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ORIENTATION OF DIFFERENTIABLE MANIFOLDS

MARSTON MORSE & STEWART S. CAIRNS

0. Introduction

We shall study compact, connected C>-manifolds M, provided with a
Riemannian metric. Homologically characterized, an “orientable’” manifold M.,
is a manifold whose n-th Betti number is 1, or equivalently a manifold whose
n-th connectivity over the field Q of rational numbers is 1. If the manifold
M, is triangulated, another and equivalent characterization is that the simplicial
cells of M, can be coherently oriented, in the classical sense.

In [6] the authors concern themselves with a systematic development of
singular homology on M, without making use of any triangulation of M,,. Tri-
angulations are avoided for two reasons. In a study of ND (abbreviating non-
degenerate) functions on M, it is found that a global triangulation is neither
needed nor relevant. A deeper reason is that the methods of the critical point
theory, if developed without any use of global triangulations of M, are extend-
able to compact, connected topological manifolds admitting a topologically ND
function. See [4], [8] and [7]. For a definition of topologically ND functions
see [1].

Objective. We shall give a geometic definition of the orientability of M,,.
This definition has many consequences in the study of ND function on M,,. In
particular one can show, without making use of any global triangulation of M,,,
that M, is geometrically orientable in our sense if and only if 8,(M,)=1. It is
believed, moreover, that the theory here developed for differentiable manifolds
has an extension to topological manifolds admitting a topologically ND func-
tion. The theorems on “critical shells”, introduced in § 7 when n > 2 and f is
“biorderd” (§ 4), are believed to be fundamental both in the orientable and
nonorintable case.

1. Inverting sequences of presentations
Definition 1.0. =+ Compatibility'. Two overlapping presentations Q and F

in 9M,, (see [6, § 13]) will be said to be Cgm (Cg)m) if the transition diff 2 as-
sociated with Q and F (see [6, § 5]) has a positive (negative) Jacobian at each
point of the euclidean domain of definition of 2. The intersection of the ranges

Received March 25, 1970. The work of the first author was supported in part by U.S.
Army Research Office-Durham grant DA-ARO-D-31-124-G1156, and that of the second
author by National Science Foundation grant GP9569.

1 Compatible will be abbreviated by Com.
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RQ and RF of Q and F may fail to be a connected set, and Q and F may

accordingly fail to be C(+)n1 or Com. We shall, however, establish the following
basic lemma.

Lemma 1.0. [f ¢ is a sufficiently small positive constant, any two overlap-
ping presentations in 9M,,, whose ranges on |M,,| are connected subsets of* |M,, |

which have diameters on |M,| at most ¢, are either Com or Com.

Proof. A sufficiently small positive constant ¢ has the following property:
corresponding to each point p € |M,| there exists a presentation F,, e M, whose
range RF, is an open topological n-ball which contains each point g € |M,,| at
most a distance ¢ on |M,| from p. The proof of this statement can be given in
many ways. It depends on the fact that |M, | is a compact manifold. For such
an ¢ Lemma 1.0 is satisfied, as we shall now verify.

Let Q, and Q, be presentations in 2M, whose ranges are connected subsets
of |M,|, which have diameters on |M,| at most ¢ and which contain a common
point p. Note that

(1.0) RQ, C RF,; RQ, C RF, .

Since RQ, is a connected subset of RF,, it follows that Q, and F, are either

Com or Com. Similarly Q, and F,, are either Com or Com. Since

(1.1) RO, N RQ, C RF, ,

it follows that Q, and Q, are Cgm or Com regardless of whether RQ, N RQ,
has one or more components.

The ensemble 2.M,. In accord with Lemma 1.0 we denote by 9.M,, the
subset of presentations in 9M,, whose ranges are connected subsets of |M,,| with
diameters less than . We suppose ¢ conditioned by Lemma 1.0.

Definition 1.1. Orientable manifolds. The manifold M, will be termed
orientable® if it admits a covering I” by a subset of presentations in 2M,, such

that any two overlapping presentations in /" are Com. Such a covering " will
be termed orienting.

If M, is orientable, there always exists a finite orienting covering I” of M,
since |M,| is compact. If M, admits an orienting covering I, it admits an ori-
enting covering in 9. M, taken as the union of all presentations P ¢ 9.M,, such

that for some presentation Q¢ I, P CSm Q and RP C RQ.

To find conditions sufficient that M,, be orientable various definitions are
needed.

Definition 1.2. Sequences Q,+Q,. A sequence

2|M,| is the carrier of M,,.
3 Orientability in the sense of Def. 1.1 will be termed geometric.
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(1.2) 0,:0,:---:0, x>2

of presentations Q; ¢ 2,M,, such that each presentation except the last is Cgm
with its successor, will be denoted by Q, +Q,. A sequence Q, * Q, is not unique-
ly defined by the presentations @, and Q,.

We term a sequence Q, xQ, admissible.

As a prelude to our study of “inverting sequences” we shall inroduce two

lemmas on what we shall call conditioned transitivity of the relation C:)m. If
0O, and Q, are two presentations in 9, M, which are Cz)m, or CE)m, we shall
write Q, C(;m Q,, or O, Com Q,, respectively.
Lemma 1.1. If A,B,C are three presentations in 9.M,, such that
+ +
(1.3) AComC , BComC ,

then A Cz)m B whenever
(1.4 RANRBNRC=+6.

The proof is trivial. We continue with an extension.
Lemma 1.2. LetF e 9.M, be given with a sequence' Q,*Q, of form (1.2)

such that Q, Cc+>m F and

(1.5) RO, , N RQ, N RF + 0

for j on the range 2, - - -, p. Then Q; C:)m F for each j.

N
Proceeding inductively we assume F Com Q;_; for some j on the range 2,
-+, p. Since

(1.6) Q,ComQ,_, (by hypothesis)

and (1.5) holds, Lemma 1.1 implies that Q; Cc;m F.

Lemma 1.2 follows.

Presentations F and . Let (F: U,X) be a presentation in 9.M,. The
domain U of F is an open nonempty subset of a euclidean space E, of co-
ordinates u,, - - -, u,. Let p be a reflection of U in the coordinate (n—1)-plane
E,_, of E, on which u, = 0. The presentation

(1.7 (Fop: o(U),X) e DM,

4 All sequences Q; * Q, satisfy the conditions of Def. 1.2.
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will be denoted by F. It is clear that F and F are Cgm. We term F the invert
of F.

Definition 1.3. Inverting sequences. A sequence Q, xQ, such that Q,= 0,
or equivalently Q, = O . will be called an inverting sequence.

We shall prove the following lemma.

Lemma 1.3. If an inverting sequence exists on M ,, then for each presenta-
tion F ¢ 9.M,, there exists an inverting sequence F x F.

Proof. By hypothesis, for some presentation Q ¢ 9.M, there exists an
inverting sequence Q (. Because |M,| is arcwise connected, one at least of
the two following cases arises:

Case I. A sequence FxQ exists;

Case II. A sequence Fx () exists.

In Case I a sequence O « F also exists. Hence a sequence F« F exists of the
form

(1.8) (FxQ):(Qx0):(0+F) .

Thus Lemma 1.3 is true in Case I.
In Case II a sequence F« F exists of the form

(1.9) (Fx0):(0%Q): (QF) .

Thus Lemma 1.3 is true in both cases.

In preparation for a proof of Theorem 1.1 we shall give a definition and prove
a lemma and a corollary.

Definition 1.4. An orienting covering of M,, in 9.M,, is termed maximal in
9.M, if it is a subset of no other orienting covering of M,, in 2.M,,.

Lemma 1.4. If there exists an orienting covering 4 of M, in 9.M,, there
exists an orienting covering of M, which is maximal in 9 .M, and includes A.

We shall show that the set of presentations

(1.10) I'={Ac9M, AComQ forsome Qed)

is a maximal orienting covering in 9,M,. We first prove («):
(v) If F and G are two overlapping presentations in [, then F Com G.

Case 1. Suppose F and G are in 4. Then F Com G by definition of 4.

Case 2. Suppose that just one of the presentations F and G, say G, is in 4
and the other F is in I" — 4. Since 4 is a covering there exists a presentation
Q e 4 overlapping F. Because RF is arcwise connected, 4 contains a sequence
Q,*Q, such that 9, = 0, O, = G and

(1.11) RQO; ,NROQ,NRF+0 (j=2,---,p).
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From Lemma 1.2 it follows that F Com 0,.
Case 3. Suppose that F and G are in I" — 4. Since F and G overlap and
4 is a covering, 4 contains a presentation Q such that RF N RG N RQ + 0.

By Case 2, F Com Qand G Com Q. Hence by Lemma 1.1, F Com G.

Since 4 C I', I' is a covering of M, and it follows from (@) that I" is an
orienting covering. If 4 ¢ 2,M,, then exactly one of the pair {4, A} is in I" by
virtue of («). Therefore, if I" denotes the set of inverts of elements of I”, then
r,MNisa partition of 2.M,,. It follows that [" is maximal.

Thus Lemma 1.4 is true.

We state a corollary.

Corollary 1.1. If M, is orientable, there exists a unique partition (I", [)
of 9.M, in which " and I are maximal orienting coverings of M,, in 9M,,.

Theorem 1.1. A necessary and sufficient condition that M,, be orientable
is that there exist no inverting sequence in .M.

(o) The condition is necessary. In fact, if M, is orientable 2,M, admits
a partition (I", ") as in Corollary 1.1. If 0,+0Q, is a given sequence, then
Q.el"or Q,el". If Q, eI, then each presentation in the sequence 0,0,
including Q,,, must be in /". The sequence cannot then be an inverting sequence.
If Q, eI’ the proof is similar.

The condition of Theorem 1.1 is accordingly necessary.

(B) The condition of Theorem 1.1 is sufficient. We seek a subset of 2.M,,
which is an “orienting covering” I" of M, (Def. 1.1). We shall define I" as a
special subset of 2,M, whose presentations cover M, and prove that any two

overlapping presentations in I are C:)m.
The definition of /. Let A be a finite or countably infinite range of indices
a. Let

I=Qcs> I=(0)cu

be subsets of 2,M,, such that the presentations of /7 (and hence of IT) cover M,,.
Let a presentation H, ¢ /I be prescribed and fixed. For each « € 4 one, at least,
of the presentations Q, and 0., say H,, is such that a sequence H, H, exists.
With H, so defined we set

(1.12) I'=(H)uca -

We understand that O is an index in A so that H, is in I'. It is clear that the
presentations of /" cover M,,.

It remains to prove the following:

I. If H, and H, are two overlapping presentations in I', and no inverting

+
sequences exist in 9 .M, then H, and H, are Com.

Suppose on the contrary that H, and H, are Com. Then one has the relation
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(1.13) H, Com H, .

By definition of I" there exist sequences H,* H, and H,* H,. There accord-
ingly exist a sequence H,xH, and, by virtue of (1.13), a sequence of the form

(1.14) H,«H,: H, .
Hence there exists an inverting sequence of the form
(1.15) H,xH,: H,«H,

contrary to hypothesis in I.

Hence I is true and the conditions of Theorem 1.1 are sufficient. This com-
pletes the proof of Theorem 1.1.

We shall make use of the following lemma, leaving its verification to the
reader.

Lemma 1.5. Two overlapping presentations in 2,M, which are restrictions

respectively of presentations F and Q in 9,M,, are C(;m if and only if F CSm 0.

Definition 1.5. Inversion invariant coverings of M,. A subset A of presen-
tations in 2,M,,, which covers M,, and is such that Q is in 4 whenever Q is in
A, will be called an inversion invariant covering of M.

The following lemma is immediate.

Lemma 1.6. If M, admits an orienting covering, and A is an inversion
invariant covering of M, in 9.M,, then the following is true.

If (I, ") is the partition of @M, given in Corollary 1.1, then A admits a
unique partition

N4, N A

into two subsets each of which is a maximal orienting covering of M, in A.

Theorem 1.1 can be generalized as follows.

Theorem 1.2. If A is an inversion invariant covering of M, then a neces-
sary and sufficient condition that M, be orientable is that there exist no invert-
ing sequence F+ F in A.

The condition is necessary since an inverting sequence in /4 would be an
inverting sequence in 9.M,, contrary to Theorem 1.1. A proof that the con-
dition is sufficient is given by the proof that the condition of Theorem 1.1 is
sufficient, on replacing 9. M,,, wherever it occurs in the latter proof, by A.

Definition 1.6. Extended geometric orientability. Let M/, be a differen-
tiable manifold such that [M’| is an open arcwise connected subspace of |M,|
and M/, has a differentiable structure induced on |M/,| by M,,. Definitions 1.1
to 1.5 can be extended to M/, by replacing M,, by M/,. The lemmas and theo-
rems of § 1 remain valid if M, is replaced by M/,.
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2. f-level manifolds on M,

Definition 2.1. Admissible ND functions f. We admit ND functions f of
class C~ on M, such that f has different values a at different critical points and
just one critical point of index 0 and one of index n. See [2]. The critical point
of f at the f-level a is denoted by p,.

Given a value ¢ of f, a subset of [M,| of the form

2.1 fo = {xelM,||f(x) = c}

is called an f-level set on M ,,.

If ¢ is an ordinary value of f, then f° is a compact topological (# — 1)-mani-
fold which is the union of a finite number of disjoint compact, connected,
topological (n — 1)-manifolds. It is well-known that when c is ordinary, f¢ is
the carrier of a C~-manifold f* which is C~-embedded in M, by the inclusion
mapping of f¢ into |M,|. See (ii) of the proof of [6, Theorem 20.1].

When c is a critical value a of f of index® k == O or n, the topological mani-
fold f* = f* — p, is also the carrier of a C=-manifold f* which is C*-embedded
in M,, by the inclusion mapping of £ into |M,|.

Notation. Suppose that ¢ is an ordinary value of f. Let M, _, be a compo-
nent of f¢. Let a metric on M,,_, be induced by the Riemannian metric on M,
and 9,M,,_, be a subset of the presentations in M, _, with e conditioned rela-
tive to M,,_, as e was conditioned by Lemma 1.0 relative to M,,. We suppose e <.

A trajectory on M, which is orthogonal to the non-singular level manifolds
of f will be called an ortho-f-arc on M,,. Each such arc y will be parameterized
by the values of f on 7.

ff-Presentations. The proof in § 20 of [6] that the non-singular level mani-
folds f¢ are C~-embedded in M,, by the inclusion mapping of f¢ into [M,,| makes
use of specialized presentations F e 9M,, termed ff-presentations, whose
nature we shall briefly recall.

The euclidean domain of an .% is taken as a product J X V of a bounded
open interval J containing the value c of f and an open subset V of the coordi-
nate (n — 1)-plane E,_, of E, on which the coordinate u, = 0. A point in J
will be represented by its coordinate ¢, a point in V' by rectangular coordinates
Dy, 05 Vp_y, @ point in the domain J X V of & by a set of coordinates

t, vy, -5, 0,.) = (@,0) .
An ff-presentation & is a presentation in PM,, which can be given the form
2.2 tv) > F@,v): ] XV —>|M,|
subject to the condition that each partial mapping t — (¢, v): J — |M,,| be

% A critical value a of f is said to have the index of the corresponding critical point pg.
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an ortho-f-arc. When c is an ordinary value of f, J is restricted to an open
interval of ordinary values of f containing c. In this case, partial mappings of
the form v — % (¢, v): V — ¢ cover f° and define a differential structure of class
C= on f°. With this structure f¢ becomes a differentiable manifold ¢, C~-em-
bedded in M, by the inclusion mapping of f¢ into |M,,|. We suppose £ similar-
ly defined when a is a critical value.

“‘Bases’’ of ff-presentations. If c is ordinary, let M, , be a component of
fe. If ¢ is a critical value a of f let M,_, be a component f. If a presentation

2.3) Q:V,X)e9M,_,
is given, an ff-presentation
2.4 H: T xV,Y)e2M,

based on Q is defined as follows. If ¢ is an ordinary value of f, then J shall be
an interval of ordinary values of f as above. If ¢ = a is critical, J shall be an
interval of values of f of which a alone is critical. For (¢,v)eJ X V, H(t, v)
shall be the point at the f-level ¢ on the ortho-f-arc which meets the point Q(v)
of M,,_, when t = f(Q(v)).

We can now prove the following theorem.

Theorem 2.1. (i). Suppose that n > 2 and that c is an ordinary value of
f. If a component M,,_, of f¢ is non-orientable, M, is non-orientable.

(i) If M, is orientable, then for each ordinary value c of f each component
of f¢ is orientable.

Proof of (i). Since M, _, is non-orientable, there exists (Theorem 1.1) an
inverting sequence F x F of presentations

2.5) 0:Q,:+-:0, (F=0:3F=0)
in 9,M,,_,. For i on the range 1, - - -, x suppose that Q; has the form
(2.6) Qi Vi, X)) .

We are taking e < ¢ so that if J is a sufficiently small open interval containing
¢, then an ff-presentation

2.7 H;: I XV, Y)eIM,
based on Q; exists. The sequence

2.8 H:H,.:.-..:H (in 2.M,)

©

is readily seen to be admissible on M,. The hypothesis that Q, = 0, implies
that H, = = H, so that (2.8) is an inverting sequence H,x H, in 9,M,,.
Thus Theorem 2.1 (i) is true. The proof of Theorem 2.1 (ii) is similar.
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3. f-Preferred Riemannian structures on M,

In [6, § 22] we have shown that a Riemannian structure on M,, can always
be modified near the respective critical points of f in such a manner as to leave
M, and f unchanged and yield a new Riemannian structure on M, of the type
which we have termed f-preferred. We shall recall the theorem which char-
acterizes such structures.

To that end let D, be an open origin-centered n-ball of radius ¢ in the
euclidean space E,, of coordinates u,, - - -, u,. Let®

(3.1) F:D,X)eIM,  (F(O) = p,)

be a presentation of a neighborhood X of a critical point p, of f. We term the
presentation F “‘isometric” if the euclidean length in E, of any rectifiable arc
¥ C D, equals the Riemannian length on X of F(y). The following theorem
is a special consequence of [6, Theorem 22.2].

Theorem 3.1. If ¢ > 0 is sufficiently small, there exists a Riemannian
metric’ on M, such that corresponding to each critical point p, of f of index k
there exists an isometric presentation F = I* of form (3.1) of a neighborhood
X of p, on M, such that

3.2) fu*w)) —a= - — - —uw+u  + --- + 1 (uebD,) .

Ortho-f-arcs near p,. Set

(3.3) Q) = —1 — -0 — U U+ U
and
3.4) X —p, =X, D,—0=0D,.

Since I* is isometric, the ortho-f-arcs on X are images under /¢ of the ortho-
@i-arcs on D,. Orthogonality in D, is euclidean.

The case k = n — 1. In this case let £,_, denote the coordinate (n — 1)-
plane in E, on which u, = 0. With 0 < p < ¢ set

(3.5) 4, ={uecE, ||ul| < o} .

Let J‘, be 4, with the origin deleted. Ortho-¢,_,-arcs are radial in 4 , and have
images under /* which radiate® from p, on M, on the (n — 1)-manifold 1%(4,).
The intervals (0, p), (— p, 0) on the u,-axis represent radial ortho-¢,_-arcs. All
other ortho-g,_-arcs in D, are arcs of rectangular hyperbolas with either the
positive u,-axis or negative u,-axis as an asymptote. See [6, § 22].

6 We denote the origin by O.
7 Obtained by a modification of a given Riemannian metric.
8 Strictly tend to p, as a limiting end point.
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The cone A,_,. In §7 we shall refer to the (n — 1)-cone
3.6) Aoy ={ueE, |}, =ul + -« + ui_}

and to the subsets A;_, and 4,_, of 4,_, on which u, > 0 and u, < O respec-
tively. The subsets 4;_, and 4, _, intersect only in the origin.

Definition 3.1. A neighborhood® U* of O in E,. Corresponding to the
function u — ¢, (u) defined by (3.3) when 0 < k& < n, we shall define for future
use an arbitrarily small neighborhood

3.7 Ut C D, 0<e<o

in E, of the origin O in E,. Corresponding to a positive constant e < ¢ we
introduce the truncated (n — 1)-cone

(3.8) Q,={ucE,|o;w) =0, |jul| < e} .

The neighborhood U¥ shall be the union of the origin and all ortho-¢g,-arcs
which meet 2, or have the origin as limiting end point and on which ¢, is in
absolute value less than e. A final condition is that e be so small that (3.7)
holds.

The set U* is connected and by virtue of condition (3.7) I* is defined on U¥
and

(3.9) 1| Uk e 9M,, .

Subsets of Uk, with ¢, > 0 or ¢, < 0. Set

|

(3.10) U = {ue Ut|pu(w) < O},

(3.11) U = {ue Ut|puu) > 0} .

o+

The following lemma is easily verified.
Lemma 3.1. U'% is connected when 1 < k < n, and U]f; is connected when

0 < k < n — 1. Neither Ulz nor Uz_l is connected.

Ulz is the union of two components
(3.12) ’U% , ”Ulz
on which u; > 0 and u, < 0, respectively, while U%_l is the union of two
components

9 The image [%(U¥) is a subset of f,.. = {x € M,|f(x) < a + e} which is sometimes called
a ‘““handle> of f,.. associated with the critical point p,. Such ‘“handles’’ were first intro-
duced by Morse in 1925 although not called by this name. See the first reference to Morse
in [6].
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(3.13) (N Vi
on which u, > 0 and u, < 0, respectively.

4. ND functions f of biordered type

A ND function f shall be admissible in the sense of Def. 2.1.

Definition 4.1. f of biordered type. An admissible ND function f on M,
will be said to be of biordered type if each critical value of index 1 is less than
each critical value of index k > 1 and, dually, each critical value of index n — 1
is greater than each critical value of index k < n — 1.

We shall prove the following theorem.

Theorem 4.1. There exists on M,, an admissible ND function f of biordered
type.

This theorem is here proved with the aid of the theory of “bowls” of f as
developed in papers [3] and [5].

Theorem 4.1 is a special case of the theorem that there exists on M, an ad-
missible ND function the numerical order of whose critical values is in accord
with the indices of these critical values. This result was first formulated by
Smale [9]. It was discovered independently by Morse and is readily verified with
the aid of Morse [3] and [S]. The proof here given of Theorem 4.1 illustrates
one mode of proof.

Proof of Theorem 4.1. The reader is asked to refer to [6, § 22] for the
definition of “bowls ascending or descending” from a critical point with index
k. The following lemma implies Theorem 4.1.

Lemma 4.1. For n > 2 the Riemannian form on M, can be infinitesimally
modified” near a finite number of ordinary points of f in such a manner that
the following is true.

(i) The 1-bowls ascending from the critical points of f of index n — 1 (if
any exist) have as upper limiting end points the critical point p,, at which f
assumes its maximum M.

(i) The 1-bowls descending from the critical points of index 1 (if any exist)
have as lower limiting end point the critical point p,, at which f assumes its
minimum m.

Satisfaction of (). To satisfy (i) the modification of the Riemannian form
need be made in the neighborhood of at most a finite set of points chosen as
follows.

Let B_(z, k) be a k-bowl descending from a critical point z of index k£ such
that 0 < £ < n, and ¢ be an ordinary value of f such that ¢ < f(z) and the
interval (c, f(z)) contains no critical values of f. If a 1-bowl y ascending from

10 The modified Riemannian form is to be admissible over all of M,,.
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a critical point p of index n — 1 meets B_(z, k), it meets B_(z, k) in a point
w e f¢. Note that

4.1 dmB (z,hHhNf)=k—1<n—-1.

If the Riemannian form is suitably altered on f¢ sufficiently near w, the
modified 1-bowl y will not meet B_(z, k) N f°. Hence the modified 1-bowl y will
“by-pass” z.

After modifications of this type in number less than the number of critical
points of f above p, the modified 1-bowl y will ascend to p, as a limiting upper
end point. If each subsequent modification is made so small as not to alter the
“by-passing” of critical points by an original or modified ascending 1-bowl, all
1-bowls will ascend to p, as a limiting end point.

Satisfaction of (ii). One can similarly satisfy the condition (ii) of Lemma 4.1
by an additional modification of the metric, so made that (i) remains satisfied.

Thus Lemma 4.1 is true.

Completion of proof of Theorem 4.1. The theorem is trivial if n = 2. We
suppose then that n > 2.

By virtue of Lemma 4.1 we can suppose that conditions (i) and (i) of
Lemma 4.1 are satisfied. Theorems 4.1 and 4.2 of Morse [3] or [5] then imply
the following. The function f can be further modified in open disjoint neighbor-
hoods N, of the respective 1-bowls 7 in such a manner that the critical values
of f of index n — 1 differ arbitrarily little from M, while those of index 1 differ
arbitrarily little from m, while other critical values of f remain unaltered.
Theorem 4.1 follows.

5. Unipartite functions f

Definition 5.1. Unipartite functions f. An admissible ND function f (Def.
2.1) will be termed unipartite if each level set f¢ of f is connected.

We shall show that when n > 2 a ND f of “biordered” type (Def. 4.1) is
“unipartite”. To this end we first extend the comparison of the singular
homology groups of f, and of f, made in [6, § 29] for each critical value a of
f. Here

(5.1 fo = {xeM,|f(x) < a},

andfazfa—pa'

Asin [6, § 29] the homology groups are taken over a field #". Among fields
the field Q of rational numbers is for us the most important.

ND functions g. If ¢ and e are arbitrary values of f with ¢ < e, set

(5.2) foer = e M, lc < f(0) < e},
(5.3) frews = e M, |c < f() < ¢} .
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If ¢ and e are ordinary values of f, then f;.,; is a bounded topological mani-
fold with the non-singular (n — 1)-manifolds f¢ and f¢ as boundaries. To give
a differential structure to f, of to f, . is to give a differential structure to some
open neighborhood of f, or f;, ., relative to M,,. A differential structure will be
induced on f ., and on open neighborhoods of f, and f. . by M,. For sim-
plicity of notation we shall hereafter denote the differentiable manifolds carried
by

(54) fc, f(c,e)’ f[c,e]

by the same symbols.
In Theorems 5.1 and 5.2 below, g shall be one of the three restrictions

(55) g:flf(c,e);g:flf[c,e];nglfc

of f, with ¢ and e ordinary values of f.

In the comparisons in [6, § 29], one can replace f by g subject to proper
interpretations of the theorems involved. The principal theorems of [6, § 29]
are proved by induction with respect to an integer denoted by m. The induc-
tion is completed in [6] so that in stating our extensions we can properly omit
the inductive integer m. A first theorem extends [6, Corollary 29.1].

Theorem 5.1. If p, is a critical point of g of index k with critical value «,
and if one sets ¢, = g, — p,, then over an arbitrary field A" the connectivity

(5'6) Rq(gan ga) = 5% (q - 0’ 19 .t ') ’

where &, serves as a modulus.

The proof of this theorem is identical in form with the proof of [6, Theorem
29.1].

Definition 5.2. g-caps. A relative g-cycle on g, mod ¢, which is non-
bounding on g, mod g, will be called a g-cap of p, relative to g. Cf. [6, Def.
29.1].

By virtue of Theorem 5.1 there are no g-caps of p, relative to g other than
k-caps, nnd any such k-cap of p, is a “homology prebase”" for the homology
group H,(g,, g,) over A .

Definition 5.3. k-caps of linking type. A k-cap y* of a critical point p, of
g of index k is said to be of linking type relative to g and p,, if dy* is bound-
ing (over ") on g,. Otherwise, y* is said to be of nonlinking type. Cf. [6, Def.
29.1].

Definition 5.4. Linking k-cycles. If p, has the index k, a k-cap of p, which
is an absolute k-cycle 2* will be called a linking k-cycle of p, (relative to g).

Notation. Given the critical point p, of g let

1LTf a homology group H, over 2" has a base By, a set of g-cycles, one and only one
from each ‘“homology class’ in By is called a “prebase’” of H,. See [6, Def. 24.7].
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(57) bq(ga)sbq(ga) (q = 07 19 . )

denote homology prebases, possibly empty, of the singular homology groups
H,(g,) and H,(g,), respectively, over the given field J¢ .

Note. A critical point p of g is a critical point of f. A k-cap of p, relative
to g, is a k-cap of p relative to f. A critical point p of g which is of linking
type, relative to g, is of linking type, relative to f. However, the converses of
these three statements obtained by interchanging g and f are not in general true,
as examples show.

The fundamental theorem follows. We continue with the field J7".

Theorem 5.2. (i) If a critical point p, of g has the index k, then a
homology prebase b,(g,) is a homology prebase b,(g,) unless

Case I. g = k and p, is of linking type, or

Case Il. g = k — 1 and p, is of non-linking type.

(ii) In Case I a homology prebase b,(g,) is given by any" set of absolute
k-cycles of the form

(5.8 b.(g.) U 2*,

where 2* is a linking k-cycle of p, (relative to g).
(iii) In Case 11 a homology prebase b, _,(g,) is given by any" set of absolute
(k — 1)-cycles, k > 0, of the form

(5.9) by (&) — wE?

in which w*=! is the algebraic boundary of a k-cap of p, and b(g) contains
wk2,

Theorem 5.2, as formulated above, differs from [6, Theorem 29.3] only in
that g here replaces f of [6]. When stated in terms of g or f, all terms must be
understood relative to g or f respectively.

A review by the reader of the proof of [6, Theorem 29.3] will make clear
the proof of Theorem 5.2.

We shall use Theorem 5.2 to prove the following lemma, true for n > 2.

Lemma 5.1. Let a be a critical value of f with index k such that 0 < k <n
and such that f* is connected. Let [y, v] be an interval of values of f such that
¢ < a < vand [y,v] contains no critical values of f other than a.

(i) If f* is not connected, then k.= 1,

@ii) If f* is not connected, then k = n — 1.

Proof of (). Returning to (5.5) set g = f|f;, ;- The critical point z of f at
the f-level a is a critical point of g at the g-level a. By hypothesis the set f«,
and hence the set g, are not connected.

12 Such a set exists in Case I.
13 Such a set exists in Case II.
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As in [6, § 23], a proper use of ortho-g-arcs leads to a deformation' retract-
ing g, onto g*. Hence g, is not connected.

The set f* and hence g® are connected by hypothesis. Each point of g, is
either on g¢ or can be deformed on an ortho-g-arc so as to ascend to a point
of g%, or to z as a limiting end point. The last statements follow from Theorem
3.1. Hence g, is connected and g, is not connected.

We infer that a prebase of the homology group H,(g,) contains just one O-
cycle while a prebase of the homology group H,(¢,) contains more than one
O-cycle. It follows from Theorem 5.2 that z must be a critical point of g of
non-linking type with index 1. This completes the proof of (i).

Proof of (ii). Statement (ii) follows readily if one applies Lemma 5.1 (i) to
—f in place of f.

Lemma 5.1 will lead to a proof of the following theorem.

Theorem 5.3. Ifn > 2, and the ND f on M,, is of biordered type (Def. 4.1),
then f is unipartite (Def. 5.1), that is each level set of f is connected.

Proof. Let m and M be respectively the minimum and maximum values of
fon M, and a be the largest of the values « > m of f such that f¢ is connected
for m < ¢ < a. Then a must be a critical value of f. We shall prove Theorem
5.3 by showing that

(5.10) a=M.

Proof of (5.10). If a<M, the index k of ais such that 0 < k < n. It then
follows from Lemma 5.1 (ii) that k = n — 1.

If there are no critical values of f of index n — 1, it is impossible that index
a = n — 1 and (5.10) must be true.

If there are critical values of f of index n — 1, then the hypothesis that f is
of “biordered” type implies that the critical values of index » — 1 form a se-
quence

(5.11) a>a,> ... >a,

of values which exceed each critical value of index less than n — 1. It is im-
possible that a = g, since for M > ¢ > a,, f° is connected, contrary to the
definition of a.

It is impossible that a = a,. Were a = a, then for a, > ¢ > a,, ¢ would be
nonconnected by virtue of the definition of a, and hence a, would be of index
1 by Lemma 5.1. If, however, index g, is both 1 and n — 1, n = 2, contrary
to hypothesis. Continuing, one proves inductively that a is no one of the num-
bers (5.11) of index 1. From this contradiction we infer the truth of Theorem
5.3.

Theorem 5.3 follows.

14 We term such a deformation a g-deformation.
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We shall make repeated use of the following lemma and its variations.
Lemma 5.2. If a and b, with a < b, are successive critical values of f on
M,, then

(512) Hq(fa,a Q) ~ Hq(fb’ Q) (q = 0’ 19 . ) .

As in [6, § 23] there exists an f-deformation d retracting f, onto f,. It fol-
lows from [6, Theorem 28.4], with the moduli 4 and 4’ empty sets, that the
deformation d induces the isomorphisms (5.12).

6. Homological orientability

The manifold M,, will be termed homologically orientable if and only if the
connectivity

(6'1) Rn(|Mnl, Q) =1.

In this section we shall show that if the manifold M, is geometrically orientable
in the sense of § 1, then M, is homologically orientable. The proof is given for
the case n > 2. It can be shown in many ways without use of any global tri-
angulation of M, that geometrical orientability of M, implies (6.1) when n =2.

The proof is inductive in character and will make use of an inductive
hypothesis formulated as follows:

Inductive hypothesis. We shall assume that if n > 2, then for each integer
r such that 1 <r < n, a connected, compact, differentiable, orientable'® mani-
fold M, is such that

(6.2) R.(M,,Q) =1.

From this point on we shall assume that f is of biordered type on M, (Def.
4.1) and so is a ND unipartite function on M, (Def. 5.1).

If ¢ is an ordinary value of f and M, is orientable, then the level manifold
f¢ has but one component, since f is unipartite, and f¢ is orientable in accord
with Theorem 2.1 (ii). By the inductive hypothesis (6.2),

(6.3) R,.(f,Q=1.

There accordingly exists a rational (n — 1)-cycle y?~! carried by f¢ which is a
“prebase” for the singular homology group H,_,(f, Q).

Theorem 6.1. Suppose that n > 2 and that M, is orientable. If ¢ and e
are ordinary values of f such that ¢ < e, and if y*~' and y?~! are respectively
suitably chosen (n — 1)st RHP' of f° and f¢, then

15 Orientable shall mean orientable in the sense of § 1.
16 A “rational homology prebase”’ of H,(y, Q) will be termed an ‘‘rth RHP of y.”
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(6.4) yet~yrt (over Qon f ) .

We shall begin the proof of Theorem 6.1 by showing that Theorem 6.1 is
true in a special case.

Lemma 6.1. In the special case in which the interval [c, e] contains just one
critical value a of f, Theorem 6.1 is true.

We shall prove a proposition bearing on Lemma 6.1.

Proposition 6.1. Under the hypotheses of Lemma 6.1 an (n — 1)-cycle
which is an (n — 1)st RHP of f¢ or of f¢ is an (n — 1)st RHP of f, ..

Notation. Let k& be the index of the critical value a in the interval (c, e).
We shall verify the following.

Under the hypotheses of Lemma 6.1, an (n — 1)st RHP of f . is given

(i) byyr'when0< k<n-—1,

(i) byyr'when 1 <k <n,

(iii) byyr'whenk =n—1,

(iv) by y? ' when k = 1.

Proof of (i). As in (5.5) we set g = f|f;.,.;- Since there is an f-deformation
retracting ¢, onto g°, we infer that y?»~! is an (n — 1)st RHP of g,. Since
0 < k < n — 1 in the case at hand, Theorem 5.2 (i) implies that y*~! is an
(n — 1)st RHP of g,. Since there exists an f-deformation retracting f;. ., onto
8q, Yy ' is also an (n — 1)st RHP of f ;.

Proof of (ii). On replacing f by —f, (i) implies (ii).

Proof of (iii). By virtue of (ii), for some rational number r, possibly 0,

(6.5) yert ~ryp! (over Q on fi. .y .

Hence (iii) is valid if r = 0.

Proof that r #+ 0. On setting g = f|f. . as in the proof of (i), we see that
y*~lis an (n — 1)st RHP of g,. The critical point p, has the index n — 1.
Whether p, is of linking or non-linking type relative to g, Theorem 5.2 implies
that y7~! is an element in an (n — 1)-st RHP of g, and hence of f;. .;. Hence
r # 0 in (6.5), and (iii) is true.

Proof of (iv): On replacing f by —f, (iii) implies (iv).

Lemma 6.1 follows from (i), (ii), (iii), (iv).

Note. The proof of (iii) shows that p, is.of non-linking type relative to g
since it shows that y»~! is an (n—1)-st RHP of both g, and g, when k =n—1.

Completion of proof of Theorem 6.1. Let

(6.6) o <oy < oo < ay
be ordinary values of f on [c, e], such that ¢ = «, and e = «, and such that

between successive values in (6.6) there is just one critical value of f. In case
there are no critical values of f between ¢ and e, Theorem 6.1 is trivial.
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Forjontherange 1,2, - - -, tlet y,~' be an (n — 1)st RHP of {*J. Tt follows
from Lemma 6.1 that if r, is a suitably chosen non-null rational number, then

6.7 et~ ryett ~ o ~ryet (over Q on fi. .y .

Hence Theorem 6.1 is true.

Before coming to the principal theorem of this section we shall show how to
associate a special n-cap with p,,. _

A simply-carried n-cap. 1If f is an ordinary value of f such that M — g is
sufficiently small and positive, then the special isometric presentation of a
neighborhood of p, given by Theorem 3.1 shows that f;, -, is a topological
hemisphere H™ bounded by f# as a topological (n — 1)-sphere. It follows' that
there is an n-cap z" of p,, which is defined by a homeomorphic map of a
vertex-ordered euclidean n-simplex onto H”. Such a cap has been termed
“simply-carried”. See [6, Def. 30.2]. It follows then from [6, Lemma 30.3]
that 9z is an (n — 1)-cycle y7~' which is an (n — 1)st RHP of f°.

Theorem 6.2. If M, is orientable, then

(6.8) R.(M,, Q) =1.

We suppose n > 2. According to the definition of a critical point of linking
type, py is of linking type if and only if the (n — 1)-cycle y;~!, introduced in
the paragraph preceding the theorem, satisfies the homology

(6.9) yat~0 (over Qon f,) .

Because M, is orientable, (6.9) holds in accord with (6.4) of Theorem 6.1,
since in (6.4) y*~! ~ 0 on f,, if ¢ — m is sufficiently small.
The critical point p, is accordingly of ‘linking type. It follows from [6,
Theorem 29.3 (ii)] that (6.8) holds.
"~ The proof of Theorem 6.1 shows that it has the following useful extension.
Theorem 6.3. Suppose n > 2. Let ¢ and e be ordinary values such that
¢ < e. Suppose further that some open neighborhood of f. ., is orientable. If
then y»~' and y*~! are suitably chosen (n — 1)st RHP’s of f¢ and f° respec-
tively, then

(6.10) vt~y (over Q on fie,e))

We shall use this extension of Theorem 6.1 in proving that R,(M,|,Q) =0
when M, is nonorientable.

17 From [6, ‘“Carrier Theorem” (36.2)].
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7. Orientability and critical shells

Let a be a critical value of f with index k such that 0 < k < n, and g, v be
ordinary values of f such that a is the only critical value of f in (g, ). Set

(7.1) By = (X[ M, || 1 < f(X) <1} .
It will be convenient to suppose that
(7.2) v—a=a—pu=e¢>0.

We term f{, ,, a critical shell, based on f*, with index k, prov1ded e is so small
that the followmg conditions are satisfied.
Conditions on e of (7.2). Note that

(7.3) f?”’v) - f(‘u,a) U fa U f(a,v) M

We impose two conditions on e each of which is satisfied if e is sufficiently
small. A first condition is that the closures of ortho-f-arcs on f,,,, and f, 4
have diameters less than ¢/2, where ¢ is conditioned by Lemma 1.0. A second
condition on e is a reimposition of the condition

(7.9 U cC D, (of 3.7)) .

This condition implies that e < g.

The choice of u, v. It will simplify our theorems if the parameters ¢ and v
associated with a critical value a in the definition of a critical shell f, ,, are
chosen once and for all when a is given.

We shall define a special covering of critical shells f¢, ,, by special presenta-
tions in .M ,,.

A covering I', ,, of f%, ,,. A first presentation has the form

(7.5) F* = I*| U¥ (k = index a) ,

where I is the isometry of Theorem 3.1, and e is given by (7.2). The range
of F* is an open neighborhood in f¢, ,, of p, and of the union of p, and the
ortho-f-arcs on f¢, ,, which have p, as a 11m1t1ng end point.

Corresponding to an arbitrary point p e f* let

(7.6) Q: Vp Xp) e Dfe  (cf. (2.3)

be a presentation of an open connected subset X, of /¢, which contains p.
We can suppose that X, is so small a neighborhood of p € f* that the ff-presen-
tation

(1.7 Hy: (1,0) X Vo, ¥p)  (cf. 2.4)
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based on Q, satisfies the condition
(7.8) H,e 9M,

A covering I't, ,, of the critical shell ¢, ,, is thus afforded by the presenta-
tions

(7.9) F*,H, (index a = k)

and their “inverts”, as p ranges over f°.

H interpreted. The domain ¥, of Q, in (7.6) is an open connected subset
of E,_, with coordinates v,, - - -, v,_;. Let p denote a reflection of ¥V, in the
(n — 2)-plane of E,_, on which v,_, = 0. One can obtain H, by first replacmg
Q, by

(7.10) Q, = (Qy007': p(V,), X)) e Df° .
H, is then a presentation
(7.11) (Hy: (1,v) X p(V,), Y,) € DM,

“based” on 0, with a euclidean domain (g, v) X p(V,) which is a reflection of
the euclidean domain (g, v) X V.

The role of F*. Let K, be the subset of U* which is the union of O and the
ortho-¢,-arcs which tend in U¥ to Q. The union of the ranges of the presenta-
tions H,, admitted in (7.9) cover

(7.12) — I«(K,) ,

(/l,v)

while I¢(K,) is covered by F*.

Given a critical shell f¢, , it is essential that we define “inversion invariant
coverings” of f,,,, and f, . by presentations which are simply related to the
presentations in the set I'¢, ,, covering f¢, ,,. These presentations should be in

(713) ng«z,p) > gaf(p,a)

respectively and so, in particular, have connected ranges.

To cover f,,, and f, ,, we shall make use of presentations which are restric-
tions of the presentatlons H, and H of I'¢, ,, and of the special presentation
F* in ¢, ,, and of Fe. .

Restrictions of H,. For each point p e f there exist unique presentations

(7.14) H;eDfa,, H;eDf,aq -
which are the restrictions of H, with ranges

(7.15) RH; = RH, N fu.,, RH; =RH, N fq.a
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respectively. The set of presentations H}, as p ranges over f4, cover all points
of f,., except points of f, , on ortho-f-arcs tending to p, as a limit point.
Each of the presentations H; has a connected range. To cover the set of re-
sidual points of f, ,, we make use of restrictions of F*.

Restrictions of F*. Recall that index a = k. Referring to the subsets

(7.16) U'% , U’fg

of U* defined in (3.10) and (3.11), and to the isometry /¢ of Theorem 3.1, we
introduce restrictions of F* of the form

(7.17) Ft=I1*|US, Fi=I"|U. (0<k<n),

and state the following lemma.
Lemma 7.1. By virtue of Lemma 3.1

(7.18y F* e Df,e (A <k<n,
(7.18)" F* ¢ Dfa, O<k<n-—1).

A first condition that (7.18) hold is that the sets Cl RF* and Cl RF* have
diameters on M, less than ¢. This condition is satisfied as a consequence of
the relation F* ¢ 9,M,,. That RF* and RF*® are connected subject to the con-
ditions on k in (7.18) follows from Lemma 3.1.

Note. The relation in (7.18)’ is not valid if k=1, nor the relation in (7.18)"
if k = n — 1, because RF'. and RF"~! are not connected.

The case k = 1. In this case we refer to (3.12) and set

(7.19) FL=10|'US,  UFL=1°"U- .

The ranges of these two restrictions of F* are connected sets. These ranges are
disjoint and have RF* as their union. Cf. (3.12).
The case k = n — 1. In this case we refer to (3.13) and set

(7.20) Pt =10UY, R =10 UL

The ranges of these two restrictions of F7~' are connected sets. These ranges
are disjoint and have RF”~! as their union. Cf. (3.13).

We summarize as follows:

Theorem 7.1. “Inversion invariant coverings” I' , o, Of f .4, and I’ ,,,, of
fua,, are given respectively by the second and third columns in the following
table, provided these presentations are supplemented by their inverts and the
point p ranges over f°.
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Table I"
k = Index a o I,y
k=1 Hy :'FL,”FL | Hy:F.,,
l<k<n—1 H, :F* H} :F%,
k=n—1 Hy :Fn~! Hy - 'Fy7% R

Note. Each entry in Table /" should properly bear the critical value a as
an index.

Given a critical shell f¢, ,, we shall term f, ,, the upper shell of f¢, ,, and
f(uay the lower shell of f¢, ). We term these subshells auxiliary shells of f¢, ,,.

Definition 7.1. Inverting critical shells. A critical shell f¢, ,, will be termed
orientation inverting if one of its two auxiliary shells is orientable and the other
nonorientable.

Theorem 7.2. If n > 2, the following is true.

(i) A necessary and sufficient condition that a critical shells f¢, , be

orientable is that both its upper and lower auxiliary shells be orientable.

(i) If index a = k, and the shell f¢, , is inverting, then k =1 or n — 1.

Gi) If k =1, and the shell f¢,, is inverting, then its upper shell is non-
orientable.

(iv) If k =n — 1, and the shell f,, is inverting, then its lower shell is
nonorientable.

We begin the proof of Theorem 7.2 by establishing the following:

The condition of (i) is necessary. Since

Q.f(,;,a.) c gef?p,y) s

an inverting sequence in 2.f, ,, is an inverting sequence in 2,f¢, . It follows
from Theorem 1.1 that if f¢, ,, is orientable, then f, ,, is orientable.

One proves similarly that if f% ,, is orientable, then f, ,, is orientable.

The condition of (i) is sufficient. We shall establish this and the remainder
of Theorem 7.2 by proving the following lemma. We are supposing that n > 2.

Lemma 7.2 (a). f%,,, is orientable, if its lower shell f, ,, is orientable, and
index a = k is on the range 2, - - -,n — 1.

(B). £, is orientable, if its upper shell f ,, is orientable, and index a = k
isontherange 1, -..,n — 2.

Proof of («). When 1 < k < n, a covering ['¢,,, of f% , is given by the
presentations

(7.21) F* H, (p ranging over f%)

and their inverts, while a covering I", 4, of f, 4, is given by the presentations
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(7.22) F* , H; (p ranging over f%)

and their inverts. (See Table I".) The presentatations in I'¢,,, and I" , ,, admit
a biunique matching &: I, ., < I't,,,, under which

(7.23) F* o F°, H,oH,
and
(7.24) Fro Fe,  H,oH;.

Under ¢ each presentation in I'¢, ,, is matched with a restriction in I, ,,.

By hypothesis of («) there exists a subset / of presentations in I"|, ,, which
form an orienting covering of f, ,,. The subset &4 of presentations in I
covers f¢, ,, and, by virtue of Lemma 1.5, is an orienting covering of f¢, .

Proof of (8). The proof of (p) is similar to that of (). The index k is on
the range 1, - . -, n — 2. One makes use of F’i,ﬁ’i,H; and ﬁ;.

Statements (ii), (iii) and (iv) follow from Lemma 7.2. Hence the proof of
Theorem 7.2 is complete.

The following special lemma is needed in § 8.

Lemma 7.3. Let a be a critical value with 0 < index a < n, and a’ be a
critical value such that (a’, a) is an interval of ordinary values of f. If the shell

¢ v i such that f, ., is orientable, then f . ., is orientable.

Proof. We introduce a C=-diff

a
(a,v)

(725) T: f(y,a) - f(a',a)

under which each maximal ortho-f-arc y on f, ,, is mapped onto the maximal
ortho-f-arc ¥’ on f,. 4, extending y, so that a point p e y goes into the point
p’ € ¢’ such that

(7.26) fp)—a _da—a

fp)—a p—a’

If ¢ is a sufficiently small positive constant, and f, ,, is covered (as is possible)
by an “orienting” set of presentations Qe Z.f, ., then the presentations
(T'|RQ) - Q will be an orienting set in D,f 4. q, covering f 4. q,-

8. The existence of inverting critical shells

We begin with new notation.

Submanifolds M, , and M}, ,. Let « and 8 be values of f such that « > m
and B < M respectively. We shall denote by M, , and M} ;, open submanifolds
of M, with differential structures induced by that of M, and carriers
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Mz = {xe|M,||f(x) <o},

®0 M3, = (ve M1 > B}

We suppose n > 2 in § 8.

Lemma 8.1. Let a be a critical value of f with 0 < index a < n. If M} ,
and the critical shell f¢, ,, are orientable, then M, , is orientable.

Proof. Let e < ¢ be a positive constant such that the minimum distance
from f* to f* on M, exceeds 3e. Set

(8.1 I' = Qef(a,,v) .

Let I be an inversion (see Def. 1.5) invariant covering of f?, ,, obtained by
adding to I" presentations in 2,f¢, , the range of each of which meets f,, ,,.
Let I be an inversion invariant covering of M; , obtained by adding to I
presentations in 2,M;; , the range of each of which meets H; ,.

Suppose Lemma 8.1 false. By an extension of Theorem 1.2 to the sub-
manifold M}, , of M, there then exists an inverting F« F in . By Lemma 1.3
we can suppose that F is in I'. If F«F is in I, we have a contradiction to the
hypothesis that f¢, ,, is orientable. If the sequence Fx F is not in I", we shall
show that it can be admissibly modified without changing F or F, so that the
modified sequence is in /7.

Modification of FxF. A presentation in F « F which is not in 7" meets M,

and is a nonterminal presentation in a subsequence of consecutive presentations

(8-2) QI:QZ:"':Qr

of FxF such that Q, and Q, are in I", while the remaining Q,’s have ranges
which meet M; ,. Each presentation in (8.2) is in 2,M; , as a consequence of
our choice of e. Since M; , is orientable by hypothesis, and since f, ,, is arc-
wise connected and

f(a.») c M:z—,a )
each subsequence (8.2) of FxF can be replaced by an admissible sequence

Q1:P1:"':Ps:Qr

in which the presentations P; are in ['.

The sequence Fx F so modified will be in 7”. This is impossible since f2, ,,
is orientable by hypothesis. Thus Lemma 8.1 is true.

We continue with the following lemma, referring to the value s in f¢, ,,.

Lemma 8.2. Let a be a critical value with 0 < index a < n, and a’ < a be
the critical value next below a. If M, , is orientable, then M, ,. is orientable.
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Proof. If M} , is orientable, its submanifold f, ,, is orientable. According
to Lemma 7.3, f., .4, is then orientable. By an argument similar to that used
in proving Lemma 8.1 one then proves that M, ,. is orientable. The roles of
the values g, a, v in the proof of Lemma 8.1 are played by the respective values
a’, u, a in the proof of Lemma 8.2.

Lemmas 8.1 and 8.2 combine to give the following.

Lemma 8.3. Let a be a critical value with 0 < index a < n, and a’ be the
critical value of f next below a. If M}, , and ¢, , are orientable, then M; ,. is
orientable.

By an induction with respect to the critical values of f of index < n enu-
merated in the order of decreasing values, one proves the following theorem.
Theorem 7.2 is essential for the proof.

Theorem 8.1. If f;, ,, is orientable for each critical value o of index n — 1
which exceeds a critical value a, then M}, , is orientable.

We turn to nonorientable manifolds M,,.

Theorem 8.2. (i) If M, is nonorientable, there is a greatest value o
among critical values a with nonorientable critcal shells f¢, .

(ii) The value w is the least of the critical values a such that M} , is ori-
entable.

(iii) For this value o, f,, ,, is orientable and f,, ,, nonorientable.

(iv) Indexw =n — 1.

Proof. Statement (i) is a consequence of Theorem 8.1. It follows from
Lemma 8.3 that M , is orientable. Statement (ii) follows from (i) and Lemma
8.3. Since f, ,, is orientable and f¢, ,, orientation inverting, f,,, is nonorient-
able, so that (iii) is true. That index w = n — 1 follows from Theorem 7.2.

Theorems dual to Theorems 8.1 and 8.2 are obtained by reasoning with —f
as with f.

Dual of Theorem 8.1. If f¢, , is orientable for each critical value « of
index 1 which is less than a critical value a, then M, , is orientable.

Dual of Theorem 8.2. (i) If M, is nonorientable there is a least value o’
among critical values with nonorientable critical shells.

(i) The value o' is the greatest of the critical values a such that M, , is
orientable.

(iii) For this value o', f,, ., is orientable and f{ ,. ,, nonorientable.

(iv) Index o’ = 1.

The theorems of this section together with Theorem 7.2 imply the following
theorem. Recall that n > 2 and that f is biordered.

Theorem 8.3. If M, is nonorientable, then there exist just one inverting
critical shell f;, ,, such that index @ =n — 1 and just one inverting critical shell
f¢. ., such that index o’ = 1. Each critical shell f¢, ,, for which o’ < a < o has
a nonorientable upper and lower shell. Of the three open submanifolds

f(m,w')’ f(w’,w)’ f(w,M)
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of M,, the first and third are geometrically orientable and the second is geomet-
rically nonorientable.

9. The equivalence of geometric and homological orientability

In this section we shall prove that if n > 2 and M, is nonorientable, then
R,(M,],Q) = 0. It can be shown by elementary methods without any use of
triangulation that when a C~-manifold M, is compact, connected and non-
orientable, then R,(|M,|, Q) = 0. Proceeding inductively we shall make the fol-
lowing hypothesis.

Inductive hypothesis. We shall assume that if #» > 2 then for each integer
r such that 1 < r < n an admissible differentiable nonorientable manifold M,
is such that

9.D R,(M,,Q) =0.

In Lemmas 9.1,9.2,9.3 we suppose that M, is nonorientable and that
n > 2. The following lemma is essential.

Lemma 9.1. Let f¢, ,, be the orientation inverting critical shell of M, with
index w = n — 1. If one sets

9.2) g =11t »

then p, is a critical point of g of linking type over Q, relative to g, and hence
relative to f.
We shall prove Lemma 9.1 by verifying the following statements:
I. If w < e <y, then f¢ is orientable.
II. If 4 < ¢ < w, then f° is nonorientable.
III. R,_(f,Q) = 0.
IV. R, ,(£,,Q =0, . = 8, — p.)-
V. Rn—l(gan Q) = 1.

Proof of 1. According to Theorem 7.2, f, ,, is orientable. Were f¢ a non-
orientable manifold M,,_,, it would follow, as in the proof of Theorem 2.1 (i),
that f, ,, would be nonorientable contrary to fact. Hence I is true.

Proof of II. According to Theorem 7.2, f,, ,, is nonorientable. Suppose II
false, that is, suppose that f¢ is orientable. By Def. 1.1 of geometric orient-
ability there exists an orienting covering I" of ¢ in 9_.f¢, where ¢ < ¢ can be
taken as an arbitrarily small positive constant. If ¢’ is sufficiently small, a set
of ff-presentations based on presentations in 2,.f¢ (cf. (2.4)) will give an orient-
ing covering I of f, ,, in 2.f, ,,. (See conditions on e of (7.2).) From this
contradiction to the nonorientability of f,, ,, we infer that f° is nonorientable.

Proof of 1II. By our inductive hypothesis, III is true since f¢ is nonorient-
able.
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Proof of IV. There exists an f-deformation on M, retracting ¢, onto f°.
See [6, § 23]. Since R, _,(f°>, Q) = 0, IV is true.
Proof of V. We shall again apply Theorem 5.2, replacing g therein by

9.3) r= —flft, -

The critical value w of f yields a critical value « = —w of y. The critical point
z = p, of f is a critical point of y of index 1. We set 7, = 7, — 2.

Since f¢ is orientable by I, Theorem 6.2 implies that R, _,(f¢, Q) = 1. How-
ever, there exists an f-deformation retracting 7, onto f¢, implying that

-4 R, (7, Q =1.

Since n — 1 > 1, it follows from Theorem 5.2 that

.5 Ry (1@ =1.

There are an f-deformation retracting f, ,, onto y, and an f-deformation re-
tracting f¢, ,, onto g, so that V is true.

The application of Theorem 5.2 to g shows that when 1V and V are true,
D, is of linking type relative to g. This completes the proof of Lemma 9.1.

Lemma 9.1 is supplemented by Lemma 9.2.

Lemma 9.2. Under the hypotheses of Lemma 9.1 let 2*~' be a rational
linking cycle of p, relative to g. Then the following is true:

(i) There exists a rational cycle y*~' on g* such that

9.6) At~ yr-t (overQon g,) .

(i) The cycle yr~' is an (n — 1)st RHP of g*, g, and f¢, ,,.

Proof of (i). Because g, admits an f-deformation D retracting g, onto g°,
there exists an (n — 1)-cycle y»~! on g* such that (9.6) holds.

Proof of (ii). By V of the proof of Lemma 9.1, R,_,(g,, Q) = 1. It fol-
lows from Theorem 5.2 (ii) that A»~! is an (n — 1)st RHP of g,. Since (9.6)
holds, y*~' is similarly an (n — 1)st RHP of g, and hence of g (since D exists).
Since there exists an f-deformation retracting f¢,, onto g*,y:~' is also an
(n — st RHP of f¢, ,,.

The following lemma is essential in proving, without triangulation of M,
that geometrical and homological orientability of M, are equivalent.

Lemma 9.3. Continuing Lemmas 9.1 and 9.2 let e be any ordinary value
of f such that o < e < M. Then the following is true:

(i) If yr'isan (n — 1)st RHP of f*, then

9.7 yr %0  (over Qon f,) .
(i) If yr~! is a suitably chosen (n — 1)st RHP of f¢, then
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9.8 yol~yrt (over Q on fg, ,7) -

Proof of (). The cycle 2»7' of Lemma 9.2 is a linking cycle of p, relative
to g and hence relative to f. It follows from [6, Theorem 29.3 (ii)] that A*~! is
in an (n — 1)st RHP of f,. Hence y*~! of (9.6) is in an (n — 1)st RHP of §,.
Since each of the critical values « of f between w and M (if any exist) is of
index n — 1, successive application of Lemma 5.2 and [6, Theorem 29.3] to
the successive sets f, shows that y»~!is in an (n — 1)st RHP of each set [,
and f,. A final application of Lemma 5.2 to f, shows that y*~! is in an
(n — 1)st RHP of f,. Hence (9.7) holds.

Proof of (ii). Given f¢,,, let ¢ < e be an ordinary value of f such that
o <c<vy An(n— 1)st RHP of f is an (n — 1)st RHP of f,,, ,,, f;..., and
f¢...,- Hence, by (ii) of Lemma 9.2, if y7~' is properly chosen, then

9.9) yrl~yrt (over Qon® fy, ) .

According to Theorem 8.2, M; , is geometrically orientable. It follows from

n,0

Theorem 6.3 that if y»~' is a suitably chosen (n — 1)st RHP of f¢, then

(9.10) yet~ypt (over Q on fi. ) -

The homology (9.8) follows from (9.9) and (9.10). This completes the proof
of Lemma 9.3.

Theorem 6.2 and the following theorem complete the proof that geometric
and homological orientability are equivalent.

Theorem 9.1. If M, is nonorientable, then

9.11) R,(M,|,Q) =0.

In § 6 we have seen that if 8 is such that M — g is positive and sufficiently
small, then f? is the carrier of the algebraic boundary y;~' of a “simply carried”
n-cap associated with p,,. So defined y3~'is an (n — 1)st RHP of f?. According
to [6, Theorem 29.3], (9.11) holds if and only if

9.12) it #0  (on fy) .

The above value of g is admissible as e in Lemma 9.3, so that it follows from
(9.7) and (9.8) that (9.11) is true.

Since the n-th Betti number of M, equals its n-th connectivity over Q,
Theorems 9.1 and 6.2 have the following corollary.

Corollary 9.1. The manifold M, is geometrically orientable if and only if
its n-th Betti number is 1.

18 The homology (9.9) holds on f,,.,, by virtue of Lemma 9.2, and hence on frs.c], since
there is an f-deformation retracting f.,» onto fu,c3.
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*10. The Table [ of § 7

When M, is nonorientable, » and «’ are respectively the inverting critical
values of f of indices n — 1 and 1. It will be useful to obtain further information
concerning the pair of monoverlapping presentations

(10.1) ‘F2-t, "F"t (n[l,,)
and the pair
(10.2) } 'FL, "FL  (inTl,.,)

as introduced in Table I'. The relations

(10.3) F»~' Com 'F"~'; F*' Com "F*~'  (in 9.f, ,)

are a consequence of the fact that the presentations (10.1), as defined in (7.20),
are restrictions of the presentations F*~' in I}, ,;, as defined in (7.5). The rela-
tions

(10.4) F'Com’F*, F Com”F.  (in2f:.,)

are valid for a similar reason. We shall make use of the coverings of f¢, ,, and
ft...,» as given by the presentations (7.9) and their inverts, when a = w and o’
respectively.

Recall that the submanifolds M; , and M, ,. of M,, are orientable. We shall
prove the following theorem. We suppose n > 2.

Theorem 10.1. When M,, is non-orientable and w is the inverting critical
value of index n — 1, there is no orienting covering of M; , which contains
both of the presentations (10.1).

To prove Theorem 10.1 it is sufficient to prove

(i) There exists an admissible sequence in [, ,, of the form

(10.5) IFr-ly /7 fr-t

Proof of (i). Since the critical shell f¢, ,, is nonorientable, there exists in the
covering [, ,, of f¢, ,, an inverting sequence
(10.6) Frly e
of the form

(10.7) 0:0::0,:0,,, (Q=F1,0,, =Kk

in which the non-terminal presentations are of the type of H, or H, in Ie, ..
We can suppose that the ranges of Q, and Q, are such that neither Q, nor Q,
overlaps both of the presentations (10.1).
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Corresponding to the sequence (10.7) in I'¢, ,, an admissible sequence

(10.8) QF:QF: - :QF:0%, (inTl,)

is uniquely determined in the covering I, ,, of f, ,, by the sequence (10.7) and
by the condition that Q¥ be a restriction in I, ,, of Q; in I'¢, ,, for j on the
range 0,1, -..,r + 1. More specifically, QF will be the unique restriction in
r,,ofQ,inI%,, for k on the range 1, - - -, . Then QF must be that one of
the two restrictions (10.1) in I", ,, of F*~" in I'¢, ,, which overlaps QfF, while
Q¥,, must be that one of the two restrictions of )

(10.9) frv, VFnt o (in )

which overlaps Q}. The sequence (10.8) is admissible by virtue of Lemma 1.5.
With (10.8) thereby uniquely determined we shall conclude the proof of (i)
and Therem 10.1 by verifying the following.
(i) The sequence (10.8) in I, is either a sequence of the form (10.5) or
a sequence of the form

(10.10) "Er-ty/Fret o (in Ty, .

Note that the existence of a sequence of the form (10.10) implies the exist-
ence of a sequence in I, ,, of the form (10.5).

Proof of (ii). As we have seen, Qf in I, ,, is 'F7~! or "F7~' while Q¥ ,, is
either 'Fn= or ”Fn-1, If Q¥ = 'F"~! then Q},, = "F7~*; otherwise, the se-
quence (10.8) would be an inverting sequence

'FrtyFr-t (i T,.,) ,

contrary to the fact that f,, is orientable. Similarly, if Qf = “F’~', then

;"H:’F n-1 Thus (ii) is true, and Theorem 10.1 follows.

The following is the dual of Theorem 10.1.

Theorem 10.2. When M, is nonorientable and «' is the inverting critical
value of index 1, there is no orienting covering of M;, . which contains both of
the presentations (10.2).

We supplement Theorems 10.1 and 10.2 by the following two theorems.

Theorem 10.3. When M, is nonorientable and a is a critical value of f of
index n — 1 between o and M, there is an orienting covering of M} , which
contains both of the presentations

(10.11) 'Fr-t, VFnol (in g, -

Theorem 10.4. When M, is nonorientable and a is a critical value of f of
index 1 between m and ', there is an orienting covering of M, . which
contains both of the presentations '
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(10.12) FL, FL (inl.q) .

Proof of Theorem 10.3. It is sufficient to show that the following statement
is true.

(i). Under the hypotheses of Theorem 10.3 there is no admissible sequence
in I, of the form

(10.13) IFn-1y /! fn-t

in which the non-terminal presentations are of the type H; or H: in I',, ..
As in the proof of Theorem 10.1, preceeding however from a sequence in

I',, to asequence in I'¢, ,, one shows that the existence of a sequence in

I, of form (10.13) implies the existence of a sequence ¢, ,, of the form

A
-1 -1
Fr-lxFr-1 |

contrary to the fact that the critical shell f¢, ,, is orientable when a is a critical
value between @ and M.
The proof of the dual Theorem 10.4 is similar.
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