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ORIENTATION OF DIFFERENTIABLE MANIFOLDS

MARSTON MORSE & STEWART S. CAIRNS

0. Introduction

We shall study compact, connected C°°-manifolds Mn provided with a
Riemannian metric. Homologically characterized, an "orientable" manifold Mn

is a manifold whose n-th Betti number is 1, or equivalently a manifold whose
ft-th connectivity over the field Q of rational numbers is 1. If the manifold
Mn is triangulated, another and equivalent characterization is that the simplicial
cells of Mn can be coherently oriented, in the classical sense.

In [6] the authors concern themselves with a systematic development of
singular homology on Mn without making use of any triangulation of Mn. Tri-
angulations are avoided for two reasons. In a study of ND (abbreviating non-
degenerate) functions on Mn it is found that a global triangulation is neither
needed nor relevant. A deeper reason is that the methods of the critical point
theory, if developed without any use of global triangulations of Mn, are extend-
able to compact, connected topological manifolds admitting a topologically ND
function. See [4], [8] and [7]. For a definition of topologically ND functions
see [1].

Objective. We shall give a geometίc definition of the orientability of Mn.
This definition has many consequences in the study of ND function on Mn. In
particular one can show, without making use of any global triangulation of Mn,
that Mn is geometrically orientable in our sense if and only if βn(Mn) =1. It is
believed, moreover, that the theory here developed for difϊerentiable manifolds
has an extension to topological manifolds admitting a topologically ND func-
tion. The theorems on "critical shells", introduced in § 7 when n > 2 and / is
"biorderd" (§4), are believed to be fundamental both in the orientable and
nonorintable case.

1. Inverting sequences of presentations

Definition l O. ± Compatibility1. Two overlapping presentations Q and F
+ —

in Q)Mn (see [6, § 13]) will be said to be Com (Com) if the transition diff λ as-
sociated with Q and F (see [6, § 5]) has a positive (negative) Jacobian at each
point of the euclidean domain of definition of λ. The intersection of the ranges
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1 Compatible will be abbreviated by Com.
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RQ and RF of Q and F may fail to be a connected set, and Q and F may
+ -

accordingly fail to be Com or Com. We shall, however, establish the following
basic lemma.

Lemma 1.0. // ε is a sufficiently small positive constant, any two overlap-
ping presentations in Q)Mn, whose ranges on \Mn\ are connected subsets of \Mn\

+ —

which have diameters on \Mn\ at most ε, are either Com or Com.
Proof. A sufficiently small positive constant ε has the following property:

corresponding to each point p e | Mn | there exists a presentation Fp <= Q)Mn whose
range RFP is an open topological «-ball which contains each point q e \Mn\ at
most a distance ε on \Mn\ from p. The proof of this statement can be given in
many ways. It depends on the fact that \Mn\ is a compact manifold. For such
an ε Lemma 1.0 is satisfied, as we shall now verify.

Let Qλ and Q2 be presentations in <2)Mn whose ranges are connected subsets
of \Mn\, which have diameters on |ΛfTO| at most ε and which contain a common
point p. Note that

(1.0) RQ.cz RFP;RQ2(ZRFP .

Since RQλ is a connected subset of RFP, it follows that Qλ and Fp are either
+ - . + -

Com or Com. Similarly Q2 and Fp are either Com or Com. Since

(1.1) RQ, Π RQ2cRFp ,

it follows that Qγ and Q2 are Com or Com regardless of whether RQY Π RQ2

has one or more components.
The ensemble @εMn. In accord with Lemma 1.0 we denote by @eMn the

subset of presentations in @Mn whose ranges are connected subsets of \Mn \ with
diameters less than ε. We suppose ε conditioned by Lemma 1.0.

Definition 1.1. Orientable manifolds. The manifold Mn will be termed
orientable3 if it admits a covering Γ by a subset of presentations in Q)Mn such

+
that any two overlapping presentations in Γ are Com. Such a covering Γ will
be termed orienting.

If Mn is orientable, there always exists a finite orienting covering Γ of Mn,
since \Mn\ is compact. If Mn admits an orienting covering Γ, it admits an ori-
enting covering in @εMn, taken as the union of all presentations P e @εMn such

+
that for some presentation Qe Γ, P Com Q and RP c RQ.

To find conditions sufficient that Mn be orientable various definitions are
needed.

Definition 1.2. Sequences Qx*Qμ. A sequence

2 \Mn\ is the carrier of Mn.
3 Orientability in the sense of Def. 1.1 will be termed geometric.
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(1.2) βΓ.β,: : β , 0< > 2)
+

of presentations <2i e ̂ e M n such that each presentation except the last is Com
with its successor, will be denoted by Qx * Qμ. A sequence Qλ * Qμ is not unique-
ly denned by the presentations Qx and Qμ.

We term a sequence Q^Qμ admissible.
As a prelude to our study of "inverting sequences" we shall inroduce two

+
lemmas on what we shall call conditioned transitivity of the relation Com. If

+ -
Qλ and Q2 are two presentations in @εMn which are Com, or Com, we shall

+
write Qx Com Q2, or Q1 Com Q2, respectively.

Lemma 1.1. // A,B,C are three presentations in @eMn such that

(1.3) ^ComC, fiComC,

+
then A Com B whenever

(1.4) RA Π RB Π RC Φ 0 .

The proof is trivial. We continue with an extension.
Lemma 1.2. Let F e &εMn be given with a sequence* <2i * Qμ °f form (1.2)

+
such that Q1 Com F and

(1.5) RQ,.! Γ[ RQj Γ\ RF Φ 0

+
for j on the range 2, , μ. Then Qj Com F for each j .

+
Proceeding inductively we assume FCom Q0_x for some / on the range 2,

• ., μ. Since

+

(1.6) Qj Com Qj_λ (by hypothesis)

+
and (1.5) holds, Lemma 1.1 implies that Qj ComF.

Lemma 1.2 follows.
Presentations F and F Let (F: U,X) be a presentation in @eMn. The

domain U of F is an open nonempty subset of a euclidean space En of co-
ordinates u19 - - , un. Let p be a reflection of £/ in the coordinate (n— 1)-plane
En_1 of Z£TO on which ww = 0. The presentation

(1.7) (Fop-i

4 All sequences Qι * β^ satisfy the conditions of Def. 1.2.
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-j-

will be denoted by F. It is clear that F and F are Com. We term F the invert
of F.

Definition 1.3. Inverting sequences. A sequence Qx * Qμ such that Qμ — Qx

or equivalently Qγ = 2 Λ will be called an inverting sequence.
We shall prove the following lemma.
Lemma 1.3. // an inverting sequence exists on Mn, then for each presenta-

tion F 6 @εMn there exists an inverting sequence F*F.
Proof. By hypothesis, for some presentation Q e @εMn there exists an

inverting sequence β * β . Because \Mn\ is arcwise connected, one at least of
the two following cases arises:

Case I. A sequence F * Q exists
Case II. A sequence F*Q exists.
In Case I a sequence Q*F also exists. Hence a sequence F * F exists of the

form

(1.8) ( F * β ) : ( β * 0 : ( β * i O .

Thus Lemma 1.3 is true in Case I.
In Case II a sequence F * F exists of the form

(1.9) ( F * 0 : ( ρ * 0 : ( Q * F ) .

Thus Lemma 1.3 is true in both cases.
In preparation for a proof of Theorem 1.1 we shall give a definition and prove

a lemma and a corollary.
Definition 1.4. An orienting covering of Mn in Q)εMn is termed maximal in

QιεMn if it is a subset of no other orienting covering of Mn in Q)εMn.
Lemma 1.4. // there exists an orienting covering Δ of Mn in Q)εMn, there

exists an orienting covering of Mn which is maximal in Q)εMn and includes Δ.
We shall show that the set of presentations

(1.10) Γ = {Ae$εMn\AComQ for some Q € Δ}

is a maximal orienting covering in @εMn. We first prove (a):
+

(a) If F and G are two overlapping presentations in Γ, then F Com G.
+

Case 1. Suppose F and G are in Δ. Then F Com G by definition of Δ.
Case 2. Suppose that just one of the presentations F and G, say G, is in Δ

and the other F is in Γ — Δ. Since Δ is a covering there exists a presentation
Q e Δ overlapping F. Because RF is arcwise connected, Δ contains a sequence
Qλ * Qμ such that Qx = Q, Qμ = G and

(1.11) RQ^ ΠRQj ΠRFΦ0 (7 = 2, •••,/*) .
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+

From Lemma 1.2 it follows that F Com Qμ.
Case 3. Suppose that F and G are in Γ — Δ. Since F and G overlap and

Δ is a covering, J contains a presentation 2 such that RF Π i£G Π RQ Φ 0.
By Case 2, F Com Q and G Com β. Hence by Lemma 1.1, F Com G.

Since Δ C Γ, Γ is a covering of Mw and it follows from O) that Γ is an
orienting covering. If A e @εMn, then exactly one of the pair {̂ 4, ̂ 4} is in Γ by
virtue of (#). Therefore, if Γ denotes the set of inverts of elements of Γ, then
(Γ, Γ) is a partition of @εMn. It follows that Γ is maximal.

Thus Lemma 1.4 is true.
We state a corollary.
Corollary 1.1. // Mn is orientable, there exists a unique partition (Γ, Γ)

of Q>Mn m which Γ and Γ are maximal orienting coverings of Mn in ^εMn-
Theorem 1.1. A necessary and sufficient condition that Mn be orientable

is that there exist no inverting sequence in @εMn.
(a) The condition is necessary. In fact, if Mn is orientable @εMn admits

a partition (Γ,f) as in Corollary 1.1. If Q^Qμ is a given sequence, then
QλζΓ or <2χ € f. If Qx e Γ, then each presentation in the sequence Qx * Qμ,
including Qμ, must be in Γ. The sequence cannot then be an inverting sequence.
If Q\ £ Γ the proof is similar.

The condition of Theorem 1.1 is accordingly necessary.
(β) The condition of Theorem IA is sufficient. We seek a subset of &eMn

which is an "orienting covering" Γ of Mn (Def. 1.1). We shall define f as a
special subset of @εMn whose presentations cover Mn, and prove that any two

+
overlapping presentations in Γ are Com.

The definition of Γ. Let A be a finite or countably infinite range of indices
a. Let

Π = (QXZA , Π = (QX€A

be subsets of @εMn s u c n t n a t t n e presentations of Π (and hence of 77) cover Mn.
Let a presentation Ho e Π be prescribed and fixed. For each a e A one, at least,
of the presentations Qa and Qa, say Ha, is such that a sequence H0*Ha exists.
With Ha so defined we set

(1.12) Γ = (HaUA .

We understand that 0 is an index in A so that Ho is in Γ. It is clear that the
presentations of Γ cover Mn.

It remains to prove the following:
I. If Ha and Hβ are two overlapping presentations in Γ, and no inverting

+

sequences exist in @εMn, then Ha and Hβ are Com.

Suppose on the contrary that Ha and Hβ are Com. Then one has the relation
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(1.13) HβComHa.

By definition of Γ there exist sequences H0*Ha and H0*Hβ. There accord-
ingly exist a sequence Ha*H0 and, by virtue of (1.13), a sequence of the form

(1.14) Hϋ*Hβ:Ha .

Hence there exists an inverting sequence of the form

(1.15) Ha*H0:H0*Ha

contrary to hypothesis in /.

Hence I is true and the conditions of Theorem 1.1 are sufficient. This com-
pletes the proof of Theorem 1.1.

We shall make use of the following lemma, leaving its verification to the
reader.

Lemma 1 5. Two overlapping presentations in Q)εMn which are restrictions
+ +

respectively of presentations F and Q in @εMn are Com if and only if F Com Q.
Definition 1.5. Inversion invariant coverings of Mn. A subset A of presen-

tations m@εMn, which covers Mn and is such that Q is in A whenever Q is in
A, will be called an inversion invariant covering of Mn.

The following lemma is immediate.
Lemma 1.6. // Mn admits an orienting covering, and A is an inversion

invariant covering of Mn in @εMn, then the following is true.
If (Γ, Γ) is the partition of @εMn given in Corollary 1.1, then A admits a

unique partition

(Γ Π A,f Π A)

into two subsets each of which is a maximal orienting covering of Mn in A.

Theorem 1.1 can be generalized as follows.
Theorem 1.2. // A is an inversion invariant covering of Mn, then a neces-

sary and sufficient condition that Mn be orientable is that there exist no invert-
ing sequence F*F in A.

The condition is necessary since an inverting sequence in A would be an
inverting sequence in @εMn, contrary to Theorem 1.1. A proof that the con-
dition is sufficient is given by the proof that the condition of Theorem 1.1 is
sufficient, on replacing S)εMn, wherever it occurs in the latter proof, by A.

Definition 1.6. Extended geometric orientability. Let Mf

n be a differen-
t i a t e manifold such that \M!n\ is an open arcwise connected subspace of \Mn\
and Mf

n has a differentiate structure induced on \M'n\ by Mn. Definitions 1.1
to 1.5 can be extended to M'n, by replacing Mn by M!n. The lemmas and theo-
rems of § 1 remain valid if Mn is replaced by M'n.
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2. /-level manifolds on Mn

Definition 2.1. Admissible ND functions /. We admit ND functions / of
class C°° on Mn such that / has different values a at different critical points and
just one critical point of index 0 and one of index n. See [2]. The critical point
of / at the /-level a is denoted by pa.

Given a value c of /, a subset of \Mn\ of the form

(2.1) y = {xε\Mn\\Kx) = c}

is called an f-level set on Mn.
If c is an ordinary value of /, then fc is a compact topological (π — ^-mani-

fold which is the union of a finite number of disjoint compact, connected,
topological (n — 1)-manifolds. It is well-known that when c is ordinary, fc is
the carrier of a C°°-manifold £c which is C°° -embedded in Mn by the inclusion
mapping of fc into | M n | . See (ii) of the proof of [6, Theorem 20.1].

When c is a critical value a of / of index5 k Φ 0 or n, the topological mani-
fold fa = fa — pa is also the carrier of a C°°-manifold fa which is C°°-embedded
in Mn by the inclusion mapping of fa into | M n | .

Notation. Suppose that c is an ordinary value of /. Let Mn_1 be a compo-
nent of ic. Let a metric on Mn_1 be induced by the Riemannian metric on Mn,
and Q)eMn_γ be a subset of the presentations in @Mn_1 with e conditioned rela-
tive toMn_1 as ε was conditioned by Lemma 1.0 relative to Mn. Wesupρosee<ε.

A trajectory on Mn which is orthogonal to the non-singular level manifolds
of / will be called an ortho-f-arc on Mn. Each such arc γ will be parameterized
by the values of / on γ.

//-Presentations. The proof in § 20 of [6] that the non-singular level mani-
folds fc are C°°-embedded in Mn by the inclusion mapping of fc into \Mn\ makes
use of specialized presentations 3F e @Mn, termed ff-presentations, whose
nature we shall briefly recall.

The euclidean domain of an ^ is taken as a product / x V of a bounded
open interval / containing the value c of f and an open subset V of the coordi-
nate (n — l)-plane En_ι of En on which the coordinate un = 0. A point in /
will be represented by its coordinate t, a point in V by rectangular coordinates
ΐ>u * > ^w-i5 a point in the domain / x V of ίF by a set of coordinates

(ί, v19> , vn_x) = (ί, v) .

An //-presentation J^ is a presentation in Q)Mn which can be given the form

(2.2) (t,v)-+0r(t9v):Iχ V-^\Mn\

subject to the condition that each partial mapping t —> ^(t, v)\ J —> \Mn\ be

5 A critical value a of / is said to have the index of the corresponding critical point ρa.
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an ortho-/-arc. When c is an ordinary value of /, / is restricted to an open
interval of ordinary values of / containing c. In this case, partial mappings of
the form v —> «^(c, v): V —> fc cover fc and define a differential structure of class
C°° on /c. With this structure fc becomes a differentiate manifold fc, C°°-em-
bedded inMn by the inclusion mapping of /c into \Mn\. We suppose fa similar-
ly denned when a is a critical value.

"Bases" of //-presentations. If c is ordinary, let Mn_1 be a component of
fc. If c is a critical value α of / let Mn_1 be a component fa. If a presentation

(2.3) ( β : F,Z)

is given, an //-presentation

(2.4) ( # : / X V,

based on Q is denned as follows. If c is an ordinary value of /, then / shall be
an interval of ordinary values of / as above. If c = a is critical, / shall be an
interval of values of / of which a alone is critical. For (ί, v) e / x V, H(t, v)
shall be the point at the /-level / on the ortho-/-arc which meets the point Q(v)
oί Mn_λ when t = f(Q(v)).

We can now prove the following theorem.
Theorem 2.1. (i). Suppose that n > 2 and that c is an ordinary value of

/. // a component Mn_ι of ic is non-orientable, Mn is non-orientable.
(ii) // Mn is orientable, then for each ordinary value c of f each component

of ic is orientable.
Proof of (i). Since Mn_ι is non-orientable, there exists (Theorem 1.1) an

inverting sequence F * F of presentations

(2.5) β i : β 2 : : β , (F = Q,; F = Qμ)

in QjeMn_x. For i on the range 1, , μ suppose that Qt has the form

(2.6) (β < : Vi9Xt) .

We are taking e < ε so that if / is a sufficiently small open interval containing
c, then an //-presentation

(2.7) (Ht:Jχ VuYύ*®Mn

based on Qt exists. The sequence

(2.8) Hx\ H2: . . . :Hμ (in @εM n)

is readily seen to be admissible on Mn. The hypothesis that Qμ = Qx implies
that Hμ — Hί so that (2.8) is an inverting sequence Hι*Ήι in @εMn.

Thus Theorem 2.1 (i) is true. The proof of Theorem 2.1 (ii) is similar.
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3. /-Preferred Rίemannian structures on Mn

In [6, § 22] we have shown that a Riemannian structure on Mn can always
be modified near the respective critical points of / in such a manner as to leave
Mn and / unchanged and yield a new Riemannian structure on Mn of the type
which we have termed f-preferred. We shall recall the theorem which char-
acterizes such structures.

To that end let Dσ be an open origin-centered n-ball of radius σ in the
euclidean space En of coordinates u19 , un. Let6

(3.1) (F: D., X) e ®Mn (F(O) = pa)

be a presentation of a neighborhood X of a critical point pa of /. We term the
presentation F "isometric" if the euclidean length in En of any rectifiable arc
γ C Dσ equals the Riemannian length on X of F(γ). The following theorem
is a special consequence of [6, Theorem 22.2].

Theorem 3.1. // σ > 0 is sufficiently small, there exists a Riemannian
metric1 on Mn such that corresponding to each critical point pa of f of index k
there exists an isometric presentation F = la of form (3.1) of a neighborhood
X of pa on Mn such that

(3.2) KΠu)) -a= -u\- • . - M» + ul+ι + + u\ {ueDa) .

Ortho-f-arcs near pa. Set

(3.3) φk(u) = — u\ — — u\ + u\+1 + + u\ ,

and

(3.4) Z - pα - X , Dσ-O = Dσ.

Since /α is isometric, the ortho-/-arcs on X are images under Ia of the ortho-
^-arcs on Z)σ. Orthogonality in Da is euclidean.

T/zβ c«5*̂  k — n — \. In this case let En_1 denote the coordinate (n — 1)-
plane in Ew on which un — 0. With 0 < |0 < σ set

(3.5) J , = {κ €£„_,! | | i i l K p } .

Let Δp be J^ with the origin deleted. Ortho-^.i-arcs are radial in Δp and have
images under Ia which radiate8 from pa on Mn on the (n — l)-manifold Ia(Δp).
The intervals (0, p), ( — p, 0) on the ww-axis represent radial ortho-^n_ rarcs. All
other ortho-^^.i-arcs in Dp are arcs of rectangular hyperbolas with either the
positive ww-axis or negative ww-axis as an asymptote. See [6, § 22].

6 We denote the origin by O.
7 Obtained by a modification of a given Riemannian metric.
8 Strictly tend to pa as a limiting end point.
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The cone An_x. In § 7 we shall refer to the (n — l)-cone

(3.6) Λn_λ = {uεEn\ul = ul+ ... + < _ , }

and to the subsets Λ^_x and Λ~-i of Λn_λ on which un > 0 and un < 0 respec-
tively. The subsets A^_x and Λ~^λ intersect only in the origin.

Definition 3.1. A neighborhood9 Όk

e of O in En. Corresponding to the
function u -^ φk(u) defined by (3.3) when 0 < k < n, we shall define for future
use an arbitrarily small neighborhood

(3.7) E7* dDσ (0<e<σ)

in En of the origin O in En. Corresponding to a positive constant K α w e
introduce the truncated (n — I)-cone

(3.8) Ωe = {ueEn\φk(μ) = 0, \\u\\ < e] .

The neighborhood V\ shall be the union of the origin and all ortho-^-arcs
which meet Ωe or have the origin as limiting end point and on which φk is in
absolute value less than e. A final condition is that e be so small that (3.7)
holds.

The set JJ\ is connected and by virtue of condition (3.7) Ia is defined on £/*
and

(3.9) Ia\Uk

ee$Mn.

Subsets of £/*, with φk > 0 or φk < 0. Set

(3.10) Uk- = {uζUk

e\φk(u)<0} ,

(3.11) Ul = {uzUk

e\<pk(u)>0} .

The following lemma is easily verified.

Lemma 3.1. [/- is connected when 1 < k < n, and C/+ is connected when
e e

0 < k < n — 1. Neither JJ1- nor ϋl'1 is connected.
e e

C/1- is the union of two components

(3.12) 'lf-9 "lf-

on which ux > 0 and uλ < 0, respectively, while Ui'1 is the union of two

components
9The image Ia(U^) is a subset of fa+e = {xe Mn\f(x) < a + e} which is sometimes called

a "handle" of fa+e associated with the critical point pa. Such "handles" were first intro-
duced by Morse in 1925 although not called by this name. See the first reference to Morse
in [6].
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(3.13) 'E/Γ1 , "E/Γ 1

on which un > 0 and un < 0, respectively.

4. Λ/D functions / of biordered type

A ND function / shall be admissible in the sense of Def. 2.1.

Definition 4.1. f of biordered type. An admissible ND function / on Mn

will be said to be of biordered type if each critical value of index 1 is less than
each critical value of index k > 1 and, dually, each critical value of index n — 1
is greater than each critical value of index k < n — 1.

We shall prove the following theorem.

Theorem 4.1. There exists on Mn an admissible ND function f of biordered
type.

This theorem is here proved with the aid of the theory of "bowls" of / as
developed in papers [3] and [5].

Theorem 4.1 is a special case of the theorem that there exists on Mn an ad-
missible ND function the numerical order of whose critical values is in accord
with the indices of these critical values. This result was first formulated by
Smale [9]. It was discovered independently by Morse and is readily verified with
the aid of Morse [3] and [5], The proof here given of Theorem 4.1 illustrates
one mode of proof.

Proof of Theorem 4.1. The reader is asked to refer to [6, §22] for the
definition of "bowls ascending or descending" from a critical point with index
k. The following lemma implies Theorem 4.1.

Lemma 4.1. For ft > 2 the Riemannian form on Mn can be infinitesimally
modified10 near a finite number of ordinary points of f in such a manner that
the following is true.

(i) The 1-bowls ascending from the critical points of f of index ΛZ — 1 (if
any exist) have as upper limiting end points the critical point pM at which f
assumes its maximum M.

(ii) The 1-bowls descending from the critical points of index 1 (if any exist)
have as lower limiting end point the critical point pm at which f assumes its
minimum m.

Satisfaction of (i). To satisfy (i) the modification of the Riemannian form
need be made in the neighborhood of at most a finite set of points chosen as
follows.

Let B_(z, k) be a &-bowl descending from a critical point z of index k such
that 0 < k < ft, and c be an ordinary value of / such that c < f(z) and the
interval (c, f(z)) contains no critical values of /. If a 1-bowl γ ascending from

10 The modified Riemannian form is to be admissible over all of Mn.
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a critical point p of index n — 1 meets B_(z, k), it meets B_(z, k) in a point
w e f. Note that

(4.1) d i m (B_(z, k) f } f c ) = k - l < n - I .

It the Riemannian form is suitably altered on fc sufficiently near w, the
modified 1-bowl γ will not meet B_(z, k) Π f. Hence the modified 1-bowl γ will
"by-pass" z.

After modifications of this type in number less than the number of critical
points of / above p, the modified 1-bowl γ will ascend to pM as a limiting upper
end point. If each subsequent modification is made so small as not to alter the
"by-passing" of critical points by an original or modified ascending 1-bowl, all
1-bowls will ascend to pM as a limiting end point.

Satisfaction of (ii). One can similarly satisfy the condition (ii) of Lemma 4.1
by an additional modification of the metric, so made that (i) remains satisfied.

Thus Lemma 4.1 is true.
Completion of proof of Theorem 4.1. The theorem is trivial if n = 2. We

suppose then that n > 2.
By virtue of Lemma 4.1 we can suppose that conditions (i) and (ii) of

Lemma 4.1 are satisfied. Theorems 4.1 and 4.2 of Morse [3] or [5] then imply
the following. The function / can be further modified in open disjoint neighbor-
hoods Nr of the respective 1-bowls γ in such a manner that the critical values
of / of index n — 1 differ arbitrarily little from M, while those of index 1 differ
arbitrarily little from m, while other critical values of / remain unaltered.
Theorem 4.1 follows.

5. Unipartite functions /

Definition 5.1. Unipartite functions f. An admissible ND function / (Def.
2.1) will be termed unipartite if each level set fc of / is connected.

We shall show that when n > 2 a ND f of "biordered" type (Def. 4.1) is
"unipartite". To this end we first extend the comparison of the singular
homology groups of fa and of fa made in [6, § 29] for each critical value a of
/. Here

(5.1) fa = {xeMn\Kx)<a}9

and fa = fa- Pa-
As in [6, § 29] the homology groups are taken over a field JΓ. Among fields

the field Q of rational numbers is for us the most important.
ND functions g. If c and e are arbitrary values of / with c < e, set

(5.2) /(Cfβ) = {xeMn\c<f(x) < e) ,

(5.3) /[Cfβ] = {*eΛfn |c
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If c and e are ordinary values of /, then / [c>e] is a bounded topological mani-
fold with the non-singular (n — 1)-manifolds fc and fe as boundaries. To give
a differential structure to fc of to / [ c e ] is to give a differential structure to some
open neighborhood of fc or / [ c e ] relative to Mn. A differential structure will be
induced on f(c>e) and on open neighborhoods of fc and fίc>el by Mn. For sim-
plicity of notation we shall hereafter denote the differentiate manifolds carried
by

by the same symbols.
In Theorems 5.1 and 5.2 below, g shall be one of the three restrictions

(5.5) g = f \ f { C , e ) ' , g = f\fίc,ey>g = f\fc

of /, with c and e ordinary values of /.
In the comparisons in [6, § 29], one can replace f by g subject to proper

interpretations of the theorems involved. The principal theorems of [6, § 29]
are proved by induction with respect to an integer denoted by m. The induc-
tion is completed in [6] so that in stating our extensions we can properly omit
the inductive integer m. A first theorem extends [6, Corollary 29.1].

Theorem 5.1. // pa is a critical point of g of index k with critical value a,
and if one sets ga = ga — pa, then over an arbitrary field X the connectivity

(5.6) Rq(ga,έa) = δi ( 4 = 0 , 1 , . . . ) ,

where ga serves as a modulus.
The proof of this theorem is identical in form with the proof of [6, Theorem

29.1].
Definition 5.2. q-caps. A relative g-cycle on ga mod ga which is non-

bounding on ga mod£α will be called a q-cap of pa relative to g. Cf. [6, Def.
29.1].

By virtue of Theorem 5.1 there are no g-caps of pa relative to g other than
&-caρs, nnd any such A -cap of pa is a "homology prebase"11 for the homology
group Hk(ga,ga) over JΓ.

Definition 5.3. k-caps of linking type. A &-cap yk of a critical point pa of
g of index k is said to be of linking type relative to g and pa, if dyk is bound-
ing (over JΓ) ong α . Otherwise, yk is said to be of nonlinking type. Cf. [6, Def.
29.1].

Definition 5.4. Linking k-cycles. If pa has the index k, a A -cap of pa which
is an absolute λ -cycle λk will be called a linking /:-cycle of pa (relative to g).

Notation. Given the critical point pa of g let

1 1 If a homology group Hq over jf has a base Bq, a set of ςr-cycles, one and only one
from each "homology class" in Bq is called a "prebase" of Hq. See [6, Def. 24.7].
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(5.7) bq(ga),bq(ga) ( * = 0 , l , . - )

denote homology prebases, possibly empty, of the singular homology groups
Hq(ga) and Hq(ga), respectively, over the given field JΓ.

Note. A critical point p of g is a critical point of /. A / -cap of p, relative
to g, is a λ -cap of p relative to /. A critical point p of g which is of linking
type, relative to g, is of linking type, relative to /. However, the converses of
these three statements obtained by interchanging g and / are not in general true,
as examples show.

The fundamental theorem follows. We continue with the field X.
Theorem 5.2. ( i ) If a critical point pa of g has the index k, then a

homology prebase bQ(gα) is a homology prebase bq(ga) unless
Case I. q = k and pa is of linking type, or
Case II. q = k — 1 and pa is of non-linking type.
(ii) In Case I a homology prebase hk(ga) is given by any12 set of absolute

k-cycles of the form

(5.8) bk(ga) U λk ,

where λk is a linking k-cycle of pa (relative to g).
(iii) In Case II a homology prebase bk_ι(ga) is given by anyu set of absolute

(k — l)-cycles, k > 0, of the form

(5.9) b ^ G U - w*"1

in which w*'1 is the algebraic boundary of a k-cap of pa and b(gβ) contains
wk~\

Theorem 5.2, as formulated above, differs from [6, Theorem 29.3] only in
that g here replaces / of [6]. When stated in terms of g or /, all terms must be
understood relative to g or / respectively.

A review by the reader of the proof of [6, Theorem 29.3] will make clear
the proof of Theorem 5.2.

We shall use Theorem 5.2 to prove the following lemma, true for n > 2.
Lemma 5.1. Let a be a critical value of f with index k such that 0 < k < n

and such that fa is connected. Let [μ, v\ be an interval of values of f such that
μ < a < v and [μ, v] contains no critical values of f other than a.

(i) If fμ is not connected, then /:,= 1,
(ii) // fv is not connected, then k = n — 1.
Proof of (i). Returning to (5.5) set g = /|/[jU,υ]. The critical point z of / at

the /-level a is a critical point of g at the g-level a. By hypothesis the set fμ,
and hence the set gμ, are not connected.

12 Such a set exists in Case I.
13 Such a set exists in Case II.
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As in [6, § 23], a proper use of ortho-g-arcs leads to a deformation14 retract-
ing έa o n t o 8μ- Hence ga is not connected.

The set fa and hence ga are connected by hypothesis. Each point of ga is
either on ga or can be deformed on an ortho-g-arc so as to ascend to a point
of ga, or to z as a limiting end point. The last statements follow from Theorem
3.1. Hence ga is connected and ga is not connected.

We infer that a prebase of the homology group H0(ga) contains just one 0-
cycle while a prebase of the homology group H0(ga) contains more than one
0-cycle. It follows from Theorem 5.2 that z must be a critical point of g of
non-linking type with index 1. This completes the proof of (i).

Proof of (ii). Statement (ii) follows readily if one applies Lemma 5.1 (i) to
—/in place of /.

Lemma 5.1 will lead to a proof of the following theorem.
Theorem 5.3. Ifn>2, and the ND f on Mn is of biordered type (Def. 4.1),

then f is unipartite (Def. 5.1), that is each level set of f is connected.
Proof. Let m and M be respectively the minimum and maximum values of

/ on Mn9 and a be the largest of the values a > m of / such that fc is connected
for m < c < a. Then a must be a critical value of /. We shall prove Theorem
5.3 by showing that

(5.10) a = M.

Proof of (5.10). If a < M, the index k of a is such that 0<k<n. It then
follows from Lemma 5.1 (ii) that k = n — 1.

If there are no critical values of / of index n — 1, it is impossible that index
a = n — 1 and (5.10) must be true.

If there are critical values of / of index n — 1, then the hypothesis that / is
of "biordered" type implies that the critical values of index n — 1 form a se-
quence

(5.11) ax > a2 > . . . > ar

of values which exceed each critical value of index less than n — 1. It is im-
possible that a = aγ since for M > c > al9 fc is connected, contrary to the
definition of a.

It is impossible that a = a2. Were a = a2 then for axy c > α2, f
c would be

nonconnected by virtue of the definition of a, and hence ax would be of index
1 by Lemma 5.1. If, however, index ax is both 1 and n — 1, n = 2, contrary
to hypothesis. Continuing, one proves inductively that a is no one of the num-
bers (5.11) of index 1. From this contradiction we infer the truth of Theorem
5.3.

Theorem 5.3 follows.

14 We term such a deformation a g-deformation.
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We shall make repeated use of the following lemma and its variations.
Lemma 5.2. If a and b, with a < b, are successive critical values of f on

Mn, then

(5.12) Hq(fa, Q) « Hq(fb, Q) (q = 0, 1, . •) .

As in [6, § 23] there exists an /-deformation d retracting fb onto fa. It fol-
lows from [6, Theorem 28.4], with the moduli A and A/ empty sets, that the
deformation d induces the isomorphisms (5.12).

6. Homological orientabίlity

The manifold Mn will be termed homologically orientable if and only if the
connectivity

(6.1) Λn(|Λfn |,Q) = 1 .

In this section we shall show that if the manifold Mn is geometrically orientable
in the sense of § 1, then Mn is homologically orientable. The proof is given for
the case n > 2. It can be shown in many ways without use of any global tri-
angulation of Mn that geometrical orientability of Mn implies (6.1) when n — 2.

The proof is inductive in character and will make use of an inductive
hypothesis formulated as follows:

Inductive hypothesis. We shall assume that if n > 2, then for each integer
r such that 1 < r < n, a connected, compact, differentiable, orientable15 mani-
fold Mr is such that

(6.2) Rr(\Mr\,Q) = 1 .

From this point on we shall assume that / is of biordered type on Mn (Def.
4.1) and so is a ND unipartite function on Mn (Def. 5.1).

If c is an ordinary value of / and Mn is orientable, then the level manifold
fc has but one component, since / is unipartite, and fc is orientable in accord
with Theorem 2.1 (ii). By the inductive hypothesis (6.2),

(6.3) Λn-!(/c,Q) = 1

There accordingly exists a rational (n — 1)-cycle y"~ι carried by fc which is a
"prebase" for the singular homology group Hn_ι(fc, Q).

Theorem 6.1. Suppose that n > 2 and that Mn is orientable. If c and e
are ordinary values of f such that c < e, and if y™~1 and y™~1 are respectively
suitably chosen (n — l)st RHP16 of f and f, then

15 Orientable shall mean orientable in the sense of § 1.
16 A "rational homology prebase" of Hr(χ, Q) will be termed an "rth RHP of χ."
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(6.4) yn

c~
ι ~ y?-1 (over Q on /[c>e]) .

We shall begin the proof of Theorem 6.1 by showing that Theorem 6.1 is
true in a special case.

Lemma 6.1. In the special case in which the interval [c, e] contains just one
critical value a of /, Theorem 6.1 is true.

We shall prove a proposition bearing on Lemma 6.1.
Proposition 6.1. Under the hypotheses of Lemma 6.1 an (n — \)-cycle

which is an (n — l)st RHP of fc or of fe is an (n — l)st RHP of /[Cfβ].
Notation. Let k be the index of the critical value a in the interval (c, e).

We shall verify the following.
Under the hypotheses of Lemma 6.1, an (n — l)st RHP of / [ c β ] is given

(i) by yn

c-
χ when 0 < k < n - 1,

(ii) by yn

e~
x when 1 < k < n,

(iii) by y^~ι when k — n — 1,
(iv) by yn

e~
ι when k — 1.

Proof of (i). As in (5.5) we set g — f | / [c>e]. Since there is an /-deformation
retracting ga onto gc, we infer that y^'1 is an (n — l)st RHP of ga. Since
0 < & < t t — l i n the case at hand, Theorem 5.2 (i) implies that y?~ι is an
(n — l)st RHP of ga. Since there exists an /-deformation retracting / [ c e ] onto
ga, J Γ 1 is also an (n - l)st fl#P of / [c#e].

Pro*?/ o/ (ii). On replacing /by —/, (i) implies (ii).
Proof of (iii). By virtue of (ii), for some rational number r, possibly 0,

(6.5) yr1 - ryr1 (over Q on /[c,e]) .

Hence (iii) is valid if r Φ 0.
Proof that r Φ 0. On setting g — /|/[c,e] as in the proof of (i), we see that

y^~ι is an {n — l)st Z£HP of ga. The critical point pa has the index n — 1.
Whether pa is of linking or non-linking type relative to g, Theorem 5.2 implies
that y™~1 is an element in an (n — l)-st RHP of ga and hence of fίCtey Hence
r Φ 0 in (6.5), and (iii) is true.

Proof of (iv) On replacing /by —/, (iii) implies (iv).
Lemma 6.1 follows from (i), (ii), (iii), (iv).
Note. The proof of (iii) shows that pa is.of non-linking type relative to g

since it shows that y?~ι is an (n— l)-st RHP of both ga and ga when k = n — 1.
Completion of proof of Theorem 6.1. Let

(6.6) ax < a2 < < at

be ordinary values of / on [c, e], such that c = ax and e — at and such that
between successive values in (6.6) there is just one critical value of /. In case
there are no critical values of / between c and e, Theorem 6.1 is trivial.
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For / on the range 1, 2, , t let yZr1 be an (n — l)st RHP of faκ It follows
from Lemma 6.1 that if rά is a suitably chosen non-null rational number, then

(6.7) r j - 1 ~ rtf~l ~ . . . ~ rjC" 1 ( o v e r Q o n /[c])

Hence Theorem 6.1 is true.
Before coming to the principal theorem of this section we shall show how to

associate a special n-cap with pM.
A simply-carried n-cap. If β is an ordinary value of / such that M — β is

sufficiently small and positive, then the special isometric presentation of a
neighborhood of pM given by Theorem 3.1 shows that fίβ)M^ is a topological
hemisphere Hn bounded by fβ as a topological (n — l)-sphere. It follows17 that
there is an n-cap zn of pM, which is defined by a homeomorphic map of a
vertex-ordered euclidean n-simplex onto Hn. Such a cap has been termed
"simply-carried". See [6, Def. 30.2]. It follows then from [6, Lemma 30.3]
that dzn is an (n — l)-cycle yn

β-
λ which is an (n — l)st RHP of f.

Theorem 6.2. // Mn is orientable, then

(6.8) Λn(|Afn|,Q) = 1 .

We suppose n > 2. According to the definition of a critical point of linking
tyPe> PM is of linking type if and only if the (n — 1)-cycle y%~\ introduced in
the paragraph preceding the theorem, satisfies the homology

(6.9) yn

β~
ι ~ 0 (over Q on fM) .

Because Mn is orientable, (6.9) holds in accord with (6.4) of Theorem 6.1,
since in (6.4) y^~λ ~ 0 on fc, if c — m is sufficiently small.

The critical point pM is accordingly of linking type. It follows from [6,
Theorem 29.3 (ϋ)] that (6.8) holds.

The proof of Theorem 6.1 shows that it has the following useful extension.
Theorem 6.3. Suppose n > 2. Let c and e be ordinary values such that

c < e. Suppose further that some open neighborhood of / [ c e ] is orientable. If
then y™~1 and y™~1 are suitably chosen (n — l)st RHP's of fc and fe respec-
tively, then

(6.10) yrι - yΓι (over Q on /[c,e])

We shall use this extension of Theorem 6.1 in proving that Λn(|Mn | , Q) = 0
when Mn is nonorientable.

1 7 From [6, "Carrier Theorem" (36.2)].
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7. Orientability and critical shells

Let a be a critical value of / with index k such that 0 < k < n, and μ, v be
ordinary values of / such that a is the only critical value of / in (μ, v). Set

(7.D /?,,,> = {* e |M»I I A* < / ( * ) < » } •

It will be convenient to suppose that

(7.2) v - a = a - μ = e> 0 .

We term /^>v) a critical shell, based on fa, with index k, provided e is so small
that the following conditions are satisfied.

Conditions on e of (7.2). Note that

(7-3) /?„„ = fίμ>a) U /a U /(βfl>) .

We impose two conditions on e each of which is satisfied if e is sufficiently
small. A first condition is that the closures of ortho-/-arcs on / ( α v ) and /(//>α)

have diameters less than ε/2, where e is conditioned by Lemma 1.0. A second
condition on e is a reimposition of the condition

(7.4) t/* C Dσ (of 3.7)) .

This condition implies that e < σ.
The choice of μ, v. It will simplify our theorems if the parameters μ and v

associated with a critical value a in the definition of a critical shell /^ v) are
chosen once and for all when a is given.

We shall define a special covering of critical shells /^ υ ) by special presenta-
tions in @εMn.

A covering Γ^v) of f^v). A first presentation has the form

(7.5) F* = Ia I Uk

e (k = index a) ,

where /α is the isometry of Theorem 3.1, and e is given by (7.2). The range
of F fc is an open neighborhood in f^v) of pa and of the union of pa and the
ortho-/-arcs on /^ υ) which have pa as a limiting end point.

Corresponding to an arbitrary point p e fa let

(7.6) (Qp: Vp, Xv) € ®fa (cf. (2.3))

be a presentation of an open connected subset Xv of fa, which contains p.
We can suppose that Xp is so small a neighborhood of p e fa that the //-presen-
tation

(7.7) (flp: (μ, v) X Kp, Yp) (cf. (2.4))
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based on Qp satisfies the condition

(7.8) Hpε$eMn .

A covering Γ^μjV) of the critical shell fa

{μ>y) is thus afforded by the presenta-
tions

(7.9) Fk,Hp (index a = k)

and their "inverts", as p ranges over fa.
H interpreted. The domain Vp of Qp in (7.6) is an open connected subset

of En_λ with coordinates v19 , vn_x. Let p denote a reflection of Vp in the
(n — 2)-plane of En_λ on which vn_ί = 0. One can obtain Hp by first replacing

(7.10) β p = (Qp o p-* ,

i/ p is then a presentation

(7.11) (Hp: 0ι, i;) X p(Vp), Yp) e 9εMn

"based" on Qp with a euclidean domain (μ, v) X p(Vp) which is a reflection of
the euclidean domain (μ, v) X Vp.

The role of ¥k. Let Ke be the subset of £/£ which is the union of O and the
ortho-^fc-arcs which tend in ί/e

fc to O. The union of the ranges of the presenta-
tions Hp admitted in (7.9) cover

(7.12) faμv)_nKe) ^

while Ia(Ke) is covered by ¥k.
Given a critical shell fa

{μ^v) it is essential that we define "inversion invariant
coverings" of / ( α v ) and f{μ>a) by presentations which are simply related to the
presentations in the set Γ"μ>v) covering /^ t f ). These presentations should be in

(7.13) 9J[atV) , SJlμ§a)

respectively and so, in particular, have connected ranges.
To cover /(tt f„, and f(μ>a) we shall make use of presentations which are restric-

tions of the presentations Hp and Hp of Γ"μtV) and of the special presentation
F* in Γfuv) and of F f c.

Restrictions of Hp. For each point p s fa there exist unique presentations

(7.14) H; 6 9jiaM , H- e 9J(f,a> ,

which are the restrictions of Hp with ranges

(7.15) RH; = RHV Π /<„,„, , RH- = RHP n /<„„,
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respectively. The set of presentations H+, as p ranges over / α , cover all points
of f(a>v) except points of f(a>v) on ortho-/-arcs tending to pa as a limit point.
Each of the presentations H+ has a connected range. To cover the set of re-
sidual points of f(a>v) we make use of restrictions of F f c.

Restrictions of ¥k. Recall that index a = k. Referring to the subsets

(7.16) U- , ifί
e e

of Uk defined in (3.10) and (3.11), and to the isometry Ia of Theorem 3.1, we
introduce restrictions of Ffc of the form

(7.17) Ft = la\ U\ , F% = Ia\ υ\ (0 < k < ή) ,

and state the following lemma.

Lemma 7.1. By virtue of Lemma 3.1

(7.18y Fie9J{μ,a) (\<k<ή) ,

(7.18)" F% 6 9Jiatβ) (0 < k < n - 1) .

A first condition that (7.18) hold is that the sets Cl RFk_ and Cl RFk

+ have
diameters on Mn less than ε. This condition is satisfied as a consequence of
the relation ¥k e @eMn. That .RFί. and RFk

+ are connected subject to the con-
ditions on k in (7.18) follows from Lemma 3.1.

Note. The relation in (7.18) ; is not valid if k = 1, nor the relation in (7.18)"
if k = n — 1, because RFλ_ and RFn

+~ι are not connected.
The case k = 1. In this case we refer to (3.12) and set

(7.19) fFx_ = Ia I fυ\ , "Fl = Ia I "C/1- .

The ranges of these two restrictions of Fλ_ are connected sets. These ranges are
disjoint and have RFl_ as their union. Cf. (3.12).

The case k — n — 1. In this case we refer to (3.13) and set

(7.20) 'FJ- 1 = Ia I 'UΓ1 , "Fn

+~ι = /α I " t / Γ 1 .
β β

The ranges of these two restrictions of Fn

+~ι are connected sets. These ranges
are disjoint and have RFl~λ as their union. Cf. (3.13).

We summarize as follows:

Theorem 7.1. "Inversion invariant coverings" Γ(μ>a) of f(μta) and Γ(a>v) of
Aα.v) a r e given respectively by the second and third columns in the following
table, provided these presentations are supplemented by their inverts and the
point p ranges over fa.
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Table Γ

k--

1 <

k

= Index a

k = 1

k < n- 1

= n- 1

rr— . /77I //17I

ft- . -pn-1

r
τj+ Ϊ?I

H .FI
TJ+ . rτpn
rip r +

>

-1 /rpn-l

Note. Each entry in Table Γ should properly bear the critical value a as
an index.

Given a critical shell /^ v ) we shall term f(a>v) the upper shell of /^ v ) , and
fiμt(L) the lower shell of /^fV). We term these subshells auxiliary shells of f"μ>v).

Definition 7.1. Inverting critical shells. A critical shell ffμtV) will be termed
orientation inverting if one of its two auxiliary shells is orientable and the other
nonorientable.

Theorem 7.2. // n > 2, ί/ie following is true.
(i) 4̂ necessary and sufficient condition that a critical shells f^μ>v) be

orientable is that both its upper and lower auxiliary shells be orientable.
(ii) // index a = k, and the shell ja

{μtV) is inverting, then k = 1 or n — 1.
(iii) If k = 1, and the shell ffμtt)) is inverting, then its upper shell is non-

orientable.
(iv) If k = n — 1, and the shell f*μtV) is inverting, then its lower shell is

nonorientable.
We begin the proof of Theorem 7.2 by establishing the following:
The condition of (i) is necessary. Since

9J{μ,a) C @Jl>v) ,

an inverting sequence in @j{μ,a) is an inverting sequence in @J*μιV). It follows
from Theorem 1.1 that if f%iV) is orientable, then f(μ>a) is orientable.

One proves similarly that if f*μfll) is orientable, then f{a>v) is orientable.
The condition of (i) is sufficient. We shall establish this and the remainder

of Theorem 7.2 by proving the following lemma. We are supposing that n > 2.

Lemma 7.2 (a). fa

{μtV) is orientable, if its lower shell f{μ>a) is orientable, and
index a = k is on the range 2, , n — 1.

(β). ffμtV) is orientable, if its upper shell /(α>υ) is orientable, and index a — k
is on the range 1, , n — 2.

Proof of (a). When 1 < k < n, a covering ΓfμtV) of fa

{μtV) is given by the
presentations

(7.21) Έ\ Hp (p ranging over fa)

and their inverts, while a covering Γ{μ>a) of /(/ί>α) is given by the presentations
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(7.22) F* , H- (p ranging over fa)

and their inverts. (See Table Γ.) The presentatations in Γa

{μtV) and Γ{μtCL) admit
a biunique matching ξ: Γ(μ>a) <-• Γj, fV) under which

(7.23) Ffc *-> F* , HP^H~

and

(7.24) F* <-> /* , HP^H~ .

Under f each presentation in /^.v) is matched with a restriction in Γ(μ>a).
By hypothesis of (α:) there exists a subset A of presentations in Γ{μ>a) which

form an orienting covering of /(//,α) The subset ξΛ of presentations in Γ ^
covers j * μ t V ) and, by virtue of Lemma 1.5, is an orienting covering of f"μtV).

Proof of (β). The proof of (β) is similar to that of (a). The index k is on
the range 1, , n — 2. One makes use of Fk

+,Fk

+,H+ and H+.
Statements (ii), (iii) and (iv) follow from Lemma 7.2. Hence the proof of

Theorem 7.2 is complete.
The following special lemma is needed in § 8.
Lemma 7.3. Let a be a critical value with 0 < index a < n, and a! be a

critical value such that (a\ a) is an interval of ordinary values of f. If the shell
ffμtV) is such that f(μ>a) is orientable, then /(α,) f l ) is orientable.

Proof. We introduce a C°°-diίf

\ '^j) •*• 7(μ,a) >J(a',a)

under which each maximal ortho-/-arc γ on f(μ>a) is mapped onto the maximal
ortho-/-arc yr on /(α/ j tt) extending γ, so that a point peγ goes into the point
p/ e γf such that

(7.26) M ^ «LA
f(p) -a μ - a

If ε' is a sufficiently small positive constant, and f(μ>a) is covered (as is possible)
by an "orienting" set of presentations Qe@ε,f(μ>a), then the presentations
(T\RQ) o Q will be an orienting set in @Jia,ta) covering / ( α, f α ).

8. The existence of inverting critical shells

We begin with new notation.
Submanifolds M~ α and M^β. Let a and β be values of / such that a > m

and β<M respectively. We shall denote by M~jβ and M£j/3 open submanifolds
of Mn with differential structures induced by that of Mn and carriers
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| M - J = {*e|M

|Λfί^ { | Λ

We suppose n > 2 m § 8.
Lemma 8.1. Lei a be a critical value of f with 0 < index a < n. If M^a

and the critical shell f^μ>v) are orientable, then M^μ is orientable.
Proof. Let e < ε be a positive constant such that the minimum distance

from Ϋ to fa on Mn exceeds 3e. Set

(8.D Γ = 9JiatV).

Let Γ' be an inversion (see Def. 1.5) invariant covering of /^ υ ) obtained by
adding to Γ presentations in @ei\μ^ the range of each of which meets /(//,α).
Let Γ" be an inversion invariant covering of M^μ obtained by adding to Γf

presentations in @eM^a the range of each of which meets H+ v.
Suppose Lemma 8.1 false. By an extension of Theorem 1.2 to the sub-

manifold M^μ of Mn there then exists an inverting F * / in Γ". By Lemma 1.3
we can suppose that F is in Γ. If F*F is in Γf, we have a contradiction to the
hypothesis that /^ υ ) is orientable. If the sequence F*F is not in Γ', we shall
show that it can be admissibly modified without changing F or F, so that the
modified sequence is in Γ'.

Modification of F*F. A presentation in F * F which is not in Γf meets M+v

and is a nonterminal presentation in a subsequence of consecutive presentations

(8.2) G r a : •• :Qr

of F * F such that Qλ and Qr are in Γ, while the remaining Q/s have ranges
which meet M+ υ. Each presentation in (8.2) is in 2eM+%a as a consequence of
our choice of e. Since M+ α is orientable by hypothesis, and since / ( α υ ) is arc-
wise connected and

J(a,v) (— Mna ,

each subsequence (8.2) of F*F can be replaced by an admissible sequence

Qx: Λ : : Ps: Qr

in which the presentations Pό are in Γ.
The sequence F*F so modified will be in Γf. This is impossible since fa

{μ>ί0

is orientable by hypothesis. Thus Lemma 8.1 is true.
We continue with the following lemma, referring to the value μ in fa

{μ>υ).
Lemma $.2. Let a be a critical value with 0 < index a<n, and a! <a be

the critical value next below a. If M ^ is orientable, then M£>α, is orientable.
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Proof. It M^μ is orientable, its submanifold f^v) is orientable. According
to Lemma 7.3, /(α/,α) is then orientable. By an argument similar to that used
in proving Lemma 8.1 one then proves that M^a, is orientable. The roles of
the values μ, a, v in the proof of Lemma 8.1 are played by the respective values
a!, μ, a in the proof of Lemma 8.2.

Lemmas 8.1 and 8.2 combine to give the following.
Lemma 8.3. Let a be a critical value with 0 < index a < n, and a! be the

critical value of f next below a. If M+ α and f^v) are orientable, then M + α , is
orientable.

By an induction with respect to the critical values of / of index < n enu-
merated in the order of decreasing values, one proves the following theorem.
Theorem 7.2 is essential for the proof.

Theorem 8.1. // f°iMiV) is orientable for each critical value a of index n — 1
which exceeds a critical value a, then M+ α is orientable.

We turn to nonorientable manifolds Mn.
Theorem 8.2. (i) // Mn is nonorientable, there is a greatest value ω

among critical values a with nonorientable critcal shells f^v).
(ii) The value ω is the least of the critical values a such that M+ a is ori-

entable.
(iii) For this value ω,fiω>v) is orientable and f i μ j ω ) nonorientable.
(iv) Index ω — n — 1.
Proof. Statement (i) is a consequence of Theorem 8.1. It follows from

Lemma 8.3 thatM+ ω is orientable. Statement (ii) follows from (i) and Lemma
8.3. Since /(ω υ) is orientable and /^>p) orientation inverting, f{μ>a0 is nonorient-
able, so that (iϋ) is true. That index ω = n — 1 follows from Theorem 7.2.

Theorems dual to Theorems 8.1 and 8.2 are obtained by reasoning with — /
as with /.

Dual of Theorem 8.1. // f \ μ > v ) is orientable for each critical value a of
index 1 which is less than a critical value a, then M~ α is orientable.

Dual of Theorem 8.2. (i) // Mn is nonorientable there is a least value ωf

among critical values with nonorientable critical shells.
(ii) The value ω' is the greatest of the critical values a such that M~a is

orientable.
(iii) For this value α/,/ (/ i j a/) is orientable and f{ω^v) nonorientable.
(iv) Index ω' = 1.
The theorems of this section together with Theorem 7.2 imply the following

theorem. Recall that n > 2 and that / is biordered.
Theorem 8.3. // Mn is nonorientable, then there exist just one inverting

critical shell fω

(μ^v) such that index ω = n — 1 and just one inverting critical shell
/<>,„) s u c n t n a t index ωf — 1. Each critical shell /^ v) for which ω' < a < ω has
a nonorientable upper and lower shell. Of the three open submanifolds

/ ( m , ω ' ) J /(ω',ω)? J(ω,3I)
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of Mn the first and third are geometrically orientable and the second is geomet-
rically nonorientable.

9. The equivalence of geometric and homological orientability

In this section we shall prove that if n > 2 and Mn is nonorientable, then
jRn(|MTO|, Q) = 0. It can be shown by elementary methods without any use of
triangulation that when a C°°-manifold M2 is compact, connected and non-
orientable, then JR2(|M2|, Q) = 0. Proceeding inductively we shall make the fol-
lowing hypothesis.

Inductive hypothesis. We shall assume that if n > 2 then for each integer
r such that 1 < r < n an admissible difϊerentiable nonorientable manifold Mr

is such that

(9.1) Λ r(|Λf r |,Q) = 0 .

In Lemmas 9.1,9.2,9.3 we suppose that Mn is nonorientable and that
n > 2. The following lemma is essential.

Lemma 9.1. Let fω

iμ^v) be the orientation inverting critical shell of Mn with
index ω = n — 1. If one sets

(9.2) 8 = f\ftμt»,

then pω is a critical point of g of linking type over Q, relative to g, and hence
relative to f.

We shall prove Lemma 9.1 by verifying the following statements:
I. If ω < e < v, then fe is orientable.

II. If μ < c < ω, then fc is nonorientable.

III. Λn_1(/β,Q) = 0.

IV. « „ _ ! & , Q) = 0, (£m = gm-pJ.
V. Λn_1(g.,Q) = l .

Proof of I. According to Theorem 7.2, /(ω υ) is orientable. Were fe a non-
orientable manifold Mn_ι, it would follow, as in the proof of Theorem 2.1 (i),
that /(ω?υ) would be nonorientable contrary to fact. Hence I is true.

Proof of II. According to Theorem 7.2, /(/l>α0 is nonorientable. Suppose II
false, that is, suppose that fc is orientable. By Def. 1.1 of geometric orient-
ability there exists an orienting covering Γ of fc in @ε,f

c, where ε' < ε can be
taken as an arbitrarily small positive constant. If ε' is sufficiently small, a set
of //-presentations based on presentations in Q),,fc (cf. (2.4)) will give an orient-
ing covering Γr of f{μ>ω) in @jiμjβ0. (See conditions on e of (7.2).) From this
contradiction to the nonorientability of f(μ>ω) we infer that fc is nonorientable.

Proof of III. By our inductive hypothesis, III is true since fc is nonorient-
able.



DIFFERENTIABLE MANIFOLDS 27

Proof of IV. There exists an /-deformation on Mn retracting gω onto fc.
See [6, § 23]. Since Rn.tf0, Q) = 0, IV is true.

Proof of V. We shall again apply Theorem 5.2, replacing g therein by

(9.3) r=-/1/?,,„.

The critical value ω of / yields a critical value a= —ω ot γ. The critical point
z = pω of / is a critical point of p of index 1. We set γa = γa — z.

Since f is orientable by I, Theorem 6.2 implies that J?n_i(/β, Q) = 1. How-
ever, there exists an /-deformation retracting fa onto /e, implying that

(9.4) Λ»-i(?β>Q) = 1

Since n — 1 > 1, it follows from Theorem 5.2 that

(9.5) Λ»-i(r.>Q) = l

There are an /-deformation retracting fω

{ajV) onto fα and an /-deformation re-
tracting / ,̂ υ) onto gω so that V is true.

The application of Theorem 5.2 to g shows that when IV and V are true,
pω is of linking type relative to g. This completes the proof of Lemma 9.1.

Lemma 9.1 is supplemented by Lemma 9.2.
Lemma 9.2. Under the hypotheses of Lemma 9.1 let λn~ι be a rational

linking cycle of pω relative to g. Then the following is true:
(i) There exists a rational cycle y2~ι on gω such that

(9.6) λn~ι ~ yl~ι (over Q on gj .

(ii) The cycle yl~ι is an (n — l)st RHP of gω, gω and f*M.
Proof of (i). Because gω admits an /-deformation D retracting gω onto gω,

there exists an {n — 1)-cycle yl~ι on gω such that (9.6) holds.
Proof of (ii). By V of the proof of Lemma 9.1, Rn_x(gm9 Q) = 1. It fol-

lows from Theorem 5.2 (ii) that λn~ι is an (n — l)st RHP of gω. Since (9.6)
holds, yl~ι is similarly an (n — l)st RHP of gω and hence of gω (since D exists).
Since there exists an /-deformation retracting f°μ?v) onto gω,y2~1 is also an
i n - l)st RHP ot f»iμiV).

The following lemma is essential in proving, without triangulation of Mn9

that geometrical and homological orientability of Mn are equivalent.
Lemma 9.3. Continuing Lemmas 9.1 and 9.2 let e be any ordinary value

of f such that ω < e < M. Then the following is true:
(i) // yl~ι is an (n — \)st RHP of fω, then

(9.7) yn

ω-' </> 0 (over Q on fM) .

(ii) // yn

e~
ι is a suitably chosen (n — l)st RHP of fe, then
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(9.8) yΓ1 ~ yl~ι (over Q on / K e ] ) .

Proof of (i). The cycle λn~ι of Lemma 9.2 is a linking cycle of pω relative
to g and hence relative to /. It follows from [6, Theorem 29.3 (ii)] that λn~ι is
in an (n — l)st RHP of fω. Hence yl~λ of (9.6) is in an (n — l)st RHP of fω.
Since each of the critical values a of / between ω and M (if any exist) is of
index n — 1, successive application of Lemma 5.2 and [6, Theorem 29.3] to
the successive sets fa shows that yl~ι is in an (n — l)st RHP of each set fa

and /β. A final application of Lemma 5.2 to fM shows that yl~ι is in an
(w - l)st RHP of / „ . Hence (9.7) holds.

Proof of (ii). Given fω

{μ>v) let c < e be an ordinary value of / such that
ω < c < v. An (n - l)st RHP of f is an (n - l)st RHP of / ( ω p ), /[β>p) and
fω

iμ^v). Hence, by (ii) of Lemma 9.2, if y^"1 is properly chosen, then

(9.9) y r 1 ~ yrι (over Q on18 fίωj .

According to Theorem 8.2, M+ ω is geometrically orientable. It follows from
Theorem 6.3 that if yn

e~
λ is a suitably chosen (n — l)st RHP of f, then

(9.10) y r 1 ~ y r 1 (over Q on /[c>e]) .

The homology (9.8) follows from (9.9) and (9.10). This completes the proof
of Lemma 9.3.

Theorem 6.2 and the following theorem complete the proof that geometric
and homological orientability are equivalent.

Theorem 9.1. // Mn is nonorίentable, then

(9.11) Λn(|Λfn |,Q) = 0 .

In § 6 we have seen that if β is such that M — β is positive and sufficiently
small, then fβ is the carrier of the algebraic boundary yn

β~
ι of a "simply carried"

n-cap associated with pM. So defined y p 1 is an (n — l)st RHP of fβ. According
to [6, Theorem 29.3], (9.11) holds if and only if

(9.12) y?"V0 (on A ) .

The above value of β is admissible as e in Lemma 9.3, so that it follows from
(9.7) and (9.8) that (9.11) is true.

Since the n-th Betti number of Mn equals its n-Xh connectivity over Q,
Theorems 9.1 and 6.2 have the following corollary.

Corollary 9.1. The manifold Mn is geometrically orientable if and only if
its n-th Betti number is 1.

1 8 The homology (9.9) holds on /( jU)V) by virtue of Lemma 9.2, and hence on /[>,<.]> since
there is an /-deformation retracting f{μ,V) onto /[«•>,c].
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10. The Table Γ of § 7

When Mn is nonorientable, ω and ωr are respectively the inverting critical
values of / of indices n — 1 and 1. It will be useful to obtain further information
concerning the pair of monoverlapping presentations

(10.1) ' F r 1 , "FT1 ( i n Γ K υ ) )

and the pair

(10.2) 'FL, "Fl (inΓ,,,.,,)

as introduced in Table Γ. The relations

(10.3) ¥n~ι C o m 'Fn

+~ι F71"1 C o m "Fn

+-1 (in @jω

iμ,v))

are a consequence of the fact that the presentations (10.1), as defined in (7.20),
are restrictions of the presentations ¥n~ι in Γ^v)9 as defined in (7.5). The rela-
tions

(10.4) F1 Com 'Ft , F 1 Com "F\ (in ^Jω

(μ,v))

are valid for a similar reason. We shall make use of the coverings of /^ υ) and
fω

(μjV), as given by the presentations (7.9) and their inverts, when a = ω and ω'
respectively.

Recall that the submanifolds M+ ω and M ~ χ of Mw are orientable. We shall
prove the following theorem. We suppose n > 2.

Theorem 10.1. When Mn is non-orientable and ω is the inverting critical
value of index n — 1, there is no orienting covering of M^ω which contains
both of the presentations (10.1).

To prove Theorem 10.1 it is sufficient to prove
(i) There exists an admissible sequence in Γω

{ω^v) of the form

(10.5) ' F T 1 * " ^ - 1

Proof of (i). Since the critical shell /^ υ ) is nonorientable, there exists in the
covering Γω^v) of fω

iμ>v) an inverting sequence

(10.6) F * - 1 * ^ - 1

of the form

(10.7) β 0 : β i : : β r : Qr+ι (Go = F * 1 , β r + 1 = F""1)

in which the non-terminal presentations are of the type of Hp or Hp in Γ"μiV).
We can suppose that the ranges of Qλ and Qr are such that neither Qι nor Qr

overlaps both of the presentations (10.1).
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Corresponding to the sequence (10.7) in Γ°PiV) an admissible sequence

(10.8) Go* : Qi* : : G? : G?+i (in Λ.,,,)

is uniquely determined in the covering ΓiωtV) of /(ω v) by the sequence (10.7) and
by the condition that Qf be a restriction in Γ{ω%v) of Q3 in Γω

{PiV) for / on the
range 0,1, , r + 1. More specifically, Qf will be the unique restriction in
Γ{ω,v) °f Qk in ̂ , ^ ) f° r ^ o n t n e r a n β e 1? J f Then jβ f must be that one of
the two restrictions (10.1) in Γ ( ω v ) of F71'1 in Γω

(μ^ which overlaps Qf, while
β*+i must be that one of the two restrictions of Fn~ι

(10.9) ' i V 1 , " F Γ 1 (inΓ (.,B ))

which overlaps Qf. The sequence (10.8) is admissible by virtue of Lemma 1.5.
With (10.8) thereby uniquely determined we shall conclude the proof of (i)

and Therem 10.1 by verifying the following.
(ii) The sequence (10.8) in Γ(ω^v) is either a sequence of the form (10.5) or

a sequence of the form

(10.10) " F r 1 * ^ - 1 (inΓ ( β ι l > )) .

Note that the existence of a sequence of the form (10.10) implies the exist-
ence of a sequence in Γ(a,iV) of the form (10.5).

Proof of (ii). As we have seen, Qf in Γ(ω^v) is fFn

+~λ or "Fn

+~ι while Q*+1 is
either 'Fn

+~ι or "FJ- 1 . If Qf = fFn

+~ι then β * + 1 = " / - 1 ; otherwise, the se-
quence (10.8) would be an inverting sequence

contrary to the fact that / ( ω v ) is orientable. Similarly, if Qf — "Fn

+~\ then
Qf+ι =

 /Fl'1. Thus (ii) is true, and Theorem 10.1 follows.
The following is the dual of Theorem 10.1.
Theorem 10.2. When Mn is nonorientable and ωf is the inverting critical

value of index 1, there is no orienting covering of M~ω, which contains both of
the presentations (10.2).

We supplement Theorems 10.1 and 10.2 by the following two theorems.
Theorem 10.3. When Mn is nonorientable and a is a critical value of f of

index n — 1 between ω and M, there is an orienting covering of M+ ω which
contains both of the presentations

(10.11) ' F T 1 , " F Γ 1 0nΓ ( α , υ ) ) .

Theorem 10.4. When Mn is nonorientable and a is a critical value of f of
index 1 between m and ω', there is an orienting covering of M~jω, which
contains both of the presentations
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(10.12)

Proof of Theorem 10.3. It is sufficient to show that the following statement

is true.

(i). Under the hypotheses of Theorem 10.3 there is no admissible sequence

in Γ(a>v) of the form

(10.13) 'F»-i*"/»-i

in which the non-terminal presentations are of the type H+ or H+

v in Γ{CLjV).

As in the proof of Theorem 10.1, preceeding however from a sequence in

Γ{a>v) to a sequence in Γ"^, one shows that the existence of a sequence in

Γ(atV) of form (10.13) implies the existence of a sequence Γa

{μ^v) of the form

contrary to the fact that the critical shell /^ v) is orientable when a is a critical

value between ω and M.

The proof of the dual Theorem 10.4 is similar.
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