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BOUNDARY BEHAVIOR OF 3 ON WEAKLY
PSEUDO-CONVEX MANIFOLDS

OF DIMENSION TWO

J. J. KOHN

1. Introduction

The problem of finding holomorphic functions in a domain which cannot be
extended across the boundary, usually known as the Levi problem, seems to be
intimately connected with various regularity properties of the operator 5. We
will deal here with a complex manifold M with a smooth boundary, denoted
by bM. Consider the following local version of the Levi problem: given P e bM
find a holomorphic function in a neighborhood of P whose restriction to M
vanishes exactly at P. A classical result states that whenever the Levi form is
positive definite the problem has a solution, but if the Levi form has a negative
eigenvalue or is identically zero in a neighborhood of P then the problem does
not have a solution. This behaviour of the Levi form also controls the local (or
more precisely the pseudo-local) regularity of the inhomogenous Cauchy-
Riemann operator S. It is natural to ask: what happens when the Levi form
is positive semi-definite, vanishes at P, but not identically in a neighborhood.
Here we establish some conditions for the solution of these problems.

We shall investigate the regularity properties of 3 by means of the d-Neumann
problem. On this occasion we do not wish to recall the history of this problem;
we refer to [1] for a self contained treatment of the d-Neumann problem as well
as an historical discussion. However, since this paper is dedicated to Professor
Spencer's sixtieth birthday, it is appropriate to point out that the d-Neumann
problem was first formulated by D. C. Spencer and that he pioneered several
of its applications and generalizations to overdetermined systems. We shall
impose some conditions on M and establish certain "subelliptic estimates" for
the d-Neumann problem. Among the consequences of such estimates are the
following:

( i ) Existence, regularity and pseudo-localness of a solution to the inhomo-
geneous Cauchy-Riemann equations. That is, whenever the above mentioned
estimates hold, there is a unique solution of the equation du = a (where a is
a (0, l)-form satisfying the necessary compatibility condition), such that u is
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orthogonal to the holomorphic functions and u is smooth up to and including
the boundary wherever a is smooth.

(ii) The operator H: L2(M) -+ J f (M), which is orthogonal projection onto
the space ^f (M) of square integrable holomorphic functions on M is pseudo-
local. This, in particular, gives regularity properties at the boundary for the
Bergman kernel function (see [7]).

(iii) Orthogonal decomposition and representation of cohomology classes
by harmonic forms which are smooth on the closed manifold (i.e., including
the boundary).

In the case of strongly pseudo-convex manifolds the appropriate subelliptic
estimate and the above conclusions are established in [8]. For more general
subelliptic estimates the above properties are proven in [11].

Here we are concerned with the problem of establishing subelliptic estimates
where M is weakly (i.e., not strongly) pseudo-convex. First we wish to convince
the reader that pseudo-convexity does not suffice to establish (i). We should
distinguish between global and local regularity theorems it is very likely that
on any pseudo-convex M if a is in C°°(M) then the solution in (i) is also in
C°°(M) (the writer has obtained results which point in this direction, and is
currently working on the problem). However, the pseudo-local property, as in
(i), is in general false. Suppose that in a neighborhood of the point P e bM (the
boundary of M) the Levi form is identically zero. Then we can choose local
holomorphic coordinates zl9 , zn with origin at P such that for some neigh-
borhood U of P all points QεU, for which zn(Q) — 0, lie in bM. Let a =
S(p/zn) = dp/zn, where peC^(U) and p = 1 in a neighborhood of P. Then
(by a theorem in [4]) if the support of p is small enough there exists a function
u on M such that du = a. However, u cannot be smooth where a is, in par-
ticular, a is smooth outside the support of dp so that, if u is smooth there, then
the holomorphic function h = ρ/zn — u has smooth boundary values when
p = 0 and equals ί/zn — u when p = 1. That this is impossible is easily es-
tablished by the classical continuity method.

Thus we see that both the above version of the Levi problem and the problem
posed by (i) do not have a solution if the Levi form is identically zero in a
boundary neighborhood. In this paper we treat pseudo-convex manifolds of
dimension 2; for these the Levi form is represented by a 1 X 1 matrix, i.e., a
function. If P e bM we introduce the condition that P be of "type m" (m an
integer, see § 2.3) which, roughly, tells us that the Levi form vanishes to order
m — 1 in the holomorphic and anti-holomorphic directions tangent to bM. For
example, consider M c C2 given by: \zxf

p + \z2\
2q < 1, let P e bM be defined

by Zi(P) = 0 and z2(P) = 1. Then P is a point of type m = 2p — 1 and our
theorems apply in this case. However, the Levi problem is trivial for this ex-
ample, the required function being z2 — 1.

In § 7 we discuss the higher dimensional case as well as various problems
which arise from our work.
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2. The Levi invariants

Let Mf be a complex manifold of complex dimension two, and M be a
complex submanifold with C°° boundary bM, i.e., there exists a real valued
C°° function r defined in a neighborhood of bM such that dr Φ 0 and r(P) = 0
if and only if P e bM. We will choose r so that r > 0 outside of M and r < 0
in M. Let P e bM and let £/ be a coordinate neighborhood with holomorphic
coordinates zλ and z2. A vector field L is said to be holomorphic if it can be
written in the form

(2.1) L = tfS/Sz! + a2d/dz2 , where a1 e C°°(L0 .

A vector field L is called tangential if at each point of bM it is tangent to bM,
i.e., if L(r) = 0 at r = 0. As usual we define, L, the conjugate of L, by

(2.2) I = ά1d/dzι + ά2d/dz2 ,

and if T1 and Γ2

 a r e two vector fields we define the Lie bracket by [T19 T2] =
ΓiΓ2 — T2Tλ. The Lie algebra generated by Tx and Γ2 over the C°° functions
is the smallest module over the C°° functions closed under [ , ] we denote it
by &{T19 T2}. &{T19 T2} is filtered, i.e.,

&{τ19 τ2} = ΰ ^ΛTu τ2},

where S?Q{T19 T2] is the module spanned by 7\ and T29 and Jδffc+iίTΊ, T2} is the
module spanned by the elements of £έ'k{T19 T2} and the elements of the form
[A, Tt\ with A € ^k{Tλ, T2}. We will set

se = if{L, 1 } , iffc = jsf4{L, 1 } ,

where L is a holomorphic tangent vector at P e feM which is different from zero
at P. Note that if and if fc evaluated at P do not depend on the choice of L.

2.3 Definition. P e fcM is called of finite type if there exists F e i f such
that <(dr)P, FP> Φ 0. Here < , > denotes the contraction between co-tangent
vectors and tangent vectors, and the subscript P denotes the evaluation at P.
We say P is of type m if P is of finite type and m is the least integer such that
there is an element in <£m satisfying the above property.

Observe that if L is of type m then ^ m contains all local vector fields tangent
to bM. This follows from the fact that bM is 3-dimensional and that and L, L
and F are independent, since (dr, L> = 0 and (dr, L) = (dr, L ) — 0.

2.4. Proposition. // L is a nonzero holomorphic tangential vector field in
a neighborhood of P^ bM, and (ioir -im) is an (m + l)-tuple of zeros and
ones, we define the vector fields L{ίo'"ίm) inductively by L(0) = L, L(1) = L
and L{ίo'"ίm) = [L{im)

9L
(ίo'"im-l)]. Then P is of type m if and only if for

some (/0. -ij we have ((dr)P,L
(^ "ίm)} Φ 0.
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Proof. It will suffice to show that the {Liio'"ίm)} form a basis of the Lie
algebra generated by L and Z. For then any element F can be written as a
finite sum of the form

Thus

and that this is different from zero implies some term in the above sum is dif-
ferent from zero.

To show that {L(ίo'"ίm)} is a basis it suffices to show that an element of the
form [Lίo'~ίr,Ljo'"JS] is a linear combination of the {Liίo'~ίm)}. To prove this
we proceed by induction on r. By the Jacobi identity we have

The induction hypothesis implies that the last term can be written as asserted
and that

which completes the proof.
2.5. Proposition. If P € bM is of type m, and g is a differentiable function

defined in a neighborhood of P, then for s < m,

(2.6) <(dr)P, feL)g°-« >> = (g(P))m-ks+1(g(P))kK(dr)P, Lg - ^ ) ,
s

where ks = J] iυ.
υ = 0

Proof. The following formula is easily established by induction on s:

(2.7) (gLy**"'** = (gy-w(g)*»L«*'"V + Σ cJo...jpLUo'"W) ,
P<s

from which (2.6) follows when s < m.
2.8. Proposition. // P e bM is of type m, and L is a holomorphic tangential

vector field in a neighborhood of P, then by setting

(2.9) λi0'"*p = <3r,L(<° "^ ) > , p > 1 ,

we have λ00 = λ11 = 0 and

(2.10) Λ10 = - ^ 0 1 = (ddr, L Λ l ) .
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Furthermore, if 2 < p < m, then

(2.11) ^10< "'p(p) = [ ( L ) * - * - 1 ® * ^ ,

w/zere k = Σ /„.

Proof. Since ddr = — ddr, we have by a classical expression for the exterior

derivative:

<dSr, L Λ Z> = -<d3r, L Λ Ϊ )

= - L « d r , L » + L « d r , L » + <dr, [L,L\> .

Then (2.10) follows since <dr, Z> = 0 and <3r, L> = (dr, L> = L(r) = 0.
If LP = 0 then (2.11) is trivial. So suppose that L P =£ 0, set Lγ — L and

let L2 be a holomorphic vector field such that L2(r) = 1. Then (dr, L2> = L
Note that any tangential vector field can be written as a combination of Ll9 Lλ

and L2 — L2. Thus we have

(2.12) L ί 1 0 ' 2 ' "^ = ^ 1 0 ί 2 - ^ ( L 2 - I 2 ) + σ^'-'^L, + μ10^"^!, .

Let ./j be the ideal generated by Λ10, and Jv for p > 1 be the ideal generated
by / p ^ and the Λ10^-^. Then

(2.13) χi»i*-ip = L^U'P-^ - L ( i 2 )U1 0) (mod / p

follows by induction on /?, since

+ i H p + y o i , . , p } ( L 2 _ ij ( m o ( j ̂ o )

where Θ1P+1 is defined by

[Lj^% L2 - Z2] = ^ P + K A - U) (mod Jίf0) .

Since, whenever p < m, the elements of Jv_x vanish at P, we have proved
that

To conclude the proof of (2.11) it suffices to show that

L[W.. .L^^[L[ίv\L^-l}]L^-2) Lίί2U10 = 0 (mod

Since

[L^\L^-^] = λiυ~ΉL2 - L2) + σ^-^L, + μ^-^L

the desired result is easily obtained by induction.
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2.14. Definition. M is pseudo-convex if on bM we have (dor, L Λ ί ) > 0
where L is a nonzero tangential holomorphic vector field.

2.15. Definition. If M is pseudo-convex, and P e £>M is of type m, then we
say that bM is pseudo-convex of order m at P.

2.16. Definition. If P is of type m, and

(2.17) Σ 7 ΓTA —[(L)s(Lyλ"]P > 0

s + ί=m_i 0 4- l) j (/ 4- l ) !

whenever L Φ 0 is a holomorphic tangential vector field in a neighborhood of
P (and when Λ10 is given by (2.10)), then we say that P is of strict type m.

If M is pseudo-convex of order 1 at P then M is strongly pseudo-convex at
P in the classical sense.

3. The local Levi problem

If P € bM, the problem of finding a holomorphic function in M which cannot
be continued past P is called the Levi problem. In this section we prove the
following result which yields a local solution to the Levi problem (by taking the
reciprocal of the function h).

3.1. Theorem. / / M is pseudo-convex, and P e bM is pseudo-convex of
type m, then m is odd.1 If P is of strict type m, then there exist a neighborhood
U of P and a holomorphic function h such that

(3.2) {βet/

In fact, in terms of local holomorphic coordinates the function h defined by

(3.3) h(z19 z2) = Σ -^-[{dldzdVldz.yrUz, - z,{P))sU2 - Z2(P)Y
s + t<m + l S ! t !

satisfies (3.2).
Proof. By an affine change of coordinates we can construct coordinates z[

and z'2 such that

(3.4) zJ(P) = z!2(P) - (dr/dzOp = (dr/dZOP = (dr/dyOr = 0 ,

and (dr/dx'2)P = 1, where z[ = x[ + iy[ and z'2 = x'2 + iy2.
Expanding r in a Taylor series we have

(3.5) r(zθ = Reλ'ίzO + ψUO + O(|zΊm+2) >

where A'(z') is the function defined by (3.3) in terms of the coordinates z', and

1 Added in proof. This part of the theorem follows immediately from Propositiion 2.4
in I of [13].
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zr) is a polynomial in z[, zί, i[9 Z2 of degree m + 1 which does not contain
any "pure" terms (i.e., each term contains z'iZ'j as a factor). Observe that the
functions z[ and h! are independent in a neighborhood of 0 since by (3.4) and
(3.5)

(3.6) (3A73Z0O = 0 , (3A73Z0O - (3r/3*0o = 1 .

Thus we can introduce holomorphic coordinates z1? z2 defined by

(3.7) Zι = z[ , z2 = A7 ,

and as usual we set zλ = xλ + OΊ and z2 = x2 + iy2. In terms of these coordi-
nates the expansion (3.5) becomes

W O/ r\Z\, Z2) — X2 -\- υ\Z\i Z2) -\- \J\\Z\\ i |<-2 ) 9

and thus the function h defined by (3.3) is z2, and θ is given by

C\ OΛ β(7 7 \ V n 7Sl7S2jt1γt2

W -^/ "\Zι, Z2J £j USiS2tιt2^Ί ^2 *»1 ^2 ?

where

0 , if s1 + s2 = 0 ,

0 , if h + t2 = 0 ,

d
— ) ^ 1 ' otherwise.
dj Js,\ s2l tγ\ t2\ IKdzJ \dz2l \dzj \dl

We will prove the theorem by showing that θ(z19 0) is a homogeneous poly-
nomial of degree m -\- \ and that

(3.10) [d^jdzβzX^ > 0 .

We will do this by showing that for a suitable holomorphic tangential vector
field L we have

(3.11)

when s + t < m — 1, where Λ10 is defined by (2.10). Then

(3.12) 0(z1? 0) = ^ ^

From this, (3.10) will be deduced after showing that the left hand side of
(3.10) can be identified with the restriction of λ10 to a real 2-dimensional surface
in bM.

It follows from (3.11) that m is odd, and if P is of strict type m then (3.12)
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implies that θ(zλ, 0) > const, |Zi |m + 1, so that when z2 = 0 we have rfo, 0) >
const. |Zχ|m+1 if |Zχ| is small enough, which proves (3.2) since h = z2.

These facts are proven in the lemmas given below.
3.13. Lemma. In terms of the coordinates constructed above we have

(3.14) [dr/dz2]0 = 1 and = 0

for s + t < m + 1 and s > 0 when t = 1.
Proof. This follows immediately from (3.8).
3.15. Definition. Let βk be the ideal of germs of C°° functions at the origin

generated by {(d/dzd'id/dzj'r} with s + t < k.
3.16. Lemma. If P z bM is of type m, then for k < m the elements of fk

evaluated at P vanish. Furthermore, if in terms of the coordinate system intro-
duced above we define the holomorphic vector field L, which is tangential to
bM, by

(3.17) L = (dr/dzjd/dz, - (dr/dzjd/dz2 ,

and if λ10 is given by (2.10), then whenever s + t < m — 1 we have

(3.18) [LΦλ10] =

Proof. First observe that L(/k) C fk+ί and L(/k) c fk+ι. Next, we
have

(3.19)

so that

(3.20)

d2r dr

dz2
+

d2r

dZ2dZ2

d2r dr dr

dz2dZx dZi dZ2

λιo =
d2r dr

dz2

By induction we see that

d
(3.21)

dr_
dz,

d2r dr dr

dzxdZ2 dz2 dZλ

(mod A) .

dr\s+1ί dr \ ί + 1

\dzj \dzj J \dz2l \dZ2ι

Since 0 is a point of type m, by (2.11) we have

(3.22) [ L Φ λ l o ] o = 0 i i s + t < m - l .

Since the elements of βλ evaluated at 0 vanish, from (3.20) we obtain (3.18)
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for s = t = 0. It is clear from (3.21) that if the elements of fk vanish at 0
then

[(d/dz^id/dzy^rl = 0 toτs + t < k - l < m - l .

On the other hand this, Lemma 3.13 and (3.22) imply that the elements of
β k vanish at 0 for k < m, which concludes the proof of the lemma.

3.23. Lemma. Under the same assumptions as above if f is a function
defined in a neighborhood of 0, L is given by (3.17), and

(3.24) [LΦfl = 0 fors + t<p<m- 1 ,

then

(3.25) [ L Φ f ] Q = [(d/dzOV/dZ.Yfl fors + t < p + 1 .

Proof. By definition we have

Lf = (dr/dzjdf/dz, (mod A ) , Lf = (dr/dzjdf/dz, (mod A ) .

Let ^ Ί = βλ, and let ^ k be the ideal generated by β\ and the elements
{(β/dzMd/dzd'f} with s + t < k - 1. Then L(^k) c ^k+1 and L(^k) C
^k+1. Thus by induction we obtain

LΦf = (dr/dz2)
s(dr/dZ2Y{(d/dz1)

s(dldZ1Yf} (mod ^s+t) .

It then follows by induction on k (for k < p + 1) that 3Fk vanishes at 0 and
that (3.25) holds for£ = s + ί < p + 1.

The proof of Theorem 3.1 is concluded with the following lemma.
3.26. Lemma. // M is pseudo-convex, and P e bM is of type m, then (3.12)

and the inequality (3.10) hold.
Proof. In a neighborhood of 0 we define the surface S by the equations

r = 0 and y2 = 0. Let w be the restriction of zx to S. Then w and w are local
coordinates in a neighborhood of S. In a neighborhood of 0 in M' we define
the vector field T by:

(3.27) T = d/dzι - (dr/dzι)(dr/dx2)-ίd/dx2 .

Then the restriction of T to S is d/dw, and the restriction of T to S is
Further we have for any function /

(3.28) (TOW/ = QldzdKdldzyί (mod / , + ί ) .

Since the elements of fk vanish at 0 when k <m, and since 0 6 5 we conclude

(3.29) κτy(τyf]0 = [(d/dwy(d/3wyn0 =

for 51 + ί < m.
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Setting / = λ10, then Proposition 2.8 shows that the hypotheses of Lemma
2.23 are fulfilled with p = m — 2, and hence we have

(3 30) KL)(W°lo = Kdidwy(d/dwyλιoι
= [(d/dzd'id/dzjn for s + t < m .

Combining this with (3.18) we obtain (3.12).

Expanding the restriction of λ10 to S in a Taylor series we obtain

(3.31) λ10 = Σ -^-[(Ly(LYλ1Q]QwsΨ + 0(\w\™) .
β + ί = m-l S ! t !

Since Λ10 > 0 on 5, the above sum must be nonnegative and m must be odd.
Hence (3.10) follows immediately, and this concludes the proof of the lemma
and also of Theorem 3.1.

4. The basic estimate

Suppose Mr has a hermitian metric. We will denote by < , ) the inner
product under this metric in the tangent space as well as the inner product
induced in the space of forms, and the corresponding norms will be denoted by
I |. Define the inner product on forms by

(φ, Ψ) = ί O> f}dV and | |^| |2 = (φ,φ) ,
M

where dV, the volume element, is the unique real (2, 2)-form of length one
which agrees with the natural orientation of Mf.

Choose r so that \dr\ = 1 on bM. If P e bM, then in a neighborhood U of
P we choose ω1 and ω2 to be an orthonormal basis for the (1, 0)-forms at each
point of U and such that ω2 = fdr (with / = 1 on bM). Let L19 L2 be the cor-
responding dual basis. Then

0 = <ω2, A> = /<3r, L,> = f<dr, Lx> = fLλ(r) ,

so that Li is a tangential holomorphic vector field. Now if φ is a (0, l)-form,
then in U we have

(4.1) φ = ^ ω 1 + ^2ω
2 ,

(4.2) %? = ( Z ^ 2 - L2ψι)ωι A ω2 + •- ,

where the dots stand for terms containing undifϊerentiated combinations of the
φι and φ2. The formal adjoint of 5 is given in U by:

(4.3) -9φ = —L^ — L2φ2 + . . . ,
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where again the dots stand for a linear combination of ψγ and ψ2.
Let & denote the space of (0, l)-forms with compact support in U such that

(φ, dr} = 0 o n bM, i.e., in terms of the representation (4.1) we have φ2 = 0
on bM.

4.4. Proposition. // M is pseudo-convex, then there exists C > 0 such that

J 2 _

λlQ\φλfdS + HL^II2 Σ \\Lίψ2\\2 + Σ \\Liψj\\2

< C(\\dφ\\2 + \\-9φ\\2 + ||91|2) , for all φ e <% ,

where λ10 is the Levi form on the boundary, i.e., by (2.9),

[L19IJ = λι\L2 - I 2 ) + gL, - glλ .

Proof. From (4.2) we obtain

(4.6) ll^ll2 = ll^ll2 - Σ (Li9j,Lm) + 0(\\φ\\2\\φ\\ + \\φ\\>) ,

where ||^||2 = Σ l l^j l l 2 - From (4.3) we have

(4.7) II^H2 = Σ (Lίφi,Ljφj) + 0(\\φUφ\\ + \\φf) ,

since the error term on the right estimates terms of the form ( L ^ , •); by
integration by parts there are no boundary terms since Lλ is tangential and
φ2 = 0 on bM. Now setting

where c2

n = λ10, and by integration by parts we obtain

-Σ (Li9j,Lj9i) = Σ (LjLiφj,φi) + 0(\\φUφ\\ + II

bM

The second term on the right equals I λ^^fdS since φ2 = 0 on bM. Substi-
bM

tuting this in (4.6) and using the inequality

\ab\< s m a l l c o n s t . \af + l a r g e c o n s t . \bf

we obtain

(4.8) II9IB + I λlo\ψι\2dS < const. (||δ^||2 + | |$9 | | 2 + ||^||2)
bM
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Furthermore, since φ2 = 0 on bM we have

\\Lm\f = -{LiLtψt, <p2)

= \\Li92\\2 + 0(\\φU\ψ\\ + IMP) ̂ iconst/flMB + IMP) .

Finally,

\\Lιψlf= - ( 1 , )
(4.10) = \\Lm\f + awLm,9l) +

< Jλw\Ψl\
2dS + const, (ll^llϊ +

bM

The desired inequality (4.5) is then obtained by combining (4.8), (4.9) and
(4.10).

5. The tangential Sobolev norms

In a neighborhood U of P e bM we introduce boundary coordinates (xf, x4)
where x' = (x19 x2, x3) are coordinates in (bM) ΓΊ U and x4 = r. We call x' the
tangential coordinates and Λ:4 the normal coordinate. For ueC^(U) we define
the tangential Fourier transform by

(5.1) u(ξ', x,) = J V - ' *W, x,)dxf ,

where ξ' = (ξ19 ξ29 £3), jt' f = xλξλ + x2ξ2 + x2ξ3 and dx' = dxιdx1dxz For each
51 € R we define the partial Sobolev s-norm by

(5.2) || |«|| |; =

For each s we define the operator Λs ("the s/2 power of the tangential
laplacian") by

(5.3) Λsu(ξ', x<) - (1 + \ξ'\ψ2u(ξ', x4) .

Then we have, by the Plancherel theorem,

(5.4) | | | M | | | , = \\A'u\\ .

5.5. Definition. A tangential differential operator T of order m is a dif-
ferential operator which can be expressed in the form
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We define an algebra ?Γ of ""tangential pseudo-differential operators" to be
the algebra generated by the tangential differential operators and the Λs under
the operations of composition, addition and L2-adjoints.

5.7. Definition. T e ZΓ is of order r if for each s there exists a constant Cs

such that

for all ueCoiϋ Π M).
The following proposition lists the properties of the algebra J~ which we shall

need. The proof is exactly the same as the proof of the corresponding properties
of ordinary pseudo-differential operators; see for example [12].

5.8. Proposition. Every T e J* has finite order, Λs has order s, and P given
by (5.6) has order m. If Tλ and T2 € ZΓ are of order m^ and m2 respectively, then
TλT2 is of order mx + ra2, [T19 T2] = TλT2 — T2TX is of order mx + m2 — 1,
and Tf {the L2-adjoint of 7\) is of order mx.

The type of argument used in the following lemma was discovered inde-
pendently by Radkevitch [13] and the author [7]. Sharper results can be
obtained from a theorem of Hormander which are discussed in § 7.

5.9. Lemma. // P e bM is of type m, then there exist a neighborhood U of
P and a constant C > 0 such that

(5.10) ^ du

forO < ε < 2~m and all u e C0°°(C/ Π M).
Proof. Since d/dxj is a linear combination of L19 L19 L2 and L2, it suffices

to show that [||Z^2

wlllε-i *s bounded by the right hand side of (5.10). Now if
we choose U small enough, the assumption that P is of type m implies that L2

is a linear combination of L[ίo""im),L1,Lι and L2, so it suffices to show that
|||^(io im)w||| s i i s bounded by the right hand side of (5.10). Denoting by Ts

an element of y of order s we have

(5.11) = {[L^\L^'"^-^u, T^ύ)

= (Lί^L^'-^-^u, T'^u) - (L^ ^-^L^w, T^u) .

Since ( L ^ ) * = - I ? m ) + Γ°, and [Z(ί™\ P 5 " 1 ] is of order 2ε - 1, we have

and since (Γ 2 ^ 1 )* is of order 2ε — 1 we see that the first term on the right of
(5.11) is bounded by
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(5.12) const. {IIIL^- ^-^HIL-! + •} ,

where the dots stand for the right side of (5.10). Similarly, since (L^o ίm-i))*
= — Z[io'"im-l) + T°, we can bound the second term on the right of (5.11) by
(5.12), and hence we obtain

(5.13) WW' '^uWU < c o n s t . {{WLp'"'"-^]^ + • • • } .

Applying the same argument to the first term on the right of (5.13) m times
we obtain the desired estimate provided ε < 2~m.

Combining the above lemma with Proposition 4.4 we obtain the following
result.

5.14. Theorem. // M is pseudo-convex, and P e bM is of type m, then
there exist a neighborhood U of P and a constant C > 0 such that

(5.15) III^IIIU-i < C(\\3φ\\* + II^H2 +

for all φ e C£(U ίi M) ίl J , where we define

(5.16)

6. The o-Neumann problem, boundary regularity,

and the global Levi problem

In this section we summarize some of the consequences of estimates of the
type:

(6.D \\\Dφ\\\U < C(\\3φ\\2 + \\^9φ\\2 + \\φ\\2) ,

with 0 < s < 1 for all ψ e C0°°(ί/ Π M) Π @9 as in Theorem 5.4. The case
s = 1/2 was treated in [8], and the general case in [11].

6.2. Definition. A manifold M with smooth boundary and compact M is
called of type m, if every P e bM is of type mP, and m — max mP. Note that

PζbM

the maximum in the above definition exists since if P e bM is of type mP then
there is a neighborhood of U of P such that mQ < mP whenever Q e U Π bM,
and since bM is compact we can take the maximum over only a finite number
of such neighborhoods. Also note that from Theorem 5.14 it follows that if M
is pseudo-convex and of type m then (6.1) holds with s = 2~m. In § 8 we show
that (6.1) holds with s < l/(ra + 1). _

6.3. Theorem. // M is a manifold with smooth boundary and compact M,
and if for every P ζ. bM there exists a neighborhood U such that (6.1) holds for
all φeC^(U Γi M) Π &, then there exists an operator N: L%\M) -> I%\M)
with the following properties, where L\'\M) stands for the forms of type (0,1)
with square integrable components.
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(A) N is bounded, self-adjoint and completely continuous.
(B) Let j f M denote the null space of N. Then

JΊ?0*1 = {φ e Dom (clos 9) Π Dom (3*) | clos dφ = 0 and d*φ = 0} ,

wΛere clos 3 denotes the L2-closure of 3, and 3* its L2-adjoint. Frurther tf^1 is
finite dimensional.

(C) Let • = (clos 3)3* + 3*(clos 3), where the 3 m ί/ιe second term de-
notes the map from functions into (0, l)-forms. Then the range of N is con-
tained in D o m ( Π ) , and we have for every ψeL°2

A(M) the orthogonal
decomposition:

(6.4) φ = ΠNφ + #°'V ,

where H01: L^\M) -> J f M is the orthogonal projection onto J f M . Furthermore
dd*Nφ is orthogonal to 3*δNφ.

(D) N in pseudo-local in the sense that if U is a neighborhood in M, and
a<zL°2>\M) such that a\ueC°°(U), then iVα|σ6C°°(£/). Furthermore if
a\u e Ht(U), for t > 0, then Na\v€ Ht+2S(U).

(E) Let j f denote the holomorphic functions in L2{M). If a e Dom (clos 3),
da = 0 and a_\_Jί?°A, then there exists a unique u_\_£? such that Bu = a. Thus
u may be expressed by

(6.5) u = 5*Na .

Further, by (D), 3*N is pseudo-local, and if a\v e Ht(U) then u\Ό € Ht+s(U).
(F) Let H: L2(M) -> 3tf be the orthogonal projection onto J?. If f is a

fuction in Dom (clos 3), then we have

(6.6) Hf = f - 3*N3/ .

Again, by (D), H is pseudo-local, and if f \ n e Ht(U) then Hf\v e Ht(U).
In [4] Hormander proved theorems which do not assume smoothness of bM.

He considered a pseudo-convex M in the sense that there exists a real-valued
function σ on M such that for each real number c the set Mc = {z e M \ σ(z) < c}
is compact and such that for c > c0 the form ddσ restricted to holomorphic
vectors tangential to bMc is positive definite. For such M he showed that if every
point has a neighborhood U, a is a (0, l)-form with a\v e L\^(JJ), da — 0, and
there exists v e L2(MCQ) such that 5v = a in MCo, then there exists u such that
du = a in M, and u is locally in L2. Combining the methods of [11] and [4]
and using Theorem 5.14, we obtain the following result.

6.7. Theorem. // M is pseudo-convex, P e bM has a neighborhood U such
that U Π bM is smooth and each Q e U Π bM is of finite type, a is a (0,1)-
form, which is locally in L2 and is C°° on V (Ί M (V open), and a = dv where
v is a function on M which is locally in L2, then there exists a function u on
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M, locally in L2, such that u is C°° U Π V Γ\ M and du = a.
As a further consequence of the estimate (6.1) we mention a theorem of

Kerzman [7]. Kerzman's proof was intended for the case s = 1/2, but his argu-
ments use only the formula (6.6) and the pseudo-locality of N.

6.8. Theorem. // N is pseudo-local, and H satisfies (6.6), then the Bergman
kernel junction K: M x M —• C defined by

Hf(z) = jκ(z,w)f(w)dVu

is in C°°(M x M - G), where G = {(z, w) e (bM) x (6Af) \z = w}.
The following theorem gives a solution to the global Levi problem for two

dimensional pseudo-convex manifolds in the same way as is done for strongly
pseudo-convex manifolds in [8].

6.9. Theorem. // M is a pseudo-convex manifold of strict type m, and
P € bM, then there exists a holomorphic function f on M, which tends to oo at
P but is C°° onM - {P}.

Proof. Let H e a holomorphic function in a neighborhood U of P such
that (3.2) holds, and let ζ e Q such that ζ = 1 in a neighborhood V of P. Let
a be the (0, l)-form defined by

i 0 in (M - U Π M) U {P} .

Note that # e C°°(M) since it vanishes in a neighborhood of P. By choosing ζ
with sufficiently small support we conclude, from a result in [4], that there
exists veL2(M) such that a = dv so that a_]_Jf°A; hence by (6.5) we have
a = 9w with w € C°°(M). Then / defined by

_ rw - ζ/A i n t / ί l M - {P} ,

I u i n l - ί / Π M

has the desired properties.

7. Remarks and open problems

In this section we sketch some extensions of the previous material and formu-
late some natural questions which arise.

I. Generalizations to n dimensions

If M is an n-dimensional complex manifold with smooth boundary bM, and
P e bM, then we let L1? , Ln be a basis for the holomorphic vector fields in
a neighborhood of bM such that Ln(r) = 1 and Lj(r) = 0 for 1 < j < n — 1.
The Levi form is then the hermitian (n — 1) x (n — 1) matrix cio given by
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(7.1) dj = <ddr, U A Lj} , i, / < n - 1 .

This can also be expressed by

(7.2) [Lt,Lj] = c ^ - I J + Σ f l ^ , + Σ t>ΐjLk
fc=l k=l

The proof of the following theorem is a straightforward generalization of the
proof of Theorem 5.14.

7.3. Theorem. // M is a pseudo-convex n-dimensional complex manifold
with smooth boundary, P has a neighborhood U such that on U there is a basis
L19 , Ln_ι of the holomorphic vector fields tangent to bM such that the
matrix ciά is diagonal, and there exist integers mk, k = 1, n — 1, such that

(7.4) <dr,Lp>'~>m*)> Φ 0 in U ,

then there exists C > 0 such that

n-1

(7.5) Σ IIID^HIUt-i + llp»llϊ < C(| |aP | |2 + II^H 2 +

for all ψ = Σ ψkdzk with φk e Q°(M Π U) and φn\Uf]bM = 0.

The assumption of diagonalizability of the Levi form is very unnatural and
restrictive. The problem of what are the right conditions for sub-elliptic esti-
mates is open. The condition, being of type m, is very analogous to the con-
ditions of Nirenberg and Treves [13] and of Treves [15]. In these papers
Nirenberg and Treves deal with the case when all the commutators vanish, and
a very important question is how to generalize our results to that case.

II. Forms of type (p, q)

The generalization of our results in § 4 to forms of type (p, q) when n — 2
and q > 0 is immediate.

If θ is a form of type (1,1):

θ = Σ θίjωi A ωj ,

then the boundary conditions is θίn = 0 o n bM, and for pseudo-convex M the
estimate

Σ U^θίιfds+Σ\\LAΛ2+ ΣΣ ^ f Σ \ \ Λ Σ WΛ
(7.6) * i ' *.'•*

<C(||^| |2 + | | ^ | | 2 +| |^ | | 2 )

is obtained in the same way as (4.5) and the rest of the proof follows exactly
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as in § 4. For forms of type (p, ή) the boundary condition is vanishing on the
boundary, and hence in that case the d-Neumann problem is coercive and all
the first derivatives can then be estimated without any assumptions of the
pseudo-convexity. In the case of forms of type (/?, q) with n > 2, and 0 < q
< n, Theorem 7.3 has an obvious generalization.

III. Peak points

A point P e bM is called a local peak point of M if there exist a neighborhood
U of P and a holomorphic function / defined on U such that |/(P)| = 1 and
1/(01 < 1 for Q € U Π M and Q Φ P. It is clear that P is a peak point if there
exists a holomorphic function h in a neighborhood U of P such that

(7.7) {βe t/ Π M | R e λ ( β ) = 0} = {P} .

We can take / = eh. Two questions arise. First, what are the conditions for
the existence of a function satisfying (7.7)? Second, what are the conditions for
P to be a peak point?

IV. Precise sub-elliptic estimates

When m > 1 the estimate (5.15) can be improved as follows:

(7.8)

where 5 < l / ( m + l ) . The proof of this uses a result of Hormander [5,
Theorem 4.3]. It suffices to show that in the proof of Lemma 5.9 the e in
(5.10) can be taken to be less than l/(ra + 1).

7.9. Theorem {Hormander). If X19 , Xk are real vector C~fields in a
neighborhood ofOeR71, J?Q(X19 , Xk) is the module over C°° complex-valued
function spanned by X19 -,Xk, ^s(Xι, *,Xk) is the module spanned by
&βΛX19 . . - , * * ) and [Set_x{Xχ9 ' ",Xk),^Q(Xι, ••,**)], and every C~
vector field belongs to 3fm(X19 -9Xk), then for each s < l/(ra + 1) there
exist a neighborhood U of 0 and a constant Cs > 0 such that

(7.10) M\2

s<

To prove (5.10) with ε < l / ( r a + 1) it suffices to show that there exist
constants δ and Cε such that

(7.11) ||κ( , r ) | | ; <

for — δ < r < 0,ueCo(U Π M), where Ce is independent of r. Here the
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norms are taken over the 3-dimensional "slices" ( ,r) = (x19x29x39r) with r
fixed. First observe that (7.11) implies (5.10) since by integrating with regard
to r we obtain

if we assume that U is sufficiently small so that it is contained in the strip
— δ < r < 0. Then (5.10) follows since (as proven in Lemma 5.9)

(7.13) \\\Du\\\U < const. (|||iι|||; + \\L.u\\2 + | |Z l M | | 2 + ||Z2w||2 + ||w||2) .

To conclude we show that (7.11) follows from (7.10) with e < l/(m + 1).
Set Lx — Xλ + iX2, where Xγ and X2 are real vector fields. Since 0 is a point
of type m, <£ m(Xx, X2) contains all the vector fields. Further we have

(7.14) Σ | | A > ( . , r ) | | 2 < const. (||L lW( , r)| |2 + | |Z l W ( , r)| |2 + ||w(.,r)||2) .

So (7.11) follows, and the fact that Cε may be chosen independent of r follows
from the proof of Theorem 7.9.

The above estimate makes plausible the conjecture that we can actually take
ε = \\(m + 1) as is the case for m = 1. Further it seems plausible that for a
point of type m the estimate does not hold for ε > l/(ra + 1).

V. Holder estimates

Recently there has been a great deal of interest in solving the equation du =
a for a bounded with u bounded and satisfying Holder estimates [2], [3], [6].
In [4] Kerzman showed that on strongly pseudo-convex manifolds a solution u
exists satisfying Holder estimates of order ί < 1/2. In a letter Henkin and
Romanoff announced the improvement of this result to s = 1/2. Thus two
natural questions arise. First, does the unique solution, orthogonal to holomor-
phic functions satisfy the Holder estimates? Second, in case M is pseudo-convex
and of type m, can one find a solution satisfying Holder estimates, in particular,
estimates of order l/(ra + 1)?

The second question seems to be intimately related with the existence of
peak functions and on precise information about these functions.

VI. Regularity of the Bergman kernel function

Recalling Theorem 6.8, we know that for a pseudo-convex M of type m the
kernel function K is in C°°(M X M — G) where G is the diagonal of (bM) x
(bM). The question is what happens to K near G. In [4] Hδrmander showed
that K(z, z) behaves like \z — P\~n~ιiίP e bM is a strongly pseudo-convex point
(i.e., of type 1). If P is of type m, it seems conceivable that near P, K(z, z) be-
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haves like \z — P\~n~1/m. Again the answer to this question is closely related to
the existence and properties of a function satisfying (7.7).
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