborhood, W9 of (JCO,0) and a

sufficiently small ε > 0 such that yt has exactly one point with cos σ = 1 in W

(for each 0 < / < ε). Then, it is easy to show that each γ,, / sufficiently small,

has exactly one loop in W and the size of this loop tends to zero as t -> 0.

Hence n(yt) = n(y0) in this case.
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Geometrically, the above two cases correspond to the following two kinds of
deformations:

Summarizing the above discussion, we shall classify the global solution
curves of (II) into the following five types, namely,

Type A. Global solution curves with no cusp point.
Type B. Global solution curves with exactly one cup point on the x-axis.
Type C. Global solution curves with exactly one cusp point on the j-axis.
Type D. Global solution curves with two cusp points (which must be exactly

one on each axis).
Type E. Global solution curves with one cusp point at the origin [conjecture:

there is only one curve of type E].
Theorem 2. To every integer k > 0, there exist global solution curves of (II)

with winding number n(γ) = k which are respectively of type A, B, C and D.
(k > 1 in the case ofD.)

Corollary 2. There exist infinitely many distinct immersions of Sp+q~ι into
Ep+q with constant mean curvature 1 which are O(p) X O(q)-invariant.

Proof of Corollary 2. Let γ be a global solution curve of D with n(y) = k.
Then the segment of γ between its two cusp points consists of (k — 2) loops
and the inverse image of such a segment is automatically an immersion of
Sp+q~x into Ep+q with constant mean curvature 1.

Remark. The special case of p = q = 2 of the above corollary was an-
nounced in [7]. A different proof for the case of p — q of the above corollary
was given in [8].

Corollary 3. The inverse images of curves {or segments of curves) of type A,
B or C provide infinite varieties of interesting examples of complete immersions of

Rι X Sp~ι X Sq'\ RpXSq~ι or Rq X Sp~ι

into Ep+q with constant mean curvature 1.
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Proof of Theorem 2. (1) By Lemma 4, there exists a global solution curve γ
with n(y) ^ k + 2. On the other hand, those examples following Lemma 3
show that there exist curves of type A with winding number 0 and curves of
type B or C with winding number 1. Let yx be a global solution curve whose
winding number n(yx) > k + 2 and γ0 be a curve of type A with zero winding
number. One may link yx to γ0 by a deformation of type 1, say { γ , , 0 < ί < l } .
By Propositions 6, 6', 7 and 7', the function of winding numbers n(yt) = f(t) is
an integral valued step function with jumps of absolute value 1. Moreover, a
decrease (resp. increase) of 1 occurs only at the critical stage of the deforma-
tion when a cusp point suddenly pops up (resp. vanishes).

Suppose yx is of type A. Then there must exist a curve γ,o in the above family
which is of type B, C or D and n(yto) > k + 2. If γ,o is of type B or C, then it is
easy to use a deformation of type 2 to obtain another curve of type D with
winding number > k + 2. If γ,o is of type D, then one may again use a
deformation of type 2 to obtain curves of type B (resp. C) whose winding
numbers > k + 1. This proves the existence of curves of type B, C and D
respectively whose winding numbers are at least (k + 1), k can be arbitrarily
large.

(2) Let β be a curve of type D and n(β) = N. Then, one may use
deformation of type 2 to show the existence of a curve of type B, C or D
respectively whose winding number is any given integer k less than N.

(3) Let βk be a curve of type B and n(βk) — k. Let (;c0, 0) be the cusp point
of βk. Let (*!, yx) be a point on βk sufficiently close to the cusp point (xo,0)
and V, be a direction at (xl9 yλ) which is sufficiently close to the direction of
βk at (xl9 yx). Then, it is not difficult to show that the unique solution curve yk

of (II) with (JC,, yx) as its initial point and Vλ as its initial direction must be a
curve of type A and n{yk) — k or k — 1 (cf. Proposition 7). This completes the
proof of Theorem 2.

Concluding Remarks. (1) C1-deformation. If two global solution curves γ0

and yx can be linked by a C1-deformation, then it is obvious that γ0 and yx

must be of the same type and have the same winding number. We conjecture
that the converse is also true, namely,

Conjecture. Two global solution curves of (II) can be linked by a C1-defor-
mation if and only if they are of the same type and have the same winding
number.

(2) Rigidity and uniqueness. In this paper, we prove the existence of
infinitely many O(p) X O(^)-invariant, constant mean curvature immersions
of Sp+q~ι into Ep+q whose generating curves contain a different number of
loops. Therefore, in the euclidean space of dimension n> 4, there are [f] — 1
different types of constant mean curvature immersions of Sn~ι into En. It is
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rather natural to ask the questions of uniqueness and rigidity about the above
family of constant mean curvature immersions of Sn~ι into En.

Conjecture. To each decomposition of n into p + q = n; p,q> 2, and to
each integer k > 0, there exists a unique (up to congruences) immersed Sn~ι of
constant mean curvature 1 which is invariant under an isometry group of
O(p)X O(q)-tyρe and whose generating curve contains exactly k loops.

Conjecture. All the above examples of constant mean curvature immer-
sions of Sn~x in En are rigid.

(3) Problem of symmetry. Let γ be a global solution curve of type C and
γ' be the segment of γ with I(s) < 0. For example, the straight line y —
(p — \)/(p + q — 1), x ^ O i s a special example of such a curve. The inverse
image of the above straight line is a ^-cylinder, Zq((p — Y)/(p + q — 1)),
consisting of points of distance (p - \)/{p + q - 1) to (R7, 0) in R* θ R*. By
Theorem 1, the inverse image of γ' is clearly an example of constant mean
curvature immersion of R̂  X Sp~ι which is O(/?)-invariant and is asymptotic
to the above Zq((p — l)/(p + q — 1)) at infinity. It is rather natural to ask
the following converse problem.

Problem of symmetry. Let M be an O(/?)-invariant immersion of R* X
Sp~1 in Ep+q which is of constant mean curvature 1 and is asymptotic to
Zq((P ~ !)/(/> + 9 — 1)) a t infinity. Is it true that Λf is necessarily also
0(<7)-invariant?

(4) Generalized rotational hypersurfaces in symmetric spaces. Suppose M is a
Riemannian manifold and G is an isometric transformation group (not neces-
sarily compact) of M with codimension two principal orbit type. Then, it is
quite natural to consider G-invariant hypersurfaces of M as a type of gener-
alized rotational hypersurfaces in M. For example, if M is a global symmetric
space, then usually there are various types of such transformation groups and
the study of generalized rotational hypersurfaces in symmetric spaces will
surely lead to interesting results and basic understandings of the geometry of
symmetric spaces.
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