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CERTAIN ISOPARAMETRIC FAMILIES OF
HYPERSURFACES IN SYMMETRIC SPACES

J. E. D'ATRI

The aim of this paper is to explore a generalization of the theory of

isoparametric families of hypersurfaces in a space of constant curvature as

initiated by E. Cartan and developed by H. Mύnzer, K. Nomizu, H. Ozeki, R.

Takagi, T. Takahashi, and M. Takeuchi. Since many examples occur as orbits

of a group of isometries of the ambient space, we will try to extend the theory

to more general ambient spaces by restricting consideration to such orbits. In

this paper, we will mostly study the case when the ambient space is Rieman-

nian symmetric and will get our most complete results when the symmetric

space is of rank one.

In the original theory, one considers a hypersurface N in a space M of

constant curvature c such that N has constant principal curvatures. One has

the "isoparametric family" {Nt} where Nt is obtained by moving N a distance

t along the field of normal geodesies. Nt is again a hypersurface except when

it lies in the focal set. The results which we will generalize include: (a) the fact

that the focal set is the union of minimal submanifolds when c > 0 and TV is

compact (our Theorem 1.8), (b) the formula giving the distances to the focal

points in terms of the principal curvatures of N (our Theorem 3.3), (c) the

formula giving the principal curvatures and curvature directions of Nt (when

Nt is not in the focal set) in terms of those of N (our Theorem 3.7), and (d)

Cartan's formula relating the principal curvatures of N (our Theorem 3.9 and

comments which follow). In the classical theory, one also considers the

distributions of vector fields on N which at each point are eigenvectors of the

second fundamental form belonging to the same eigenvalue and shows that

these are integrable. This is in general false for our spaces.

In § 1 we set out general results about orbits of a group of isometries which

hold for any Riemannian space Λf. In §2 we restrict to the case when M is

Riemannian symmetric, and define the notion of an amenable hypersurface

orbit N. In §3 we prove our main results for amenable hypersurfaces. In §4
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we observe that results of R. Takagi show that N is always amenable when M

is a complex projective space, and that these techniques can be extended to

show the same when M is a quaternionic projective space. In the process, we

get a complete classification of these hypersurfaces (related to work of Wolf

[21]) and information about their geometry.

Our proof that all hypersurface orbits in a complex and quaternionic

projective space are amenable is based on a classification of the possible Lie

algebras. Since amenability here is equivalent to a simple geometric property

(see (2.6.2)), one would like to find a more geometric proof. Even more

interesting would be a proof of the analogs of (a)-(d) using only the fact that

N was a hypersurface with constant principal curvatures (and not necessarily

the orbit of an isometry group). We do not know if there are hypersurfaces

with constant principal curvatures in a complex or quaternionic projective

space which are not orbits, but the results of Ozeki and Takeuchi [16], which

came to our attention after the body of this paper was written, show that

there are many such hypersurfaces in the sphere.

Finally, we mention that much of this work can be extended to the case

where TV is a principal orbit of a group of isometries with codimension greater

than one.

1. Let A' be a connected Lie subgroup of the isometry group of a

connected Riemannian manifold M, and let N be the orbit through a point 0.

For X E t, the Lie algebra of K, one has the Killing vector field X * on M

whose one-parameter group is exp tX. The mapping X -^ X* is an injective

Lie algebra antihomomorphism because K acts on M on the left. Obviously,

at each point/? E M, {X*: X E f} is the tangent space to the orbit through/?.

Fix a unit normal vector field ε to N in a neighborhood of 0, and let γ be the

arc length parametrized geodesic with γ(0) = 0, γ'(0) = ε0. Let σ be the

corresponding shape operator on N, and let Π be the field of curvature

transformations along γ given by Π(F) = R(y\ V)y'. The following lemmas

are known or obvious.

Lemma 1.1. If N is a hypersurface, then ε and σ are locally invariant under

the action of K (i.e., invariant under the action of a neighborhood of the

identity).

Lemma 1.2. If ε is locally invariant under the action of K, then the principal

curvatures of N (with respect to the shape operator σ determined by ε) are

constant.

Lemma 13. For I 6 f , σ(Xξ) = - (VeQX*)N where the subscript indicates

projection on the tangent space TQN, [19].

Lemma 1.4. For X E I, X* is an N-transverse Jacobi field along γ,

everywhere normal to γ.
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Proof. That X* is Jacobi is in [12, Vol. II, p. 66]. Clearly Xξ E TQN, SO to

show X* is TV-transverse [8, p. 8] we observe that <(VeJf* + σX*)0, TQN}

vanishes by Lemma 1.3. Finally

γ' (X*, γ'> = <VγJf*, γ'> + (X*, Vγ,γ'> = 0,

where we use that X* is Killing. Since X* is normal to γ at 0, this shows X* is

everywhere normal to γ.

Definition 1.5. Let Ύ = Ύ(TV, γ) denote the set of TV-transverse Jacobi

fields along γ everywhere normal to γ. It is well known [8] that Ύ is a vector

space of dimension m — 1 where m is the dimension of M. A point p = γ(^)

is called a focal point for TV if there exists a nonzero vector field in Ύ which

vanishes at s and the order of the focal point is the dimension of the subspace

of such vector fields.

Lemma 1.6. Suppose TV is a hyper surface. Choose Xx, , Xn E f such

that {X*, , X*} form at 0 a basis of T0N. Then {X?\y} is a basis of Ύ

which at every nonfocalpoint y(s) gives linearly independent tangent vectors.

Assume from now on that TV is a hypersurface. Suppose y(t) is a focal

point. Each / E K is an isometry of M leaving TV invariant, so / ° γ is a

geodesic normal to TV at /(0) and /„, maps Ύ(TV, γ) to Ύ(TV,/° γ). Thus

/( ϊ (0) i s a focal point of same order as γ(/). Combining with (1.6), we have

the following.

Lemma 1.7. If N is a hypersurface, then the set of focal points is the union

of the K- orbits of codimension greater than 1. In fact, the order of a focal point

x is codim Kx— 1.

Assume now in addition that K is compact and that focal points exist.

Since the principal orbit type has codimension 1, we see that the space of

orbits M* = M/ K is a ray if M is noncompact and a closed finite interval if

M is compact; further, the subset U* c Λί* of principal orbits is the interior

of M*9 [2, pp. 205-206]. For x E M, let [x] denote the A^-orbit of x, as a point

in M*. Then an endpoint [x] of Λf* comes from an orbit of focal points iff

codim[jc] > 1, i.e., iff [x] is a singular orbit and not an exceptional orbit [2, p.

181]. Actually, in this case, any exceptional orbit is special exceptional [2, p.

185, (3.10)], and if Hλ(M\ Z 2) = 0, there are no special exceptional orbits.

Finally, it is clear that the orbits of focal points are isolated, so by results in

[10] we have

Theorem 1.8. If N is a hypersurface and K is compact, then the focal set is

the union of orbits, each of which is a closed connected minimal submanifold. If

the focal set *§ is nonempty and M is noncompact, then ¥ consists of one orbit,

while if M is compact, <$ consists of no more than two orbits (exactly two if

Hλ(M; ZJ = 0).
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Sometimes it is useful to assume N is orientable and so has a global
^-invariant normal field. If M is orientable, then every principal orbit is
orientable, while every special exceptional orbit is nonorientable [2, p. 185].
However, if Hλ(M\ Z2) = 0, then N will always be orientable [2, p. 188].

Definition 1.9. Suppose N orientable with global A'-invariant unit normal
field ε. For each/? E N9 let yp be the geodesic with γ^O) = p, γ^(0) = εp. For
each real number t, let Nt = {yp(t) :p E N). Since each/ E K is an isome-
try of M, we have/ ° yp = y^py Thus each Nt is an orbit, and {Nt : Nt £ <&}
is the isoparametric family determined by N.

2. We keep the notation of §1 except that we do not require K compact
nor N orientable.

Suppose Λf = G/H is a noneuclidean irreducible Riemannian symmetric
space, where G is the connected component of the isometry group and H is
the isotropy subgroup at 0. We have Q = ί) θ p where Q (respectively ί)) is the
Lie algebra of G (respectively H), and p is the orthogonal complement of I)
with respect to the Killing form B. The mapping X —»Xξ allows us to identify
p with Γ0M, and we may assume the Riemannian metric at 0 is given by T B,
depending on whether M is of compact or noncompact type. We remark that

X$ = 0 for X E ί),

= 0 for X<Ξ^YϊΞp.

Choose A E p so that A ξ = ε0. For l E f w e compute

where the subscripts indicate projection on p and I). Further, we have
B(A, [A, *„]) = £([Λ, A\ X0 = 0. Thus we apply Lemma 1.3 to conclude

(2.1) σ ( J f J ) - μ , ^ ] for* E ϊ.

Now the geodesic γ is given by γ(0 = (exp tA) 0. We will be interested in
the vanishing of X* at points on γ. Since for each t, d exp(-M) is an isometry
of the tangent space at γ(0 onto the tangent space at 0 (which we have
identified with p), it suffices to compute

d exp(-tA)(x;0))

(2.2) = ( A d e x p ( ~
1 *2/i + l/αrl J\2n+l]- " 2 72τhv ' 2 n + 1 ( a d ' ° 2 ' I + 1 ^ + 2 Tίnv'

Let α be a maximal abelian subspace of p containing A. For each linear
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form λ on α, let

pλ = [X G £: (ad H)2X = ±λ(H)2X for all H G α},

ί)λ = {X G ί): (ad H)2X = ±λ(#)2ΛΓ for all H G α},

where we take the negative (respectively positive) sign if M is of compact
(respectively noncompact) type. Then pλ = p_λ, ί)λ = ί)_λ, p0 = α, and ί)0 is
the centralizer of α in ί). If £λ ψ 0, then λ is an α-root. For a suitable ordering
of α*, let Δ (resp. Δ+) be the nonzero (resp. positive) α-roots. We have the
orthogonal decompositions

p = A + Σ pχ> δ = ί)o + Σ ί)λ.
λeΔ λeΔ

Further [19], for each H G α, ad H maps fλ (respectively ί)λ) into ί)λ (respec-
tively t>λ), and this map is an isomorphism or the zero map, depending on
whether λ(H) ^ 0 or λ(H) = 0. Note that for any 7 e f c we have [9]
(ad AfY = R(A, Y)A = Π^Γ) where R is the curvature tensor.

Choose Xi G I so that {X*} at 0 forms an orthonormal basis of eigenvec-
tors of σ with corresponding eigenvalues α, . Let Λ^, (respectively Aŷ ) be the
component of Xi in ρλ (respectively ί)λ). From (2.1) we get

(2.3) μ,^]

o = «,jr,0.

Combining with (2.2) we find

(2.4) ( ^ ,Λ + Jf,0 + Σ

if M is of compact type, and the analogous formula with hyperbolic functions
if M is of noncompact type. Here Δ+ denotes a system of positive roots
chosen so that A is in the closure of the positive Weyl chamber, i.e., λ(Λ) > 0
fora l lλGΔ + .

Definition 2.5. TV is called an amenable hypersurface if each (X;)p lies in
precisely one root space pλ , where λ, may be zero.

For now, we will specialize to the case where M is of rank one, i.e.,
a = RA. Since B(Xi0, A) = B((X^ A) = 0, we see that Xi0 = 0 and the last
two terms in (2.4) vanish.

Now if M is of constant curvature ± 1, then there is only one positive root
λ and λ(Λ) = 1. Thus N is always amenable.

If M is rank 1 of nonconstant curvature, then there will be two positive
roots. After a change of scale, we can take these to be λ with λ(A) = 1 and
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2λ. The eigenspace p2λ has dimension 1, 3, or 7 and is generated by the

images of A under multiplication by the elements in the complex numbers,

quaternions, or Cayley numbers whose square is -/. Using the double angle

formula for cotangent or hyperbolic cotangent, we get

Proposition 2.6. If M is of rank 1 of nonconstant curvature , then

(2.6.1) {Xt)p lies in one root space p^ iff X? vanishes at some point on γ,

and

(2.6.2) N is amenable iff the subspace generated by {Jε: J2 = — /, / e $-}

(where % is the algebra of endomorphisms giving the complex, quaternionic, or

Cayley structure at 0) has a basis of principal curvature vectors.

3. We keep the notation of §2, with no restriction on rank M. We assume

N is an amenable hypersurface, so

(3-1) (Xi\ = X*, e *>λ/,

where \ may be zero. Note by (2.3) that \(Λ) = 0 implies at = 0. Thus we

have

Proposition 3.2. X? vanishes at a point of y iff \(A) ψ 0. Further, (X*)γ0)

(3 2 1) λ | ^ ) c o t ( ' λ ' ( ^ ) ) α ' f°r M comPact>
\(A)co\\γ(t\(A)) = at for M noncompact.

Now, for any X G f, we have X*\y = Σ CgX?\y for constants c, (Lemma 1.6).

If X* vanishes at y(t), we apply (2.4) and (3.1) to get a linear combination of

(Xi)p which vanishes. Since {(X^} is an orthonormal set, we see that ci φ 0

implies Xf vanishes at γ(0 From (1.5) and (1.6), we now obtain

Theorem 33. The focal points of N along y occur precisely at points y(t)

where t satisfies (3.2Λ) for some i = 1, , n. The order of the focal point y(t)

is the number of such i.

Suppose now that γ(ί) is not a focal point. By (1.4) we know γ is normal to

the hypersurface K γ(0, which equals Nt if N is orientable. Let ε be the local

unit normal vector field to K y(t) such that

(3.4) έ γ ( 0 = γ'(f) = Λ*(0,

and let σ be the corresponding shape operator. Let <?, be the vector field along

γ defined by parallel translating (X*)0. From [9, p. 173] we know

(3.5) (d exp tA)((X?)0) = (e^.

Since N is amenable, each (A7% is an eigenvalue of the curvature transforma-

tion Π with eigenvalue ± \ 0 4 ) 2 where the negative sign is taken in the

compact case. Either from the explicit solution of Jacobi's equations [8, p. 20]
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or directly from (2.4), we obtain
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(3.6) i iγ

if \(A) φ 0 and M compact,

eiiϊλi(A) = 0,

\{A)

if \{A ) φ 0 and M noncompact.

Note that our conventions on the sign of the curvature tensor are opposite to
those in [8]. Now we compute σ by (1.3) (where of course we only need to
know X* along γ) and (3.6) to obtain

Theorem 3.7. If y(t) is not a focal point, then {(X?)γ(t)} is an orthogonal
basis of eigenvectors of σ at γ(/) with eigenvalues:

λl(^ί)cot(0/ — ̂ (A)) where λ, (>4)cot 0, = α,,

if\(A) ΦO,M compact,

0 ifλlA) = 0,
(3.7.1) a

" -coth(t\(A))-1 +
if\(A) φ 0, M noncompact.\(A)-

Remark 3.8. If M is noncompact and \a{\ > |\(^4)|, i.e., if X* vanishes at
some point of γ, then the third line in (3.7.1) can be written in the form of the
first (with coth). Also, the first can be written in the form of the third (with
cot and changing -1 to 4-1). This will be useful later.

Suppose now that γ(/) is a focal point and F = K- y(t). We also suppose K
is compact, so F is minimal by (1.8). We will use an idea of Mύnzer [13]
reported by Nomizu [15] to derive a generalizaton of a curious formula of
Cartan. We can assume an indexing so that X? is nonzero at y(t) iff
1 < i < /. By the discussion after (3.2), [Xf\ 1 < / < /} forms a basis of
Ty(t)F. We know {eλ, , en, γ'} at t is an orthogonal basis of Ty^M, and
from (3.6) we conclude that {ex, , ef] is an orthonormal basis of Tγ^F
and {ef+ι, , en, y'} is a basis of the normal space. We can now compute
the shape operator σ for F with respect to the normal y'(i) just as we did for
(3.7). Since F is minimal, each component of the mean curvature vector [12,
Vol. II, p. 34] vanishes, so in particular, the trace of σ at y(t) vanishes. Thus
we obtain

Theorem 3.9. Suppose K is compact, y{t) is a focal point, and X? is nonzero
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at Y(0 iff I < i < f. Then the sum over i = 1, , / of the appropriate terms
in (3.7.1) vanishes.

To explain why (3.9) generalizes Cartan's formula, suppose M is a space of
constant curvature ± 1, so there is only one positive root λ and λ(A) = 1.
Since Xf+ι, , X* vanish at y(t), (3.2.1) shows that α / + 1 = an = a
and a = cot(/) or a = coth(ί); further, α, Φa for i = 1, ,/, and these
give all the other eigenvalues of σ. Thus (see (3.8)),

0 _ y T l

which is Cartan's formula. Of course, we have had to assume K compact,
which is a significant restriction when M is of noncompact type.

Remark 3.10. In (3.9) we only used the vanishing of one component of the
mean curvature vector. We can also take the shape operator σ, of F with
respect to the normal ej9 f <j9 at y(t) and consider the condition Trace σy =
0. We omit this because the computation is tedious and the resulting equation
does not seem geometrically meaningful. Roughly, one must compute
(όj(X?), X*}γ(ί) = - <VeΛ7, X*)Ύ(t) but, since there is no formula analogous
to (3.6) for Xf along an integral curve of e, at γ(/), one must use d exp(-tA)
to carry the computation back to the point 0.

If K is compact and M is noncompact (hence simply-connected with
nonpositive curvature [9]), then we may derive complete results without the
prior assumption that N is amenable by using the fact that K must have a
fixed point [12, Vol. 2, p. 111]. If the fixed point is/, we may construct the
geodesic γ through p normal to N at some point 0. There is / G K such that
/(0) = 0 and hence, perhaps after reversing the parameter,/ ° γ = γ. Thus we
have a unique fixed point y(t) = f~ι(β) = P = γ(0 (this follows also from
(1.8)). Thus N is in the geodesic sphere of radius / around/, and must equal
the geodesic sphere since N has codimension 1. This also implies M is of rank
1 [8, pp. 59-60], and N is amenable by (2.6.1) since X*{t) = 0 for each X Gl
Finally, (3.2.1) relates / and the principal curvatures, and we have

Proposition 3.11. If K is compact and M is noncompact, then M is of rank 1

and N is amenable. Further, N is the geodesic sphere of radius t around the

unique fixed point p of K, which is the only focal point. If M is of constant

negative curvature - 1 , then there is only one principal curvature given by

a = coth(0 If M has nonconstant curvature normalized so as to give the range

[-4, -1], then there are exactly two principal curvatures given by a = coth(ί)

and a' = 2 coth(20
Remark 3.12. Cartan had shown that a hypersurface with constant prin-

cipal curvatures in the space of negative constant curvature has at most two
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principal curvatures. His examples with two distinct principal curvatures are
of course not compact.

Now (3.3) gives precise information on where the focal set <§ cuts γ but
does not say whether a component (i.e., orbit) in *$ can "wrap around" and
cut γ more than once (by (1.8), this must happen if there are more than two
distinct focal points). However, in particular cases, where we know the root
structure, we can determine the dimension of the focal set at each focal point
on γ, and (1.8) implies that at most two different dimensions can occur. For
example, we have

Proposition 3.13. Suppose M is the sphere of constant curvature. Then at

most two different multiplicities can occur amongst the principal curvatures.

Of course, this was also known from the classification of Takagi-Takahashi
[19]. The result does not hold in a quaternionic projective space because an
X* and Xf from two different eigenvalues can vanish at the same focal point
on γ.

4. In this section, we give a complete classification of N when M is a
quaternionic projective space and prove that TV is always amenable. The
method is based on that used by Takagi [17], [18], who gave a complete
classification when M is a complex projective space. First, we observe the
following easy consequence of Takagi's classification

Propositon 4.1. Let K be a closed (hence compact) connected group of

isometries of a complex projective space which has an orbit N of codimension

one. Then N is amenable.

Proof. In [18, Remark 1.1], Takagi observes that if / is the complex
structure on M and ε is a normal vector to N, then Jε is a direction of
principal curvature. By (2.6.2), N is amenable. To prove the remark, one
considers the Riemannian submersion of the sphere onto a complex projec-
tive space, pulls N back to a hypersurface of the sphere, and compares the
principal curvature directions of this hypersurface with the complex structure
of the ambient complex vector space via an explicit knowledge of certain root
spaces. The details are similar to what we will do for a quaternionic projective
space.

From now on, we deal only with the quaternionic case. H will denote the
quaternion algebra, and we identify R 4 n + 4 with the left quaternionic vector
space H π + 1 . The group of left multiplications by unit quaternions will be
denoted Q(n + 1) (isomorphic to Sp(l)) and the subgroup of SO(4Λ + 4)
centralizing Q(n + 1) is identified with Sp(n + 1), which acts transitively on
the unit sphere S4n+3 c R4/l+4. We have the Riemannian submersion m\

M gi v e i l b y j r - i ^ ) ) = s p(l) x. Since Sp(n + 1) and
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Q(n + 1) commute, we have a unique action of Sp(n + 1) on F Ή so that π is
equivariant; this action of Sp(« + 1 ) gives the identity component of the
isometry group of F Ή . Let Jv J2, J3 be left multiplication by the quaternions
i,j, k on Hn+ι.

Fix points α E 5 4 / I + 3 and 0 = π(a) G F Ή . Let b(α) be the orthogonal
complement of Ra Θ RJλa θ RJ2a θ RJ3a = R α θ Ker πja in R4/I+4.
Then

(4.2) π+\a: h(a) -> TQP"!! is a surjective isometry.

Clearly, each Jt leaves h(a) invariant but does not induce an operator on
Γ0P

ΛH independent of choice of a G π~ι(0). However, the action of Q(n +
1) on h{ά) does induce a well-defined group of operators on T^H which
defines the quaternionic structure at 0.

Suppose now that K is a closed (hence compact) connected subgroup of
Sp(n + 1) such that the orbit N = K- 0 c M is of codimension one. Then
N = iτ~\N) is the orbit of a under the action of K- Q(n + 1) on R4/l+4, and
TV is a hypersurface of S4n+3. Let b be a unit vector orthogonal to N at α.
Since N is invariant under Q(n + 1), b is in b(α) and TΓ̂ O = ε is a unit normal
to Λ̂  at 0. Let σ be the shape operator of N with respect to b at a, and σ the
shape operator of iV with respect to ε at 0. Then it is easy to see that

(4.3) <σX, y> = (σπ*X, π* Y) for I J 6 b(a), orthogonal to b.

In particular, we have

If X G h(a) is nonzero and 6X = aX + Xr where
(4.4) (χ\ b(α)> = 0, then π^X is an eigenvector of σ

with eigenvalue α.

Now let £ be the maximal compact connected subgroup of SO(4n + 4)
leaving N invariant. From the classification of Hsiang-Lawson [10], we know
that either the action of K on R 4 π + 4 is reducible or agrees (up to conjugation)
with the linear isotropy action of an irreducible Riemannian symmetric pair
of rank two and compact type.

Proposition 43. Suppose the action of K is reducible. Then

Hn + ι = V{ θ V2 as an orthogonal direct sum of

(4.3.1) quaternionic subspaces, N = S} X S2 where S; is

the sphere of radius η > 0 in Vi9 r\ + r\ = 1.

Conversely, given a nontrivial decompostion (4.3.1), we can let K = Sp(n,) X
Sp(n2), where n, is the quaternionic dimension of Vi9 and the orbit of K at 0 is
π(N). In this situation, N is amenable. Writing rλ = cos 0, r2 = sin θ, the
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principal curvatures are

tan θ oniτ^Wλ with multiplicity 4(«j — 1),

-cot θ on π^ W2 with multiplicity 4(n2 — 1),
3

tan θ — cot θ on 2 R77"*^ w^tn multiplicity 3.

Here Wt is the orthogonal complement of {ai9 Jιai,J2ai,J3ai} in Vi9 with

a = (al9 aj, b = (bv bj, α, , bt G Vr

Note that the geodesic spheres in F Ή occur precisely when one ΛΪ, = 1.

Proof. If Vλ is a proper K invariant subspace, then the orthogonal

complement V2 is also K invariant, and each Vi is a quaternionic subspace

because K D Q(n + 1). For any k e K, we have N 3 ka = (kav ka^ G S,

X S ,̂ where S, is the sphere in Vi through ai9 and for dimensional reasons, we

have N = Sι X 5 2 with r,. = |α f| > 0; cf. Takagi-Takahashi [19, p. 478].

Next note that b = {-{r2/r^)av {rλ/r2)a2) and Wt = h(a) n 7^5,.. We

know the shape operator of the sphere St in Vi with respect to the normal

vector bt (not of unit length!), so σ|ΓβiSΊ = (r2/rx)I9 o\Tθ2S2 = - (rλ/r2)I\

since Wi c b(α), (4.4) shows 77̂  Wt is an eigenspace for σ with the indicated

eigenvalue. On the other hand,

f J,bl9 - ^ J,bλ =

Again applying (4.4), we get the last eigenvalue for σ. Finally, (2.6.2) shows N

is amenable since Σ Rπ+J b is just the image of the normal vector ε = π+b by

the skew-involutive endomorphisms of the quaternionic structure of F Ή at 0.

Now let (£/, L) be any irreducible Riemannian symmetric pair of compact

type, and let u = I θ p be the usual decomposition of the Lie algebra. Let α

be a maximal abelian subspace of \), and let a E α be regular. Then the orbit

of a under the adjoint action of L will have codimension equal to rank(t/, L)

in the vector space p. A complete description of the geometry of the situation

is given in Takagi-Takahashi [19].

First we will examine the pairs (U9 L) arising in the classification of

quaternionic symmetric spaces with quaternionic scalar part given by Wolf

[21]. Here L — KfQf where Kf and Q' commute with each other and

Qf ^ Sρ(l). Then we may identify p with H n + 1 so that AdpQ' = Q(n + 1)

and K = Ad^tf' c Sp(« + 1). The orbit K-ττ{a) will be a hypersurface in

F Ή iff rank(ί/, L) = 2. The only rank-two pairs which occur are (SU(/z +

3), S(Un+ιx U2)) and (G2, SO(4)) (see [9] for notation). The latter case may

be eliminated since then the real dimension of p is 8 and we would be

constructing an orbit in P ! H = S4. To describe the former case, we first
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define certain matrices (as in Chavel [7]). Thus Ejk will denote the matrix
whose only nonzero entry is 1 in they'th row, A:th column, and

(4.5) Bjk = (EJk -

Then a basis of the Lie algebra %u(n + 3) is {AJJ+l: 1 < j < n + 2; Bjk, CJk:

1 < j < k < n + 3}. Following Wolf [21, p. 1043], it is easy to show that a

basis for f is {Z; 4 J + 1 : 2 < y < /i + 1; BJk, Cjk: 2<j<k<n + 2} where

Z (^ + ̂  + + Λ ) ^

a basis for q' is {Aln+3, Bln+3, C l r t + 3 }, and a basis for p is

{£ l y, Clj9 BM+3, CM+3: 2 < j < n + 2}. Note that the imbedding of S(Un+ι

X £/2) in SU(« -I- 3) is not the most standard one. Let £y E H Λ + 1 be the

column vector whose only nonzero entry is 1 in theyth row. We identify p

with H Λ + 1 (as real vector spaces) so that BXj = Ej_v Cλj = JλEj_v BJn+3 =

JIEJ-V Cj,n+3 = hEj-\\ t h en a d ^ l f l l + 3 = Jv a d ^ 1 / I + 3 - J2, and a d p C l n + 3

= J3 (note ad^Z corresponds to right multiplication by 1). In $, take α =

R2?12 θ R^rt+2,n+3, which is maximal abelian. We describe the α roots as

ordered pairs, where the entries are the values on Bl2 and Bn+2n+3 respec-

tively. We get the following six roots and corresponding root spaces:

P l = (1, 0), Uj = span{£ u , C u : 3 < k < n + 1};

p 2 = (0, 1), p2 = span{BM+3, CM+3: 3 < j < n + 1};

p 3 = (1, - 1 ) , D3 = s p a n { 5 l Λ + 2 + 5 2 Λ + 3 , C 1 > / ι + 2 + C 2 ) / I + 3};

p 4 = (1, 1), t>4 = span{£ 1 > r t + 2 - B2n+3, C 1 > n + 2 - C 2 > n + 3 ) ;

p 5 = (2, 0), t>5 = RC 1 2 ;

p 6 = (0, 2), t>6 = RCn+2,n+3.

Let α = cos ΘBι2 + sin ΘBn+2n+39 which is regular iff 0 is not a multiple of

τr/4 (in general, α is regular iff p(α) 7̂= 0 for all nonzero roots). Let N be the

orbit of α under the adjoint action of L, and take the normal vector

b = - sin ΘBl2 + cos ^ π + 2 , / i + 3 F r o m Takagi-Takahashi [19], we know that

the eigenspaces of the shape operator σ are the \)i with eigenvalues

-Piify/piiα). If N is the orbit of 0 = π(α) in F Ή under the action of K

(observe K c^ U(n + 1)), then π~ιN = N.

Proposition 4.6. Lei ίAe quαternionic symmetric pair (SU(n + 3), S^L^+j

X U2)) induce an action of U(n + 1) on F Ή as described. Let N be the orbit at

0 = π(a) where a is regular. Then N is an amenable hypersurface whose



ISOPARAMETRIC FAMILIES OF HYPERSURFACES 33

principal curvatures are

tan θ on ΊT^X with multiplicity 2(n — 1),

-cot θ on 7 r ^ w*th multiplicity 2(n — 1),

tan θ - cot θ on Rπ+Jfi with multiplicity 1,

2 tan 2Θ on Rττ^J2b Θ TLπ+Jφ with multiplicity 2.

Proof. We can explicitly compute all Jμ, Jtb and hence h(a). Since px, p2

are in ϊ>(α), the first two principal curvatures are clear. Next Jxb = — sin ΘCX2

+ cos ΘCn+2,n+3 e t>5 ® t>6 a n d oJxb = (tan θ - cot θ)Jxb — Jxa\ applying

(4.4) gives the third principal curvature, and the fourth is similar. Again,

(2.6.2) shows N is amenable.

Our task from now on is to prove that the classification is already complete

with (4.3) and (4.6). Thus we will be considering a compact irreducible

Riemannian symmetric pair ( U, L) of rank 2 such that the adjoint action of L

on p contains a subgroup of the form K Q(n + 1), and the orbits of this

subgroup coincide with the orbits of AdpL. In particular, we have elements

Zq, L2, L3 e I so that

(4.7) ad̂ Ly ° ad̂ Ly = ad^Z^ if [i,j, A:} is a cyclic permutation of (1, 2, 3);

(4.8) ( a d , I , ) 2 - - / r

From (4.7) we have adJL,., Ly] = 2 a d ^ , so [Li9 Lj] = 2Lk. This shows that

(4.9) (ad LfiLj) = -4L, for any i φj.

Now choose a maximal abelian subspace t c I with Lx E t. Then (4.8) implies

t is maximal abelian in u (see [17, p. 497]), and t c is a Cartan subalgebra for

both u c and Ic, i.e., rank u c = rank Ic. Combining this with the conditions

that rank(t/, L) = 2 and that 4 divides the dimension of p, we find that

(U, L) must be one of the following:

(SU(3) X SU(3), SU(3)) (eliminated since dim p = 8, M = S%

(SU(/i + 3),S(£/n + 1 X U2)\n > 1,

(G2, SO(4)),

(4.10) (SO(8), £/(4)), (SO(10), 1/(5)),

(SO(2/ι + 4), SO(2« + 2) X SO(2)),

(E6, SO(10) + R),

(Sp(/7 + 2), Sp(^) X Sp(2)) where 2p = n + l,p > 2,

where the first two cases have already been discussed.

Let Δ + be a system of positive roots so that -iLx = Hx is in the closure of
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the positive Weyl chamber. Then Δ + is the disjoint union of Δ+, Δ+ so

(4.ii) i = t θ 2 (u n (u c + u c )),

(4-12) p= Σ (« Π (ι£ + u^β)).
** — — p

Let Λ = {a G Δ + : «(#,) = 2}. Then (4.8) implies

(4.13) α(i/,) = 1 for all a G Δ+,

while (4.9) implies (using i = 1)

(4.14) Z, G Σ (u n K + «-*))- 7 = 2, 3.
αGΛ

Next, let Φ = {a G Δ + : α(#j) = 0}. Since [p, $] = I [9, p. 207], each root in

Δj* is of the form aι ± a2, α, G Δ "̂, so Δt

+ = Φ u Λ. Let Δ = — Δ + U Δ + .

For each a G Δ, choose Ha G it, Xa G u^ so that

B(H9 Ha) = a(H) for ^ G it, where B is the Killing form,

[ ^ , ^ 1 = 0 if a + β ^ 0, α + β ί A
(4.15)

[Λα, Λ^J = NaβXa+β ita + β G Δ,

where Λ^^ = —Nβa= —N_a_β φ 0,

7α = Xa - X_a, Za = i{Xa + X_J are in u

(see [9, Theorem 5.5, p. 151; Lemma 3.1, pp. 219-220; and Definition, p.

332]). Let

(4.16) L 2 = Σ (LK + l-aX-a) where/_α = - / ; .
α6Λ

From [L2, [L2, LJ] = — ALX = — 4I/JΓJ, we get

(4.17) Σ UβNa,-βX

a-β = °> s u m o v e r distinct a, β G A with α - ] 8 G A ,

(4.18) Σ / α 4# α = Hl9 sum over α G Λ.

Let q be the algebra generated by Ll9 L2, L3 in I, and let s(q) be the

centralizer of q in I. For Z G I, it is easy to see that

(4.19) [Z, Lλ] = 0 iff Z e t Φ 2 ( u n (uj + u^β)).
«GΦ

Clearly, the adjoint action on p of the analytic subgroup corresponding to

i, respectively p, contains K, respectively Q(n + 1).
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Suppose α c P is maximal abelian and α G α i s regular. Then

(4.20) {Z E I: [Z, a] = 0} = {Z e I: [Z, α] - 0} - δ(α).

The tangent space at a of the orbit of a under the adjoint action of the group

L can be identified with [I, a] (see [19] or [17]). By our assumption, the adjoint

action of the analytic subgroup whose Lie algebra is q 4- 5(q) must give the

same orbit, so [I, a] = [q, a] + [a(q), a]. Thus we have

(4.21) I = q + δ(q) + δ(α).

Let IΛ = Σ α € Ξ Λ (u n (vξ + ι £ α ) ) c I, and let P: I->IΛ be the orthogonal

projection. From (4.19) we have P(a(q)) = 0, so (4.21) implies P(q + 5(α)) =

P(ΐ) = IΛ. Of course, dim P(q) = 2, so we have

(4.22) 2 + dim P(s(α)) > dim IΛ.

We learned the following device from Wolf [20]. Let Π be a system of

simple roots for Δ + , and let Πo, Π^ Π 2 be the intersection of Π with Φ, Δ+,

Λ, respectively. Let μ be a maximal root in Δ + , so μ = Σ f f 6 Π v where the

coefficients mπ are positive integers. Thus

2 = μ(H,) = Σ m, + 2 Σ ™v.

Note Πj is nonempty because Δ^ is so. Thus the only possibilities are

(4.23) Π 2 empty, Iίx = {p}, mp = 2,

(4.24) Π 2 empty, Π! = {p, σ}, mp = mσ = 1.

Examining the root diagram and maximal root for each u occurring in (4.10)

(see [1] or [11]), we can determine which choices of Πj lead to a p (defined by

(4.12)), which contains a maximal abelian subspace of dimension two. Of

course, we do not need to consider u = &u(n + 3) or g2, although it is easy to

see that in those cases, we do end up with the appropriate quaternionic

symmetric space.

Case 1. u = §>o(2n + 4).

With / = n + 2, we can take Δ + = (ε, ± ey. 1 < / <j < /}, and Π = {>,-:

1 < i < /} where tni = ε, — ε i + 1 for 1 < i < I and *πι = ει_ι + ε,. As usual, we

can identify the ε, with the standard Euclidean basis vectors in R7. The

maximal root is

μ = TΓJ + 2π2 + +2τ77_2 + 7Γ7_ j + τr7 = ει 4- ε2.

The only choices of Πj leading to a rank-two pair are Tlι = {πv τr7} and
π i = {πi-vVi}'

Subcase la. Πj = {πv TΓ/}.

A positive root is in Δ^ (respectively, Λ) iff its expression in terms of
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simple roots contains precisely one of πx, irt (respectively, both πx and πj).

Thus

K = ί ε i " εj: 2<j<l; ε, + ε,: 2 < / <j < /},

Φ = {c . - ε,: 2 < i <j < /} , Λ = {εx + ε,: 2 < j < / } .

If / > 6, the p contains the commuting vectors {^e,-e2' ê3+e4> ^e5+e6}
 s o

rank(u, I) > 3.

If / = 4, (4.13) implies Hx has a unique expression involving ifα, a G Λ,

namely

Then (4.17) and (4.18) imply that

lja = ̂  for α e Λ, /αζg = 0 for distinct α, j8 6 Λ.

Treating each la as a vector of length λ/2 /2 in R2, we get a contradiction. If

/ = 5, we find Hλ is uniquely determined by the conditions

and so

One checks that //j cannot be written as a linear combination of Ha, a E Λ,

contradicting (4.18).

Subcase lb. Πj = {^/_i, ^/}.

Computing as before, we have

Δ ; = {ε, ± ε7: 1 < i < /} , Φ = {ε, - ε/. 1 < i <j < / } ,

Λ = {ε,. + εy: 1 < / < y < / } .

Let α = R76]_C/ θ R7 e ( + ε / which is maximal abelian in p. One computes

3(α) =

Using the orthogonal projection P: I -> IΛ, we see

dim i>a(α) - (/ - 2)(/ - 3), dim IΛ - (/ - 1)(/ - 2).

Then (4.22) gives 2 > (/ - 2)((/ - 1) - (/ - 3)) = 2(1 - 2), so / < 3. How-

ever, / > 2, the case with / = 2 is reducible, and for / = 3 we note

SO(6)/SO(4) X SO(2) ̂  SU(4)/S(ί/2 X U2).

Case 2. u = e6.
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A system of simple roots is Π = {π, : 1 < i < 6} with root diagram

>2

1 3 4 5 6
Each tπi can be written in terms of the standard Euclidean basis vectors in R8,
but this is complicated [1, p. 261], [11, p. 65]. The maximal root is

μ = mx + 2π2 + 2ττ3 + 3ττ4 + 2π5 + ττ6.

The only choice of Π^ leading to a rank-two pair is Πj = {πv ττ6}. A positive
root is in Δ* (respectively, Λ) iff its expression in terms of simple roots
contains precisely one of TΓJ, π 6 (respectively, both mx and ττ6). One finds
Λ = {λv , λ 8} where

λ1 = ( 1 2 2 3 2 1), λ2 = ( 1 1 2 3 2 1), λ3 = (1 1 2 2 2 1),

λ4 = (1 1 2 2 1 1), λ5 = (1 1 1 2 2 1), λ6 = (1 1 1 2 1 1),

λ7 = (1 1 1 1 1 1), λ8 = (1 0 1 1 1 1).

Here the 6-tuρles give the coefficients with respect to the simple roots in
order. Here and in the calculations which follow, we use the tables in [1, p.
260] which give all roots and their expression in terms of the simple roots (in
a slightly different notation).

Similarly, Φ = {<j>v , φ 1 2} where

Φi = (0 1 0 0 0 0), φ 2 = (0 1 0 1 0 0), φ3 = (0 0 0 1 0 0),

φ4 = (0 0 1 0 0 0), φ5 = (0 0 1 1 0 0), φ6 = (0 0 1 1 1 0),

φ7 = (0 1 1 1 0 0), φ8 = (0 1 1 1 1 0), φ 9 = (0 1 0 1 1 0),

φ 1 0 = (0 0 0 1 1 0), φ π = (0 1 1 2 1 0), φ 1 2 = (0 0 0 0 1 0).

Let α = RYv Θ R ^ which is maximal abelian in p. It is easy to see that

(4.25) 8(α) = (3(α) n t)

For

(4.26) x= Σ

(8(α) n Σ
\ ±α6Δ,+

one finds [X, a] = 0 iff

(4.27) Σ ya(*a*Y« + « ~ N«,-«Y«-«)
a

+ Σ *.(*«,.z«+. - *«.-z«-.) = °
a

for m = TΓp τr6, sum on a E
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where we let Na β = 0 if a + β is not a root. If a ± π is a root, it must be in
Δj,. If α 6 Λ, then α + ΊT is never a root, and

a — τrλ is a root iff α = λ5, λ6, λ7, λ8,

α - π6 is a root iff a = λ4, λ6, λ7, λ8.

If a E Φ, then α — π is never a root, and

a + TΓJ is a root iff α = φ4, φ5, φ6, φ7, φ8, φ π ,

α + π2 is a root iff a = φ6, φ8, φ9, φ1 0, φ n , φ 1 2.

Thus all terms in (4.27) are independent and we conclude that X is in the sum
of the root spaces corresponding to λj, λ2, λ3, φv φ2, φ3. Again using the
orthogonal projection P: I —» IΛ, we have

dim Ph(a) = 6, dim IΛ = 16,

which contradicts (4.22).

Case 3. u = &p(p + 2).

With / = p + 2 > 4, we can take Δ + = {2%: 1 < / < /; ε, ± ε,: 1 < i <j

< /} and Π = {πt = εi — ε l + 1: 1 < / < /; mι = 2ε,}. The maximal root is

μ = 2πx + 2T72 + + 2 ^ . ! + 77*/ = 2εj,

so only (4.23) arises. If Πj = {ττr} for some r < /, then

Δ+ = {ε, ±ey. 1 < / < r <j < /} ,

Λ = (£ / + ey. 1 < Ϊ <y < r\ 2et: 1 < i < r},

Φ = {ε, - εy: 1 <i <j < rorr <i <j < /;

ε, + ε,: r < i <y < /; 2ε, : r < i < /},

We will also need to consider

Δ1

+ = { ε 1 ± ε 2 , 2 ε 1 , 2 ε 2 } , Δ 2

+ = Δ ι

+ ^ Δ 1

+ ,

Δ3

+ = [2εi: 2 < i < / - 2; ε, ± εy. 2 < i <j < I - 2}.

The only choices of r leading to a rank-2 pair are r — 2 and r = / — 2. In

either case, a maximal abelian subspace of p is given by

We have the same situation as in (4.25), (4.26), and (4.27), and find that the

orthogonal complement of t in g(α) is spanned by the real parts of the root

spaces corresponding to roots in ± Δ^ together with vectors of the form

aY2ει + bY2ει_, aZ^ + bZ2ει ,, cY^ + dY^ cZ2ei + dZ2e.

This complication is caused by the fact that all terms in (4.27) are not

independent, as opposed to the situation in Case 2.
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If r = I — 2 > 2, then we use the projection P and find

dim Pi(ά) < 2((/ - 4) + i(/ - 4)(/ - 5) + 2),

dim IA = (/ - 2)(/ - 1),

and (4.22) gives a contradiction.
If r = 2, we must use a different projection and compute a(q) more

carefully. Let Γ be the sum of the real parts of root spaces corresponding to
roots in ±Δ!+, and P'\ I—>Γ the orthogonal projection. Note Λ c A,+,
A 2

+ c Φ and for α, G Δ ^ ^ ± a2 is never a root. Thus ((4.14) and (4.19))

Σ (RrαθRzα)ca(q).

So to compute P'δfa), it suffices to consider the projection of

(4.28) {X G t θ R7 e i_ ε 2 θ RZ ε i_e 2: [X, L2] = 0}.

Clearly, dim Pfι{(\) < 2, and we get a contradiction by explicitly writing
down the equations for two elements in (4.28) to project into Ye _ε and
Zε i_β2. Thus dim P'ftq) < 1. Further, dim Γ = 8 and dim P'δ(α) < 4. From
(4.21) we have

dim P'(q) + dim P'(a(<0) + dim P'(δ(α)) > dim Γ,

which is impossible. Summarizing, we have

Proposition 4.29. If M is a quaternionic projectiυe space and N is a

hypersurface which is the orbit of a closed connected group of isometries of M,

then N is amenable and is given by Proposition 4.3 or 4.6, where M φ S4 is

assumed.
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