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0-DEFORMABLE (1, 1)-TENSOR FIELDS

CLARK JEFFRIES

1. Introduction

Given a smooth real vector bundle =: V — M, a (1, 1)-tensor is a smooth
map J: V — V which satisfies #J = = and is linear on each fibre.

J is said to be 0-deformable if for any two fibres z~'(x) and #~'(y) an isomor-
phism z,,: z='(x) — z~!(y) exists such that ¢,,J, = J,z,,. It follows from a
result of J. R. Vanstone [10] that J is O-deformable if and only if there exists a
connection V in V satisfying /'J = 0.

This note contains four results from the author’s Ph. D. thesis written at
the University of Toronto. The guidance of Professor Vanstone in the develop-
ment of the thesis is gratefully acknowledged. Suggestions by Professor S.
Halperin figure prominently in the thesis as well.

The referee has brought to our attention an article by R. Crittenden [2].
The article established the equivalence of covariant constancy with respect to
some connection and the existence of local smooth frames with respect to
which the coefficients of a tensor are constants. However, 0-deformability im-
plies a priori only the pointwise existence of such frames. Some results men-
tioned in Crittenden’s article are corollaries of our results.

2. Semisimple (1, 1)-tensors

Theorem 1. Let
2.1 p(x) =x*+ --- + bx + b,

be a real polynomial with s distinct roots. Then associated with p are s(s — 1)
real numbers {a;;} with the following property: if V is an arbitrary connection
in V, and J is an arbitrary (1, 1)-tensor solution of

2.2) p()=JF+---+bJ+bl=0,

then the new connection VV defined by

s—1

~ s-1
2.3) Vyv=Vxv + 3 X a,Ji Wyl ,
1

i=0 j=
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(where X is a tangent vector field, and v is a cross section of V) satisfies
(2.4) Pl=Fol —JoF =0.

Proof. 1t is easy to show that the above result would follow from a com-
plex version of the result by simply taking real parts of the {a;;}. Thus this
proof actually treats the complex case only.

We will need the following

Lemma. Suppose n;, i=1,-.-.,s, are (1, 1)-tensors in V satisfying

(2.5) ﬂ%zﬂ'i, ﬂ'iﬂ'jZO for l—_,ﬁ], Zﬂi:I'

If V7 is an arbitrary connection in V, then the new connection  defined by

=1
satisfies
2.7 177ra=0, a=1,.---,5.

Proof. Pz, = V=, + P aVrre, — 3w (Vry)
=Vr, + > al(ziz) — 3, mm(Pr) — n(Pz,) = 0. q.e.d.

Now let {2,, - - -, 4,} be the distinct roots of p. Then
J—-aD---(J—2D=0.
Define new polynomials p;,, i = 1, -- -, s, by

px) =[] (x — ;) .
J#i
Then p;(4;,) s Oforeach i = 1, - --,s, and therefore =, = p;(1,)"'p;,(J), i =
1,.--,s, are s new (1, 1)-tensors in V. Using elementary linear algebra it
follows that (2.5) holds, and J = }; A;z;. Let I’ be an arbitrary connection in
V. Then from the lemma it follows that the connection § defined by (2.6)
satisfies (2.7). Thus #J = ¥ 2,/z; = 0. Define ¢;;eC, i=1,---,5, j=
0,1,---,5s — 1, by n; = }; ¢;;J7. It follows that (2.3) holds with a;; =

’;‘lckic“. q.e.d.
Note that the proof is completely algebraic and uses only the derivational

properties of connections.
In the case s = 2, the constants {a,;} are

Ay = D—l{ - bl} 5 ay = D-l{z} s
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where D = b} — 4b, is the discriminant of p. In the case s = 3, the constants
{a;;} are

ay = D~{—4b%b, + 6b,b, + bb: + b,b} ,
ay, = D~ —4b} + b,b} + 3bb,} ,

a, = D202 + 2b% + 12b,b, — 8b,b3} ,
ay, = ay = D203 + 9b, — Tb,bj} ,

a, = D-{2b2 — 6b} ,

where D = —4b% — 27b% + bib: 4 18b,b,b, — 4b,b; is the discriminant of p.
We note that S. Tachibana [9] and C. J. Hsu [4] derived the above result for
the cases p(x) = x* + 1 and p(x) = x* + 2%, 2 # 0. K. Yano [12] has studied
(1, 1)-tensors which satisfy J® + J = 0. In this case

Pxv =Vyv — T Do + Tyl + 310 I

defines a connection / in terms of an arbitrary connection F which satisfies
VJ = 0. Finally, we note that the requirement that p have distinct roots is a
necessary condition. Let (x,, x,) be the usual coordinate system for R?. Define
J as Jox, = x,0x,, Jox, = 0. Clearly J satisfies J2 = 0, but J is not O-deforma-
ble. It is easy to construct such matrix examples for any polynomial with a
multiple real or complex root.

3. 0-deformable (1, 1)-tensors and Riemann structures

We will call a symmetric positive-definite (0, 2)-tensor field ¢ in ¥ a Riemann
structure.

Theorem 2. Suppose a (1, 1)-tensor J is constant with respect to a con-
nection V. Then V admits a Riemann structure % and a connection V which
satisfy VJ = 0 and P4 = 0.

Proof. Our proof is an explicit construction of the promised Riemann
structure and connection.

Let J = Jg + Jy be the decomposition of J into its semisimple and nilpotent
parts. Since J is 0-deformable, we have that both Jg and J, are polynomials
in J with constant coefficients. Thus F'Jy = I'Jy = F'J = 0. The local eigen-
spaces of Jy are naturally preserved by F-parallel translation over M and are
global subbundles of V. Thus we may assume that V is an eigenbundle of J,
the general case being given by the obvious direct sums.

Case 1. Suppose J¢ — Al = O for some real 2. If J, = 0, then we may
choose any Riemann structure ¥ and connection F satisfying /4 = 0. Of
course, J = 0 as well. Thus we assume J5#0,J5777 =0, P> 1. Let ) de-
note orthogonal complement in V' with respect to a fixed but arbitary Riemann
structure. Although what follows seems complicated, it is nothing more that a
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smooth global decomposition of ¥ which, on each fibre, amounts to the usual
decomposition of a vector space in terms of a nilpotent endomorphism. Name-
ly, we decompose I as the following hierarchy of orthogonal projection tensors
.y and V itself as the following hierarchy of subbundles:

oot V — Ker JE+!\Ker JZ |

wo: VoIV, i=1,.--,P,

oy s V — Ker JE\{iz,V @ Ker J5} ,
wiVolymV, i=1,.--,P—1,

oy V — Ker JE-\{,z,V @ ,m,V @ Ker J2-%}

op: Vo KerJy\{prV @ pimV®--- @ y7p, V).
Thus
V= on'oV@lﬂ'oV(‘B s @Pﬂ'oV@oﬂlV@ v @p-lﬂlV@ R @gﬂpV .
~ «5 Nyt

1

P+1

In each list o,V @ 7,V ® - - - @ p_iw;V, Jy acts precisely as follows: J,, maps
0V isomorphically onto ,x;V'; Jy maps ,x;V isomorphically onto ,z;V ; so on;
and Jy maps p_;z;V to O.

First we use a much coarser decomposition of ¥, namely, just the decom-
position of V into the above P + 1 lists. That is, let n, = }; jx,, «=0, ---, P.
Thus V =aV @z V@ .- ®rpV. It follows easily that Jyr, = =, Jy. Now
define a new connection I in terms of I by

. P
VX/U == va + Zoﬂ'j(Vxﬂ'j)v .
=
In view of the lemma in § 2, we have ﬁn, = 0, and also

Viy= Y a,0z)y — ¥ Iyr,(Pz;) = 0.

Therefore we may as well assume V = r,V, the generalization to z,VV @ - - -zpV
again being the obvious direct sum.
From the definitions of ;x, it follows that

071'0]1\]:0, i+lﬂ0]N=JNi7r0 fOI' l<P, JNPW‘):O.
Now define a new connection ¥ in terms of I by
. * P *
Vyv =Vyv + ZE) oV x i)V .

Again 7 ;x, = 0 follows from the lemma. Also,
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= P x P *
Vig= 2 mVimdly — Z Iy (Vo)

JN(V‘L 17[0) - Z ]N 2770(71750)

I
™M T;M’u 1

JN i- 1770(Vz 1) — Z Iy zn'o(Vzﬂ'o) =0.

Let ¢, denote an arbitrary Riemann structure in ,z,//. Using J,, ¢, may be
extended to a Riemann structure ¢ in V in the obvious way, that is, so that
each J§: )V — ;nV,j=1, .., P, is anisometry. Define a new (1, 1)-tensor
Jy by
] I on ,r,V, i>0,

"o on (7, V .

Of course, Jy is simply the transpose of J,, with respect to %. Furthermore,
J y satisfies

fNon.O:O’ jNi+17r0=i7T0jN fOI'i<P, PTfoszo.

Thus JyJy = I — (7,, so that Jy(7Jy) = 0. Therefore Viy = pr(PTy) =
V(pryJy) = 0. Hence VJy =FJy = 0.
Finally, define a new connection I/ in terms of 7 by

GW xv,,v,) = GT 301, v) + 3T x9) (0, v,) .
It follows that

(‘71?)(”1’ v,) = X% (v,,v,) — g(ﬁxvn ) — (v, ﬁxvz)
- Xg(vn vz) - (ng)(’vn ’Uz) - g(Vle, 'vz) - ?(vl, Vx'vz)
=0.

Also,

g((ﬁszv)'vu vz) = g(ﬁxJNvla /Uz) - g(ﬁxvn jsz)
= g(VXJNvI’ ;) + %(737?)(]1\/’01, v,)
— GV, Jyv) — 2T x9) 0, Jyv,) =0 .

Since 1715 =0, ] = I7JS + 7JN = 0.

Case 2. We now suppose (Jg — al)’ + f1 =0, B+ 0. Since V'] = 0,
V(=) — al)) = 0. Thus we may assume « = O and 8 =1, so J5 + I = 0.
Suppose Jy = 0. If ¢, is an arbitrary Riemann structure in V, then define a
new Riemann structure ¢ by
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g(vls 'vz) = gl(,vl’ 'vz) + g(JSvl’ JS’vz) .

It follows that Jg is skew with respect to %. Define a new connection § in
terms of V by

g(ﬁxvn vz) = g(Vle, vz) + %(ng)(’vv ’vz) .
Then

Fx9)w,,v) = XG(,,v,) — V190, v,) — G0, 0) — (0, V0,
=0,

and also

G20, v) = GW T 50, v) + 32950, ;)
+ GV xv,, Jsv,) + 3V x9) (0, J5v) =0 .
Therefore it remains to consider the posibility that
JGb+0, JF*'=0, P>1.

Just as in Case 1, we construct projection tensors ;z; and =, = ), ;x, using
Jy and some Riemann structure. It follows that each r, has even rank and
commutes with Jg. Thus, if we define a new connection V in terms of I’ by

* P
Vyv =Vxv + 3 mi(Fxm)v ,
=0
then we have as before that Fz, = '], = 0. Also,
ﬁ]s = Z ﬂi(Vﬁ'i)JS - Z Jsﬂ'i(Vﬂ.'i) =0.

Thus, as in Case 1, we may restrict our attention to the case V = z,/V. Each
.7, has even rank and satisfies ,z,Js = Jg;m,. Define a new connection V in
terms of V' by

—_ % P *
Vyo =Vyv + ZE) oV ximo)v
Again, V;r, =0,i=0,1,---,P, and FJy = 0. Also,

Pis =% mWa)ls — 5 Js mWim) =0 .

Let ¢, be a Riemann structure in ;r,//. Extend ¢, to a Riemann structure ¢,
in V using J in the obvious way. Let J be a (1, 1)-tensor in V' defined by

J;,l on in0V3 i > 0 )
jN =
0 on ,m,V .
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As in Case 1, Jy is just the transpose of J, with respect to ,, and V'J = 0.
Also JyJs = JsJ 5. Define a new Riemann structure ¢ in terms of &, by

g(’vv '02) = gz('vv 'Uz) + gZ(JS/vls Jsvz) .

It follows that J is the transpose of J with respect to ¢, and J is skew with
respect to .

Finally, define a connection ¥/ in terms of 7 by
G 301, v,) = G0, 0) + 3739, v) .

It follows that % = 0 and /] = VJ5 + PJy = 0. q.e.d.

Theorem 2 was announced in [6]. A much more general result follows.

Theorem 3. Suppose some set of tensors {T,} in V, each of arbitrary type,
satisfies VT, = O for some connection V. Then V admits a Riemann structure
% and a connection ¥V such that VT, = 0 and % = 0.

Proof. We restrict our attention to a fixed fibre z-(x) of ¥ identified with
R*. Let G C GL(n) be the Lie group of invertible linear transformations of
R™ which leave each T, invariant. Since 'T, = 0, V is endowed with a G-
structure. Clearly G is an algebraic group, and so, according to H. Whitney
[11], has a finite number of topological components. A generalization by G.
Hochschild [3, p. 180] of a theorem of K. Iwasawa [5] states that any Lie
group with a finite number of components is diffeomorphic to the manifold
product of a maximal compact subgroup with a Euclidean space. Thus

Gk % ke,

K being a maximal compact subgroup of G, and the structure group of V' may
be reduced from G to K. Since K is compact, a standard result in Lie theory
provides that an inner product exists for R* with respect to which K is a sub-
group of O(n). q.e.d.

In view of the sophisticated nature of the theorems of Whitney, Iwasawa,
and Hochschild used in our proof, Theorem 3 can only be regarded as an
easy application. Our simple proof of Theorem 2 contrasts with the proof of
the more general theorem.

4. (1, 1)-tensors in tangent bundles which are covariant
constant with respect to Riemann connections

Suppose V = T (M), and suppose V is the unique torsion-free connection as-
sociated with a Riemann structure %. By the de Rham Decomposition Theorem
[8, pp. 187-193], each tangent space T',(M) decomposes as

IT.M=T,T,®---DT,,
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and the restricted holonomy group H, decomposes as
szHOXHIX et XHL7

where H, acts as the identity on T, and each H; acts as an irreducible sub-
group of SO(dim T;) on T, j > 0.

Theorem 4. Suppose J is a (1, 1)-tensor in T(M), and suppose VJ = 0.
Then just as each tangent space T (M) decomposes and just as the restricted
holonomy group H, decomposes, J, decomposes as

Jx=J0(-D(a,11 + ﬂlfl)@ @(atlt + ﬂtft) s

Where I, is, as far as H, is concerned, arbitrary, a;, B; € R, 1; is the identity
transformation on T, and (8; % ;)* = —B31;. Since x is arbitrary and J is O-
deformable, the decomposition holds globally.

Proof. The canonical form for J follows from commutativity with H and
elementary linear algebra. We note that the eigenvalues of J on T, i > 0, are
precisely «; + i8;. Of course, J is also required to commute with the full
holonomy group of F. This additional requirement may further restrict the
formof J. q.e.d.

If in addition M is simply connected, and ¢ is complete, then M decom-
poses as

M=R'XM X --- XM,,

where each M; on which B, #; + 0 is a Kdhler manifold. It follows directly
from Theorem 4 that if J is required to have m = dim M distinct real eigen-
values, then H = H,, a result of D. Blair and A. Stone [1]. From a result of
S. Kobayashi [7] it follows that if M is a compact hypersurface of R™*! and
the Riemann structure ¥ and connection V/ in T(M) are naturally induced from
the Euclidean imbedding, then the corresponding holonomy group is SO(m).
Thus when m = 2, T(M) admits an almost complex structure (in fact, Kdhler
structure, of course) ; otherwise, the only F-parallel (1, 1)-tensors are constant
multiples of the identity tensor.
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