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CLOSED 2-FORMS AND AN EMBEDDING THEOREM
FOR SYMPLECTIC MANIFOLDS

DAVID TISCHLER

The existence of universal connections was shown by Narasimhan and
Ramanan [5], and Kostant [3] showed that any integral closed 2-form is the
curvature form of a connection on some circle bundle. These results can be
combined to show the existence of a universal closed 2-form with integral peri-
ods. In this paper we will use the symplectic structure of a complex projective
space to give an elementary proof of this result the precise statement is given
in Theorem A. The result of Kostant is in fact a corollary of the existence of
a universal closed 2-form, as is indicated below. Another immediate corollary
of Theorem A is the result of Gromov [3] that closed symplectic manifolds
can be symplecticalΓy immersed in CPn, for large enough n see Theorem B.

First we indicate why the proof which we are going to give here is a simple
and natural generalization of an elementary fact about exact 2-forms. Consider
the standard symplectic form Ω = Σιl=i dXidyt on R2n. Any exact 2-form on
a manifold M can be induced from Ω by a mapping to R2n for some n, since
any exact 2-form on M can be written in the form 2*=i dft A dgt, where /*,
gi are real valued functions on M. CPn has a symplectic structure Ωo which
is locally given by Ωo = 2?=i dxi A dyt. Furthermore, CPn is the 2π-skeleton
of an Eilenberg-MacLane space of type K(Z, 2). It is thus natural to expect
that any closed 2-form with integral periods can be induced from Ωo by a map
to CPn, because there is some map to CPn, for large n, which pulls back Ωo

to within an exact 2-form of the given closed 2-form. The only complication
that is met in CPn to adjusting the map to account for the exact 2-form is that,
unlike in R2n, the symplectic charts on CPn have finite radius, so the fi9 g/s
utilized would have to be bounded. The proof we give of Theorem A depends
only on estimating the bounds on fi9 gt as n becomes large.

A closed &-form on a manifold M will be said to be integral if its de Rham
cohomology class is in the image of the canonical coefficient map Hk(M Z)
-*Hk(M;R).

Complex projective space CPn has a Kahlerian structure, and we will de-
note its Kahler form by flj. The 2-form Ω% can be chosen to represent a gen-
erator in the image of H\CPn Z) -> H\CPn R), and we can assume that
/*(βJ+A0 = Ωl where i is the standard inclusion of CPn in CPn+k,
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Theorem A. Let M be a closed manifold, and Ω an integral closed 2-form
on M. Then there exists a map f:M-^ CPn, for n sufficiently large, such that
f ( β j ) = Ω.

Since Ω% is the curvature form of a connection on the canonical S1 bundle
over CPn, a map to CPn which induces a closed 2-form also induces an S1

bundle. Hence we obtain

Theorem (Kostant [3]). Every integral closed 2-form is the curvature form
of a connection on an Sι bundle.

Definition. Let (M, Ω') and (N, Ω) denote two manifolds M, N with sym-
plectic forms Ωf, Ω respectively. A map f:M—>N will be called a symplectic
map from (M, Ω') to (N, Ω) if f*(Ω) = Ωf.

Definition. Given a manifold M and a symplectic structure (TV, Ω), a map
f:M—>N such that f*(Ω) is a symplectic form on M will be said to be trans-
verse to the symplectic form Ω.

Any submanifold M of CPn such that the inclusion i\M-*CPn is transverse
to ΩQ will support a symplectic structure, namely Ϊ*(ΩQ), which is an integral
closed 2-form. The converse is also true and resembles Kodaira's embedding
theorem, but with Kahlerian weakened to symplectic.

Suppose (M, Ω) is a symplectic structure. If Ω is an integral closed 2-form,
then by Theorem A there is a map /: M -» CPn such that /*(flj) = Ω. Since
Ω is a nondegenerate 2-forms / is automatically an immersion. This yields the
result:

Theorem B (Gromov [2]). // Ω is a symplectic structure on M, and Ω is
an integral closed 2-form, then there exists a symplectic immersion of M into
CPn for sufficiently large n.

Remark. This result can be improved to yield symplectic embeddings in
the following way. Assume n is large enough so that the immersions can be
approximated arbitrarily closely by embeddings. Choose an embedding g: M
—> CPn so that g*(Ωf) is close to Ω. By Moser's theorem on the stability of
symplectic forms [4], we conclude that there is a diίϊeomorphism F of M to
itself such that F*(g*(Ω$) = Ω. Hence goF: M -> CPn is the required sym-
plectic embedding.

Corollary. Given a symplectic structure (M, Ω), there is, for large enough
n, an embedding / M —> CPn transverse to flj, such that /*(flj) can be made
arbitrarily close to Ω in the following sense: given a norm \\ \\ on closed 2-
forms and an ε > 0, there are a real number k and an embedding f such that
| | Λ . / * ( β J ) - β | | < e .

Proof. Choose a collection of integral closed 2-forms ai9 l<i<d, which
define a basis for H\M; R). Any symplectic form Ω can be written as Ω =
Σιi=irι^i + dω for some 1-form ω and real numbers rt. Choose rational num-
bers qt such that Ωf = J]f=1 q^ + dω satisfies \\Ω — Ω'\\< ε. There is an in-
teger D such that DΩ' is an integral 2-form. By Theorem B, DΩ' = /*(β?)
for some embedding/: M —• CPn. The corollary follows by setting k = 1/D.
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Before beginning the proof of Theorem A, we need to establish several no-
tations. Cn will denote n-dimensional complex space, < , ) the usual Hermitian
inner product on Cn, and | | the corresponding norm.

We will consider CPn as the complex lines in Cn+1 passing through the ori-
gin, and also as the quotient space of the unit sphere S2n+ι in Cn+1 by the ac-
tion of the complex numbers of norm equal to 1.

Given two points pl9 p2 in CPn we denote by a(pl9 p2) the angle between them
viewed as real two-dimensional planes in Cn+ι, (cosa = |<Pi,p2>l/(|Pi| |P2|)
where we are now considering pl9 p2 as points in Cn+ι).

For each p in CPn, we make a choice of x in S2n+ί which represents p.
Where it creates no confusion we will speak of x in CPn, and where necessary
we will denote the class of x in CPn by [x].

For each p in CPn the above choice of x allows us to choose a complex hy-
perplane T .̂ in Cn+1 which passes through x and is orthogonal to x with re-
spect to the Hermitian metric. Tx can be identified with the tangent space to
CPn at [*]. Let Dx be the subset of CPn consisting of those complex lines in
Cn+1 which intersect Tx. The mapping from Dx to Tx given by sending a point
in Dx to its point of intersection with Tx will be denoted by S(x). For ε > 0,
Tx(e) will denote all points y in Tx such that \y — JC| < ε, and S~ι(x)(Tx(e))
will be denoted by V(x, ε).

Let z = (Zo, , zn) be complex coordinates on Cn+1. We can think of Cn

as all points z in Cn+1 with z0 = 1. Let Bn(r) denote all points (z1? , zn) in
Cn such that Σΐ=i * Λ < r2-

One can identify Tx with Cn by choosing some unitary transformation of
Cn+1 which sends x to (1, 0, , 0) in Cn+1. Composing this map with the
mapping (zl5 . , zn) -> (1 + Σ?=i^^)~ 1 / 2 * fe> •••>**) yields a diffeomorphism
H:TX^ Bn(l). Consider the closed 2-form £y = 1 dxt Λ dyt on Bn(\) where
zi = xt + ^f^lyi. One can show that the Kahler form Ωl on Dx satisfies β£
= S*(x) o H*(x)(π-1 Σΐ=ι dXi A dyt), by using the fact that β? = (i/2π)dd log
(1 + Σ t - i z^Zi) on the hyperplane z0 = 1 viewed as a holomorphic cross-sec-
tion of the canonical line bundle over CPn see Chern [1] for details of the
Kahler structures of CPn. One can think of H(x)oS(x): Dx^Bn(l) as a sym-
plectic chart for CPn.

There is a natural inclusion 1: CPn —> CPn+1 given by the inclusion /: Cn+1

-> Cn+2 defined by identifying C n + 1 as the first n + 1 coordinates of Cn+2.
The choices made above can be made compatible with the inclusion of CPn

in CPn+1 in the following sense. For a point [x] in CPn we can choose TX,DX,
S(x), H(x) as above. We can also let i(x) e C n + 2 represent 7[x], and we have
^ = TUx) Π C n + 1 , and S(i(x)) o 7 = / O5(JC) : £>* ~> Γ i U ) . One can also choose
H(i(x)) so that H(i(x))oi = ioH(x): Tx -+ Bn+\1). With these choices,

i 2 1 Λc* Λ dy, = ((H(ί(x))oS(ί(x))rT(Ωn

0

+1)
π i=ι
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on Bn+\ and also

i Σ ^ Λ dy< = πn(H(x)oS(x)rl)*(Ωi) ,
π i=i

where πλ is the projection of Bn+\l) onto Bn(l) defined by the projection of
Cn+1 onto the first n coordinates.

Proof of Theorem A. The function / will be constructed in stages the /th
stage will be denoted fj9 where 0 < / < p for some p to be chosen later.
Choose /0: M —> CPn for n sufficiently large, so that /jfCflJ) and Ω are coho-
mologous. This can be done since CPn can be taken to be the 2n-skeleton of
an Eilenberg-MacLane space of type K(Z, 2). Hence Ω = /jf(βj) + dω for some
1-form ω on M.

We need a couple of lemmas before we can construct the //s.
Lemma 1. G/ven /? > e > 0, /Aere exists a δ > 0 swcA

, e, 3) = {y € CPn I a(y, xf) < δ for some xr e V(x, e)} C S

Furthermore, δ can be chosen independently of n.

Proof of Lemma 1. The lemma follows easily from the facts that Tx(ε) C
TX(R) and that, for 0 < θ < \π,

{yzDx\a(x,y) < θ) - S~ι{z € Tx|cos θ < |zΓ} .

From now on we fix a choice of e, R, δ satisfying Lemma 1. We also choose
a p > 0 such that 1 — p > cos2d.

Lemma 2. Given a \-form ω on a closed manifold M, « finite open cover
{Wi} of M, an R > 0, ίmd α ̂  ,swc/z ί/zαί 1 > ^ > 0, there exist real valued
functions hk,tk,l<k<p such that

(1) Σϊ=idhh Λdtk = dω,
(2) each pair (hk, tk) has support contained in some element of the cover

(3) Πf-i (1 + * W + h2)) < 1/d - p), where K* = 1 + R\
(4) hk* + tk

2 + R2l(l +R2)<1.
Proof of Lemma 2. There exists some choice of functions hk,tk, 1 < k <

p, such that Σξ=1 dhk Λ dtk = dω. This can be seen by choosing a partition
of unity {φk} subordinate to some finite coordinate cover {f/J of M. Then dω
= d(Σ ψkώ), and d(φkω) = ΣT=i dh\ A dϊ\ for each k and some choice of AJ,
ί j. with support in f/ί5 where m = dimension of M. Hence (1) can be satisfied.
Now choose a partition of unity {Ψt}, 0 < i < c, subordinate to {W^ Then

ΣdhkΛdtk= ΣΣΣ d(Wihk) A d(Ψjtk) ,
k = l k = l j = \ ί = l

and (2) can also be satisfied by taking the Ψxhk as the A '̂s and the Ψftk as the
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ίfc's. By replacing hk and tk by N copies of hk/N and tk/N respectively, and
using the fact that limn^oo (1 + n~2)n = 1, we see that we can choose the hk's
and tk's to satisfy condition (3). By a similar argument, the hks and ίΛ's can
be chosen small enough so that condition (4) is satisfied as well, and the proof
of the lemma is complete.

M has an open cover given by {fo~
ι(V(x, ε))}, [x] e CPn. Fix a finite sub-

cover {Wi} of this cover. Fix a choice of {hk, tk}9 1 < k < p, satisfying Lemma
2 applied to our fixed choices of ε, R, δ, p, {Wi}, and such that

— Σ (dhk A dtk) = dω where dω = Ω -

For each k, 1 < k < p, we choose a Wk in the cover {HPJ, such that the
support of hk and tk are contained in Wk. Recall that Wk = foKVix^e)) for
some xk € Cw+1.

For each /, 1 < / < p, let us assume the two induction hypotheses:
( i ) There is a map fj_ι: M -» CPn+i~ι such that

tf-iOTr'-1) = /o*(flί) + - JΣ WΛt) Λ (dtk) .

(ii) ft(JVj) C F ( ^ , Λ), for aU i < j - 1.
If we show that (i) is true for fp, we will be done since

f*{Ωrv) = /o*W) + - Σ (^*) Λ (dtk) = f*(Ωf) + dω = Ω .

We already have (i) and (ii) satisfied for / = 1 (i) is true vacuously and (ii)
follows from the fact that V(xj9 ε) C V(xj9 R). Hence it suffices to show that
given fj_ι satisfying (i) and (ii) there is an j ό satisfying (i) and (ii). Define jΊ

as follows:
(a) On M - Wj, set jj^lojj_ι where 7 : CPn+j-1 -»CPn + J is the inclusion.
(b) On Wj, we define first a map gό: Wj-> Bn+j(l) given by πxgά =

Hix^oSix^ofj^ with values in Bn+j-ι(l)9 and by π2gj = h5 + / ^ T ^ with
values in i^Q), where π1? τr2 are the projections of Bn+j(l) onto Bn+j~1(i) and
5X(1) respectively, induced by the projections of Cn+J onto its first n + / — 1
coordinates and last coordinate respectively.

We can now define fj = S^iiixj)) o H'^iixj)) o gp (we are taking the choices
of H(x), H(ί(x)), to be compatible in the sense described just before the be-
ginning of the proof of Theorem A).

By property (4) of Lemma 2 we have that \(π2gj)\2 < (1 - R2/(l + R2))
in B\l). By induction hypothesis (ii) applied to fj_x and by the fact that
H(xj)(TXj(R)) C Bn+i-ιR(l + R2)-1'2 we have that l^fe,)!2 < # 7 ( 1 + R2) in
Bn+j-\\). Hence we can conclude that gό: Wj-*Bn+j(l) is well defined,
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and consequently that fj is well defined on W5. By Lemma 2, part (2), we can
conclude that fj is well defined on all of M. On Wό

/ J W ) = gJ{{H(i{x)oS{l{x))Yψ{Ωr1) = gf(- UΣ dXi A dyλ

= W ( - Έ dx, Λ dyλ + fcg,)*(- "if ̂  Λ dyλ

= (fl(x,) oS(;c,)o/,_,)*(! " Σ " 1 Λc, Λ dyt) + -(dhj Λ A,)
\τr i-i / π

( l " 2"1 dxt A dyλ) + l(dA, Λ dt})
\ π i-i I) π

This equality follows from the compatibility conditions on fl(jt^) and H(i{x3))
discussed just before the beginning of the proof of Theorem A. Hence we
have shown that induction hypothesis (i) is satisfied for j ό . Therefore we will
be done if we can show that fj(Wk) C V(xk, R) for all k > /. For any x eWk

and 0 < / < /, set A< = S(xi+d(ίi(x)) and Bt = S(xi+ι)(fi+ί(x)). We consider
the Ai^Bi as all contained in Cn+J, (note that At is a scalar multiple of B^J.
We now add another induction hypothesis for each /', I < j < p,

(iii) <Bt - Ai9 Aif} = 0 for all ? < / < / - 1.
If hypothesis (iii) is true for / — 1, it is seen to hold for /, since Bό — A3 is
perpendicular to Cn+j in cn+j+1, using the construction of fό as above, and by
the compatibility conditions given before the proof of Theorem A. (Hypothesis
(iii) is vacuously satisfied for /0.)

Given At, Bt as above and our fixed p, we will show that cos2 a3_x > 1 — p,

where at = α?([y4oL \Pi\) We have

IΛI I^I / V IΛI I^I

by induction hypothesis (iii), and this expression is equal to (cos2 at_^ \At |
2/| Bi |

2.
Since \Bt\

2 = \At\
2 + \Bt - At\

2 and \At\ > 1, we have that | ^ | 7 | # i | 2 >
1/(1 + IB, - A,|2). However \Bt - A,\2 < K\hk

2 + tk

2) with K2 = 1 + R2, by
the construction of fi+ι, the definition of the map H(xi+1), and the fact that Bt

and At are in TXi+1(R). Hence we have cos2 α€ > cos2 a%_x (1 + K\hk
2 + tk

2))~\
and so

cos2*^ > jϊ' (1 + * W + hT1) ,

which is greater than 1 — p by part (3) of Lemma 2. Since we chose p such
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that 1 — p > cos2 δ, we have at < δ. Since Ao is contained in V(xk, ε), we get

that Bj_1 is contained in V(xk, ε, δ) which is contained in V(xk, R) by Lemma

1. Hence jό{x) is contained in V(xk, R) for all x in Wk. This shows that fό

satisfies induction hypothesis (ii), and the proof of Theorem A is complete.
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