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TIGHT EQUIVARIANT IMBEDDINGS OF
SYMMETRIC SPACES

EDMUND F. KELLY

The purpose of this work is to prove the results announced in [4].
Roughly speaking, an immersion / : Mn —• RN of a compact connected mani-

fold in RN is tight if the height functions have the minimum number of critical
points. A detailed treatment of total absolute curvature and tightness can be
found in Chern-Lashof [2] and Kuiper [9], [10].

In [8] Kobayashi and Takeuchi have exhibited the existence of tight equiv-
ariant immersions for a large class of homogeneous spaces which contains many
symmetric spaces (see also [5]). In this paper we show that they have effectively
constructed all tight imbeddings of irreducible symmetric spaces.

The layout is as follows: In §§ 1 and 2 we* develop notation and a formula
for the second fundamental form of an equivariant immersion. In § 3 we prove
a connection between the second fundamental form and 0-tightness, and deal
with O-tight submanifolds of the sphere. In §§ 4-7 we apply these results to
symmetric spaces. Then in § 8 we tie O-tight immersions of irreducible homo-
geneous spaces with minimal immersions in the sphere.

The results in this work are a slight generalization and expansion of some
results contained in the author's thesis, however the method of proof is less
algebraic than that announced in [4]. The author would like to thank his advi-
sor, Professor S. Helgason, to whom he owes a debt of gratitude. Any unex-
plained terms in Lie Theory will be found in [3].

1. The second fundamental form

Let / : Mn -» N be a C°° immersion of a manifold Mn in a Riemannian mani-
fold N. We will not differentiate between x e M and its image f(x) in N. Let
Nx — Mx 0 M£ be the orthogonal decomposition of the tangent space Nx at
x G M, under the Riemannian metric on N. Let V denote covariant differenti-
ation on N. It is convenient for our purposes to follow [7] and use the follow-
ing definition of the second fundamental form. If X and Y are vector fields on
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M, then the second fundamental form of the immersion at x is the symmetric
bilinear map ax: Mx x Mx —• M^ given by

ax(Xx, Yx) = normal component of (FXY)X .

(Where there is no danger of confusion we write a for ax.)
If (FXY)X = (FXY)X — ax(Xx, Yx), then F is the unique Riemannian con-

nection on M in the induced metric. If ξ is a normal vector field and X a
vector field on M, let

—A ξ χ(Xx) = tangential component of (Fxξ)x .

Then A$x(Xx) is a symmetric linear operator Mx-> Mx, and (AξX, Y) =
(ξ,a(X,Y)).

If in particular N = 2?n+iNΓ, then for each v e Rn+N we define the height
function φυ on M by ^ O ) = (v, f(x)). Making the usual identification between

Rn+N a n ( j j t s tangent space at any point we can for each v e Rn+N construct
the following vector fields on M:

V = g r a d φΌ9 V = v -V .

Obviously Vx is the tangential component of v at x, and V the normal compo-
nent. The family of vector fields constructed in this way has the following
properties:

Proposition 1.1. // v and w are in Rn+N and M is immersed in Rn+N, then
(i) FXV = AΨX,

(ii) [V, W] = AWV - AΨW,
(iii) [X, V] = grad (Xφυ), for a killing vector field X on M.
Proof, (i) VXV - (FxVy = ψxv - VxVy = -(FxVy = AyX.
(ii) follows immediate from (i) since V has zero torsion.

(iii) If X is a Killing vector field and Y is any vector field, then

(IX, n Y) = (VXV, Y) - (FVX, Y) = (AyX, Y) + (V, FYX)

= (X, AyY) + (V, FyX) = (X, FyV) + (V, FyX)

= Y(X, V) = Y(Xφv) ,

2. Immersions of compact homogeneous spaces

Let G/H be an isotropy irreducible compact homogeneous space, and g =
ζ + m the standard decomposition of the Lie algebra g of G. We shall always
assume that G/K carries the G-invariant Riemannian structure induced by — B
on m where B is the Killing form on g.

Let π: G —» End (EN) be a nontrivial real class-one representation of G with
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nonzero /Z-fixed vector e. Then π induces a map, also ̂ denoted by π, from G/H
into EN by π(gH) — π(g)e. We always assume representations are orthogonal.

Let π also denote the representation of q induced by the representation of G.
Then the map gH —• π(g)e gives an equivariant immersion of G/H. Equiva-
riance is obvious, the fact that it is an immersion comes from the irreducibility
of the action of H on m, for if X, Y are in m let « Z , Y » = (π(X)e, π(Y)e)
(the Euclidean inner product on EN), then « , » is H invariant and there is
only one such up to scalar multiple.

Remark. This leads to the following lower bound for the dimensions of
representations which the author imagines is well known, but he has not seen
it remarked in the literature.

Lemma 2.1. // G/K is a compact irreducible symmetric space, and π: G
—* End (EN) a real class one representation, then

N > rank (G/K) + dim (G/K) .

Proof. Immediate consequence of the following theorem of Chern and
Kuiper [1] and Otsuki [13]: If Mn is a compact Riemannian submanifold of
Rn+P, and at every x e M the tangent space Mx contains an m-dimensional
subspace with the sectional curvature of any plane in the subspace < 0 , then
p > m. q.e.d.

We now calculate the second fundamental form of the immersion π: G/H
—> EN. To do so we shall use two lemmas.

Lemma 2.2. Let f:M->RN be an immersion. Suppose {x19 , xn} is a local
coordinate system on a neighborhood U of m in M. Then

a\[ 1 ( ) ) = normal component of
\ \ dXt I ™> \dXj I m/

under the usual identification of RN and its tangent space.
Proof. Cf. [7, pp. 17 and 18].
Lemma 2.3. Let G/H be isotropy irreducible, and π an orthogonal repres-

entation of G with H fixed vector e. Then

(π(X)e, π(Y)π(Z)e + π(Z)π(Y)e) = 0 allX,Y,Zem .

Proof. Assert first (π(X)e, π(Y)π(Y)e) = 0 all X, Y 6 m. (π(X)π(Y)e,
π(Y)e) = 0 since the representation is orthogonal, but

(π(X)π(Y)e, π(Y)e) = (π[X, Y]e, π(Y)e) + (π(Y)π(X)e, π(Y)e)

= - β ( [ Z , Y], Y) - (π(X)e, π(Y)π(Y)e)

= -(π(X)e,π(Y)π(Y)e) .

Now
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π(Z + Y)π(Z + Y)e = π(Z)π(Z)e + π(Y)π(Y)e + π(Z)π(Y)e + π(Y)π(Z)e .

So the lemma now follows easily.
Theorem 2.1. Let a be the second fundamental form of the immersion

π: G/H->EN. Then at the origin of G/H

a(X, Y) = \{π(X)π{Y)e + π(Y)π(X)e) all X, Y e m .

Proof. Let X19 , Xn be an orthonormal basis for m. Let U be a normal
neighborhood of 0 in G/H so that Exp (x1X1 + x2X2 + •••)->(*!>•••) is a
coordinate system about 0 with

(3/9Λ4)O = X, ,

ττ(Exp (xιXι + + xnXn) = τr(exρ (x.X, + - < + ^ n Z n ) ^

= exp (xxπ(Xλ) + + xnπ(Xn))e .

To compute d2π/dXidXj (0,0, •) we need only to consider exp I
Xjπ(Xj))e. But if A and B are any r x r matrices, then

_ U _ ( e x ρ M + tJS)) |(O,o) = —(ΛB + BA) .

(This can be proven by expansion in series.) Hence

d2π

which by Lemma 2.3 is normal, so

For any X, Y in m the bilinearity of a gives

a(X, Y) = i(π(X)π(Y)e + π(Y)π(X)e) .

Corollary. // G/H is symmetric, then a(X, Y) = π(X)π(Y)e.
Proof. Since G/H is symmetric, we have [m,m]cϊ) and therefore

π[X, Y]e = 0 for all X and Y in m, so that π{X)π(Y)e = π(Y)π{X)e.
Remark. For symmetric,spaces the proof of Lemma 2.3 does not need

irreducibility of G/H, so the formula is general.

3. (Might submanifolds of the sphere

First let us recall the Morse inequalities. If Mn is a compact connected mani-
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fold, and φ: Mn —> R1 is a smooth function, then φ is said to be nondegenerate
if and only if all its critical points are nondegenerate.

We define for nondegenerate φ:

μk(φ) = number of critical points of index k of φ , μ(φ) = J] μk(φ) ,
kk

μk(Mn) = inf μk{φ) , μ{M) = inf μ{φ) .
φ nondegenerate φ nondegenerate

A nondegenerate function φ is said to be tight if μ(φ) = μ(Mn), and to be
(Might if μo(φ) = 1. By M. Morse [12] φ is O-tight if it is tight. We have the
Morse inequalities [11]:

μk(Mn) > dim Hk(M, *) for any coefficient field .

If /: Mn -> Rn+N is an immersion, then by Sard's theorem the height func-
tion φυ(x) has only nondegenerate critical points for almost all (with respect to
Euclidean measure) v e Rn+N.

We say the immersion / is tight (O-tight) if φυ is tight (O-tight) for nondegen-
erate height functions. The property of being tight (O-tight) is invariant under
affine transformations of Rn+N. The immersion / is said to be substantial if
f(Mn) is not contained in a hyperplane of Rn+N.

The following theorem is inspired by Theorem 4, [9].
Theorem 3.1. // /: Mn —> Rn+N is a substantial O-tight immersion of a

compact connected manifold, then there is an open set U of M such that
a: Mx (g) Mx —* M^ is an onto map for all x 6 U.

Proof. Let v e Rn+N be such that φυ is nondegenerate. Since tightness is a
translation invariant, we can assume φv(x) attains its minimum at x0 where
f(x0) = 0. Then φv(x) has a nondegenerate critical point of index at xQ.

If aXo is not onto, then by Lemma 2.2 we can choose 0 Φ z £ M^o such that
Fz(x) = (v + z, f(x)) has a nondegenerate critical point of index 0 at x0.

We can find λ such that (v + λt,f(x)) assumes both +ve and — ve values.
In fact, the function h(x) = (z, f(x))/(v,f(x)) is not constant since / is sub-
stantial. Thus there is λ such that h takes values > 1 /λ and < —1/λ. Hence the
function (z — λv,f(x)) assumes +ve and — ve values on M.

Let w = λz — a. Then φw(x) = (w, f(x)) has a nondegenerate critical point
of index 0 at x0 and φw(x0) = 0. Assert we can choose w' in RN+n such that
φw,{x) has nondegenerate critical points and φw, has a critical point of index 0
near x0 which is not a true minimum.

There is a local coordinate system (u19 , un) on an open neighborhood
U of x0 = (0, , 0) such that

φw(x) = u\ + ... + u\ .

Consider the "sphere" S(r) c C/ given by Wi + + u\ = r\ φw(x) = r2 on
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S(r). We can choose wf in any neighborhood of w such that φw, has only non-
degeneratecritical points.

\\φW - ΦV,>\\M = \\(ί(x),W- WOIU <A\\W- W ' | | ,

w h e r e A = maxx€M \\f(x)\\. C h o o s e wf w i th | |w — wf\\ < %r2/A. T h e n

φw, has a minimum in the closed ball S(r). We assert that this minimum does
not occur on the sphere S(r). But this is easy to prove since φw,(x^ — 0, and
φW'(χ) > \rι for x £ S(r). So the minimum on S(r) is in fact a critical point of
index 0 of φw,. Since φw takes +ve and —ve values, we can clearly choose w!

such that we will have its absolute minimum outside S(r).
So we have constructed a nondegenerate height function with two critical

points of index 0, contradicting O-tightness. Hence a is onto at x0. The fact
that a is onto in an open neighborhood of xQ is a trivial consequence of the
differentiability of a.

Corollary 1 (cf. [9, Theorem 4]). If f: Mn-> Rn+N is a O-tight immersion,
then N < \n{n + 1).

Proof. Trivial since a is a symmetric map from Mx (g) Mx to M£.
Corollary 2. // /: Mn —>sn+N~1 is an immersion in the sphere which is also

a O-tight immersion in Rn+N, then the second fundamental form is onto every-
where.

Proof. Let /(JC0) = a. Then the function φ_a(x) has a nondegenerate critical
point of index 0 at x0, for as is well known the operator Aa— —Identity on
MXQ. Since in the proof of Theorem 3.1 we use only the nondegeneracy of the
minimum, everything can be carried over, q.e.d.

We now have a theorem which as well as being independently interesting is
important in the classification of tight equivariant imbeddings.

Theorem 3.2. // /: Mn —• Sn+N~1 is an immersion of a compact connected
manifold M in the sphere, and f is O-tight when considered as an immersion in
Rn+N, then f is in fact an imbedding.

Proof. Suppose f(xx) = f(x2) = a. Then φ_a has a critical point of index 0
at xx and x2. We can, by following the lines of the proof of Theorem 3.1, con-
struct a nondegenerate height function φw with two critical points of index 0,
one near xλ and the other near x2.

Remark. Theorem 3.2 proves a fortiori a conjecture of Wilson [14].

4. Reduction of the problem for homogeneous spaces

We now prove a theorem which for isotropy irreducible homogeneous spaces
reduces the problem considerably.
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Theorem 4.1. Let G/H be a compact homogeneous space, and π a class-
one real representation of G giving a O-tight substantial imbedding π:G/E—>Eπ.
If π is reducible, π = p + μ, and p gives an immersion p: G/H —> Ep, then
p: G/H-+Ep is O-tight.

Before proceeding with the proof we recall the two-piece property of [10].
An immersion /: M —• EN has the two-piece property if given any hyperplane
H C EN, {m e M\ f{m) <£ H) has at most two components.

Lemma 4.1 [10]. Let f:M-*EN be an immersion. Then f is O-tight if and
only if it has the two-piece property.

Proof. Op. Cit.

Proof of Theorem 4.1. Let Ep and Eμ be the representation spaces for p
and μ respectively. Since π: G/H -+ Eπ is substantial, then the H-fixed vector
e can be written e — e9 + eμ, where 0 Φ ep is H-fixed in Ep and 0 Φ eμ is H-
fixed in Eμ.

Supopse p gives an immersion of G/H in Ep. We show p satisfies the two-
piece property.

Since π satisfies the two-piecep roperty, given any v e Eπ,{p εG/H\(π(p), v)
Φ c} has at most two components for any constant c. Write v = vp + vμ,
vp e Ep and vμ € Eμ, and p = gΌ. Then (π(g)e, v) = (p(g)ep, vp) + (μ(g)eμ9 vμ).
If in particular we consider vμ = 0, then for any vpeEp, {gH e G/H\(p(g)ep,
vp) Φ c) has at most two components. So p: G/H —> Ep satisfies the two-piece
property, and hence is O-tight by Lemma 4.1.

Corollary. Suppose G/H is an isotropy irreducible compact homogeneous
space, and π a real class-one representation of G such that the immersion
π: G/H —> Eπ is O-tight. Then there is an irreducible class-one representation
πf of G such that πr: G/H -> Eπ, is O-tight.

Proof. There is no loss in generality in assuming π:G/H~+Eπis substantial,
for if not there is a vector v with (v, π(g)e) = 0 for all g e G, where e is H-
fixed, so there is a G-invariant space EΌ with (Eυ, G/H) = 0.

Suppose Eπ = Ep + Eμ. Since the immersion is substantial, we can write, as
in Theorem 4.1, e = ep + eμ. Thus as in the preamble to § 2 for all x e m
(where g = ζ + m), π{x)ep = 0 or π(x)epφ0, so either p or μ gives an immer-
sion. Suppose p gives an immersion. We repeat the process on Ep, and even-
tually we get an immersion πf: G/H ->Eπ, where πf is irreducible. Then repeat-
ed applications of Theorem 4.1 show πr is O-tight.

Remark. Henceforth we assume all representations are irreducible unless
explicitly stated otherwise.

5. Symmetric /^-spaces

The theory of .R-spaces is somewhat scattered throughout the literature, so
in this section we organize what we need. We do not define a general .R-space
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but give a somewhat ad-hoc definition of symmetric /^-spaces, which is suffi-
cient for our purposes.

Let 2 be a real semi-simple Lie algebra, and Z e 2 be such that ad Z is semi-
simple with real eigenvalues 0, ± 1.

Theorem 5.1. There is a Cartan decomposίon 2 = g + β such that Z e β.
Proof. Cf. [6, Theorems 2 and 3].
Let 2 = £_! + 2 0 + 2j be the eigenspace decomposition of £ relative to

ad Z, and define a: 2 -> β to be a linear map by a(X + Y + W) = -X +
Y — W, X e 2_1? Y € 20, We 2χ. Then a is an involutive automorphism.

If 2 = g' + β' is a Cartan decomposition with involution σ', then 2K(X, Y)
= —BL(X, σ'Y) is a symmetric positive definite bilinear form on 2, and aσ' is
self-adjoint with respect to Bσ\ Thus ^ = (cu/)2 can be diagonalized with posi-
tive entries so as in the proof of [3,Theorem 7.1, p. 156] we can define pτ to
be a one-parameter group of automorphisms of 2 and σ = p1/A</p'1/A is a
Cartan involution of 2 which commutes with a. Let L = g + /3 be the corre-
sponding Cartan decomposition of L.

Thus 2 0 = 2 0 Π fl + 2 0 Π β, a direct sum. To see that Z e β it suffices to
show that ad Z is symmetric with respect to Bσ. q.e.d.

Now let (L, G) be a pair associated with (2, σ) such that L has no center.
Theorem 5.2. Let K = {geG\ adL gZ = Z}. Then
(i) G / £ w symmetric,

(ii) ί/ze immersion φ: G/K-* β by φ(gK) = adL gZ w ί/gAί tfπd equivariant.
Proof, (i) This line is indicated in [8]. Since L has no center, Ad^: L —>

Int (2) is an analytic isomorphism onto, so we shall assume L = Int (2). Let
Lc be the complex Lie group Int (2C) where 2C is the complexification of 2.
Then L C Lc, and exp (iπZ) e Lc where i = j ^ ϊ .

If θ is the inner automorphism of Lc defined by exp (iπZ), then θ2 = Id, and
G is 0-stable. For by calculation one can show L is stable in Lc under AdLC

(exp iπZ), and then σ0 Ad (exp ίπZ) = Ad (exp iπZ)0σ.
If 0|G is also denoted by θ, then ( ^ ) 0 C £ , where ( ^ ) 0 is the connected

component of the identity in Kθ, so G/K is Riemannian symmetric.
(ii) The equivariance of φ is obvious.
Tightness is proven in [8] for an even more general type of space.
Definition. A homogeneous space G/K is a symmetric jR-space if it can be

constructed as in Theorems 5.1 and 5.2.

6. The fundamental lemma

We now examine the implications of Theorem 3.1 for equivariant immer-
sions of symmetric spaces.

Let G/K be an irreducible symmetric space, and π an irreducible class-one
representation of G with Affixed vector e giving the immersion π:G/K-+EN.
Let g = ϊ + p be the standard decomposition of the Lie algebra of g. If the
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second fundamental form is onto, we have

E» = TQ + n.

where

To = {π(X)e IX e p} , Ti = linear hull of {7r(Z)τr(Z)<? | X e p} .

We shall need the following lemma.
Lemma 6.1. // π is a real orthogonal representation of g with vector eφO

annihilated by ϊ, then

(π(X)π(X)e, π(Z)π(Y)π(Y)e) = 0 all X, Y, Z in p.

Proof. We know

(π(Z)π(X)π(Y)e, π(X)π(Y)e) = 0 ,

π(Z)π(X)π(Y)e = π([Z,X])π(Y)e + π(X)π(Z)π(Y)e ,

so

(π(X)π(Z)π(Y)e, π(X)π(Y)e) + (π([Z,X])π(Y)e, π(X)π(Y)e) = 0 .

But the second term is zero by Lemma 2.3 since [Z, X] is in ϊ, hence

0 = (π(X)π(Z)π(Y)e, π(X)π(Y)e)

= -(π(Z)π(Y)e,π(X)π(X)π(Y)e)

= -(π(X)π(Y)π(X)e,π(Z)π(Y)e)

= (π(X)π(X)e, π(Y)π(Z)π(Y)e) as above

= (π(X)π(X)e, π(Z)π(Y)π(Y)e) . q.e.d.

Now let fi be the linear space of vector fields on G/K given by £ = g + £
where E is the set of vector fields on G/K given by grad φΌ for v € EN as in § 1.

Lemma 6.2. Suppose G/K is a symmetric space, and π is a real class-one
representation of G giving the immersion π: G/K —> EN. If the second funda-
mental form is onto, then fi = q + E is a Lie algebra of vector fields.

Proof. By Proposition 1 if v € EN and V = grad φv, then for any X e Q,
[X, V] = grad Xφv = grad φπiX)v. If v and w e EN, let V, W be induced vector
fields on M, and V, W the induced normal fields. As in Proposition 1.1 we
will show that [V, W] is a Killing vector for any F, W in E.

Let X € g. Then

) + (Fίv,wlX,X) .
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Since the immersion is equivariant, we can assume that we are working at the
origin of G/K, so we can take X <= p. Thus

(FX[V,W],X) =

since X is a Killing vector and VXX — 0

- ([V, [X, W]], X) - (IW, [X, V]], X)

= (V,A(π(X)w)1X) - ([X,W],AΨX)

(a) - -iW, A{π{X)v)LX) + ([X, V], AWX) ,

(where (π(X)w)L is the normal component of π(X)w)

= (π(X)w, a(X, V)) - (v, a([X, W], X))

- (π(X)v, a(X, W)) + (w, a([X, V], X)) .

Consider the right hand side of (a) in a case by case analysis.
(i) If v and w are of the forms π(Y)e, π(Z)e, then a(X, V) = π(X)π(Y)e,

a(X, W) = π(X)π(Z)e, for if {X€} is an orthonormal basis for p, then

Vo= Σ(V9π(

a(X, V) = Σ (V, πiXJeMJOπiXde = π(X)v = π(X)π(Y)e .
i

So the right hand side of (a) reduces to zero.
(ii) If v and w are of the forms π(Y)π(Y)e, π(Z)π(Z)e, then V0=W0 = 0,

and

a([X, W],X) = π(X)π(X)π(Z)π(Z)e , a([X, V],X) = π(X)π(X)π(Y)π(Y)e .

This can be seen by using Lemma 6.1 and repeating process in (i). Also by
Lemma 6.1, π(X)w and π(X)v have no normal components so the right hand
side of (a) reduces to

(π(Z)π(Z)e, π(X)π{X)π(Y)π(Y)e) - (π(Y)π(Y)e, π(X)π(X)π(Z)π(Z)e)

= 0 since π(X)π(X) is symmetric.

(iii) If v is of the form π(Y)e, and w is of the form π(Z)π(Z)e, then
w0 = [X, VQ] = 0, and the normal components w and v of π(X) are both zero.

Since (i), (ii) and (iii) exhaust the possibilities, we see that [F, W] is a Killing
vector for any V and W in E, hence [V, W] e g. But, by Proposition 1, E is
stable under g; thus 2 = g + E is a Lie algebra.

Remark. The Lie algebra £ can be constructed purely algebraically cf. [4].
However the proof that it is in fact a Lie algebra is much more difficult.

We are now in a position to state and prove
Theorem 6 1. Let G/K be a compact symmetric space, and π an irreducible
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real class-one representation of G giving the imbedding π:G/K—>EN. If the
second fundamental form is an onto map, and E = {grad φv\v e EN}, then £ = g
+ EN is a noncompact semisimple Lie algebra with β = g + EN, a Car tan de-
composition. If a is the Car tan involution, then (β, σ) is irreducible orthogonal
symmetric.

Proof. Define a representation p of G on 2 by p(g) |8 = AdG g, p(g) (grad φυ)
= gradφπ{g)v. Consider adΰ (p(g)V) where V = gradφv for some v € EN. Assert
ads (p(g)V) = pig) ad, Vp(gYι. Let X be in β .

[X, p(g)V] = grad iφπ{Σ)p{g)v) = grad (^^^Ad^-i,^,,,) = p(g) [Ad {g~ι)X, V] ,

so

[p(g)V,X] = p(g) ad£ Vpig-'XX) .

Let ϋ = grad0M and l e g . Then [t/, F] 6 g.
First we prove ([(7, F],Z) = (v,π(Z)n). Let t7 = u - C7. Identifying EN

with its tangent space, as in part (i) of Lemma 6.1 we can prove a(X, V) =
π(X)V. So

([t/, V],X) = U 7 t / , JO - ( ^ K , JO = (F,

= (v, π(X)u) by Lemma 6.1.

Thus

dp(8)V, U],X) = (π(g)v,π(X)u) = (v, ^ A d ^ - ^ M ^ " 1 ) ^

= ([K^te-Ot/], Ad OΓ1)*) = (Ad(g)[V,p(g-ι)U],X) ,

so that ad2p(g)V(u) = p(g) adzVpig'^iU), which gives adfi/o(g)F =

p(8) adΰ l / ^ - 1 ) .
Now let B2 be a Killing form on fi. Then 5 S is G-invariant on £, and hence

is a constant multiple of inner product on EN (here we need the irreducibility).
We now show that the above constant > 0 .

Consider ad e where e = grad φe. ad e\k — 0 since e is ϊ-invariant.

for any V € E, so [e, F] = 0 for all e in To, and

[g, grad ^ ( JΓ) J = π(J0«

[̂ , Z] = ΛΓ(JO^, so trace (ad e)2^ — n — trace (ad e)2 |Γ o, and B2(e, e) = In.
Hence B2(V, V) > 0 for any F € £ . If X is in g, then

B2(X, X) = tr (ad X)2 + tr (ττ(Z))2 < 0 .

g and E are obviously orthogonal under B2, so £ is semisimple.
The map σ: S -> β by
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a{X +V) = X - V Xe$,VzE

is obviously an involutive automorphism. The fact that 2 is irreducible orthog-
onal symmetric follows from the irreducibility of the representation of g on EN

and the fact that the representation is faithful.

7 Geometric results

We can now apply the above results to the problem of classifying those locally
symmetric irreducible homogeneous spaces which have equivariant tight immer-
sions. All homogeneous spaces considered are compact.

We have the situation: G/K is a locally symmetric irreducible homogeneous
space, and π a nontrivial real class-one representation of G giving a O-tight
immersion π: G/K-+ EN. By corollary to Theorem 4.1 we can assume π is in
fact irreducible, and we get the following classification theorems.

Theorem 7.1. Let G/K be an irreducible locally symmetric homogeneous
space, and π an irreducible real class-one orthogonal representation of G giv-
ing the immersion G/K-+ EN. Then the following are equivalent.

(i) π is O-tight.
(ii) G/K is a symmetric R-space and π is in fact one of the imbeddings

constructed in [8].
(iii) π is tight (has minimal total curvature).
Theorem 7.2. Let G/K be a locally symmetric homogeneous space. Then

the following are equivalent.
(i) G/K covers a symmetric R-space.

(ii) There is an irreducible class-one real representation of G such that the
second fundamental form of the immersion π: G/K-+ EN is an onto map.

Proof of Theorem 7.1. (i) =̂> (ii). Since π is an irreducible representation
of G, the immersion π: G/K-±EN is substantial, and thus, since the immersion
is O-tight, Theorem 3.1 shows the second fundamental form is onto; so Theo-
rem 6.1 shows 2 = g + E is a semisimple Lie algebra with G the compact
subgroup of Int (2) with Lie algebra q. Thus G is maximal compact in Int (2).
Theorem 3.2 shows that π is an imbedding, so K is a subgroup of G leaving e-
ίixed. For suppose HZ)K leaves e-fixed. Since π: G/K -+ EN is an immersion,
2 is the Lie algebra of H = K and π: G/H is an imbedding, π: G/K -* G/H
is a covering. Theorem 6.1 shows e has eigenvalues 0, ± 1 in 2 and is semi-
simple, so by definition G/K is a symmetric jR-space, and the imbedding is one
of the class considered in [8].

(ii) => (iii). Kobayashi-Takeuchi, [8, Theorem 3.1].
(iii) => (i). See introduction to § 3.
Proof of Theorem 7.2. (i) ^ (ii). Suppose /: G/K —• Mf is covering. Let

7r be the imbedding constructed in Theorem 5.2. Then πQf gives required im-
mersion.
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(ii) => (i). As above G is a maximal compact in Int(fi), £ = g + E. Thus
K is a subgroup of the isotropy group Ke of e, and both are compact and have
the same Lie algebra. Hence G/K covers G/Ke which is by definition a sym-
metric R-spa.ce.

8. Minimal submanifolds on the sphere

Let Mn C N be a submanifold of a Riemannian manifold. Then the mean
normal curvature at a point p e M is the vector 2 ί ccp(Xi9Xi) where (X^ is
an orthonormal basis of Mn

v. M
n is said to be minimal in N if the mean normal

curvature is zero at every point p € M. We now generalize [8, Theorem 4.2].
Theorem 8.1. Suppose G/H is an isotropy irreducible homogeneous space,

and π a real class-one representation of G giving the immersion π: G/H —>EN.
If the second fundamental form is onto, then π: G/H —> S1*'1 is a minimal
immersion.

Proof. Let v e (G/H)o. Then Aυ is a symmetric linear operator on m
(where g = § + m) given by

(AVX, Y) = ±(v,π(X)π(Y)e + π(Y)π(X)e) ,

where e is //-fixed. lίheH, then

(Aπih)vX, Y) = i(π(h)v, π(X)π(Y)e + π(Y)π(X)e)

= i(y, π(Ad h~ιX) Ad (ft"1)Y + τr(Ad h~ιY)(Aά h~ιX)e)

= (AvAάh~ιX,Aάh-ιY),

Aπ{h)v = AdAy4υ Ad A"1 .

Now Ae is clearly //-invariant so also is AN where

being an orthonormal basis for m. But there is only one symmetric linear
operator on m invariant under H so Ae = AN or AN_e = 0. Since the second
fundamental form is onto, AN_e = 0 imples N = e. q.e.d.

The following corollary is immediate.
Corollary. // G/H is isotropy irreducible, and π a real class-one represen-

tation of G giving a O-tight immersion of G/H in EN, then π gives a minimal
imbedding in SN~K

Appendix

The proof of Theorem 6.1 depends strongly on Lemma 6.1 which in turn
depends on the fact that G/K is symmetric. That this is no restriction in the
sense that an algebra of the form £ cannot be constructed for nonsymmetric
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isotropy irreducible spaces can be seen as follows. In [15, Theorem 1.1] Wolf
proves that if £ = g + β is irreducible, i.e., if the action of g on β is irreduc-
ible, then β is either a) Euclidean b) noncompact semi-simple with g + β a
Cartan decomposition or c) compact simple. The possibility a) is easily elimi-
nated for geometric reasons, b) is the case studied, for then G/H would be a
least covered by a symmetric Λ-space. If c) were true, then we would have
the following situation: G/H is isotropy irreducible, G the largest connected
group of isometries, and L a compact group containing G acting on G/H, so
G/H has an L-invariant metric. But this metric is G-invariant, hence Lie alge-
bra (L) = Lie algebra (G).
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