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CLOSED 2.-FORMS AND AN EMBEDDING THEOREM
FOR SYMPLECTIC MANIFOLDS

DAVID TISCHLER

The existence of universal connections was shown by Narasimhan and
Ramanan [5], and Kostant [3] showed that any integral closed 2-form is the
curvature form of a connection on some circle bundle. These results can be
combined to show the existence of a universal closed 2-form with integral peri-
ods. In this paper we will use the symplectic structure of a complex projective
space to give an elementary proof of this result; the precise statement is given
in Theorem A. The result of Kostant is in fact a corollary of the existence of
a universal closed 2-form, as is indicated below. Another immediate corollary
of Theorem A is the result of Gromov [3] that closed symplectic manifolds
can be symplectically immersed in CP", for large enough n; see Theorem B.

First we indicate why the proof which we are going to give here is a simple
and natural generalization of an elementary fact about exact 2-forms. Consider
the standard symplectic form 2 = > 7., dx,dy; on R*. Any exact 2-form on
a manifold M can be induced from £ by a mapping to R** for some n, since
any exact 2-form on M can be written in the form } %, df; N\ dg;, where f;,
g; are real valued functions on M. CP" has a symplectic structure 2, which
is locally given by 2, = >.7_; dx; A\ dy,. Furthermore, CP" is the 2n-skeleton
of an Eilenberg-MacLane space of type K(Z,2). It is thus natural to expect
that any closed 2-form with integral periods can be induced from 2, by a map
to CP™, because there is some map to CP", for large n, which pulls back £,
to within an exact 2-form of the given closed 2-form. The only complication
that is met in CP" to adjusting the map to account for the exact 2-form is that,
unlike in R?*", the symplectic charts on CP* have finite radius, so the f,, g;’s
utilized would have to be bounded. The proof we give of Theorem A depends
only on estimating the bounds on f;, g; as n becomes large.

A closed k-form on a manifold M will be said to be integral if its de Rham
cohomology class is in the image of the canonical coefficient map H*(M ; Z)
— H¥M ; R).

Complex projective space CP" has a Kéhlerian structure, and we will de-
note its Kdhler form by £2¢. The 2-form £7 can be chosen to represent a gen-
erator in the image of H*(CP"; Z) — H*CP"; R), and we can assume that
i*(Qr+*) = Q7 where i is the standard inclusion of CP* in CP"**,
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Theorem A. Let M be a closed manifold, and 2 an integral closed 2-form
on M. Then there exists a map . M — CP™, for n sufficiently large, such that
*(2%) = Q.

Since 07 is the curvature form of a connection on the canonical S* bundle
over CP", a map to CP" which induces a closed 2-form also induces an S*
bundle. Hence we obtain

Theorem (Kostant [3]). Every integral closed 2-form is the curvature form
of a connection on an S* bundle.

Definition. Let (M, 2’) and (N, 2) denote two manifolds M, N with sym-
plectic forms §2’, 2 respectively. A map f: M — N will be called a symplectic
map from (M, ') to (N, Q) if f*(2) = 2’.

Definition. Given a manifold M and a symplectic structure (N, ), a map
f: M — N such that f*(2) is a symplectic form on M will be said to be trans-
verse to the symplectic form £.

Any submanifold M of CP™ such that the inclusion i: M — CP™ is transverse
to £2; will support a symplectic structure, namely i*(£27), which is an integral
closed 2-form. The converse is also true and resembles Kodaira’s embedding
theorem, but with Kéhlerian weakened to symplectic.

Suppose (M, Q) is a symplectic structure. If 2 is an integral closed 2-form,
then by Theorem A there is a map f: M — CP™ such that f*(27) = £2. Since
£ is a nondegenerate 2-forms f is automatically an immersion. This yields the
result:

Theorem B (Gromov [2]). If Q is a symplectic structure on M, and 2 is
an integral closed 2-form, then there exists a symplectic immersion of M into
CP™ for sufficiently large n.

Remark. This result can be improved to yield symplectic embeddings in
the following way. Assume n is large enough so that the immersions can be
approximated arbitrarily closely by embeddings. Choose an embedding g: M
— CP™ so that g*(©27) is close to 2. By Moser’s theorem on the stability of
symplectic forms [4], we conclude that there is a diffeomorphism F of M to
itself such that F*(g*(27) = 2. Hence go F: M — CP™ is the required sym-
plectic embedding.

Corollary. Given a symplectic structure (M, ), there is, for large enough
n, an embedding f; M — CP™ transverse to 2%, such that {*(2%) can be made
arbitrarily close to £ in the following sense: given a norm || | on closed 2-
forms and an ¢ > 0, there are a real number k and an embedding f such that
e - @) — Q] < e.

Proof. Choose a collection of integral closed 2-forms «;, 1 < i< d, which
define a basis for H*(M ; R). Any symplectic form £ can be written as 2 =
3¢, ra; + do for some 1-form o and real numbers r;. Choose rational num-
bers g, such that 2’ = }1¢_, q,a; + do satisfies |2 — 2’| <e. There is an in-
teger D such that D’ is an integral 2-form. By Theorem B, D{’ = f*(£27)
for some embedding f: M — CP". The corollary follows by setting k = 1/D.
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Before beginning the proof of Theorem A, we need to establish several no-
tations. C" will denote n-dimensional complex space, < , ) the usual Hermitian
inner product on C*, and | | the corresponding norm.

We will consider CP" as the complex lines in C"*! passing through the ori-
gin, and also as the quotient space of the unit sphere S*”*! in C**! by the ac-
tion of the complex numbers of norm equal to 1.

Given two points p,, p, in CP™ we denote by a(p,, p,) the angle between them
viewed as real two-dimensional planes in C"*!, (cos @ = [<py, P.>|/(P\|*| P2
where we are now considering p,, p, as points in C"*).

For each p in CP", we make a choice of x in $?"*' which represents p.
Where it creates no confusion we will speak of x in CP*, and where necessary
we will denote the class of x in CP* by [x].

For each p in CP" the above choice of x allows us to choose a complex hy-
perplane T, in C"*! which passes through x and is orthogonal to x with re-
spect to the Hermitian metric. T, can be identified with the tangent space to
CP" at [x]. Let D, be the subset of CP" consisting of those complex lines in
Cm*! which intersect T,. The mapping from D, to T, given by sending a point
in D, to its point of intersection with 7', will be denoted by S(x). For ¢ > 0,
T,(c) will denote all points y in T, such that |y — x| < ¢, and S7'(x)(T,(e))
will be denoted by V(x, ¢).

Let z = (zy, - - -, Z,) be complex coordinates on C**!. We can think of C»
as all points z in C**! with z, = 1. Let B™(r) denote all points (z,, - - -, z,) in
C™ such that X7, z,Z, < r’ '

One can identify T, with C” by choosing some unitary transformation of
C™*! which sends x to (1,0, ---,0) in C"*!. Composing this map with the
mapping (2, « « -, 2,) > (1 + 217.,2,2) 7 (zy, - - -, Z,,) yields a diffeomorphism
H:T,— B"(1). Consider the closed 2-form >;7_, dx; N\ dy, on B*(1) where
Z; = x; + ¥/ — 1y;. One can show that the Kihler form 27 on D, satisfies 27
= §*(x) o H*(x)(x ™ 2, dx; N\ dy,), by using the fact that Q} = (i/27)d0 log
(1 + X%, z;Z;) on the hyperplane z, = 1 viewed as a holomorphic cross-sec-
tion of the canonical line bundle over CP"; see Chern [1] for details of the
Kihler structures of CP”. One can think of H(x) o S(x): D, — B™(1) as a sym-
plectic chart for CP".

There is a natural inclusion 7: CP® — CP™*! given by the inclusion i: C**!
— C™*? defined by identifying C™*! as the first n + 1 coordinates of C™*2.
The choices made above can be made compatible with the inclusion of CP”
in CP**! in the following sense. For a point [x] in CP* we can choose T, D,,
S(x), H(x) as above. We can also let i(x) € C"** represent i[x], and we have
T,=T;z N C*?, and S(i(x))oi = ioS(x): D, — T;,. One can also choose
H(i(x)) so that H(i(x)) oi = io H(x): T, — B™*!(1). With these choices,

n+1

¥

% dx, A dy, = (H((x)) o SEx))) ) *(Qi)

™
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on B**!, and also

L $dx, A dy, = F(HE) - S@)H*2D) |
—

i=1

where 7, is the projection of B**!(1) onto B*(1) defined by the projection of
C™*! onto the first n coordinates.

Proof of Theorem A. The function f will be constructed in stages ; the jth
stage will be denoted f;, where 0 < j < p for some p to be chosen later.
Choose f,: M — CP* for n sufficiently large, so that f{(27) and Q are coho-
mologous. This can be done since CP™ can be taken to be the 2n-skeleton of
an Eilenberg-MacLane space of type K(Z, 2). Hence 2 = f¥(2%) + dw for some
1-form o on M.

We need a couple of lemmas before we can construct the f,’s.

Lemma 1. Given R > ¢ > 0, there exists a § > 0 such that

V(x,e,0) = {y e CP*|a(y, x') < § for some x' € V(x,¢e)} C ST (x)(T,(R)) .

Furthermore, 6 can be chosen independently of n.
Proof of Lemma 1. The lemma follows easily from the facts that T,(¢) C
T.(R) and that, for 0 < 0 < 1,

{yeD,lalx,y) <} =S YzeT,|cosd < |z|'}.

From now on we fix a choice of ¢, R, § satisfying Lemma 1. We also choose
a p > 0 such that 1 — p > cos.

Lemma 2. Given a 1-form o on a closed manifold M, a finite open cover
{W} of M, an R > 0, and a p such that 1 > p > 0, there exist real valued
functions hy, t,, 1 < k < p such that

1) >r_,dh, A dt, = do,

(2) each pair (hy, t,) has support contained in some element of the cover
Wi

3 TJ12., A + Kht? + D)) < 1/(1 — p), where K =1 + R?,

@4 hl+t 4+ R/A + RH <.

Proof of Lemma 2. There exists some choice of functions 4, #,, 1 < k <
D, such that '?_ dh, A di, = do. This can be seen by choosing a partition
of unity {¢,} subordinate to some finite coordinate cover {U;} of M. Then dw
=d(}; p,w), and d(p,w) = 337, dhi A dii for each k and some choice of A,
¢ with support in U,, where m = dimension of M. Hence (1) can be satisfied.
Now choose a partition of unity {¥';}, 0 < i < c, subordinate to {W,}. Then

DM

S dhy A diy = 3 5 5 dWh) A AW 1)
k=1 Jj=11i=1

k=1

1

and (2) can also be satisfied by taking the ¥4, as the ,’s and the ¥, as the
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t,’s. By replacing 4, and ¢, by N copies of A, /N and ¢, /N respectively, and
using the fact that lim,_., (1 4+ n~%" = 1, we see that we can choose the 4,’s
and ¢,’s to satisfy condition (3). By a similar argument, the A,’s and #,’s can
be chosen small enough so that condition (4) is satisfied as well, and the proof
of the lemma is complete.

M has an open cover given by {f,"*(V(x,¢))}, [x] e CP". Fix a finite sub-
cover {W,} of this cover. Fix a choice of {A,, t;}, 1 < k < p, satisfying Lemma
2 applied to our fixed choices of ¢, R, §, p, {W,}, and such that )

1 S h Adty) =do  where do = © — F5(@D) .

T oi=1

For each k, 1 < k < p, we choose a W, in the cover {W,}, such that the
support of A, and ¢, are contained in W,. Recall that W, = f7(V(x, ¢)) for
some x; € C"*L.

For each j, 1 < j < p, let us assume the two induction hypotheses :

(i) There is a map f;_,: M — CP"*47! such that

(@) = fR D + %fz (dhy) A (L) .

(i) f(W) CV(x;,R), foralli <j— 1.
If we show that (i) is true for f,, we will be done since

FE2507) = f3 2D + % % @h) A @) = f5(09) + do= 0.

We already have (i) and (ii) satisfied for j = 1; (i) is true vacuously and (ii)
follows from the fact that V' (x;,¢) C V(x,, R). Hence it suffices to show that
given f;_, satisfying (i) and (ii) there is an f, satisfying (i) and (ii). Define f,
as follows :

(a) OnM —W,, setf,=1iof; ,wherei:CP"*/~'— CP"*{ is the inclusion.

(b) On W;, we define first a map g,: W, — B**/(1) given by =,g; =
H(xj)oS(x;)of;_, with values in B**/~'(1), and by m,g;, = h; + «/:_lt, with
values in B'(1), where r,, &, are the projections of B**#(1) onto B**/~!(1) and
B'(1) respectively, induced by the projections of C**7 onto its first n + j — 1
coordinates and last coordinate respectively.

‘We can now define f; = S7'(i(x,)) o H™'(i(x,)) o g;, (we are taking the choices
of H(x), H(i(x)), to be compatible in the sense described just before the be-
ginning of the proof of Theorem A).

By property (4) of Lemma 2 we have that |(7,g,) < (1 — R*/(1 + R?)
in B'(1). By induction hypothesis (ii) applied to f;_, and by the fact that
H(x;(T,,(R)) C B**~'R(1 + R*~"* we have that [r,(g,)]} < R*/(1 4+ R?) in
B™*37'(1). Hence we can conclude that g;: W; — B"*/(1) is well defined,
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and consequently that f, is well defined on W ;. By Lemma 2, part (2), we can
conclude that f, is well defined on all of M. On W,

4
= (7r1g,)*(l nﬁ}j dx; N\ dyi) + (mgj)"‘(i i dx; N\ dyz>
i=1 T i=1
= G oS fy0* (8 dx Ady) + T(dhy A dry
- f;k_,(s*(xj)oH*(xj)(_ 5 dx, A dyi» + Lan, A ary
T i=1 T
= QY + %(dhj Adt) .

This equality follows from the compatibility conditions on H(x,) and H(i(x,))
discussed just before the beginning of the proof of Theorem A. Hence we
have shown that induction hypothesis (i) is satisfied for f,. Therefore we will
be done if we can show that f,(W,) C V(x;, R) for all kK > j. For any x e W,
and 0 < i< j, set 4; = S(x;,)(f;(x)) and B; = S(x;, )({f;,:(x)). We consider
the A4, B; as all contained in C**J, (note that A4, is a scalar multiple of B,_,).
We now add another induction hypothesis for each j, 1 < j < p,

(i) <B; —A4;,4;)=0foralli/ <i<j—1.
If hypothesis (iii) is true for j — 1, it is seen to hold for j, since B; — A4 is
perpendicular to C**7 in C**/*!, using the construction of f; as above, and by
the compatibility conditions given before the proof of Theorem A. (Hypothesis
(iii) is vacuously satisfied for f,.)

Given A4;, B; as above and our fixed p, we will show that cos’a;_, > 1 — p,
where «; = a([4,], [B;]). We have

o= (G0 = (2

by induction hypothesis (iii), and this expression is equal to (cos? a;_,) | 4;[*/| B; .
Since |B;|! = |A;]? + |B; — A;* and |A4;] > 1, we have that |A4;}*/|B;] >
1/(1 4+ |B; — A;]). However |B;, — A, < K*h* + t,) with K*=1 4 R?, by
the construction of f,,,, the definition of the map H(x;,,), and the fact that B,
and A4; are in T, ,(R). Hence we have cos®a; > cos® a;_;- (1 + K*(h,* 4 1,%) 7,
and so

j-1
cos? a;_y > kl'_[l a1+ KhE:+ DY,

which is greater than 1 — p by part (3) of Lemma 2. Since we chose p such
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that 1 — p > cos®d, we have a; < §. Since A, is contained in V'(x,, ¢), we get
that B,_, is contained in V(x;, ¢, ) which is contained in V'(x,, R) by Lemma
1. Hence f;(x) is contained in V(x;, R) for all x in W,. This shows that f,
satisfies induction hypothesis (ii), and the proof of Theorem A is complete.

References

[1]1 S.S.Chern, Complex manifolds without potential theory, Van Nostrand, Princeton,
New Jersey, 1967.

[2] M. L. Gromov, A4 topological technique for the construction of solutions of
differential equations and inequalities, Actes Congrés Intern. Math. (Nice,
1970), Gauthier-Villars, Paris, No. 2, 1971, 221-225.

[31 B. Kostant, Quantization and unitary representations, Lectures in Modern Analysis
and Appl. III, Lecture Notes in Math. Vol. 170, Springer, Berlin, 1970, 87-207.

[4]1 J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120
(1965) 286-294.

[5] M. S. Narasimhan & S. Ramanan, Existence of universal connections, Amer. J.
Math. 83 (1961) 563-572.

QUEENS COLLEGE, CiTy UNIVERSITY OF NEW YORK








