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OF DIMENSION TWO
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1. Introduction

The problem of finding holomorphic functions in a domain which cannot be
extended across the boundary, usually known as the Levi problem, seems to be
intimately connected with various regularity properties of the operator 9. We
will deal here with a complex manifold M with a smooth boundary, denoted
by bM. Consider the following local version of the Levi problem: given P ¢ bM
find a holomorphic function in a neighborhood of P whose restriction to M
vanishes exactly at P. A classical result states that whenever the Levi form is
positive definite the problem has a solution, but if the Levi form has a negative
eigenvalue or is identically zero in a neighborhood of P then the problem does
not have a solution. This behaviour of the Levi form also controls the local (or
more precisely the pseudo-local) regularity of the inhomogenous Cauchy-
Riemann operator d. It is natural to ask: what happens when the Levi form
is positive semi-definite, vanishes at P, but not identically in a neighborhood.
Here we establish some conditions for the solution of these problems.

We shall investigate the regularity properties of o by means of the 3-Neumann
problem. On this occasion we do not wish to recall the history of this problem;
we refer to [1] for a selfcontained treatment of the 5-Neumann problem as well
as an historical discussion. However, since this paper is dedicated to Professor
Spencer’s sixtieth birthday, it is appropriate to point out that the 9-Neumann
problem was first formulated by D. C. Spencer and that he pioneered several
of its applications and generalizations to overdetermined systems. We shall
impose some conditions on M and establish certain “subelliptic estimates” for
the 0-Neumann problem. Among the consequences of such estimates are the
following :

(i) Existence, regularity and pseudo-localness of a solution to the inhomo-
geneous Cauchy-Riemann equations. That is, whenever the above mentioned
estimates hold, there is a unique solution of the equation du = « (where « is
a (0, 1)-form satisfying the necessary compatibility condition), such that u is
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orthogonal to the holomorphic functions and u is smooth up to and including
the boundary wherever « is smooth.

(ii) The operator H: L,(M) — s (M), which is orthogonal projection onto
the space s#(M) of square integrable holomorphic functions on M is pseudo-
local. This, in particular, gives regularity properties at the boundary for the
Bergman kernel function (see [7]).

(iii) Orthogonal decomposition and representation of cohomology classes
by harmonic forms which are smooth on the closed manifold (i.e., including
the boundary).

In the case of strongly pseudo-convex manifolds the appropriate subelliptic
estimate and the above conclusions are established in [8]. For more general
subelliptic estimates the above properties are proven in [11].

Here we are concerned with the problem of establishing subelliptic estimates
where M is weakly (i.e., not strongly) pseudo-convex. First we wish to convince
the reader that pseudo-convexity does not suffice to establish (i). We should
distinguish between global and local regularity theorems; it is very likely that
on any pseudo-convex M if & is in C=(M) then the solution in (i) is also in
C=(M) (the writer has obtained results which point in this direction, and is
currently working on the problem). However, the pseudo-local property, as in
(D, is in general false. Suppose that in a neighborhood of the point P ¢ bM (the
boundary of M) the Levi form is identically zero. Then we can choose local
holomorphic coordinates z,, - - -, z, with origin at P such that for some neigh-
borhood U of P all points Q € U, for which z,(Q) = O, lie in bM. Let a =
d(p/z,) = 9p/z,, where pe Cy(U) and p = 1 in a neighborhood of P. Then
(by a theorem in [4]) if the support of p is small enough there exists a function
u on M such that du = «. However, u cannot be smooth where « is, in par-
ticular, « is smooth outside the support of dp so that, if u is smooth there, then
the holomorphic function & = p/z, — u has smooth boundary values when
p = 0 and equals 1/z, — u when p = 1. That this is impossible is easily es-
tablished by the classical continuity method.

Thus we see that both the above version of the Levi problem and the problem
posed by (i) do not have a solution if the Levi form is identically zero in a
boundary neighborhood. In this paper we treat pseudo-convex manifolds of
dimension 2; for these the Levi form is represented by a 1 X 1 matrix, i.e., a
function. If P ¢ bM we introduce the condition that P be of “type m” (m an
integer, see § 2.3) which, roughly, tells us that the Levi form vanishes to order
m — 1 in the holomorphic and anti-holomorphic directions tangent to bM. For
example, consider M C C? given by: |z,’? + |z,[’? < 1, let P € bM be defined
by z,(P) = 0 and z,(P) = 1. Then P is a point of type m = 2p — 1 and our
theorems apply in this case. However, the Levi problem is trivial for this ex-
ample, the required function being z, — 1.

In § 7 we discuss the higher dimensional case as well as various problems
which arise from our work.
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2. The Levi invariants

Let M’ be a complex manifold of complex dimension two, and M be a
complex submanifold with C> boundary bM, i.e., there exists a real valued
C= function r defined in a neighborhood of bM such that dr = 0 and r(P) = 0
if and only if P e bM. We will choose r so that r > 0 outside of M and r < 0
in M. Let Pe bM and let U be a coordinate neighborhood with holomorphic
coordinates z, and z,. A vector field L is said to be holomorphic if it can be
written in the form

2.1 L = a'd/0z, + a’d/0z, , where a'eC>(U) .

A vector field L is called tangential if at each point of bM it is tangent to bM,

i.e., if L(r) = 0 at r = 0. As usual we define, L, the conjugate of L, by
2.2) L = a'9/07, + a%/d7, ,

and if T, and T, are two vector fields we define the Lie bracket by [T}, T,] =
T.T, — T,T,. The Lie algebra generated by T, and T, over the C~ functions
is the smallest module over the C* functions closed under [ , ]; we denote it
by L{T,, T,}. ¥L{T,, T,} is filtered, i.e.,

“?{TU Tz} = ktin gk{Tlﬂ Tz} ’

where # (T, T,} is the module spanned by T, and T,, and &, {T,, T,} is the
module spanned by the elements of #,{T,, T,} and the elements of the form
[4, T,] with A e Z,{T,, T,}. We will set

& =2L{L L}y, %.=%{LL},

where L is a holomorphic tangent vector at P € bM which is different from zero
at P. Note that ¥ and %, evaluated at P do not depend on the choice of L.

2.3. Definition. P e bM is called of finite type if there exists F e & such
that {(ar)p, Fp> # 0. Here { , > denotes the contraction between co-tangent
vectors and tangent vectors, and the subscript P denotes the evaluation at P.
We say P is of type m if P is of finite type and m is the least integer such that
there is an element in %, satisfying the above property.

Observe that if L is of type m then #,, contains all local vector fields tangent
to bM. This follows from the fact that bM is 3-dimensional and that and L, L
and F are independent, since {or, L) = 0 and {or, L) = {dr,L) = 0.

2.4. Proposition. If L is a nonzero holomorphic tangential vector field in
a neighborhood of P e bM, and (iji,---i,) is an (m + 1)-tuple of zeros and
ones, we define the vector fields L% m inductively by L = L,L® = L
and Ltoim) = [[tm) [Go-im-D]  Then P is of type m if and only if for
some (iy- - -i,,) we have {(@r)p, LE ' == 0.
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Proof. It will suffice to show that the {L% ™} form a basis of the Lie
algebra generated by L and L. For then any element F can be written as a
finite sum of the form

F = Z Cio_“imL(io"'im) .
Thus
<(ar)P’ FP>= Z Cio...im(P)<(ar)p, Lgo"'im)> ,

and that this is different from zero implies some term in the above sum is dif-

ferent from zero.
To show that {L¢%m)} js a basis it suffices to show that an element of the

form [Lée+*r, Lio-Js] is a linear combination of the {L%'m}, To prove this
we proceed by induction on r. By the Jacobi identity we have

[LGoin | [Gowi9] = [[Lr, [l ir-»], Lleio)]
— [L(ir), [L(io"'ir—l)’L(jo"'js)]] — [L(io'"ir—l),L(jo"'jsir)] .

The induction hypothesis implies that the last term can be written as asserted
and that

[L6n, L[o=rir=0 [Goi0]] = [L, 3" @, .., L& -m]
= 3 {LO(ay,..., )LE ) 4@ [Gokminy

which completes the proof.
2.5. Proposition. If P e bM is of type m, and g is a differentiable function

defined in a neighborhood of P, then for s < m,
(2.6) {@P)p, QLYY = (g(P))™*s*1(g(P))*s{(@r)p, Lo

$
where k, = 3 i,.
v=0

Proof. The following formula is easily established by induction on s:
(2.7) (gL)(io-..is) — (g)s—ks-)-l(g)ksL(io-..is) + Z cjo‘”ij(jo...jp)) ,
p<s

from which (2.6) follows when s < m.
2.8. Proposition. If P € bM is of type m, and L is a holomorphic tangential

vector field in a neighborhood of P, then by setting
2.9) B = G, ey, p>1,
we have 2% = ' = 0 and

(2.10) A= 2% =r,LNL).
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Furthermore, if 2 < p < m, then
2.1D) aviin(p) = [(LP~* L2,

P
where k = 3} i,.
V=2

Proof. Since 9or = —dor, we have by a classical expression for the exterior
derivative:

(@or,L A\ Ly = —(dor,L \ L)
= —L(ar, LY) + L(ar,L)) + (or,[L, L] .

Then (2.10) follows since {ar, E} = 0and {or,LY = {dr,L> = L(r) = 0.
If L, = O then (2.11) is trivial. So suppose that L, = 0, set L, = L and
let L, be a holomorphic vector field such that L,(r) = 1. Then {or,L,> = 1.

Note that any tangential vector field can be written as a combination of L,, L,
and L, — L,. Thus we have

(2.12) LMieip) — qW0igip([, — Ez) + gliinl, 4 ‘uwiz---ipil .

Let .#, be the ideal generated by 1, and .#, for p > 1 be the ideal generated
by .#,_, and the 2%, Then

(2.13) A0ierip = LU Gp-v. . [@D(Q1) (mod £,_,)
follows by induction on p, since

L0ipe0 = (Lip+D(Q0iaip) . JW0isipgiptr o gip+iglhiaip

4 Aliprayl0teipy(L, — Zz) (mod &)
where #i»+1 is defined by
[Lipﬂ, Lz - Zfz] = 0ip+l(L2 - f’z) (mOd go) .

Since, whenever p < m, the elements of .#,_, vanish at P, we have proved
that

A0ieip(P) = [LG») .. .LG2210],
To conclude the proof of (2.11) it suffices to show that
L. .. Lio+0[Lw | [ Go-D][ -2, . L2210 = ( (mod £,_,) .
Since
[LE, LEo-0] = giv-vio(L, — L,) 4 g™-%L, 4 pio-woL,

the desired result is easily obtained by induction.
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2.14. Definition. M is pseudo-convex if on bM we have {(dor, L \ E> >0
where L is a nonzero tangential holomorphic vector field.

2.15. Definition. If M is pseudo-convex, and P e bM is of type m, then we
say that bM is pseudo-convex of order m at P.

2.16. Definition. If P is of type m, and

1

@.17) B G DI D

[(Ly(L) 2" > 0

whenever L + 0 is a holomorphic tangential vector field in a neighborhood of
P (and when 2" is given by (2.10)), then we say that P is of strict type m.

If M is pseudo-convex of order 1 at P then M is strongly pseudo-convex at
P in the classical sense.

3. The local Levi problem

If P e bM, the problem of finding a holomorphic function in M which cannot
be continued past P is called the Levi problem. In this section we prove the
following result which yields a local solution to the Levi problem (by taking the
reciprocal of the function 4).

3.1. Theorem. If M is pseudo-convex, and P e bM is pseudo-convex of
type m, then m is odd.' If P is of strict type m, then there exist a neighborhood
U of P and a holomorphic function h such that

(3.2 {QeU N M|hQ) = 0} = {P}.

In fact, in terms of local holomorphic coordinates the function 4 defined by

(G.3) hiz,z) = 5

s+t=m+1 §lt!

[(0/02))°(8/02)'r1p(z, — 2,(P))*(z, — z,(P))!

satisfies (3.2).
Proof. By an affine change of coordinates we can construct coordinates z;
and z; such that

(3.4 z(P) = z(P) = (0r[9z)p = (3r[0Z))p = (@r[dy)r = 0,

and (9r/ox})p = 1, where z; = x; + iy; and z; = x; + iy;.
Expanding r in a Taylor series we have

(3.5) r(Z') = Re W'(Z) + ¥(z) + 0(z'[**%) ,
where #’(z’) is the function defined by (3.3) in terms of the coordinates z’, and

! Added in proof. This part of the theorem follows immediately from Propositiion 2.4
in I of [13].
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(z’) is a polynomial in z3, z}, Z;, Z, of degree m + 1 which does not contain
any “pure” terms (i.e., each term contains z;Z; as a factor). Observe that the
functions z; and A’ are independent in a neighborhood of 0 since by (3.4) and
3.5)

(3.6) (0h'[0z)y =0,  (9h'[0z5)y = (Or[dx;)y = 1.
Thus we can introduce holomorphic coordinates z;, z, defined by
(37) 2, = Z{ s 2y = n ’

and as usual we set z, = x, + iy, and z, = x, + iy,. In terms of these coordi-
nates the expansion (3.5) becomes

(3.8) 12, 2) = X, + 025, 2) + 0(z,[™*2 + |z, ,
and thus the function 4 defined by (3.3) is z,, and @ is given by

(3.9) 0z, 2,) = 2 Q153,002 202T

2<s1+Se+t1+te<m+1
where

0, ifs, +5,=0,
0, ift, +¢,=0,

s1 S 131 2
cratrrarl (AT avenee
sits,t 0,0 W\ oz, | \oz,) \az,/ \az,

We will prove the theorem by showing that 6(z;, 0) is a homogeneous poly-
nomial of degree m + 1 and that

aslszhtz =

(3.10) [6°0/02,:0Z,),,0 > O .

We will do this by showing that for a suitable holomorphic tangential vector
field L we have

3.11) [(@/0z))°*'(3/82) *'r] = [L°L*2™],
when s + ¢ < m — 1, where 2" is defined by (2.10). Then

1 _ )
3.12)  6(z,0) = [LeLEA0), 254170+
(312 ( P G+ DI+ D! bz

From this, (3.10) will be deduced after showing that the left hand side of
(3.10) can be identified with the restriction of 2'° to a real 2-dimensional surface
in bM.

It follows from (3.11) that m is odd, and if P is of strict type m then (3.12)




530 J. J. KOHN

implies that 6(z;, 0) > const. |z;|™*!, so that when z, = 0 we have r(z,,0) >
const. |z,|™*! if |z;| is small enough, which proves (3.2) since & = z,.

These facts are proven in the lemmas given below.

3.13. Lemma. In terms of the coordinates constructed above we have

(3.14) [or/0z,], =1 and [(8/9z,)%(/dz,)'r]y = O

fors +t<m+ 1lands > 0 whent = 1.

Proof. This follows immediately from (3.8).

3.15. Definition. Let ¢, be the ideal of germs of C* functions at the origin
generated by {(9/0z,)°(0/9Z,)'r} with s + t < k.

3.16. Lemma. If P e bM is of type m, then for k < m the elements of ¢
evaluated at P vanish. Furthermore, if in terms of the coordinate system intro-
duced above we define the holomorphic vector field L, which is tangential to
bM, by

3.17) L = (or/9z,)0/0z, — (0r]0z,)8/0z, ,
and if 2" is given by (2.10), then whenever s + t < m — 1 we have
(3.18) [LsL'2"] = [(9/8z2)°*4(3/8Z.) *r], -

Proof. First observe that L(#,) C #,,, and L(#,) C #,,,. Next, we
have

2% = (ar,L A\ L)

__or |orf or |orf _ _or or or
(3.19) 02,07, | 0z, 02,02, | 02, 02,02, 0z, 07,
__@r or or
02,02, 0z, 9Z,
so that
(3.20) po= 0T 1 F (mod ).
02,0Z, |0z,

By induction we see that

— a s+t a t+1 ar s+1 ar t+1
3.21) L0 = {(_) (_) r} (_) (_> mod £,,,.,) .
3.21) 0z, 0z, 0z, 07, (mod Fovsvs

Since 0 is a point of type m, by (2.11) we have
(3.22) [LsL*2"], = O fs+t<m-—1.

Since the elements of _#, evaluated at O vanish, from (3.20) we obtain (3.18)
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for s = t = 0. It is clear from (3.21) that if the elements of _#, vanish at O
then

[(@/0z))*(9/8Z,)!*'r], = O fors +t<k—1<m-—1.

On the other hand this, Lemma 3.13 and (3.22) imply that the elements of
¥ . vanish at 0 for £ < m, which concludes the proof of the lemma.

3.23. Lemma. Under the same assumptions as above if f is a function
defined in a neighborhood of 0, L is given by (3.17), and

(3.24) [LLfly,=0 fors+t<p<m-—1,
then
(3.25) [LLH), = [(/02)%(@0/02)'fl,  fors +t<p+ 1.
Proof. By definition we have
Lf = (3r/3z,)3f/0z, (mod #,),  Lf= (dr/9Z,)0f[9Z, (mod ¢, .

Let #, = #,, and let & be the ideal generated by ¢, and the elements
{@/0z)*(@/0Z)'f} with s + t < k — 1. Then L(¥;) C %;,, and L(F,) C
& ... Thus by induction we obtain

LsLtf = (9r]9z,)%(dr[92,)"{(3/0z,)*(3/8Z,)'f} (mod Z,,,) .

It then follows by induction on & (for kK < p + 1) that % vanishes at 0 and
that (3.25) holds for k =s + t < p + 1.

The proof of Theorem 3.1 is concluded with the following lemma.

3.26. Lemma. If M is pseudo-convex, and P € bM is of type m, then (3.12)
and the inequality (3.10) hold.

Proof. In a neighborhood of 0 we define the surface S by the equations
r = 0 and y, = 0. Let w be the restriction of z;, to S. Then w and w are local
coordinates in a neighborhood of S. In a neighborhood of 0 in M’ we define
the vector field T by:

3.27 T = 9/0z, — (dr/9z,)(dr/ox,)"*d/0x, .

Then the restriction of T to S is 9/ow, and the restriction of T to S is d/ow.
Further we have for any function f

(3.28) (T)(TD)'f = (3/6z)'@/92)'f  (mod £,.,) .

Since the elements of _#, vanish at 0 when k& < m, and since O € § we conclude
(3.29) (D)D), = [@/aw)*(@/ow) f], = [(3/0z,)*(@/3Z)'f],

for s + t < m.
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Setting f = 2", then Proposition 2.8 shows that the hypotheses of Lemma
2.23 are fulfilled with p = m — 2, and hence we have

[(L)*(L):2"], = [(3/aw) (@ /aw) A"],

(3.30) _
= [(9/3z,)*(8/0Z,)*2"], fors+t<m.

Combining this with (3.18) we obtain (3.12).
Expanding the restriction of 2" to S in a Taylor series we obtain

(3.31) P= B WD+ 0wl

S+t=m-1

Since 2" > 0 on S, the above sum must be nonnegative and m must be odd.
Hence (3.10) follows immediately, and this concludes the proof of the lemma
and also of Theorem 3.1.

4. The basic estimate

Suppose M’ has a hermitian metric. We will denote by <, > the inner
product under this metric in the tangent space as well as the inner product
induced in the space of forms, and the corresponding norms will be denoted by
| |. Define the inner product on forms by

(o, V) = f (o ¥3dV and [loff = (0, 0) ,

where dV, the volume element, is the unique real (2, 2)-form of length one
which agrees with the natural orientation of M’.

Choose r so that |dr] = 1 on bM. If P e bM, then in a neighborhood U of
P we choose ' and «* to be an orthonormal basis for the (1, 0)-forms at each
point of U and such that o* = for (with f = 1 on bM). Let L,, L, be the cor-
responding dual basis. Then

0 = <o, L) = [or, L,y = dr, L,y = fL,(r) ,

so that L, is a tangential holomorphic vector field. Now if ¢ is a (0, 1)-form,
then in U we have

“4.1) 0= o + o,
(4.2) 0p = (L, — Lyp)a* \ @ + -,

where the dots stand for terms containing undifferentiated combinations of the
¢, and ¢,. The formal adjoint of 3 is given in U by:

4.3) ’950 = _L1$01 - Lz?z + -,
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where again the dots stand for a linear combination of ¢, and ¢,.

Let # denote the space of (0, 1)-forms with compact support in U such that
{¢p,0ry = 0 on bM, i.e., in terms of the representation (4.1) we have ¢, = 0
on bM.

4.4. Proposition. If M is pseudo-convex, then there exists C > 0 such that

2 —_
f lodS + | Ll 3 1Ll + 3 | Lagylf
@5 7

< C(delf + (190l + llol),  forallpeZ ,
where 2 is the Levi form on the boundary, i.e., by (2.9),
[val] = Zm(Lz - Zfz) + ng - gzl .

Proof. From (4.2) we obtain

(4.6) I15¢lP = llpl — X (Ligss Lips) + Ol ol + llelP) ,
where ||¢[? = X || Lig;|*. From (4.3) we have
4.7 90l = X (Lipis Ligy) + 0(lollloll + el

since the error term on the right estimates terms of the form (L;¢;, ---); by
integration by parts there are no boundary terms since L, is tangential and
¢, = 0 on bM. Now setting

(L, L] = % ciLs + 3 diLs
where ¢2, = 2", and by integration by parts we obtain

— 2 (Lapss Lyo) = 3 (LiLipy, 0 + O(lelllell + P
= — X (Lyps; Lp) + 35 (5iLoss 0 + Ol llell + @l

= 196l + = [cliowids + lgllel + lgl?) -

The second term on the right equals fl“’lgol [dS since ¢, = 0 on bM. Substi-

oM
tuting this in (4.6) and using the inequality

|ab| < small const. |a* + large const. | b[*

we obtain

@8 lplz+ [#lppds < const. (13p]F + 9917 + gl -

M
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Furthermore, since ¢, = 0 on bM we have

| L, |F = —(L:Lip, 0) + O @]l ]Il

4.9 - . ,
@9 = | LI + Olelllell + llel?) <const. (ol + ll¢l -

Finally,

HL1SL’1”2 = _(ElLlS"n S01) + O(”SDHzHSDH)
(4.10) = | Ly, [P + (°Lygy, o) + O @ll:ll ¢l

< fl“’lsollzds + const. ([o[2 + [le) -

The desired inequality (4.5) is then obtained by combining (4.8), (4.9) and
(4.10).

5. The tangential Sobolev norms

In a neighborhood U of P ¢ bM we introduce boundary coordinates (x/, x,)
where x’ = (x,, x,, x,) are coordinates in (bM) N U and x, = r. We call x’ the
tangential coordinates and x, the normal coordinate. For ue Cy(U) we define
the tangential Fourier transform by

.1) e, x) = f e U, x)dx

where & = (£, &,,&), X' -& = x.& + x,&, + x,& and dx’ = dx,dx,dx, For each
s € R we define the partial Sobolev s-norm by

(5.2) ]2 = f f ‘(A + &P laE, x) pde dx, .
RY —o

For each s we define the operator A° (“the s/2 power of the tangential
laplacian”) by

(5.3) FuE,x) = (A + |&PyraE, x) .
Then we have, by the Plancherel theorem,
5.9 luellls = [[A°u]] -

5.5. Definition. A tangential differential operator T of order m is a dif-
ferential operator which can be expressed in the form

aa1+ ag+a3u

(5.6) Tu =

ajagag .
ar+aztas<m 8xflax§“axgs
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We define an algebra I of “tangential pseudo-differential operators” to be
the algebra generated by the tangential differential operators and the A4° under
the operations of composition, addition and L,-adjoints.

5.7. Definition. T ¢.7 is of order r if for each s there exists a constant C,
such that

1 Tullls < Colllullls+r

for all ue Co(U N M).

The following proposition lists the properties of the algebra 9~ which we shall
need. The proof is exactly the same as the proof of the corresponding properties
of ordinary pseudo-differential operators; see for example [12].

5.8. Proposition. Every T € I has finite order, A* has order s, and P given
by (5.6) has order m. If T, and T, e I are of order m, and m, respectively, then
T.T, is of order m, + m,, [T,,T,] = T,T, — T,T, is of order m, + m, — 1,
and T¥ (the L,-adjoint of T,) is of order m,.

The type of argument used in the following lemma was discovered inde-
pendently by Radkevitch [13] and the author [7]. Sharper results can be
obtained from a theorem of Hérmander which are discussed in § 7.

5.9. Lemma. If Pe bM is of type m, then there exist a neighborhood U of
P and a constant C > 0 such that

S CULw + I Lyl + [ Lo ]| + ]

e—

(5.10) i

ou
0x;
for0 <e< 2 ™andalueCe(U N M).

Proof. Since 3/dx; is a linear combination of L,, L,, L, and L,, it suffices
to show that |||L,u|||._, is bounded by the right hand side of (5.10). Now if
we choose U small enough, the assumption that P is of type m implies that L,
is a linear combination of L [ L and L,, so it suffices to show that
||| Lo -tm gy ||, _; is bounded by the right hand side of (5.10). Denoting by T*
an element of 7 of order s we have

I“L{iomim)u“ﬁﬂ = (Lii""‘im)u, T* )
(5.11) = ([L{‘im), L(io-..im_l)]u, Tzs—lu)
= (L¢m [fotm-ny T2-1y) — (Lo -im-0[Gmy T2-1y)

Since (L{m)* = —L¢m 4 T and [L%, T*-'] is of order 2¢ — 1, we have

(Liim)LiiO"'im—l)u, Tzé—lu)
— __((T2€—1)*L{io"'im—1)u, Eiim)u) + (Lfio“'im—l)u’ T2¢-1u) s

and since (T*-Y)* is of order 2¢ — 1 we see that the first term on the right of
(5.11) is bounded by
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(5.12) const. {|[|L{=m2ul|fy + -}

where the dots stand for the right side of (5.10). Similarly, since (L im-v)*
= — Lffoim-0 4 T° we can bound the second term on the right of (5.11) by
(5.12), and hence we obtain

(5.13) LG mu|]],_, < comst. {||LEoim=ul[p_, + - -} .

Applying the same argument to the first term on the right of (5.13) m times
we obtain the desired estimate provided ¢ < 2™,

Combining the above lemma with Proposition 4.4 we obtain the following
result.

5.14. Theorem. If M is pseudo-convex, and P e bM is of type m, then
there exist a neighborhood U of P and a constant C > 0 such that

(5.15) 1Del|-n-1 < CUldp[F + | Fol* + llol®)
for all pe C3(U N M) N %, where we define

(5.16) IDgIE = 3 l13p:/ax¢

6. The 6-Neumann problem, boundary regularity,
and the global Levi problem

In this section we summarize some of the consequences of estimates of the
type:

(6.1 IDell-1 < C(ldplF + 119l + liel)

with 0 < s < 1for all pe C5(U N M) N B, as in Theorem 5.4. The case
s = 1/2 was treated in [8], and the general case in [11]. o
6.2. Definition. A manifold M with smooth boundary and compact M is

called of type m, if every P ¢ bM is of type mp, and m = max mp. Note that
PebM

the maximum in the above definition exists since if P € bM is of type mp then
there is a neighborhood of U of P such that m, < m, whenever Q ¢ U N bM,
and since bM is compact we can take the maximum over only a finite number
of such neighborhoods. Also note that from Theorem 5.14 it follows that if M
is pseudo-convex and of type m then (6.1) holds with s = 2 ™. In § 8 we show
that (6.1) holds with s < 1/(m + 1).

6.3. Theorem. If M is a manifold with smooth boundary and compact M,
and if for every P ¢ bM there exists a neighborhood U such that (6.1) holds for
all e C3(U N M) N A, then there exists an operator N: Ly (M) — LyY(M)
with the following properties, where L3(M) stands for the forms of type (0, 1)
with square integrable components.
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(A) N is bonnded, self-adjoint and completely continuous.
(B) Let #%" denote the null space of N. Then

#" = {p e Dom (clos §) N Dom (3*) |clos dp = 0 and 3*¢ = 0},

where clos 0 denotes the L,-closure of d, and 0* its L,-adjoint. Frurther #"" is
finite dimensional.

(C) Let O = (clos 0)o* + 0*(clos 0), where the 0 in the second term de-
notes the map from functions into (0, 1)-forms. Then the range of N is con-
tained in Dom ([1), and we have for every ¢e L3 (M) the orthogonal
decomposition :

(6.4) ¢ = ONg + H"¢,

where H%': LY (M) — #** is the orthogonal projection onto #**. Furthermore
90*No is orthogonal to 6*oN¢.

(D) N in pseudo-local in the sense that if U is a neighborhood in M, and
ae Ly (M) such that a|yeC=(U), then Na|yeC=(U). Furthermore if
aly e H(U), for t > 0, then Na|y € H,,,(U).

(E) Let o denote the holomorphic functions in L,(M). If « e Dom (clos ),
oo = 0 and o | ™, then there exists a unique u_| S such that ou = «. Thus
u may be expressed by

(6.5) u = 0*Na .

Further, by (D), 0*N is pseudo-local, and if a|; € H,(U) then u|, ¢ H, (U).
(F) Let H: L,(M) — # be the orthogonal projection onto . If f is a
fuction in Dom (clos 0), then we have

(6.6) Hf = f — 9*Nof .

Again, by (D), H is pseudo-local, and if f|, € H,(U) then Hf|, e H,(U).

In [4] Hormander proved theorems which do not assume smoothness of bM.
He considered a pseudo-convex M in the sense that there exists a real-valued
function ¢ on M such that for each real number c the set M, = {ze M|s(2) < ¢}
is compact and such that for ¢ > ¢, the form 9ds restricted to holomorphic
vectors tangential to bM, is positive definite. For such M he showed that if every
point has a neighborhood U, « is a (0, 1)-form with «|; € L}*(U), 6 = 0, and
there exists v € L,(M,,) such that 0v = « in M,, then there exists u such that
ou = « in M, and u is locally in L,. Combining the methods of [11] and [4]
and using Theorem 5.14, we obtain the following result.

6.7. Theorem. If M is pseudo-convex, P e bM has a neighborhood U such
that U N bM is smooth and each Q € U N bM is of finite type, « is a (0, 1)-
form, which is locally in L, and is C= on V N M (V open), and a« = 3v where
v is a function on M which is locally in L,, then there exists a function u on
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M, locally in L,, such that uis C* U NV N M and ju = a.

As a further consequence of the estimate (6.1) we mention a theorem of
Kerzman [7]. Kerzman’s proof was intended for the case s = 1/2, but his argu-
ments use only the formula (6.6) and the pseudo-locality of N.

6.8. Theorem. If N is pseudo-local, and H satisfies (6.6), then the Bergman
kernel function K: M X M — C defined by

LU@)=.fK&,Wﬁ6@de

is in C*(M X M — G), where G = {(z, w) € (bM) X (bM)|z = w}.

The following theorem gives a solution to the global Levi problem for two
dimensional pseudo-convex manifolds in the same way as is done for strongly
pseudo-convex manifolds in [8].

6.9. Theorem. If M is a pseudo-convex manifold of strict type m, and
P e bM, then there exists a holomorphic function f on M, which tends to « at
P but is C* on M — {P}.

Proof. Let h be a holomorphic function in a neighborhood U of P such
that (3.2) holds, and let { € Cy such that { = 1 in a neighborhood V of P. Let
«a be the (0, 1)-form defined by

¢/ inUNM-—{P},
«= |

(6.10) 0 in(M—UNMU{P}.

Note that « € C=(M) since it vanishes in a neighborhood of P. By choosing ¢
with sufficiently small support we conclude, from a result in [4], that there
exists v € L,(M) such that « = 0v so that a | #%*; hence by (6.5) we have
a = ou with u e C=(M). Then f defined by

u—¢/h inUNM-—{P},
u inM-UNM

has the desired properties.

7. Remarks and open problems

In this section we sketch some extensions of the previous material and formu-
late some natural questions which arise.

1. Generalizations to n dimensions

If M is an n-dimensional complex manifold with smooth boundary bM, and
PebM, then we let L,, - - -, L, be a basis for the holomorphic vector fields in
a neighborhood of bM such that L,(r) = landL;(r) =0for 1 <j<n— 1.
The Levi form is then the hermitian (n — 1) X (n — 1) matrix ¢;; given by
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(7.1) CZ]=<397‘,LZ/\EJ>, i,jsn—l.

This can also be expressed by
_ n-1 n—1 —
(7-2) [Li, Lj] = cij(Ln - Ln) + ’Z:lafj['k + kZ=:1 b?ij :

The proof of the following theorem is a straightforward generalization of the
proof of Theorem 5.14.

7.3. Theorem. If M is a pseudo-convex n-dimensional complex manifold
with smooth boundary, P has a neighborhood U such that on U there is a basis
L,...,L, , of the holomorphic vector fields tangent to bM such that the
matrix c;; is diagonal, and there exist integers my, k = 1,n — 1, such that

(7.4) (or,Lgo ™05 £0  inU,

then there exists C > 0 such that
n—1 =
(7.5 k};IIIDsoklili_mk-l + llealt < C(ldp|* + [ 90l + llol»

1 —
for all ¢ = 3 ¢, dZ* with ¢, e C3(M N U) and ¢, |ynpy = 0.
k=1

The assumption of diagonalizability of the Levi form is very unnatural and
restrictive. The problem of what are the right conditions for sub-elliptic esti-
mates is open. The condition, being of type m, is very analogous to the con-
ditions of Nirenberg and Treves [13] and of Treves [15]. In these papers
Nirenberg and Treves deal with the case when all the commutators vanish, and
a very important question is how to generalize our results to that case.

II. Forms of type (p, q)

The generalization of our results in § 4 to forms of type (p,g) when n = 2
and g > 0 is immediate.
If 4 is a form of type (1, 1):

02 Zﬁwﬂ)i/\@j,

then the boundary conditions is 6;, = 0 on bM, and for pseudo-convex M the
estimate

| Lebs; |
k

157,

5 fzwwws + 3L +
(7.6) s Z

< C(|o0]F + [1901F + 1161P)

is obtained in the same way as (4.5) and the rest of the proof follows exactly
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as in § 4. For forms of type (p, n) the boundary condition is vanishing on the
boundary, and hence in that case the g-Neumann problem is coercive and all
the first derivatives can then be estimated without any assumptions of the
pseudo-convexity. In the case of forms of type (p, q) with n > 2, and 0 < g
< n, Theorem 7.3 has an obvious generalization.

III. Peak points

A point P e bM is called a local peak point of M if there exist a neighborhood
U of P and a holomorphic function f defined on U such that |f(P)| = 1 and
Q)| <1for Qe U N M and Q # P. Itis clear that P is a peak point if there
exists a holomorphic function 4 in a neighborhood U of P such that

1.7 {QeU N M|Reh(Q) = 0} = {P} .

We can take f = e". Two questions arise. First, what are the conditions for
the existence of a function satisfying (7.7)? Second, what are the conditions for
P to be a peak point?

IV. Precise sub-elliptic estimates

When m > 1 the estimate (5.15) can be improved as follows:

(7.8) IDellf-2 < ClldglP + [ FolF + el

where s < 1/(m + 1). The proof of this uses a result of Hormander [5,
Theorem 4.3]. It suffices to show that in the proof of Lemma 5.9 the ¢ in
(5.10) can be taken to be less than 1/(m + 1).

7.9. Theorem (Hormander). If X,, ---,X, are real vector C*fields in a
neighborhood of 0 ¢ R*, £ (X,, - - -, X}) is the module over C* complex-valued
function spanned by X,, - -+, Xy, L(X,, - - -, X}) is the module spanned by
egs—l(A(l’ o 'an) and [gs—l(XU o '5Xk)5 go(Xn v 'an)], and every c-
vector field belongs to ¥ ,(X,, -+, X.), then for each s < 1/(m + 1) there
exist a neighborhood U of 0 and a constant C; > 0 such that

(7.10) lull < Co(35 1X P + uf)

for all ue Ce(U).
To prove (5.10) with ¢ < 1/(m + 1) it suffices to show that there exist
constants ¢ and C, such that

(7.11) luC, DI < CALwC, DIP + | L, DI+ [[ul-, 0P

for —6 <r<0,ueCy(U N M), where C, is independent of r. Here the
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norms are taken over the 3-dimensional “slices” (.,r) = (x,, X,, X;, ¥) with r
fixed. First observe that (7.11) implies (5.10) since by integrating with regard
to r we obtain

(7.12) Mullf < CALwulf + (| Ll + [lulf)

if we assume that U is sufficiently small so that it is contained in the strip
—§ < r < 0. Then (5.10) follows since (as proven in Lemma 5.9)

(7.13) [||Dul|}-y < const. (llull + Lyl + | Ll + || Lulf + |ulf) -

To conclude we show that (7.11) follows from (7.10) with e < 1/(m + 1).
Set L, = X, + iX,, where X, and X, are real vector fields. Since 0 is a point
of type m, ¥ ,(X,, X,) contains all the vector fields. Further we have

(7.14) i:l”Xju(-, NP < const. (|Lu(-,r)|P + || LuC-, D + |u(-,n|P .

So (7.11) follows, and the fact that C, may be chosen independent of r follows
from the proof of Theorem 7.9.

The above estimate makes plausible the conjecture that we can actually take
e = 1/(m + 1) as is the case for m = 1. Further it seems plausible that for a
point of type m the estimate does not hold for ¢ > 1/(m + 1).

V. Hoélder estimates

Recently there has been a great deal of interest in solving the equation du =
« for @ bounded with u bounded and satisfying Holder estimates [2], [3], [6].
In [4] Kerzman showed that on strongly pseudo-convex manifolds a solution u
exists satisfying Holder estimates of order s < 1/2. In a letter Henkin and
Romanoff announced the improvement of this result to s = 1/2. Thus two
natural questions arise. First, does the unique solution, orthogonal to holomor-
phic functions satisfy the Holder estimates? Second, in case M is pseudo-convex
and of type m, can one find a solution satisfying Holder estimates, in particular,
estimates of order 1/(m + 1)?

The second question seems to be intimately related with the existence of
peak functions and on precise information about these functions.

VI. Regularity of the Bergman kernel function

Recalling Theorem 6.8, we know that for a pseudo-convex M of type m the
kernel function K is in C*(M X M — G) where G is the diagonal of (bM) x
(bM). The question is what happens to K near G. In [4] Hormander showed
that K(z, Z) behaves like |z — P|~»"'if P e bM is a strongly pseudo-convex point
(i.e., of type 1). If P is of type m, it seems conceivable that near P, K(z, 7) be-
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haves like [z — P|7"~¥™, Again the answer to this question is closely related to
the existence and properties of a function satisfying (7.7).
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