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ISOMETRY OF RIEMANNIAN MANIFOLDS TO SPHERES

KENTARO YANO & HITOSI HIRAMATU

1. Introduction

Let M be a difϊerentiable connected Riemannian manifold of dimension n.
We cover M by a system of coordinate neighborhoods {U; xh}, where and in
the sequel indices h, ί, /, /:,••• run over the range {1,2, , n}, and denote
by gji, Fj9 Kkjί

h, Kji and K the metric tensor, the operator of covariant dif-
ferentiation with respect to the Levi-Civita connection, the curvature tensor,
the Ricci tensor and the scalar curvature of M respectively.

An infinitesimal transformation vh on M is said to be conformal if it satisfies

(1.1) &vgjt = FjVi + FtVj = 2pgJt (vt = gίhv
h)

for a certain function p on M, where <gv denotes the operator of Lie deriva-
tion with respect to the vector field v (see [6]). When we refer in the sequel
to an infinitesimal conformal transformation v, we always mean by p the func-
tion appearing in (1.1). When p in (1.1) is a constant (respectively, zero), the
infinitesimal transformation is said to be homothetic (respectively, isometric).

We also denote by £PDp the operator of Lie derivation with respect to the
vector field pι defined by

where

(1.3) F 4

gίh being contravariant components of the metric tensor. We use gjt and gίh

to lower and raise the indices respectively.
The problem of finding conditions for a Riemannian manifold admitting an

infinitesimal conformal transformation v to be isometric to a sphere has been
extensively studied. For the history of this problem, see [7] and [8]. But in
almost all the results on this problem the condition K = constant or jδ?υK =
0 has been assumed. As results in which the conditon j£?VK = 0 is not assum-
ed, Sawaki and one of the present authors [12] (see also [11]) proved the fol-
lowing two theorems, in which and the remainder of this section, unless stated
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otherwise, M will always denote a compact oriented Riemannian manifold of
dimension n > 2 admitting an infinitesimal nonhomothetic conformal trans-
formation v.

Theorem A. M is isometric to a sphere if v satisfies

(1.4) J2

where

(1.5)

(1.6) ^

Δ — gjΨjVt denoting the Laplacian.
Theorem B. M is isometric to a sphere if v satisfies

(1.7) J^JW||Z||2 - —±-Δκ) + S(fl + l)J^υκ\ = 0
L \ n + 2 / n(n + 2) J

where

(1.8) Z,,> = Kt i i* - ^ ^

(1.9) \\Z\\2 = ZkJt

hZ*»h .

Recently Amur and Hegde [2] (see also [3]) proved the following two theo-
rems.

Theorem C. M is conformal to a sphere if v satisfies 3?Όp££vK = 0 and

(1.10) ί (Gjtp'p* + \^^DpK)dV > 0 ,
J M \ n2 /

where ££Dp denotes the operator of Lie derivation with respect to p1 and dV
the volume element of M.

Theorem D. M is conformal to a sphere if v satisfies SeΌp£evK=0, ^v^DpK
> 0 and&v\\G\\2 = 0.

Very recently the present authors [9] proved the following two theorems.
Theorem E. M is isometric to a sphere if v satisfies 3?v | | G | | 2 = 0 and

ί KPip*dV
J M

~2n(n- 1)

(1.11) 1 f
> 1 [2no2K2 + (n
~ 2n(n — 1) JΛΓ H
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Theorem F. M is isometric to a sphere if v satisfies &v \\Z\\2 = 0 and

(1.11).
All the above theorems have been obtained by applying the following Theo-

rem G of Tashiro [5].
The purpose of the present paper is to continue the joint work of the pres-

ent authors [9] and to prove some propositions on isometry of Riemannian
manifolds to spheres, in which the operator of Lie derivation j£?Dp plays an
important role.

In the sequel, we need the following theorems.
Theorem G {Tashiro [5]). // a complete Riemannian manifold M of di-

mension n > 2 admits a complete infinitesimal nonhomothetic conformal trans-
formation v such that

(1.12) FjPί-±-Jpgjί = 0,

then M is isometric to a sphere.
Theorem H (Yano and Obata [10]. See also Obata [4]). // a complete Rie-

mannian manifold M of dimension n > 2 admits a nonconstant function p
satisfying

(1.13) FjPt - ± - Δ p g j i = o , seΏφκ = o ,

then M is isometric to a sphere.
We remark here that if a Riemannian manifold M of dimension n is iso-

metric to a sphere, then M admits not only an infinitesimal nonhomothetic
conformal transformation v satisfying (1.1) and (1.12) but also a nonconstant
function p satisfying (1.13).

2. Lemmas

In this section we prove some lemmas which we need in the next section.
M is supposed to be a compact oriented Riemannian manifold of dimension
n in all the lemmas except in Lemmas 4, 5, 6, 9 where M is supposed to be
only a Riemannian manifold.

Lemma 1. // M admits an infinitesimal conformal transformation v, then,
for the function p appearing in (1.1) and for an arbitrary function f on M, we
have

(2.1) f pfdV = - ± - [ S
JM n JM

Proof. Since np = Ftv*, by Green's theorem (see [7]) we have
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0 = f Ft(fvt)dV = ί sejdV + n ί pfdV ,
JM JM JM

which proves (2.1).
Lemma 2. In M we have

f seΏShdv = f <?DJjdv = f (FM^h)dv
sr\ r\*\ J M J M J M

= - ί ίΔhdV = - [ hΔfdV
J M J M

for any functions f and h on M, where <£Df denotes the operator of Lie deri-
vation with respect to the vector field Vιf on M.

Proof. This follows from

0 = f VlWιh)dV = [ (FJXF^dV + f fΔhdV ,
J M J M J M

0 = f PiWfidV = ί (FthW'fldV + ί hΔfdV .
JM JM JM

Lemma 3. In M we have

(2.3) f P

2ΔKdV = -2 ί ppΨtKdV

JM JM

for any function p on M, K being the scalar curvature of M.
Proof. We have (2.3) by putting / = K and h = p2 in (2.2).
Lemma 4 (Yano [7]). For an infinitesimal conformal transformation v in

M, we have

(2.4) &9KkJi

h = -δψjPi + i)VkPi - VkP

hgμ + FjP

hgki ,

(2.5) sejLsi = -in - 2)FjPί - Δpgjί ,

(2.6) &*K = -2(n - l)Δp - 2pK .

Proof. We can prove these by using (1.1) and the following formulas on
Lie derivatives:

^v\j i) — Ojpi T OiPj —

ft} denoting Christofϊel symbols formed with gj1t.
Lemma 5. For an infinitesimal conformal transformation v in M, we have

(2.7) f}si = -{n - 2)(pjPi - j
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&vZkμ

h = -δWtfi + δ)VtPι - P t / g ί ( + VjP

hgkl

( 2 " 8 ) + —Δpiδigμ ~ «?*«) ,
n

where Gόi and Zkjί

h are defined by (1.5) and (1.8) respectively.
Proof. These follow from Lemma 4.
Lemma 6. // M admits an infinitesimal conformal transformation v, then

for any function f on M we have

(2.9) Δ&j = J?vΔf + 2pΔf - (Λ - 2)pψif .

Proof. For an infinitesimal conformal transformation v, we have (see [7])

(2.10) g*ΨkFjVh + Kfv* + n~2V\Vtv
l) = 0 .

n

Thus we obtain (2.9) by using (2.10) and the identity

tΓnf ~ KhΨtf = Fh(Δf) ,

which holds for any function / on M.
Lemma 7. // M admits an infinitesimal conformal transformation v, then

f
(2.11) JM

n+2 +

(2.12) ί &D^vKdV=-[ PΔJ?vKdV ,
JM JM

and consequently

ί se^
(2.13)

= -—hr\ P^άKdv+ 2 ( W ^ υ f
n + 2 JM n + 2 JM

where Dp denotes the vector field p\ and [v,Dp] the commutator of vector
fields v and Dp.

Proof. Using Lemmas 1, 3 and 6, we have

ί pSejKdV = [ pΔ^vKdV - 2 ί P

2ΔKdV + (n - 2) ί ppΨi
JM JM JM JM

= ί 9ΔSevKdV + (n + 2) ί p&DpKdV
J M J M
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= ί
J M

which proves (2.11). (2.12) follows immediately from Lemma 2.
Lemma 8. In M we have, for any junction p on M,

(2.14) ί KjφJptdV^—ίf p&nfo

f KJlP>p<dV

(2.15)

Proof. From the definition of K it follows that

ί P&DpKdV = ί PJ?Dp(Kjig»)dV
(2.16) JM JM

= f p(^DpKj{)gJidV + f
J M J M

On the other hand, since pt is a gradient, we have

(2.17) &Dfgji = 2FJ/Oi , seDf8» = -ΊΓ'p* ,

(2.18) FKPp
ιKn) = Kjφip* + pKjtFψ +

where we have used VSKH = ψ%K. Using (2.16), (2.17) and (2.18), we have
(2.14). We also have

(2.19)
ί p<eDpKdV = f pJ?Bfi(Kkjlhg«»g»)dV

J M J M

= ί pίZBlKkilάf?hgJidV - 4 f
J M J

from which and (2.18), (2.15) follows immediately.
Lemma 9. In M we have, for any function p on M,

+ -iApf +
(2.20)

Proof. Using Ricci formula we have

Δ<eΏpP = g'ΨtFjipφt) = 2g«Ψk(pΨjPi)



ISOMETRY OF RIEMANNIAN MANIFOLDS 449

= 2g*KVkVjPi)pι + WjPiWp*)

+ 2(Γ,/Oi)(FV) ,

from which we find (2.20).
Lemma 10. In M we have, for any junction p on M,

f SeDfΔpdV
JM n J M

(2.21)

or

ί K^p'dV -^—^[ {ΔpfdV
JM n JM

= - ί [VsPi - -ΔpgΛiVp* - 1-JpgAdV .
JM \ n /\ n /

(2.22)

Proof. These follow from Lemmas 2 and 9.
Lemma 11. A sphere Sn of dimension n > 2 admits a nonconsίant func-

tion p such that

(2.23) FjPt - ^Δpgjί = 0 ,
n

and consequently

(2.24) Δ2p + -^-—KΔp = 0 , F/Jp + -J—KFjPi = 0 ,
n — 1 n — 1

(2.25) F/Jp - ^ p g j i = 0 .

Proof. It is known [11] that Sn admits a nonconstant function p such that
(2.23) holds. This shows that the vector field ρι defines an infinitesimal non-
homothetic conformal transformation on Sn with the associated function
(l/ri)Jp. Since K is a positive constant, using (2.6) in which v and p are re-
placed by ph and (l/n)Ap respectively we have the first equation of (2.24) and
therefore Δp + (l/(n — l))ρK = c (c: constant), which implies the second
equation of (2.24). From (2.23) and (2.24) we obtain (2.25).

3. Propositions

In this section, we prove a series of propositions in which the operator of
Lie derivation ^Dp plays an important role. M is supposed to be a compact
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oriented Riemannian manifold of dimension n admitting an infinitesimal con-
formal transformation v in all the propositions and corollaries except: in Pro-
position 4 where M is supposed to be a complete Riemannian manifold of
dimension n > 2, in Propositions 5, 7 and Corollary 5 where M is supposed
to be a complete Riemannian manifold of dimension n > 2 admitting a com-
plete infinitesimal nonhomothetic conformal transformation v, in Propositions
6, 12 and 13 where M is supposed to be only a Riemannian manifold, and in
Propositions 8, 10 and Corollaries 1, 3 where M is supposed to be a compact
oriented Riemannian manifold of dimension n.

Proposition 1. For M we have

(3.1) ί GjiPipidv + J - ί se^Ώpκdv - J - f se^sejtdv < o .
JM Π2 JM 2ft JM

The M of dimension n > 2 admits a nonhomothetic v such that the equality
in (3.1) holds if and only if M is isometric to a sphere.

Proof. By using (1.5), (2.6), Lemmas 1 and 2 and the identity

(3.2) f Vlpp^dV = [ KpφW + ί pKΔpdV + [ ppΨ.KdV = 0 ,
JM JM JM JM

we have

f KJiP'p*dV-!-^[ {ΔpYdV
JM ft JM

= [ Gjtp'pW + - f KptP*dV - ϊ-^±- [ {ΔpfdV
JM ft JM ft JM

= [ GuptpW - — f p&DpKdV - — [ pKΔpdV
JM ft JM ft JM

f
ft JM

= [ Gjtp'pW + \ ί se^seΏpκdv + 4- ί
JM ft2 JM 2ft JM

= [ G^p'dv + -V f sevseDμκdv - -^ f
JM n2

 JM In JM

Thus from Lemma 10 we obtain

ί
JM AT JM

(3.3)
= - f

j M
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which implies (3.1). If the equality in (3.1) holds, then from (3.3) and Theo-
rem G it follows that M is isometric to a sphere. Conversely, if M is isometric
to a sphere, M admits an infinitesimal nonhomothetic conformal transforma-
tion v such that the equality in (3.1) holds because, for a sphere, G3i = 0 and
K is a positive constant.

Proposition 1 is a generalization of Theorem C.
Proposition 2. // the dimension n of M is greater than 2, then

(3.4) ί JZv^υ \\G\\2dV - (n - 2) f &ίVtDplKdV > 0 .
JM JM

The M of dimension n > 2 admits a nonhomothetic v such that the equality
in (3.4) holds if and only if M is isometric to a sphere.

Proof. First of all we have

όi)G^ - 4p\\G\\> .

Substituting (2.7) in the above equation we find

<?υ | |G| | 2 = -2(n - 2)G,«Γy - Ap \\G\\2 ,

because of G^g31 = 0 or

(3.5) KjSY = ~^rP \\G\r - 1 sev \\G\f + 1-KΔp .
n — 2 2(n — 2) n

Using (2.18) and (3.5) we have

- ~\rP2 \\G\\2

n — .z

2{n-2V '" " 2

Integrating both sides of the above equation over M and using (2.6) and
Lemmas 1 and 2, we obtain

f K}ipipHV - A n ! f (ΔpYdV
J M n J M

έr L
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+ A_ ί se,seΏpκdv - J - ί
In JM 2n JM

or, by Lemma 10,

f J?vJ?v\\G\\2dV-(n-2)[ <?ίυ%
J M J M

= 2n(n - 2) f (viPi - *-JpgΛ(r>p< - ^

which together with Theorem G gives the proposition.
Remark 1. Proposition 2 is a generalization of Theorem D. Using (2.13)

and Lemma 1 we have

f &ίVtDplKdV

( 3 ' 6 ) * = ^ _ r 2 ( , +1) Γ 2 a s K d v
n + 2 i i " " n(n + 2) JM

 v v

Therefore Proposition 2 is essentially equivalent to Theorem A. Using (2.6),
(3.2) and Lemmas 1 and 2 we have

f &ί9t
(3.7) J " /

- ^ l

 1 Λ [2
2(w — 1) JM

which implies that Proposition 2 is essentially equivalent to Theorem E.
Proposition 3. For M we have

(3.8) f j^J2?β | |Z | | 2 d F - 4 ί S£^ΌpΛKdV > 0 .
JM JM

The M of dimension n > 2 admits a nonhomothetίc v such that the equality in
(3.8) /zo/ds // and only if M is isometric to a sphere.

Proof. First of all we have

h - Ap

Substituting (2.8) in the above equation we find

because of Zkji

k = Gάi and Gjigjί = 0, or
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(3.9) Kjfip* = -±-p\\Z\\2 - i-J?
2 o

Using (2.18) and (3.9) we have

- λpj?v \\Zf + \

Integrating both sides of the above equation over M and using (2.6) and
Lemmas 1 and 2, we obtain

Jϋf n JM

= l f ^| |Z| |W-
2 J ΛΓ 8n

+ J - f &v&DpKdV - ^- f Jίf^
2n Ji^ 2π JΛ-

or, by Lemma 10,

f J?Ό<?v\\Z\\*dV-4\ J?ίυ,Dp,KdV
J M J M

= %n f (vjPί - λάpgΛίr'p* - LjpgAdV + 4n\ p> ||Z||2 dV ,

which together with Theorem G gives Proposition 3.
Remark 2. Using (3.6), (3.7) and (3.8) we see that Proposition 3 is es-

sentially equivalent to Theorems B and F.
Proposition 4. M admits a nonconstant function p satisfying

(3.10) XBfit = 2ψgji , <£BeK = 0 ,

φ being a function on M, if and only if M is isometric to a sphere.
Proof. If M admits a nonconstant function p satisfying (3.10), then, by

Theorem H, M is isometric to a sphere because (3.10) is equivalent to (1.13).
Conversely if M is isometric to a sphere, then M admits a nonconstant func-
tion p satisfying (2.23) and hence (3.10) because K is a positive constant for
a sphere.

Proposition 5. M admits a transformation v such that

φ being a function on M, if and only if M is isometric to a sphere.
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Proof. This follows immediately from Theorem G.
Ackler and Hsiung [1] proved this proposition for a special case in which

the manifold M is compact and oriented and both <£VK — 0 and J£DpK = 0
hold.

Proposition 6. For any function p on M we have

(3.11) KjtpJp* + -{Δpf + J?DpΔp - \-ΔS£Ώpp < 0 .
n 2

The complete M of dimension n > 2 admits a nonconstant function p such
that the equality in (3.11) holds and £?DpK = 0 // and only if M is isometric
to a sphere.

Proof. This follows from Theorem H and Lemma 9.
Proposition 7. M admits a transformation v such that the equality in (3.11)

holds if and only if M is isometric to a sphere.
Proof. This follows from Theorem G and Lemma 9.
Proposition 8. For any function p on M we have

(3.12) f pi&nfoiWdV + 2{n ~ 1 } f PJ
2pdV>0.

JM n JM

The M of dimension n > 2 admits a nonconstant function p such that ^DpK
= 0 and the equality in (3.12) holds if and only if M is isometric to a sphere.

Proof. Using Lemmas 2, 8 and 10 we have

(3.13)

f p{S£ΏpK^dV + 2(n ~ υ ί pΔ'pdV
JM n JM

= 2 f (Vj9ί - λdpgΛίr'p* - ±ΔpgAdV ,
JM \ n /\ n /

which together with Theorem H gives Proposition 8.
Corollary 1. M of dimension n > 2 admits a nonconstant function p such

that ^DpK = 0 and

(3.14) SfDμKJt = - 2 { n ~ l )

// and only if M is isometric to a sphere.
Proof. If M is isometric to a sphere, then M admits a nonconstant func-

tion p such that (2.23) holds. Therefore using (2.24) we have
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The "only if" part of the corollary is an immediate consequence of Proposi-
tion 8.

Remark 3. By (2.25) in Lemma 11, (3.14) in Corollary 1 can be replaced
by

(3.15) J?DpKj{ = - 2 ( w - 1 V / < 4 o .

Proposition 9. For M we have (3.12), and the M of dimension n > 2 ad-
mits a nonhomothetic v such that the equality in (3.12) holds if and only if M
is isometric to a sphere.

Proof. This follows from (3.13) and Theorem G.
Corollary 2. M of dimension n > 2 admits a nonhomothetic v such that

(3.14) holds if and only if M is isometric to a sphere.
Proof. This follows from Lemma 11 and Proposition 9.
Remark 4. By (2.25) in Lemma 11, (3.14) in Corollary 2 can be replaced

by (3.15).
Proposition 10. For any function p on M we have

Γ Γ

(3.16) ^ DP * " * *"

+ 4 ( n ~ 1 } f pJ'pdV > 0 .
n J M

The M of dimension n > 2 admits a nonconstant function p such that ££DpK
= 0 and the equality in (3.16) holds if and only if M is isometric to a sphere.

Proof. Using Lemmas 2, 8 and 10, we have

Γ C Λ(}Ί ΛΛ C
I P\°^ Dprs-k,jih)o o u" \ I p^ Dpϊ±UV -(- I Oil OaV

(3.17) J * )M H ]M

which together with Theorem H gives the proposition.

Corollary 3. M of dimension n>2 admits a nonconstant function p such

that &DpK = 0 and

( 3 1 8 ) ^DpKkjίh = -—Δ2p{gkngμ - gjhgkί) ,

// and only if M is isometric to a sphere.

Proof. If M is isometric to a sphere, then M admits a nonconstant func-
tion p such that (2.23) holds. Since K is a positive constant and
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( τ r

for a sphere, using (2.24) we obtain

2
+ gkhFjpi —

( _

which together with (2.25) gives (3.18). The "only if" part of the corollary
is an immediate consequence of Proposition 10.

Remark 5. As is seen in the proof of Corollary 3, (3.18) in Corollary 3
can be replaced by

(3.19)

Proposition 11. For M we have (3.16). The M of dimension n > 2 admits
a nonhomothetic v such that the equality in (3.16) holds if and only if M is
isometric to a sphere.

Proof. This follows from (3.17) and Theorem G.
Corollary 4. M of dimension n > 2 admits a nonhomothetic v such that

(3 20)

f

n(n — 1
// and only if M is isometric to a sphere.

Proof. This follows from Lemma 11 and Proposition 11.
Remark 6. In Corollary 4, we see, by using Lemma 11, that (3.20) can

be replaced by

1 ,„ „,. - -gjhgti)
(3.21) n(n - 1)

n

Proposition 12. // M of dimension n>2 admits an infinitesimal conformal
transformation v, then

(3.22)
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The complete M of dimension n > 2 admits a complete infinitesimal nonho-
mothetic conformal transformation v such that the equality in (3.22) holds if
and only if M is isometric to a sphere.

Proof. By using (2.7) we have

and consequently

= -2(n - 2)(vjPί - i

= -2(n - 2)(vjPί - i

which together with Theorem G gives the proposition.
Proposition 13. For M of dimension n > 2 we have

(3.23) (J?Dp^Zkjih - 2p<eD£ujiU8kh8ii < 0

The complete M of dimension n > 2 admits a complete nonhomothetic v such
that the equality in (3.23) holds if and only if M is isometric to a sphere.

Proof. From (2.8) it follows that

2

and therefore that

{SP^kjih)8kh8Si = 0

Using this we obtain

= -4(n - 2)(vjPί - i

+ 8pZkjihgW«ph .

On the other hand, since Zkjίhg
khgjί = 0 we have

Thus
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= -4(n - 2){vjPί - λ-

which together with Theorem G gives the proposition.
Corollary 5 M admits a transformation v such that

(3 24) <f <? G — 0

or

C% ? S ^ ζ^ C^ Ύ Ί rxCP Ύ Π

if and only if M is isometric to a sphere.
Proof. This follows from Propositions 12 and 13.
Proposition 14 For M we have

(3.26) f p(J?DpGJt)g'<dV - I f J?ίυ,DplKdV>0 .
j M n J M

The M of dimension n > 2 admits a nonhomothetic v such that the equality
in (3.26) holds if and only if M is isometric to a sphere.

Proof. We have, by using G^g31 = 0,

( 3 * 2 7 ) = 2pKJiF'pi - 2-

or, using (2.18),

Integrating both sides of the above equation over M and using (2.6), we find

f KiiPip
idV-I^l.\ {ΔpfdV

= - 1 ί d.se^G^'dv - 1 f pseB
2 J M £ J M

-— [ pKΔpdV - -^—-1 f (z/^W

= - 1 ί P{<£DpG3dgSidV + J - f ^
2 J M Zn JM
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+
In

or, by Lemmas 2 and 10,

f pi&n
JM

< 3 2 8 ) r / i
JM \ n

which together with Theorem G gives the proposition.
Corollary 6. M of dimension n > 2 admits a nonhomothetic v such that

(3.29) I

if and only if M is isometric to a sphere.
Proof. This is an immediate consequence of Proposition 14.
Corollary 7. M of dimension n > 2 admits a nonhomothetic v such that

( 3 . 3 0 ) ^ . G , , - - { \

i/ flftd cw/ y // M w isometric to a sphere.
Proof. This follows from Lemma 7 and Proposition 14.
Proposition 15. For M we have

(3.31) ί p(^DpZkjίh)gkhg^dV - A Γ 2^ΏΛKdV > 0 .
j M n <J M

The M of dimension n > 2 admits a nonhomothetic v such that the equality
in (3.31) holds if and only if M is isometric to a sphere.

Proof. We have, by using Zkjihg
kh = Gjt and Gμg

jί = 0,

which together with

implies

Integrating both sides of the above equation over M and using (3.28), we obtain

f p&DβZkJt0g*hg»dV - - ί J2fCl,fI
»/ iiί" n v M
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= 4 ί
which together with Theorem G gives the proposition.

Corollary 8. M of dimension n > 2 admits a nonhomotheίic v such that

(3.32)

if and only if M is isometric to a sphere.

Proof. This is an immediate consequence of Proposition 15.

Corollary 9. M of dimension n > 2 admits a nonhomothetic v such that

(3.33) _ _ 2 \<? λ v X.n + D.cpJl, Λ
— } 7T7 — ̂ Γ ° ^ Δ^εvK\ygkhgji — gjhgkί) >

n(n — \){n + 2) L n J

// and only if M is isometric to a sphere.

Proof. This follows from Lemma 7 and Proposition 15.
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