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SECOND ORDER CONNECTIONS

ROBERT H. BOWMAN

1. Introduction

The purpose of this paper is to investigate certain higher order structures on
an n-dimensional C* manifold M, obtained by defining a connection on the
bundle 2I7: *M — M. *M has been called the second extension of M by the
present writer [1], and the second order tangent bundle by Yano and Ishihara
[4].

We first define a second order connection on M as a connection on 3//: *M
— M which induces a (first order) connection on M. It then follows that a
second order connection of M defines a unique vector bundle structure on
1. *M — M and thus allows us to define the connection map [2], [3] of a
second order connection. Covariant differentiation of a section of the vector
bundle 3//: *M — M with respect to a vector field on M is defined. This
determines a concept of higher order parallelism and consequently two types
of geodesics in M, which we call first and second order geodesics.

Given a (first order) connection on M we show that it induces a second order
connection on M, and that if the first order connection is linear, then so is the
induced second order connection. The case of a second order connection
induced from a linear (first order) connection is investigated in detail. We show
that in this case the first order geodesics are the usual geodesics (of the first
order connection) of M, and that there are second order geodesics of M which
are not first order geodesics. Using these second order geodesics we define a
family of exponential maps and the related family of normal coordinates of M,
which include the usual exponential map and normal coordinates as a special
case.

We define the second order torsion tensor of a second order induced linear
connection, and the second order Riemannian metric induced from a
Riemannian metric on M. In the case that the first order connection is
Riemannian we show that the induced second order connection is Riemannian
with respect to the induced second order metric of the canonical first order
metric. We define the second order curvature tensor of the induced linear
second order connection, and the associated second order Riemann-Christoffel
tensor, which may be used to define two natural invariants K; and K;; which
we call the Ist and IInd second order curvatures of M respectively.

Communicated by K. Yano, May 10, 1971.
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2. Notation and preliminary remarks

Suppose that M is an n-dimensional C* manifold, which we suppose is
Hausdorff. Then we may form the tangent bundle }/7: TM — M of M and the
tangent bundle T,: TTM — TM of TM. From the commutative diagram

1
0

H*
TTM —5 TM

@2.1) T,,l lgn
™ — M
177

we see that TTM is also a vector bundle under the tangent map jI7, of iII.
If we take

2.2) M = {A|A e TTM, T;A = I, A} ,

then *M is an imbedded submanifold of TTM, and we have the sequence of
C=~ manifolds and C~ maps [1]
(2.3) M «—'M <—'M

o7 i
where "M = M,'M = TM, and }I] is the restriction of }II, to *M, from which
we see that both 2/1: *M — TM and :[I: °M — M, where I = Il -}II, are
fiber bundles.

If (U, ¢) is a coordinate chart of M with coordinate functions x¢, i =1,
-+, n, then the partial derivatives 9/dx?,i =1, ---,n, form a basis of the
tangent space TM,(=M,) at each point p € U. Thus by employing the sum-
mation convention or lower case Latin indices, each X, € ;//7'(U) may be ex-
pressed in the form

2.4) X, = x93 /ox(p) ,

and hence J-'(U) becomes a chart of TM with the 2n coordinate functions
x" = xt x = X(x%). Repeating this process we obtain a set of 4n coordinate
functions on T30 [I-*(U) C TTM; however the defining condition (2.2) of
*M implies that the second and third sets of n coordinate functions are equal
[1], and this determines on 2M (N T7'oiI1~(U) a set of 3n coordinate functions
x", x't x*%, In each case these coordinates are called the coordinates induced
by (U, ¢), or simply the induced coordinates. We note that *M is a fiber bundle
but not a vector bundle relative to the induced coordinates.

3. Second order connections

Definition. A connection on the bundle 2/7: M — M is a C~ left splitting
V of the exact sequence



SECOND ORDER CONNECTIONS 551

(3.1) 0—svM—2srm im0

Here 3/I7'TM denotes the pull-back of TM, II’ the natural map defined by the
tangent map 3//,,, and J the inclusion map. In terms of the induced coordinates
on M, (3.1) becomes locally

J
(3.2) 00— (X 2, %% 0,3, ¥ —> (X x1, x5 %, ¥, )

HI
— (X, x,x?; ) —> 0.

Since VJ = Id, the identity on V M, we see that V(x° x',x*; 0,)',)%) =
(x°, x', x*; 0, ', ¥®) and hence that
(3.3) V(X' xt, x5 ¥, v, %)

' = (x% x', x%; 0, + o'(x %', x%))°, ¥* + o*(x°, X', x9))°)

where o' and «* are the local components of the connection.
Definition. A connection on 2/1: *M — M is a second order connection on
M provided that there exists a C= left splitting V" of

0—->VIM —TTM — {[I"'TM — 0

such that

14
VM «— T°M
(3.4) fﬂ*l l%ﬂ*
VIM «— TTM
124

commutes. In terms of induced coordinates this means the local components
of connection satisfy the condition

o'(x’, x', X)) = o(x’, x') ,
i.e., o' is independent of x?, whence
V', xt x5 ¥, v v°)
3.5
=% x, x*; 0,y" + o'(x, x))", ¥* + &*(X°, X', xD))") .

We call ¥ the (first order) connection on M induced by the second order
connection V.

Theorem 3.1. Each second order connection on M determines a unique
vector bundle structure on I : *M — M such that with each chart of M there
is associated a vector bundle chart of M. Moreover, this vector bundle
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structure allows us to define the connection map of the given second order
connection.

Proof. Let D: TTM — TM be the connection map of the connection v,
(this means that D: VTM — TM is an isomorphism determined by ) [21[31.
Then TTM has the unique vector bundle structure over M determined by the
diffeomorphism [6]

(3.6) M, ®DDT,;: TTM >TMOTM S TM  (Whitney Sum)

and is denoted by ¢: TTM — M.

If (U, ¢) is a chart of M, then the induced chart in TM determines a vector
bundle chart (or ¥V B-chart) via (3.6). Since 2M is the imbedded submanifold
of TTM consisting of points 4 such that (/7,4 = T,A we see that if

A:TMBATM - TM P TM P TM
is the natural isomorphism of TM @ TM onto §II, ® D ® T,(*M), then
470Gl ® D@ T,CM)) =1, ® DCM) ,

and so we may give M the structure of a vector bundle over M via the
diffeomorphism

(3.7 JI,®D:*M —>TM @ TM

which determines a ¥ B-chart on 2M for each chart of M.
If A e TTM, then in terms of the induced coordinates A = A9, + A'%,;
where 6,; = d/0x%,9,; = 9/0x"?, and we have

D(A) = (4" + (2", x) A3y ,
so that if we take

XP = 0y — w"0y; , X! =0y,
we see that

(3.8) oMl (X7) = 0y » oIl (X}?) =0,
‘ bxmy =o0, DY) = 3y -
Now if 4 € *M, we have {/I, A = T A, so that
A= xliaoi + Alian‘ = xliaoi —_ xliwl‘ga”‘ + x”a)léau + A”al,;
= x"X? 4+ (4Y + x"')DXY .
Thus we see that if (2, x!, x?) are the coordinates of *M induced from a given
chart of M, then the associated ¥V B-coordinates on 2M are
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(3.9) ZOi — in s zli — xli " zZi — xzi + x”a)lj(xo, xl) .

Since 211(2°, 7%, z%) = z°, we see that the exact sequence (3.1) once again has
the form (3.2) in terms of the VB-coordinates:
0— (2,2,2%; 0,2, v) — (2%, 2!, 25 ¥°, ', v?)

(3.10)
i (Zo) zla ZZ; ’UO) -0 ’

and

V(' 7, 2%; v°, v, )
= (2% 7,2%; 0,0 + o'(2’, )V, v* + %2, 2}, 22)0°)

where o' and «* are the local components of the second order connection
relative to the VB-coordinates, although we will use the same symbol as
before.

Since 2M is a vector bundle relative to the VB-coordinates, there is connec-
tion map D of the second order connection. This map is obtained in the usual
manner by identifying V' *M with /77! °M (the pull-back of *M over itself) and
applying the natural map of the pull-back which takes ;177! *M onto *M. It is
necessary that M be a vector bundle in order that this be possible.

In terms of ¥V B-coordinates the connection map D becomes

D', z', 2% ¥, ¥, ) = (@, + o'(2, 20 ¥ + &*(2", 2, 20 .
If Be T*M, then B = B"% /92" + BY9/0z'* + B*d/0z*, and thus for D we
have

(3.11) D(B) = (B' + 'i(z, 2)BY)X? + (B* + *(2, 2}, Z)BY)X? .

If A: M — *M is a C*~ section of the vector bundle 2/7: M — M, and X a
vector field on M, then the covariant derivative of 4 with respect to X is
defined to be

D,A=DAX .
If X = £%;, and A = A%X} + AYX? locally, then we have the local expression
(3.12) DyA = g1([9A% [0z + o'i(2°, A)X?
' + £9(3A" [0z + w2, A% ANX? .

If 11,DxA = 0, we will say that A is first order parallel with respect to X;
if DDyA = 0, we will say that A is second order parallel with respect to X;
and if both of these conditions are satisfied, we will say that A is parallel with
respect to X.
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If y: 1— Misa C~ curve, then its canonical lift is the section ¢’ of TM
over 7 obtained by associating with each point 7(#) the tangent vector to r at
that point. Similarly we associate with each point 7/(¢) its tangent vector in
TTM to obtain the second canonical lift 7. In terms of local coordinates
we see that if x%) = xtoy(), then 7(®) = (x(®),x'(®)) and 77(H) =
(x(®, x'(®), x'(), x()). Thus we see that y”’(f) C M, and hence it may be
defined by the coordinates

(3.13) X% =xi(), xM=x@), x**=x"(), or
. =x4), Z¢P=x"@), 2=3x"@)+ o"ix,x)xI@),

where the x’s are induced coordinates, and the z’s are the associated VB-
coordinates. From (3.12) we have

(3.14) D,y = (x"" + o'i(x, x)x)XE 4+ (2 + *(x, ¥, 2)x7)X7 .
We will say that y is a first order geodesic provided that {/7,.D.y” = 0, and
that 7 is a second order geodesic if DD,.y”" = 0.

4. Higher order geodesics

If we choose a coordinate chart (U, ¢) of M containing a point p, then we
may define a local isomorphism of the vector bundle /7 |31*(U): {17'(U) —
M into the vector bundle ¢: TTM — M by

4.1 I(z°; 7', 7)) = (2°; 0,2, 2%) .

Since this is independent of the chart chosen, there is then defined a global
map

4.2) I:°'M — TTM
which locally has the form (4.1). Then we obtain the tangent map
1,: T°M — TTM
which has the local form
122,25 ¥, ¥, ) = (2%, 0,2, 2% 5%, 0, ¥, ) .

Let S be the symmetry map S: TTM — TTM, [3].

Theorem 4.1. Each (first order) connection on M induces a uzzique second
order connection on M whose connection map is given by 1'SD,SS I, and
whose left splitting map is (SS*I)“V*(SS*I %)

Proof. We first note that a (first order) connection on M may be lifted to
a connection (called the complete lift in [5]) on T,: TTM — TM with left
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splitting map ¥ = (85,)"'V .(SS,) and connection map D = SD,SS,, [3].
Locally D has the form

D(a> b’ c, d; o, ,8, It 5) = (a’ b’ 7 + C!)(a, C)(X, 0 + a)(a: C)‘B + w,(a, C)(b, d)d) ’

where w(a, ¢) is the local component of the first order connection, and w’(a, )
its derivative. Thus, if we define

(4.3) D =I"DI,,
we have
D2, 7', 2%; ¥, ¥, ¥) = I"'D(2, 0, 2', 225 ¥°, 0, ¥, ")
4.4 =120,y + (2, 2))", y* + o'(2", 2)(0, 29)")
= (25 + o2, 2, ¥* + o' (2, 2(0, 2))") ,

which we see is a second order connection on M. That the left splitting map
has the required form may be seen by a similar calculation using

(8S,)"V*(SS)(a, b,c,d; a, B, 1,9) .
=(a,b,c,d;0,0,7 + w(a, c)a,d + wla,c)f + o'(a, )b, da) .

If D is linear on the }II, fibers of }I1,: T *M — TM, then we will say that
the associated second order connection, which we will henceforth also denote
by D, is linear. In terms of V' B-coordinates this means that

(4.5) '@, 2N =I"@)LY), &2 = T 2,Y) .

This may be seen by noting that «'(z’, _) is a linear map R® — L(R", R"®) for
each z° ¢ U, and is thus an element of L(R*, L(R", R®)) ~ L*(R", R"). The
corresponding I": U — L*R", R™) (under this topological isomorphism) is the
local component of the linear connection. If w is the local component of a
linear (first order) connection on M, then

w(a, b)c = I'(a)(b, c)
as above. Since
wl(a’ b)(ca d)e = Dlw(a9 b)(C, e) + Dzw(a’ b)(d, e) 5

where D, and D, are the partial derivatives with respect to the first and second
variables respectively, and

Dw(a, b)(c,e) = I''(a)(b,c,e€) , D,w(a, b)(d,e) = I'(a)d, e) ,

we have
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(4.6) o'(a, b)(c, d)e = I""(a)(b,c, e) + I'(a)(d,e) .
Upon using (4.6) in (4.4) we see that
4.7 D@z, 2% ¥, ¥, ) = (&% + T'(@)(, ¥, + T2 ,

and we have the following corollary to Theorem 4.1.

Corollary 4.1. Each (first order) linear connection on M induces a second
order connection on M, which is also linear and has the form (4.7).

Theorem 4.2. If D is a second order connection on M induced from a
linear (first order) connection D on M , then the geodesics of D are geodesics
of D. However, there are geodesics of D which are not geodesic of D.

Proof. 1In the case of a second order connection induced from a linear
(first order) connection we see from (3.14) that the equations of a first order
geodesic in M become

(4.8) XV [ixi'x¥ =0,

which are the classical equations for a geodesic in M relative to the first order
connection. Also from (3.14) we see that the equations of a second order
geodesic are

4.9) 2V 4 Ixi’'z% =0, 22 = x¥" 4 I xd' X,

which are equivalent to

(4.10) XV Dixdx® 4 2000 x5 x* 4 [ TE x3 XV x™

' + @I% /ox)x!x¥'x" =0 .

From (4.10) we see that for any set of initial conditions (xi(%,), x¥'(¢,), x*""(t,))
(alternately (x%(z,), x*'(¢,), z%!(¢,)) there exists a unique solution satisfying these
initial conditions. From (4.9) we see that if z?(¢,) = 0, then the corresponding
solution to these equations is z?*(f) = 0, and this condition is satisfied if and
only if x%(¢) is a first order geodesic. Hence each first order geodesic of M is
also a second order geodesic of M. On the other hand, if z*(z,) # O, then
Z2(t) + 0, and there are second order geodesics of M, which are not first
order geodesics.

Theorem 4.3. Suppose that D is a second order connection on M induced
from a linear (first order) connection on M. Then for each pair consisting of
a vector A e TM,, and a 3-covariant TM ,-valued tensor T at p, there corre-
sponds an exponential map (depending on D) which maps a neighborhood of
0 in TM,, diffeomorphically onto a neighborhood of p in M. If A = 0, this is
the usual exponential map (of the first order connection).

Proof. From the form of the differential equations (4.10) we see that if
7.x,a is the second order geodesic through a point p with initial conditions
x(0) = p,x’'(0) = X, 7%(0) = A, then
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(4.11) T, ) = Tex, 1),

when 7y, 4(?) is defined. Take

Expop,ry (X, 4) = rx,rax,0,(D) 5
when the right hand side is defined. From (4.11) we see that if ¢ # 0, then

(4.12) T x,xn(D) = T v xim xe, @ »

and thus for any 4 we see that if X is sufficiently small, then Exp,,r, (X, 4)
is defined. Suppose that I,: X — (X, A), and define exp ,,; 4,: TM, — M by

(4.13) eXPp, 7,4y (X) = BXpp, 7y o I (X)) .

If 5,: TM, — (TM,), is the isomorphism of TM, onto its tangent space at O
obtained by assigning to each X ¢ TM,, the tangent vector X ¢ (TM,), to the
curve tX at t = 0, then

(expp.7.4))x (X) = tangent vector to the curve exp, r, 4 (tX) att =0 .

However

eXpp, .40 LX) = Tux,raex,txy(D) = 7,102,200 »

which is a second order geodesic through p with initial condition 7(0) = X.
Thus

(414) (exp(p,T,A))* ()7) =X 5

which implies that (exp,,r, 4,)4 is onto and hence an isomorphism. Using the
inverse function theorem we may conclude that exp,,, s, 4 is a diffecomorphism
of a neighborhood of 0 in TM, onto a neighborhood of p in M. The second
part of the theorem follows from the fact that 7y ,,(¢) is a first order geodesic.

Remark. A canonical choice for T(4, X, X) is R(4, X)X where R is the
curvature tensor of the first order connection.

We may use Theorem 4.2 to obtain a family of normal coordinate systems
at each p e M. Choose a basis {e,, - - -, e,} of TM,, and let {«!, - - -, u"} be the
dual basis in TM}. Then

(4.15) Xt = utoexpy r 4

is a normal coordinate system on some neighborhood of p in M. We note that
each curve through p with coordinates x* = £t is a second order geodesic with
initial conditions (X, A), where X = &’e, for

€XP(p, T, 4) tX) = T(tX,T(A,tX,tX))(l) = T(X,T(A,X,X))(t) .
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Remark. If A4 = a'X? relative to the basis X?, then (I'%), = a® in the
normal coordinates.

S. Higher order curvature

If Dis theL second order connection on M induced from a linear (first order)
connection D on M, then for a C* section A4 of the vector bundle 3/7: *M —
M and a vector field X on M from (4.7) and (3.12) we see that

3.1 DxA = (I DyA, D(DxA)) = (Dy I1,.A, DyD(A4)) .
If 4 and B are C* sections of :II: *M — M, then we take

[4, Bl = (/14,311 ,B], [D(4), DB))) ,

(5.2) o o o
DAB - (D 1A éH*B9 Df)(A)D(B)) .

We define a second order tensor 77 on M as a mapping of the product of r
copies of the module 2 of C* sections of the vector bundle 2/7: M — M over
the ring C~(M) of C~ functions on M, with s copies of the dual 2* of 2, into
C>(M) which is C~(M) linear in each variable. Then we define the second
order torsion tensor

(5.3) Tor (4,B) = D,B — DyA — [A,B] .
It follows from (5.2) that

Tor (4, B) = (I, Tor (A, B), D Tor (4, B))

(5.4 = (Tor (M1 A, M1 B), Tor (D(A), D(B))) ,

where Tor is the torsion of D. Thus we see that Tor is a bilinear, over C*(M),
map of 2 X 2 into C*(M) and hence a second order tensor on M. Thus we
have the following theorem.

Theorem 5.1. Suppose that D is the second order connection induced by
a linear (first order) connection on M. Then Tor = O if and only if Tor = 0.

Definition. A second order Riemannian metric on M is a positive definite
inner product ¢ , > on each fiber }/I~'(p) of the vector bundle {/I: *M — M
having the property that if A, B € 9, then the function defined by {4, B>, =
{A,, B,> belongs to C~(M).

If (X, Y) is a Riemannian metric (first order) on M, then it induces the
second order Riemannian metric

(5.5) (A, B> = QIT,A, M1 ,B> + (D(A), D(B)>
on M, where A,B ¢ 2.

Definition. A second order linear connection on M is the Riemannian
connection associated with a given second order metric provided that
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(5.6) Tor(A,B) =0, X{A,B)>={(DxA,B> + {A4,DyB>,

where A, B e 9, and X is a vector field on M.

Theorem 5.2. If D is the linear (first order) Riemannian connection
associated with a given (first order) metric { , >, then the second order con-
nection D on M induced by D is the Riemannian connection associated with
the second order metric induced by { , >.

Proof. That Tor (4, B) = O follows from the fact that D is Riemannian
and Theorem 5.1. Since

X{A, B) = XGI,AMIB) + X{D(4), D(B) ,

and D is Riemannian with respect to the metric on the right, we have

X<A,B) = {Dx}1,A4,}1,B) + G4, Dy {I1,B)

+ (DxD(A), D(B)y + (D(A), DxD(B)) .
Using (5.1) and (5.5) we have
X{A,By = (DxA,B) + {A,DxB) .

We take
5.7 R(X,Y)A = DyDyA — DyDyA — Dix 114 ,

where X, Y are vector fields on M, A € 2, and D is a linear second order
connection on M. If D is the second order connection induced by a linear
(first order) connection, then from (5.1)

DyxDyA = (Il,DyxDyA, DDyDyA) = (DyDy 31, A, DxDyD(A)) ,
and so we see that

R(X,Y)A = GII,R(X,Y)A, DR(X, Y)A)

-8 = (R(X, Y)\ 1,4, R(X, Y)D(A)) .
If we take
(5.9) R(4,B,X,Y) = (A,R(X,Y)B>,

where A,B ¢ 2, and X, Y are vector fields, then we have
Theorem 5.3. If D is Riemannian with respect to { , , then

R(A’B’X’ Y) = _R(A’B’ YaX) 5

.10
(5.10) R(4,B,X,Y) = —R(B,4,X,Y) .
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Proof. The first of (5.10) follows from the antisymmetry R(X,Y) =
—R(Y, X), and the second from the parallelism of D with respect to < , > by
noting that

+ <A b DXDYB> ’
[X, YIKA, B) = (Dx,114, B) + {4, D% yB)

for vector fields X, Y and A4, B € 2, and hence that
(R(X,Y)A,B) + {A,R(X,Y)B)>) =0.

We may now define the two second order curvature tensors of a second order
connection D induced from a linear (first order) connection D:

R(C,E)A = (RGIT.C,3 EXIT A, RGITC, T E)D(A)) ,

5.11 s ~ s o~ ~ ~
oD Ru(C, E)A = (R(D(C), D(E)I A, R(D(C), D(E)D(A)) ,

and in the case where D is Riemannian with respect to { , > we define the
second order Riemann-Christoffel tensors
RI(A5 B’ C’ D) = <Aa RI(C9 D)B> ’

(5.12)
RII(A, Ba C’ D) = <A7RII(C9 D)B> .

If G(4,B) = {A, AY{B, By — {A, B)>* ++ 0, then we define

KI(A> B) = RI(AaBa A’B)/G(Aa B) >

(5.13) Ku(4,B) = Ry(4,B, 4,B)/G(4, B) .

Upon taking X = }1,A4,Y = I,B in R, and X = D(A),Y = D(B) in Ry
of (3.12) it follows from (5.10) that K;, for i = I, II, has the property

K,(A,B) = KB, A) = K,(r4,sB) = KA + tB,B) .

Thus, if G(4, B) # 0, and A4, B are linearly independent (and ad — cb + 0),
then

(5.14) K(A,B) = K;(aA + bB,cA + dB) ,

and we have

Theorem 5.4. For each point pe M let A,Bec’M,. Then the scalars
K.(A, B) and K, (A, B) depend only upon the subspace of *M, spanned by A
and B. We call K; and K,; the Ist and 1lnd second order curvatures of M
respectively.
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Remark. If /71,4 = X, D(A) = 0,}1,B = Y, D(B) = 0, then K(4, B)
= K(X,Y) where K is the usual (first order) curvature of D.

——
N =
[E—y—

(31
[4]
[51
[6]
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