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ALMOST CONTACT MANIFOLDS WITH KILLING
STRUCTURES TENSORS. 1II

D. E. BLAIR & D. K. SHOWERS

1. Introduction

Almost contact manifolds with Killing structure tensors were defined in [2]
as nearly cosymplectic manifolds, and it was shown normal nearly cosymplectic
manifolds are cosymplectic (see also [4]). In this note we study a nearly
cosymplectic structure (¢, &,7, g) on a manifold M***!' with 7 closed primarily
from the topological viewpoint, and extend some of Gray’s results for nearly
Kihler manifolds [5] to this case. In particular on a compact manifold satisfying
some curvature condition we are able to distinguish between the cosymplectic
and non-cosymplectic cases. In addition, we show that if & is regular, M***! is
a principal circle bundle S* — M?***! — K?* over a nearly Kdhler manifold K**,
and moreover if M*"*! has positive ¢-sectional curvature, then M***! is the
product K** x S*.

2. Almost contact structures

A (2n + 1)-dimensional C= manifold M?***! is said to have an almost con-
tact structure if there exist on M*"*! a tensor field ¢ of type (1, 1), a vector
field £ and a 1-form 7 satisfying

7€) =1,0§=0,700=0,¢'= -1+ £Q7,
Moreover, there exists for such a structure a Riemannian metric g such that
2X) =&, X),  8pX,pY) = gX,Y) — 7(X)n(Y) ,

where X and Y are vector fields on M?"*! (see e.g., [14]). Now define on
M+ X R an almost complex structure J by

) = (sz — 5, n(X)%) :

where f is a C* function on M***! X R, [15]. If this almost complex structure
is integrable, we say that the almost contact structure is normal ; the condition
for normality in terms of ¢, & and 7 is [p, 9] + & ® dy = 0, where [¢, ¢] is the

d
J(X,
i
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Nijenhuis torsion of ¢. Finally the fundamental 2-form @ is defined by @(X, Y)

An almost contact metric structure (¢, &, 7, g) is said to be cosymplectic, if
it is normal and both ® and 5 are closed [1]. (Our notion of a cosymplectic
manifold differs from the one given by P. Libermann [9].) The structure is
said to be nearly cosymplectic if ¢ is Killing, i.e., if Fx0)Y + (Fyp)X = 0,
where V' denotes the Riemannian connexion of g. The structure is said to be
closely cosymplectic if ¢ is Killing and 7 is closed.

Proposition 2.1. Orn a nearly cosymplectic manifold the vector field & is
Killing.

Proof. It suffices to show that g(F/y&,X) = 0 for X belonging to an
orthonormal basis. Clearly g(V.£, £) = 0, so we may assume that X is orthog-
onal to &. Thus

8 x§, X) = gl x§, pX) = —g((Vxp)§, pX) = g((V:p) X, 0X)

Remark. (1) From Proposition 2.1 it is clear that on a closely cosym-
plectic manifold we have Vy7 = 0.

(2) If an almost contact metric structure is normal and Fyp = 0, then it
is cosymplectic ; conversely on a cosymplectic manifold ¥ yo = 0, [1].

(3) Since ¢ is parallel on a closely cosymplectic manifold, it is clear that
(V xp)¢ = 0, from which, since ¢ is Killing, V.o = 0.

A plane section of the tangent space M2'+! at m ¢ M***! is called a p-section
if it is determined by a vector X orthogonal to & such that {X, ¢X} is an ortho-
normal pair spanning the section. The sectional curvature K(X, ¢X) is called
a g-sectional curvature [13].

Given two ¢-sections determined, say by unit vectors X and Y, we define
the ¢-bisectional curvature B(X,Y) by

B(X,Y) = gRy,xY,0Y) ,

where Ryy denotes the curvature transformation of F.

A local orthonormal basis of the form {&, X, X;. = X}, i=1,..-,n on
an almost contact manifold M?***! is called a ¢-basis. It is well known that such
a basis always exists. Let {y, ;, ;} be the dual basis. A 2-form « is said to
be of tridegree (1,1,0) if « satisfies a(X, ¢Y) + alpX,Y) = 0. For a more
general discussion of p-forms of tridegree (2, #,v), 2 + ¢ + v = p on almost
contact manifolds see [12]. We denote by H'°(M*"*') the space of harmonic
2-forms on M?***! of tridegree (1, 1, 0).

3. Closely cosymplectic manifolds

Lemma 3.1. On a closely cosymplectic manifold we have
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“(VXSD)YHZ = g(RXYX, Y) - g(RXYsaXy sDY) .

The proof is a long but straightforward computation similar to the proof
of the corresponding result on nearly Kéhler manifolds [6].
Corollary 3.2. On a closely cosymplectic manifold

g(RXYXa Y) = g(R,anoYfDX’ SDY) .

Corollary 3.3. On a closely cosymplectic manifold g(R.x¢,X) = 0; in
particular the sectional curvatures of plane sections containing & vanish.

This last corollary generalizes the result for cosymplectic manifolds [1].

Lemma 3.4 [11]. Let a be a 2-form on an almost contact manifold satisfy-
ing a(X,Y) + alpX,Y) = 0. Then for any m e M*"**, there exists a ¢-basis
of M>*! such that a;; = (X ;, X;») are the only nonzero components of .

Proof. For X orthogonal to & we have

a(§, X) = —alg, ¢’X) = alpé, Y) =0 .

Now let S(X,Y) = alpX,Y). Then S(X,Y) = S(Y,X) and S(pX,¢Y) =
S(X,Y), i.e., Sis a symmetric bilinear form invariant under ¢. If X, is an
eigenvector of S orthogonal to &, then so is ¢X,. Thus we can inductively
choose a p-basis {&, X;, X;« = X} such that the only nonvanishing components
of § are of the form S;; = S, = @yx-

Theorem 3.5. Let M*"*! be a compact closely cosymplectic manifold having
nonnegative g-bisectional curvature and satisfying K(X,Y) 4+ K(X,¢Y) > 0
for linearly independant X,Y , X, oY orthogonal to &. Then M*"*! is cosym-
plectic or not cosymplectic according as dim H*'(M***') = 1 or 0.

Proof. Let a be a 2-form of tridegree (1, 1,0). Then by Lemma 3.4 there
exists a ¢-basis such that the only nonzero components of & are a;. =
a(X;, X;). Thususing Lemma 3.1 we have for the Bochner-Lichnerowicz form:

adla-“lya,uv

F@) = R,a" e, — P LR

» 2 K2 py! Age++2p

= 2 Z;] (Rii*jj*(am* — a'jj*)z + 2 ”(VX,LSD)XjHZ (afl* + a_zfj*)) 5

where k,4,--- range over 1,.--,2n 4+ 1. Now as R, u;+ >0, we have
F(a) > 0; hence if « is harmonic, then F(a) = O giving

(%) Ripejilase — ;) + 2| (V2,0 X; [P (@i + ) = 0.

If now M*"*! is not cosymplectic, it is clear that Vy, # O for some i, and
one can then check that (F y,0)X; # O for some j. Thus a;;+ = 0 and «;; = O.
But if (Fyx,pX, =0, then by Lemma 3.1, Rjuxrs = Ripsr + Ryprse > 0
giving ey« = aty». Thus @ = 0 and we have dim H"(M***!) = 0.
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In the cosymplectic case, the fundamental 2-form @ ¢ H*(M?**+'), so that
dim A"(M?*"*') > 1. Therefore, if o ¢ H'(M***!), then by a decomposition
theorem of [3], « = 8 + f@, where };; ((0.)i(»;))f = O and f is a function.
Thus 3] B« = 0, and by equation (x) we have g« = f;;+ giving 8 = 0. Hence
" a = f@, and dim H"(M***) = 1.

4. Fibration of closely cosymplectic manifolds

Let M*"*! be a compact almost contact metric manifold on which & is regular,
i.e., every point m e M***! has a neighborhood through which the integral
curve of ¢ through m passes only once. Since M*"*! is compact, the integral
curves of & are homeomorphic to circles. If now & is parallel, then its integral
curves are geodesics, and it follows from a result of Hermann [8] that M***! is
a principal circle bundle over an even-dimensional manifold K?*(S* — M?"*!
—> K?),

Theorem 4.1. Let M***! be a compact almost contact metric manifold on
which & is regular. If M***! is closely cosymplectic (respectively cosymplectic),
then K*" is nearly Kahler (respectively Kdhler). '

Proof. As M**!is closely cosymplectic, & is parallel and we have the fibra-
tion §' — M***' — K*", Again since ¢ is parallel and V.o = 0, we have

(DX =VoX —V,x6 — VX + oV z6=F.0)X =0.

Thus ¢ is projectable, and we define J on K*" by JX = z 07X, where 7 denotes
the horizontal lift with respect to the Riemannian connexion on M®***'. It is
easy to see that J2 = —I on K?*. Now as ¢ is also Killing, the metric g is
projectable to a metric g’ on K*", i.e., g(X,Y)or = g(#X,#Y). Letting V"’
denote the Riemannian connexion on K**, by a direct computation we obtain
WiDY = n,(V:xp)7Y, from which the result follows.

Theorem 4.2. Let S' —> M+ K pe the above fibration with M?**+!
closely cosymplectic. If M*™*' has positive ¢-sectional curvature, then M***!
is the product space K*" X §S'.

Proof. Since 5 is harmonic on M*"*!, we have H'(M***!, Z) # 0. Secondly,
by a direct computation positive ¢-sectional curvature on M***! implies positive
holomorphic sectional curvature on K**, and hence r,(K**) = 0 by a result of
Gray [5]. We claim a principal circle bundle ' — M — K with #,(K) = 0 and
H'(M) # 0 is necessarily trivial. Let x be a base point of M, and S, the fibre
over x. Then the sequence

coo —> H(M, SL) — H'(M) — H\(g%) —> H(M,S%) —> - --

is exact. First note that H'(S) = Z. Now by the universal coefficient theorem
H'(M) is a free abelian group, and H'(M, S.) ~ free H'(M, %) ~ free H,(M, S})
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= free H,(K) = 0 where the identification of H,(M, S%) and H,(K) is made by
the Serre sequence of the fibration (see for example, Mosher and Tangora [10]).
Hence ¢* is a nontrivial monomorphism. Moreover torsion H*%M, S%) ~ torsion
H,(M, S.) =~ torsion H(K) = 0. Thus ¢* is an isomorphism, and hence the
characteristic class of the bundle is zero.

5. Examples

It is well known that S° carries a nearly Kéhler structure, so let J denote
such an almost complex structure on S® and let # be a coordinate function on
S On §° x §* define ¢, &, 7 by

d

) =d0,
a7

go(X,fd‘Z): JX,0), &=

where X is tangent to S°. Then as J is not parallel on S° (i.e., S° is not Kéhlerian),
Vo #+ 0 with respect to the product metric. However it is easy to check that
the structure defined on S° X S' is closely cosymplectic.

On the other hand, Gray [6] showed that every 4-dimensional nearly
Kdhler manifold is Kéhlerian. We now give the corresponding result for closely
cosymplectic manifolds.

Theorem 5.1. Every S5-dimensional closely cosymplectic manifold is cosym-
plectic.

Proof. As the manifold is closely cosymplectic, a direct computation shows
that (Fx0)Y = o(V xp)pY. Now let {£, X,, X, X,,pX,} be a ¢-basis. Then
computing V¢ on this basis we obtain Vo = 0 and hence that the manifold is’
cosymplectic.

In [2] one of the authors showed that besides its usual normal contact metric
structure, S° carries a nearly cosymplectic structure which is not cosymplectic.
Consider $° as a totally geodesic hypersurface of S°; then the nearly Kéhler
structure induces an almost contact metric structure (p, £,%,g) with ¢ and
hence 7 Killing. In view of Theorem 5.1 this nearly cosymplectic structure is not
closely cosymplectic.

Moreover this almost constact structure on S° is also not contact as the fol-
lowing theorem shows.

Theorem 5.2. There are no nearly cosymplectic structures which are
contact metric structures.

Proof. Let M*"*! be a nearly cosymplectic manifold, and suppose that its
(almost) contact form 7 is a contact structure (i.e., 7 /A (dp)" # 0 everywhere).
Since the structure is contact and ¢ is Killing, M***' is K-contact and —pX =
V x&. Now on a K-contact manifold the sectional curvature of a plane section
containing ¢ is equal to 1, [7]. Thus if X is a unit vector orthogonal to &, then
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—1= g(Veré - VXVeS - V[E,X]Ss X)
= —gW X — ¢lg, X],X) = —g((V.0)X + ¢V x&,X)
eV xp)&, X) + g@’X,X) = g((Pxp),X) — 1.

Therefore
0=28((Fxp)&,X) = —gloV £, X) = —g(¢’X,X) = g(X,X) ,

and hence X = 0, a contradiction.
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