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MAPPINGS OF BOUNDED DILATATION
OF RIEMANNIAN MANIFOLDS

S. I. GOLDBERG, T. ISHIHARA & N. C. PETRIDIS

1. Introduction

Let M and N be Riemannian manifolds of dimensions m and r, respectively.
Recently, two of the authors introduced the concept of a quasiconformal
mapping f: M — N and applied it to obtain distance and (intermediate) volume
decreasing properties of harmonic mappings between Riemannian manifolds of
different dimensions [2], [3]. In this paper the concept of a mapping f: M — N
of bounded dilatation is introduced which is more general and natural than that
of a K-quasiconformal mapping when m and n are greater than 2. An example
of such a mapping which is not K-quasiconformal is given which is even
harmonic. In § 5, generalizations of the Schwarz-Ahlfors lemma as well as
Liouville’s theorem and the little Picard theorem are given for this class of
mappings.

Let f: M — N be a harmonic mapping of bounded dilatation of Riemannian
manifolds. If the upper bound ||f, | of the ratio of distances attains a maximum
at x € M, then under suitable conditions on the bounds of the sectional curva-
tures at x and f(x), f is distance decreasing.

If M is a complete connected Riemannian manifold of constant negative
curvature — A, in particular, if M is the unit open m-ball with the hyperbolic
metric of constant curvature —A, then the condition on ||f, || may be dropped
by virtue of the technique employed in § 5. Indeed, let N be a Riemannian
manifold with sectional curvatures bounded above by a negative constant de-
pending on 4. Then, if f: M — N is a harmonic mapping of bounded dilata-
tion, it is distance decreasing.

The technique employed to prove this statement also yields the following
fact.

Let M be a complete connected locally flat Riemannian manifold and let N
be an n-dimensional Riemannian manifold with negative sectional curvature
bounded away from zero. Then, if f: M — N is a harmonic mapping of bounded
dilatation, it is a constant mapping.
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2. Mappings of bounded dilatation

Let V be a Euclidean vector space of dimension m and let VV* be its dual space.
Let {e,, - - -, e,} be an orthonormal basis of ¥ with dual basis {w,, - - -, @y}.
A quadratic function on V is an element of (V @ V)*, so since (V @ V)* is
canonically isomorphic to V* ® V*, a quadratic function on ¥V may be written
as f = 2f;;0, ® w;. If f is symmetric and positive semidefinite an orthonormal
basis {e;} can be chosen so that f;; = 0 for i j and f,; = 2> 0 for i = 1,
-«+,k < m, where k = rank f.

Let W be a Euclidean vector space of dimension n with inner product 4,
and let F: V' — W be a linear mapping of rank & < min (m, n). We choose an
orthonormal basis {e;} of V' so that

F*h = ) 10, Qw; .

The vectors 5, = (1/y,)Fe;, i = 1, - - -, k, form part of an orthonormal basis
of W. (If all of the y; vanish, F = 0.) Let X = X7"x%e; be a vector of unit
length and assume F + 0; then FX = Xy%,, where x* = y*/y,. Consequently,
if F is of rank k, it maps a unit (k — 1)-dimensional sphere of V' to a (k — 1)-
dimensional ellipsoid of W with semiaxes of lengths 7, >y, > - > 7, >0,
where y; = 4;, i = 1, - - -, k, are the eigenvalues of 'FF: V — V.

Definition 1. The ratio

lszrl/rs+1’ 521""7k_1

will be called the s-th dilatation of F.
The mapping F: V — W induces a mapping A?F: A\?V — A\?W, p <
min (m, n) given by

NP F(e;, N\ --- /\eip)—:Feil/\ /\Feip,
where 1 < i, < i, < ... <i, <min(m,n). We define the norm || \? F|| by
INPFIP= 2 <{A\PF(e, A --- Ney), NPFle, A\ -+ Ney)y .
1< <ip
Thus

INPEIP= 20 Ay Ay

1< <ip

If1<p<qg<s<kandl, <K, the following fact is easily established.
Lemma 2.1.

[HAPFW]W < Kz[ LACFIF ] ,

() (2
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We shall require an inequality reversing that in Lemma 2.1. We put g, = 1
and g, = Sy, - - - zip/(’;>, 1 <i,< ... <i,<k. Since 2 > 0, by Newton’s

inequalities we have p,_,u,,; < ¢, and therefore y, > 14 > - - - > pi/*. These
inequalities imply

@1 [ H/\pFHZ]I/p = [ e rsesask
(») ()
14 q

In the sequel, it is assumed that M and N are Riemannian manifolds of
dimensions m and n, respectively. Let f: M — N be a C> mapping, and
(f)z: To(M) — T, (N) be the induced mapping of tangent spaces at x.

Definition 2. If either (f,), = O at each point x € M or any one of the
dilatations [,(x), i =1, ...,k — 1, is bounded on M, then f is said to be of
bounded dilatation. For a nonconstant mapping of bounded dilatation, ,(x) is
always bounded. In this case, K will denote the l.u.b. of [(x) and f will be
said to be of bounded dilation of order K.

Remark. Since /;(x) < I;(x) for i <j < k, a K-quasiconformal mapping in
the sense of [2] and [4] is a mapping of bounded dilatation. If m = n = 2 the
two notions are identical. However, for m and n greater than 2, a mapping of
bounded dilatation is not necessarily quasiconformal as the following example
shows.

Let U be the open submanifold of E* given by {(x,y,2) € E*|x* + y* >
1/(a + 1)?,a %+ —1} and let f: U — E* be defined by

1,, 1 )
= { —(x* — ), 3xy, .
f (2( ¥9), 3xy TI 1%

Then the eigenvalues of ’f.f, are 4, = 9(x* + »), , = x* + y* and A, =
1/(a + 1)*. Consequently /,(x,y,z) = 3 and [,(x,y,z) = 3(a + D)(x* + y)V2
Observe that f is also harmonic (see § 3).

In the sequel, a mapping of bounded dilatation will be assumed to have the
same rank k at each point of M.

Lemma 2.2. A C~ mapping f: M — N is of bounded dilatation of order
K if and only if

[fllP < kKA Fill -

Proof. The necessity follows from Lemma 2.1. For the sufficiency suppose
that [, = (4,/4,)"? is unbounded. Then

Ifaf  — 24

INET (5 22)”

i<j
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A 25 e >/< A A )1/2
={(2L + 14+ 5B 4.4 L6 + terms <
( /22 22 22 22 22

=2 /IG)GT=6) /G =/G)

$0 ||f4 |/l A?fxl is unbounded.

3. Harmonic mappings

In this section, the conditions for a harmonic mapping f and a formula for
the Laplacian of ||f,|? are given. By the method of moving frames we write,
locally, the metric ds* of a Riemannian manifold M of dimension m as

ds' = o} + -+ + o), ,
where the w; are linear differential forms in M. The structure equations are
dwi=;w,-/\wﬁ, w; + w; =0,
dwijz;a)ik/\wkj-l-ﬁij, Qi+ 92;,=0,
where the w;; are the connection forms and the ©2,; are the curvature forms.

If {e;} is the orthonormal frame dual to the coframe {w,}, the connection D in
the tangent bundle is given by

Dei = Z ®;;€; .
J
The 2,; may be expressed as

— 1
Qz’j = —32 Z Rijkla)k N o,

ol

where the functions R;;,; are the components of the curvature tensor. The
Ricci tensor R;; is defined by

Rij = ; Rikjk
and the scalar curvature R by

Let N be a Riemannian manifold of dimension » (not necessarily that of M)
and let f: M — N be a C~ mapping. Corresponding quantities in N will be
denoted with an asterisk. Thus the Riemannian metric ds** of N is given by
ds** = Yw¥*. (In the sequel, we will use the convention i,j, &k, --- = 1,---,m
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and a,b,c,--- =1, --.,n.) Under the mapping f a tensor field with com-
ponents A¢ is defined by

3.1 frof = 3 Ata, .

Later on we will drop f* in such formulas when its presence is clear from
context. Taking the exterior derivative of (3.1) and using the structure equa-
tions in M and N, we get

DDA Ao, =0,

where
(3.2) DA} = dA} + 2 Aiwg; + ch Aiwgy, = 2 Afjo;  (say) ,
AL = A% . J
The mapping f is said to be harmonic if
}; AL =0.
The simplest case is a smooth mapping f = (f,, - -+, f,): E™ — E*. Then

fy = 2YA¢dx, ® 9/dy,, where x; and y, are the coordinates in E™ and E™ re-
spectively and A¢ = df,/dx;. Hence

Df* = Z~Agjdxi®dxj®a/aya ’

@,t,]

where A}, = 6*f,/0x;0x;. Classically, f is harmonic if and only if

2
Sar=xa 0, a=1,..n
@ ox;

Differentiating (3.2) and using the structure equations in M and N, we get
L DAY Nw; = 3 A2, + 3 AR,
J J )
where
DAY = dAy + 3 Ajjou + 2 Ajor; + 2 Ajjof,
(3.3) & k b
= ; Ay, (say) .

For a C~ function ¢ on M the Laplacian 4¢ is defined in terms of the
covariant differential I/ in M by

ASD = ; VZSD(ek, e) -
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Applying this definition to ¢ = [|f, |} = (JA{w; ® ef, 2A7w; ¥ e}) and using
the Leibnitz rule, we have

Pp = 2(3, DAtw; ® €f, 3, Atw; ® ey = 2 3, AtDA?
P'p = 2 X (DADA? + A?DA?)

the latter becoming, by (3.2) and (3.3),

Plifslf =2 5 (Afdh + AtAG)0; Qo .

a,i,j,k
Consequently

(3.4) gdfxlP = 2 (4545 + ATA5)

ij4rij
i,5,a
From (3.1) and (3.3), we get

Z DA;-L]' /\ Wj = Z A‘ijwk /\ (OF]
J 7k

= d(s0) + B(D4z0,) A ow — 3 (SAbe) Aot
= __ Z A3 Rjzklwk N oy — _ Z AbRbacdwc N of

bcd

4 2 [S AR + % RbAtsAl|on Ao
J »Cy

s

which implies

(3—5) Agjk - Agkj = — ZL: A?Rtikj - b;d A?A?cA?RZkacd .

In (3.4)
Z (A"'A'1 + A“Af”)
3.6 @hd
G0 _ N (A 4 X AN, — A%+ X ATAS,

a,i,j a,i,j a,i,j

Observing that 4y, = A%, and taking into account (3.5) and (3.6), we can
write the formula (3.4) for the Laplacian as

L= 5 (5 + 3 Rodras
. bzc: dRZ"bch“A’}AiA? + aZz: aA;lﬂ .
i hd

3.7

If f is harmonic the last term in (3.7) vanishes.
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4. Harmonic mappings of bounded dilatation

Let A = (A¢, -+, A2) and A; = (A}, - - -, A?) be local vector fields in M
and N, respectively. Then locally

pHEUES EHETATS

i=1
If there are constants C, and C, such that

C, < the sectional curvature of M < C, ,

then at x we have
4.1) (m — DC|fulf < X RjA7A; < (m — 1) Golf |

where ||f,|? = 2(A¢)%. Similarly, if the sectional curvatures of N at f(x) are
bounded above by a constant C, then

(4.2 2 Riuea A7 34745 < 2C | \filP

Theorem 4.1. Let M and N be Riemannian manifolds of dimensions m
and n respectively, and let f: M — N be a harmonic mapping of bounded
dilatation (of order K). Then

@.3) BMWsﬁngm,

if |f«|* attains a maximum at x e M,

(a) the sectional curvatures of M at x are bounded below by a nonpositive
constant — A, or M is an Einstein manifold with the scalar curvature R at x
satisfying R > —m(m — 1)A, and

(b) the sectional curvatures of N at f(x) are bounded above by a nonposi-
tive constant — B.

Proof. Since ||f,]| attains its maximum at x, 4, | f. | < 0. Applying (3.7)
we have

“.4) — X R At AMAAS < — 3 Ry ALAS

at x. Condition (a) together with (4.1) gives

4.5) — X R;AfAF < (m — DA f. 3 -
Similarly, condition (b) and (4.2) imply
(4.6) 2B || Nfulls £ — 20 RpaAiASAAS .

From (4.4), (4.5) and (4.6) we obtain
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2B N\ fylle < (m — DA||f,]f: -

Finally, from Lemma 2.2 it follows that
4.7) Bflp < $(m — DK’K*A

which proves the theorem.

Corollary 4.1. If M is locally flat and the sectional curvatures of N are
bounded above by a negative constant — B, then either ||f,|| does not attain
its maximum or f is a constant mapping.

The following generalizes Theorem 5.3 in [3].

Corollary 4.2. Let f: M — N be a harmonic mapping of bounded dilata-
tion of order K with the function ||f, | attaining its maximum on M. If

(a) the sectional curvatures of M are bounded below by a nonpositive
constant —A, or M is an Einstein manifold with scalar curvature > —m
(m — 1A, and

(b) the sectional curvatures of N are bounded above by a negative constant
—B, then

/ _
IAP PP < k(")l L"2—1%K L 1<p<k
14

Proof. Since (4.7) holds at every point of M, the result follows from (2.1).

Corollary 4.3. Under the assumptions of Corollary 4.2, if B > i(m
— Dk*K*A and M is connected, then the mapping f is distance decreasing. If
m = n and B > tn(n — 1)K'A, then f is volume decreasing.

Proof. From (4.7) we get

2 m — 1 24 A 2
1101 < TkK —B—IIXH .

Corollary 4.4. Let M be a compact locally flat Riemannian manifold, N
a Riemannian manifold of nonpositive constant curvature, and f: M — N a
nonconstant harmonic mapping. Then N is locally flat.

Corollary 4.4 is well known (see [1], [S]).

Proof. Since M is compact the inequality (4.7) holds at some point x.
Hence, since f is not constant, A = 0 implies B = 0.

5. Generalizations of the Schwarz-Ahlfors lemma, Liouville’s
theorem and the little Picard theorem

Let d5’ be a Riemannian metric of M conformally related to ds*. Then there
is a function p > 0 on M such that d§* = p%ds®. In the sequel, the elements of
M referred to ds* will be distinguished with a tilda. The notation otherwise
being as above, we have
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~

5.1 A} = qA}, @ = pw;, @i = 0y + Pw; — Pjw;

where q = p~!, dp = Epi@i, dq = Zqza“;i and pg; = —qp;. From (3.7) it
follows that the Laplacian 4 of @i = X (A%)? with respect to d3? is

(5.2) i =Y (A + X R;AzA? — 5, R, At AL A 4% + 5, A A, .

By (3.2) and (3.3) we obtain

63z (3 A= a3 4)+ 2 (3 A)er

On the other hand, (3.2), (3.3) and (5.1) imply
(5.4) /I;j = 24%q; + q°A};, — 3 Aiqy j: not summed.
k

If f is harmonic with respect to ds?, then

(5.5) S AL =02—m) 3 ALy -

Substituting (5.5) into (5.3) we get
(5.6) YAl = 2 —m)q ¥ (A2, + q;A%)
J J

where q;; is defined by

dq; + Z q;j0jx = Z qr;j®; » 9ijxr = qxj
7 7

By (5.6), the last term in (5.2) becomes
(5.7 Y OArAy, =2 — mq Y (ArAlq, + AlA%Lg) .

a,i,j a,i,j
If & attains a maximum at x ¢ M, then
2 AiAG = p; 25 (Af)?
at x. Formula (5.7) then becomes

(5.8) T Ard, = (m — g Y AANQS,; — 4.y

a,i,j X2y

where Q = 3 (pq,)*.

From (5.2) and (5.8) the following lemma is immediate.
Lemma 5.1. Let f be harmonic with respect to (ds*, ds*?), and let @i attain
its maximum at x ¢ M. If the symmetric matrix function

X = Qaij — 4;j
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is positive semidefinite on M, then

~

- Z Rabcd fl‘?? é - Z ﬁ”A;‘/i‘;

at x.

Theorem 5.1. Let B™ be the m-dimensional unit open ball with the metric
ds* = 4A7'(1 — r?)~2Xdx: of constant negative curvature — A, and let N be an
n-dimensional Riemannian manifold with sectional curvatures bounded above

by a negative constant —B. If f: B™ — N is a harmonic mapping of bounded
dilatation of order K, then

(5.9) INP 1,77 < k(ﬁ)””m_;_l_%m , 1<p<k

Proof. Let B, be the open ball of radius « (< 1). In B, we take the metric
ds®* = 447 'a¥(a® — r?)~?2dx? with constant curvature —A. Then d3? = p’ds?
in B,, where p = a(l — r)/(«* — r®) and r* = Xx}. The matrix X,; is then
given by

Al — oD — (1 + ) Al — r?)?
Ko ey T e =y T

Clearly, X,; is positive semidefinite. The function

~ Z(A’a)z [ ot —r ]2Z(Aa)2
u = . = N i
' a(l — 1)

attains its maximum on the closure B, of B,. But # vanishes on the boundary
of B,. Hence it attains its maximum at a point x € B,. Applying Lemma 5.1
we get —2XR},  ALAVATA? < (m — 1)Aid, for R;; = —(m — 1)A4d;;. Let
Il A? f«llw denote the norm of A? f, with respect to d3*. Then, as in the proof
of Corollary 4.2,

2B || \* fylltey < (m — DA S

at x. Applying Lemma 2.2 gives

m—1,,A4
e

everywhere on B,. Since the preceding inequality holds for every «, and

lim ||f, |, = ||f«|P, we conclude that
a—1

2 m—1 kz K.
1FslP < —5 %3
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Corollary 5.1. Under the conditions in Theorem 5.1, if B > }(m — 1)k*AK",
the mapping f is distance decreasing.

In the case where M = E™ with the standard flat metric, Corollary 4.1 can
be improved as follows.

Theorem 5.2. Let N be an n-dimensional Riemannian manifold with nega-
tive sectional curvature bounded away from zero, and let f: E™ — N be a
harmonic mapping of bounded dilatation. Then f is a constant mapping.

Proof. Let B, be the open ball of radius « with metric d§* = a*(a® —
r?)~23dx?. Then d§* = p*Ydx: where p = &*/(a® — r?). In this case,

2 2

iy T %(’35“ — XX;)

so it is also positive semidefinite. Since the function # = |||}, = ¢°2(A¢)?
attains its maximum on B, and vanishes on the boundary of B,, it must attain
its maximum in B,. Since the sectional curvature of N is bounded above by
—e¢ for some constant ¢ > 0, from the inequality (4.7) it follows that

el fylffey < 2a7%(m — KK .

Hence |f, [ = lim £, [f,, = 0.

If z: § — M is a Riemannian covering we have easily
Lemma 5.2. Let f: M — N be a C* mapping and f = for. Then

”/\pf*Hl‘:H/\pf*”x(x)’ XGS.

If M is a complete connected Riemannian manifold of constant curvature
¢, then its universal covering space is

§™ for ¢>0, E™ for ¢=0 and B™ for ¢<O0,

where S™ is the m-sphere of constant curvature ¢ (> 0), and B™ is the unit
open m-ball with the metric ds* = —4c¢~'(1 — r*)~?Ydx? of constant curvature
c(<0).

Hence by Proposition 4.1 of [3], Theorems 5.1 and 5.2 and Lemma 5.2
above, we get

Theorem 5.3. Let M be a complete connected Riemannian manifold of
positive constant curvature and let N be a manifold with nonpositive sectional
curvature. Then a harmonic mapping from M into N is a constant mapping.

This fact is well known [1].

Theorem 5.4. Let M be a complete connected Riemannian manifold of
constant negative curvature —A and let N be a Riemannian manifold whose
sectional curvatures are bounded above by a negative constant —B. If f: M — N
is a harmonic mapping of bounded dilatation of order K, then the inequality
(5.9) is satisfied.
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Thus, if B > 1(m — 1)k’K*A, the mapping f is distance decreasing. In the
equidimensional case, if B > in(n — 1)K*A4, f is volume decreasing.

Theorem 5.5. Let M be a complete connected locally flat Riemannian
manifold and let N be a Riemannian manifold with negative sectional curvature
bounded away from zero. Then a harmonic mapping of bounded dilatation
f: M — N is a constant mapping.

Theorem 5.5 generalizes Liouville’s theorem and the little Picard theorem.
For, in the first case, a bounded domain in the complex plane C is contained
in a disc which has constant negative curvature with respect to the Poincaré
metric, and in the latter case, C — {2 points} carries a Kachler metric of
negative curvature bounded away from zero.
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