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0. Introduction

Let Rn be furnished with its Euclidean bilinear scalar product Rn x R n

-H> R; (JC, JCO H^ χ> xr and associated positive-definite quadratic form Rn -H> R;
x !-• χ(2) = X'X, and let M be an ra-dimensional smooth ( = sufficiently differ-
entiable) submanifold of R n . Locally M may be represented parametrically as
the image of a smooth embedding g: R m >-* Rn. (The tail on the arrow denotes
that the domain of g is not necessarily the whole of R m .) Consider the map

φ: M x Rn -> R x Rn (w, x) ^ ((* - w)(2), x) ,

represented locally by the map

/ : R m χ R ^ R χ R B ; (t, x) -• ((x - g(t)Y2\ x) .

Our purpose is to describe the Whitney-Thorn generic singularities ΣJφ of φ
([1] and also [19]), at least for small values of m and n. For the smallest values
this turns out to be a re-exposition from a fresh point of view of some well-
known facts of elementary differential geometry [21]. The inspiration for study-
ing the map φ is a remark of R. Thorn in his book [27, Chapter 4], where he
justifies the use of the word 4umbilic' to describe certain of the elementary
catastrophes. (See § 13 below.)

The main results which seem to be new, at least in detail, are in § 9, on what
happens at an umbilic of a generic surface in R3 and in § 11, on what happens
at a parabolic umbilic of a generic surface in R4. Umbilics have recently been
studied by Feldman [7], [8] from a somewhat different point of view. The
classical references are Darboux [5], Picard [18] and Gullstrand [11]. In [13],
Hartman and Wintner made some corrections to Picard. The author is grateful
to many people, especially Professor C. B. Allendoerfer and Professor W. L.
Edge, for acquainting him with classical papers he had never read, and for
reminding him of things he once knew but had forgotten. The author is also
grateful to Professor R. Thorn for hinting that there was more to umbilics than
Thorn actually stated in the first draft of his book.

Communicated by R. Bott, June 22, 1970.
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Notations used to describe differentials are in the main those of [20]. In
particular the differential at a point x e Xo x Xλ of a smooth map

where Xo, X19 Yo and Yx are finite-dimensional real linear spaces, will be de-
noted by

dhx =

The following short-hand notations for certain forms which occur will be used
throughout the paper.

For any (t, x) <= dom /, let

dgt e L(R™, R) .

Up to a factor —2 this is just dofo(t, x). Then let

P2(t,x) = dJPfax) = (x- g(t))-d2gt - dgt-dgt

with the obvious interpretation of in each case. This is an element of
L 5 (R m , L(Rm, R)), the linear subspace of L(Rm, L(Rm, R)) of symmetric linear
maps R m -• L(Rm, R), since

P2(t,x)(v)(u) = P2(t,x)(u)(v)

for each (u, v) 6 R m X R w . Next, let

P3(t,x) = d0P2(t,x)

= (χ — g(t))' d?gt — other terms not involving x,

which is an element of Ls(Rm, Ls(Rm, L(Rm, R)). Finally, define

Pn+ι(t,x) = d0Pn(t,x)

recursively, for n > 2.

1. The normal bundle of M

The differential df(t, x) at (t, x) e dom / is expressible as the matrix of linear
maps:

2(x-g(t))
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This has kernel rank (or nullity) m — 1 except where Px{t, x) = 0, where the
kernel rank is m. Now, for any t e R m , the affine (n — m)-plane

{xeR»: Pl(t,x) = 0] ,

made linear by choosing the point g(t) to be its origin, is the normal plane
NMgω at g(t) to M in R \ It follows at once that Σmφ, the subset of dom φ
for which the kernel rank of the differential of φ is ra, is the normal bundle
NM of M in Rw, presented as a smooth ft-dimensional submanifold of M x Rn.
The bundle projection map NM —> M will be denoted by π.

2. The normal focal set

Consider φ\NM or, rather, its local representation:

f\Σmf: Σmf-^RχRn.

The kernel of the differential of this map at (t, x) e Σmf coincides with the
kernel of the differential there of its second component, the map

Σmf -> Rn 0, x)^>x .

For let (ί, JC) € Σmf, and let (ί', *') be a tangent vector to Σmf there in the kernel
of the differential of the second component, namely the linear map

Then xf = 0. Moreover Pλ(t, x) = 0. So

IP&x) 2(x-g(t))Aιt'\ =

0 1 l\xΊ

That is, (ί', Λ O € ker d(/1 i/^Cί, JC), as asserted.
It follows at once from this remark that the higher-order Whitney-Thorn

singularities of φ are nothing other than the singularities of the map

φ: NM^Rn (W,JC) >-> JC .

This map is, of its nature, not generic in the Whitney-Thorn sense, at least
when dim M > 1, nor is it generic in the setting of Thorn's paper on envelopes
[26]. What we have done, by relating it to the map φ, is to provide a generic
setting for it.

The image in Rn of the set of singularities of ψ is known as the focal set of
M in R n . This is the target-envelope of the normal bundle NM [26]. We shall
call the set of singularities of ψ itself the normal focal set of M. This is a sub-
set of NM, not of Rn, and is what Thorn calls the source-envelope of NM ([26]
again).
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3. Sεcond-order normal singularities

The submanifold Σmf of R m x Rn is given as the set of zeros of the map

R r o χ R n H L(R™, R) (t, x) -> P^t, x) .

So the tangent vectors to Σmf at (t, x) are those vectors (*', x') such that

( P 2 ( t , x ) -dgt) (*') = 0 .

Such a vector will map to zero under the map

Σmf -> Rw (ί, x) ^ x

if, and only if, x' = 0, when P2(t, x){f) = 0. Therefore Σm'm'f, the set of points
of Σmf where the differential of the map to Rn has kernel rank ra', may also
be denned as the set of points (t, x) <= Σmf where

kr P2(t, x) — m! .

Recall that

P2(t,x) = (x- g(t)).d2gt - dgt dgt .

The bilinear map

R m X R m -> R (w, MO H^ d ^ ( M ) . dgt(u')

is the local representation of the first fundamental form at w = ^(0 € M, namely
the symmetric bilinear map

^ x TMW -> R;

The trilinear map

, ( ) x Rm x Rm -> R ,
((x, ί), «, MO ^ (JC - g(t)).d2gt(u)(u')

is the local representative of the second fundamental form at w, properly a

trilinear map

NMW x TMW x TMW -> R .

(The second fundamental form is sometimes represented geometrically by the
induced quadratic map TMW —> (NMW)* with image the dual normal space at
w, or by the quadratic map TMW —> NMW obtained from the previous one by
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composition with the isomorphism (NMW)* -^NMW induced by the Euclidean
scalar product on NMW. This latter map may be described simply, in terms of
the local representation, as the map

Rm -±Rn; u>-> d2gt(u)(u)

followed by the linear projection of Rn on to NMW with kernel TMW.)

4. Third-order normal singularities

The set Σm'm'f is defined by the equations

Pλ(t, x) = 0 and kr P2(t, x) = m! .

Suppose (0, 0) e Σm>m'f. We can choose a new basis for R m so that kr P2(0, 0)
= R m ' X {0}, where we identify R m with Rm / x R™-™\ Then near (0, 0) the
condition kr P2(t, x) = m! is equivalent to the existence of a linear map
s e L(R m \ R m " m ' ) such that P2(ί, JC)(1, s) = 0 in Ls(Rm\ L(Rm, R), the obvious
subspace of Ls(Rm, L(Rm, R)) of dimension ra'(m — m') + \m\m! + 1 ) . Clearly
the graph of s is the kernel of P2(t, x). Now suppose that at every point of

Σm,mj n e a r (Q? o) the map

Rw x Rn x L(Rm\Rm~m') ^L(Rm,R) x Ls(Rm',L(Rm,R))

(t,x,s) *r+ (PfaxXP

has surjective differential (the generic case). Then, near (0, 0), Σm>m'f is, by the
inverse function theorem, a smooth submanifold of Σmf of codimension
\m\rri + 1).

Consider now Σm>m'>m"f, the set of points of Σm'm'f where the restriction to
2'm'm7 of the projection to Rn has kernel rank m". By considering the differ-
ential of the above map one can show that (t', x') e R m x Rn is a tangent vector
to Σm'm'f projecting to zero if, and only if, xr = 0, P2(t, x)(f) = 0 and there
exists s' e L(Rm ' , Rm~m') such that

P&xXUsXn + P2(f,*)(0,j0 = 0 ,

or, equivalently, if

x? = 0 , P2(ί, JC)^) = 0 , P3(ί, Λ)(1, J ) ( 1 , j)(ίθ = 0 .

(In proving the reverse implication of the equivalence one uses the fact that by
the symmetry of P2(t, x) the sequence

L(R», R) ίH* L(R-, R) — 0
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is exact.) So, near (0,0), Σn>m'>n"f is definable as the subset of Σm>m'ί
where kr P3(ί, JC)(1, s)(l, s)(l, s) = m". Note that (P3(ί, JC)(1, J ) ( 1 , J ) ( 1 , J) is in

The argument simplifies when m! = ra, when the last condition reduces to
kr P3(t, x) = m". It is also simpler when mr = 1, as we see in the examples
which follow.

Fourth and higher order singularities are in principle also accessible but be-
come progressively more complicated to handle explicitly. We consider one
example of a fourth order singularity in § 11, and return to the general case in
§14.

5. Curves in R2

Let m = 1, n = 2. Then M is a smooth curve in R2, and Σιφ = NM, a
smooth submanifold of M x R2 of dimension 2. The normal focal set Σlylφ is
a smooth curve in NM, its image in R2 being the focal set, or evolute, of M in
R2, the set of its centres of curvature. Generically ΣlΛΛφ is a discrete set of
points of Σlylφ whose images in R2 by ψ are the cusps on the evolute and whose
images in M by π are the vertices of M. A non-generic case is the circle, say
the unit circle Sι in R2. Then NM is the image of the map

Sι xR-^S1 X R2 (w, r) *-> (w, rw) .

The normal focal set is the circle Sι X {0}, and its image, the evolute, is just
the centre of the circle, the origin {0}. In this case, ΣlΛAf coincides with Σ1Λf,
211'1'0 being null, and every point of the curve is a vertex.

6. Curves in R3

Let m = 1, n = 3. Then M i s a smooth curve in R3, and Σιφ = NM is a
smooth submanifold of M x R3 of dimension 3. For fixed t the equations
Pi(ί, x) = 0 and P2(t, x) = 0 define a line in the normal plane NMg(t). This line,
the focal line at w = g(f) of M, is the polar with respect to the unit circle, with
centre w, of the end w + κ(w) of the curvature vector κ(w) = d2gt(u)(u) at w,
u being a unit tangent vector to M at w.

focal line.
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This follows at once from the equation:

(x - g{tj) d2gt(u)(u) = dgtu-dgtu= 1 .

The union of the set of focal lines of M is the normal focal set of M, a sub-
manifold of NM of dimension 2. In the generic case its image by ψ in R3 is the
focal developable of M, with the image of Σliljlφ as edge of regression or cus-
pidal edge. The set Σhhlφ is a smooth curve in NM, whose intersection with
the focal line at w is the centre of spherical curvature of M at w. Generically
also Σι'hhlφ is a discrete set of points of Σlylylφ9 whose images in R3 by ψ are
cusps on the edge of regression of the focal developable and whose images on
M by π are the vertices of M.

7. Surfaces in R3

Let m = 2, n = 3. Then Σ2φ = NM. The normal focal set consists of the
centres of principal curvature of M, at most two on each fibre of the normal
bundle, namely those points x € NMg{t) where the kernel rank of the map

P2(ί, x): R2 -* L(R2, R) K -> (* - g(ί)) d2gί(w) - dgί(κ) dg/

is > 0 , that is, = 1 or 2. Notice the first and second fundamental forms here.
The image by ψ of the normal focal set is the focal set or centro-surface of M.
Generically the subset Σ2Aφ is the non-singular part of the normal focal set, a
smooth submanifold of NM of dimension 2, while Σ^2φ is its set of singular-
ities, the centres of curvature of the umbilics of M, the points of M with
'coincident' centres of curvature.

At a point w — g(t) of M other than an umbilic the principal directions are
the images by dgt of the kernels of P2(t,x) at the two centres of principal
curvature x', x" say. These directions are mutually orthogonal, for suppose
P2(t, JCO(«O = 0 and P2(t, *")(«") = 0, that is,

u") = dgKu").dgt .

Then

u") = dgt{u').dgt(u")

= {x" -g(t))'d2gt(u')(u") ,

a" _ g(f) being equal to λ(jc' - g(ί)) with λ φ 0, Γ. So dgt(u') dgt(u") = 0,
as asserted.

(For simplicity, we have ignored throughout the above discussion the possi-
bility that one of the centres of curvature may lie ςat infinity'. See paragraph § 12
below for a few remarks on this case.)
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Recall that a line of curvature on M is a curve C on M such that at each
point w = g(t) of C the tangent-direction to C is a principal direction.

Further singularity sets on NM in the generic case are Σ2ΛΛφ9 a smooth curve
on Σ^φ, and Σ2*1*1^, a discrete set of points on Σwφ. The image of Σwφ
on M by π is then a smooth immersed curve on M. We call the components of
Σ2ΛΛφ ribs of M and their images by π base ribs (or ridges) of M. A given base
rib is usually transverse to the members of one of the two families of lines of
curvature on M, those points where it fails to be transverse, that is, where it
touches a member of the appropriate family of lines of curvature, being the
projection on M by π of points of Σ2^hlφ.

We study ribs in more detail in the next section. Meanwhile we remark that
an ellipsoid with distinct semi-axes [4] has six ribs, the six base ribs being the
major-mean and mean-minor principal conic sections and the components of
the complement in the major-minor principal section of the set of umbilics,
which all lie on this section and are four in number. Each base rib is, in this
case, a plane curve of curvature, and, in this case, the set Σ2ΛΛΛφ is null.

Non-generic examples include the ellipsoid of revolution and the sphere.
In the case of an ellipsoid of revolution there are only two umbilics, at the

poles of the ellipsoid. The equator is a base rib. The corresponding rib is the
only one on its sheet of the normal focal set. The whole of the other sheet be-
longs to Σ2>1Aφ and has as image in R3 a curve, namely the axis of the ellipsoid,
and not a surface.

In the case of a sphere every point is an umbilic and the whole of the normal
focal set lies on Σ2>2φ, with image in R3 a point, namely the centre of the
sphere.

8. Ribs

In this and the next section we work, for simplicity, entirely with the local
representative / of the map φ, rather than with φ directly.

We continue to discuss the case of a surface in R3. At each point (t, x) of
272'1/ there exists a non-zero vector weR 2 such that P2(t,x)(u) = 0. The line-
bundle over 272'1/, associating to each (t, x) the kernel of P2(t, x) is the set of
zeros of the map

R 2 χ R 3 χ R 2 ^ L(R2, R) x L(R2, R) ,

(ί, x, u) H+ (P^t, x), P2(t, x)(u)) .

The differential at (t, x, u) of this map is the matrix of linear maps

IP2(t,x) -dgt 0 \

XP3(t,xXu) -d2gt(u) P2(t,x)l '

and, generically, this is a surjective linear map. The tangent vectors to the
line bundle are those vectors (t\ x', u') such that
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P3(t,x)(u)(t') + x' d2gt(u) + PlUxW) = 0 ,

and the tangent vectors to Σ2Af are those vectors (ί', x') for which there exists
a non-zero vector u e ker (P2(t, x)) and a vector w' such that these equations are
satisfied. In particular, when t' = 0 and x' — 0, uf is any real multiple of u.

A tangent vector (?, x') to 212'1/ maps to 0 under the map Σ2Λj —* R3 if, and
only if, x' = 0. So (/, x) e 272'1'1/ if, and only if, there exist a non-zero vector t'
and a vector uf such that

P2(ί, Λ X O - 0 and Pit, x)(u)(t') + P2(t, *)(*/) = 0 .

Clearly, in such a case tf must be a non-zero real multiple of u. Suppose we
take tr = u. Then there must be a vector uf such that

A necessary condition for this is that P3(ί, x)(u)3 = 0 since P2(t, Jt)(V)(w) = 0,
P2(t, x){u) being zero. It is easy to see that this condition is also sufficient.
(One uses the fact that, by the symmetry of P2(t, x), the sequence

is exact. Cf. the arguments in § 4 and at the end of § 14.) So (t, x) € 272'1'1/ if,
and only if, there exists a non-zero vector u e R2 such that

P1(t,x) = 0, P2(t,x)(u) = 0 and Ps(ί, x)(uY = 0 .

The line-bundle over 2*2'1'1/ associating to each (t, x), the kernel of P2(t, x),
is therefore the set of zeros of the map

R 2 χ R 3 χ R 2 π L(R2, R) x L(R2, R) X R

(ί, x, u) ^ (JPβ, x), P2(t, x)(u)9 Ps(ί, x)(u)3) .

The differential at (ί, x, ύ) of this map is the matrix of linear maps

IP %{t9x) -dgt 0

\P3(t,x)(u) d2gt(u) P2(t,x)

and, generically, this may be expected to be a surjective linear map. In that
case the tangent vectors to 2*2'1'1/ are those vectors (t\ JC') for which there exists
a vector uf such that
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x'.d2gt(u) + P2{t,x)(u') = 0 ,

+ 3P3(ί,Jc)(iι)2(iι/) = 0 ,

where u is a non-zero vector e ker (P2(t, x)).

In general, tf is not a multiple of u, since in general xf dgt Φ 0. Indeed when
xf dgt = 0, jc7 = 0; for otherwise, since P2(t, x)(u) = 0,

x'-d2gt(u) = μdgt(ύ) dgt

with μ Φ 0; therefore, taking ί' = w,

P3(ί,Λ:)(w)3 + μdgt(u) dgt(u) = 0 ,

which is nonsense, since P3(ί, x)(uf = 0 and μ(dgtu)(2) Φ 0. That is, /' is a
multiple of w if, and only if, (t, x) e Σ2ΛΛΛf9 substantiating the assertion about
base ribs made in the last section.

For (t, x) ζ J2 '1 '1 '1/, we have the existence of a non-zero element u of the
kernel of P2(t, x) and a vector uf such that

+ P2(t,x)(u') = 0 ,

P£t,x)(uy + 3Plt,x){u)\u') - 0 .

For each (/, JC), let

-P2(t,x)-\P3(t,x)(u)2)

denote some vector u' satisfying the first of these two equations. Such a u!
certainly exists and any two differ by a real multiple of u. Substituting this ex-
pression in the second equation, and observing that any ambiguity in u! is
harmless, since P3(t, x)(u)\u) = 0, we find, for w, the quartic equation

P4(t,x)(uy - 3(P,(t,x)(u)2)(P2(t,x))-KPi(t,x)(uy) = 0 .

9. Configurations at an umbilic

Let C be a smooth curve on the normal focal set of the surface M passing
through a point of ΣK2f and otherwise lying in Σ2>hlf. We speak of C loosely
as a rib of M through the umbilical centre. At each point (t, x) of C lying in
272'1'1/ we have a principal direction (in general not the tangent direction), with
representative u, say, in R2, such that

P2(t, x)(μ) = 0 and P3(/, *)(w)3 = 0 .

Now let (t, x) be the umbilical centre itself, and u a representative of the limit
there of the principal direction along C. Then
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P2(ί, x) = 0 and P3(ί, x)(uf = 0 .

Let us recall [29] some elementary facts about a binary cubic, that is, a
homogeneous cubic form

with associated 'symmetric trilinear' form

P 3 : R 2 ^ L 5 ( R 2 , L ( R 2 , R ) ) .

The quadratic form

R2 -> R u ^ det (P3(w))

is called the Hessian of the cubic.
The cubic form determines 'three' directions in R2, or 'three' points of the

real projective line RP 1 . In general either one or three of these is real. Non-
generically there may be two 'coincident' real directions, the other direction also
being real, or all three may coincide. Let us name the three points of the projec-
tive line A, B and C. The Hessian form likewise determines 'two' directions in
R2 or 'two' points of RP 1 . These are real and distinct, the hyperbolic case,
when only one of A, B and C is real, and they are complex, the elliptic case,
when all three of A, B, C are real and distinct. The Hessian points coincide
when and only when at least two roots of the cubic are coincident, the parabolic
case.

Let a and β e R2 represent the two Hessian directions of the cubic. Then
P3(α0(/3) = 0 and, conversely, if P3(a)(β) — 0 for some a, β, then a and β re-
present the Hessian directions. In particular, if P3(w)2 = 0 with u Φ 0, then
u — a and β; and we are in the parabolic case.

Suppose u is a non-zero vector such that P3(w)3 = 0. Then the quadratic
equation P3(u)(v)2 — 0 determines two directions [v], one the line represented
by u and another, represented by M, say. The latter direction is said to be con-
jugate to the first direction.

Returning to our problem, we say that an umbilical centre (t, x) is hyperbolic
or elliptic according as the cubic form

is hyperbolic or elliptic. For a rib C through the umbilical centre the limiting

direction of the principal direction along C is one of the one or three deter-

mined by the cubic. Such a direction will be called a principal direction at the

umbilic.
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Next, by going again to the limit, a tangent vector (*', x') to C at the um-
bilical centre must satisfy the equations

x* dgt=0 and Pz(t, xf d2gt(u) = 0 .

By a previous argument x'>d2gt(u) is then a real multiple of dgt(u)-dgt. So, if
we choose v orthogonal to u, dgt(u) dgt(v) = 0, and

P3(t,x)(u)(t')(v) = 0 ;

that is, the direction [f] is the harmonic conjugate of the direction [v] with
respect to the directions [u] and [w].

The vector tf is tangential at the umbilic t (or, rather, g(t)) to the base rib
τr(C). It can happen that two principal directions at the umbilic are mutually
orthogonal. Suppose, for example, that

P3(t, x)(uy = 0 and P3(t, x)(vf = 0

with v orthogonal to u, that is,

dgt(u)'dgt(v) = 0 .

Then, since the equation

P3(t,x)(u)(t')(v) = 0

can be rewritten as

P3(t,x)(v)(t')(u) = 0 ,

we see that two base ribs, with different principal directions [u] and [v], can
pass through the umbilic in the same direction [*']. It is easily seen, however,
that the corresponding ribs in the normal focal set are not tangential at the
umbilical centre.

There is a nice situation when ΰ happens to be orthogonal to u, for then
[f] = [u] = [v] and is orthogonal to \u\. Notice also that t' is not a multiple of
u unless [w] = [u], that is, unless the umbilical centre is parabolic.
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Next, suppose that C is a smooth curve passing through the umbilical centre,
such that the tangent vectors at the centre are of the form (ί',0), and let u
be a representative of the limiting principal direction at the umbilic. Then
P3(ί, x)(ύ)(tf) = 0, so that u and t' represent the Hessian directions at the
umbilical centre.

Finally, let C be a line of curvature on M passing through an umbilic g(t)
with centre x. In this case all along the curve, and therefore also in the limit,
tangent vectors are multiples of u. So, at the umbilical centre,

xf -dgt = 0 and P3(ί, x){u)2 + xr d2gt(u) = 0 ,

implying that P3(t, x)(u)\v) = 0, where v is orthogonal to u.
Now, if u •-> P3(w)3 is a binary cubic on R2 and u >-> Q2(u)2 is a binary quad-

ratic on R2 then, classically [6], the cubic form

is known as the Jacobian or first trasvectant of the cubic and quadratic. For
example, the first transvectant of a cubic and its Hessian quadratic form is the
cubic form (the cubicovariant) determining the three conjugate directions.

The equation

P3(t,x)(u)\v) = 0

with dgt(u) - dgt(v) = 0 implies that [w] is one of the three directions determined
by the first transvectant of the original cubic and the first fundamental form.
The reality conditions for this new cubic are not in accord with those for the
cubic u H-> P(t, x)(uy. Things are, however, again nice if ΰ is orthogonal to w,
for then P3(w)2(w) = 0 with ΰ orthogonal to u. In this case the tangent direc-
tions of a base-rib and a line of curvature through the umbilic coincide. We
noticed this happening in the case of an ellipsoid with distinct semi-axes.

Another case of interest is where two of the directions [w], [v] for lines of
curvature through an umbilic are orthogonal. For them we have

) = 0 and Pz(t9xXv)\u) = 0 ,

implying that

P3(t,x)(u)(v) = 0,

since u, v form a basis for R2. So [u] and [v] are the Hessian directions. Con-
versely, if the Hessian directions are orthogonal then two of the directions for
lines of curvature are orthogonal. It is a nice problem to sketch the lines of
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curvature near the umbilic in such a case. This is an example where there are
three directions for lines of curvature at the umbilic, but only one rib through
the umbilical centre.

The problem of describing the lines of curvature near an umbilic was studied
by Hamilton, Frost [9] Cayley [2], [3] and others, and is discussed fully, in
the generic case, by Darboux [5]. When there is only one curvature direction
at the umbilic the configuration is what one might expect, with a single line of
curvature in the given direction and the lines of curvature resembling confocal
coaxial parabolas, with axis the line of curvature and with focus the umbilic.
However, when there are three possible directions at the umbilic there are two
cases according as the three directions can or cannot be contained within a
sector of angle π/2. When they can be so contained the picture is surprising—
the 'middle' direction is tangential to a whole family of lines of curvature
through the umbilic. When they cannot, there is just one line of curvature in
each of the three directions. See [9], [5, p. 455] and [11, pp. 91-92], for
pictures. Gullstrand, whose interest in umbilics arose out of work on eye-
sight aberration [10], goes father than Darboux. He is aware of the impor-
tance of the ribs near an umbilical centre [11, pp. 87-93], though he contrives
to give the impression that base ribs approach umbilics in principal curvature
directions. He seems also to be the first to put due emphasis on the dis-
criminant of the cubic form giving the principal directions at an umbilic.

The index of an umbilic is defined by the configuration of lines of curvature
there. It plays an important role in work on the Caratheodory conjecture (see,
for example [12] and [28]), and has also been studied recently by Feldman [8]
amongst others. When there is only one curvature direction at the umbilic, the
index of the umbilic in 1/2. When there are three curvature directions, the
index is either 1/2 or —1/2 according as the three directions can or cannot be
contained within a sector of angle π/2. In the case where two of the curvature
directions are mutually orthogonal, the index may then be 1/2, 0 or —1/2.

To illustrate the various possibilities in relation to one another consider those
cubic forms (a, b, c) on R2 defined, in polar coordinates, by the formula

{a, b, c)(r cos θ, r sin θ) = r\a cos3 θ + b cos3(0 + 2τr/3) + c cos3(0 - 2π/2>))

(These form a three-dimensional subspace of the four-dimensional linear space
of all real cubic forms on R2.) We regard two of these forms as equivalent if
one is a non-zero real multiple of the other. The equivalence classes of non-
zero forms then form a real projective plane. The Jacobian of a cubic form
A = (a,b,c) and the quadratic form (r cos θ, r sin θ) •-• r2 is the cubic form
B — dA/dθ. The discriminants ΔA and ΔB of A and B are each tricuspidal
quartics in the projective plane, the cusps of ΔA lying at the vertices of the tri-
angle of reference and corresponding to cubic forms with three coincident roots.
The cusps of ΔA lie on ΔB as shown in the following sketch.
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U, -7/4,1]

[-7/4,1,1]

Inside ΔA, A and B each have three real distinct roots, two of the roots of A
being mutually orthogonal at points of the smaller 'circle'. Inside ΔB, but out-
side ΔA, A has one real root, while B has three, two of the roots of B being
mutually orthogonal at points of the larger 'circle'. Outside AB, A and B each
have only one real root. When A is the cubic giving the principal directions at
an umbilic and the quadratic form is the first fundamental form there, the index
of the umbilic i s—1/2 or 1/2 according as A lies inside or outside the larger
'circle'. In this case, B is the cubic giving the directions of lines of curvature
at the umbilic.

10. Surfaces in R

Let m = 2, n = 4. Again Σ2φ = NM. On any normal plane NMW the focal
set is a conic which has no tangents passing through w [14]. Generically there
is a curve, the curve of umbilics [17], in M over each point of which the focal
conic is a pair of real intersecting lines. The set Σ2aφ is the non-singular part
of the focal set, while Σ2^φ consists of the nodes of the focal line-pairs. The
reciprocal of the focal conic with respect to the unit circle is an ellipse, the
ellipse of curvature, which degenerates to a line segment in the case that the
focal conic is a line-pair. (Cf. also [30], [22], [23] and [16]. Other earlier ref-
erences are to be found in [25] and [17].)

Further singularities in the generic case are Σ2^xφ, a smooth surface in NM,
Σ2Λ>hlφ, the inverse image by ψ of the cuspidal edge or edge of regression of
the image of Σ2>hlφ in R4 and, finally, Σ2'1'1*1^, a discrete set of points on
Σ2tl'hlφ, mapped by ψ to cusps on the cuspidal edge of the image of Σ2ΛΛφ.

11. Parabolic umbilics

The details, for a surface in R4, are to a large extent simple modifications of
the details for a surface in R3, with R4 replacing R3. As in that case
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P1(f,x) = 0 on Σ2f,

P,(t, x) = 0 and P2(t, x)(u) = 0 on Σ^f ,

and Px(t, x) = 0 , P2(ί, *)(κ) = 0 and P3(ί, *)(w)3 - 0 on

the vector u in the last two cases being some non-zero element of R2. Again,
as in that case, the additional condition for (t, x) to belong to Σ2^1Λf is that

= o .
The set Σ2ΛΛ>xί is generically a curve in R2 x R4. Again also, at a point (t, x) of

Σ2>2f,

Pλ(t, x) = 0 and P2(t, x) = 0 ,

and there is defined there a cubic form

R2->R; u^P3(t,x)(uy ,

according to which the points of 212'2/, the umbilical centres of M, may be
classified as elliptic, hyperbolic or parabolic, just as before. The only difference
is that parabolic points may be expected to occur generically. The set Σ2>2f
generically is a curve in R2 x R4 and the parabolic points form a discrete set
of points on the curve.

Consider a smooth curve C on the normal focal set passing through a point
of 212'2/ and otherwise lying in Σ2ΛΛΛf, of dimension 1 as we remarked earlier.
At all points of C, other than the umbilical centre, P2(t, x) has rank 1, but at
the centre itself it has rank 0, being 0. Taking the expression

P£uy - 3(P3(w)2)P2-
1(F3(w)2) = 0

to the limit one can easily see that, for the limiting direction [u] at the umbilical
centre (ί, x),

But this is just the condition for the umbilical centre to be parabolic. As for
the tangent direction to C at £/, let (t\ x') be some tangent vector there. Then

x'.dgt = 0, xr d2gt(u)2 = 0, and Pz(t,x)(μ)(f) + x'-d2gt(u) = 0 ,

and these are in general sufficient to determine (t'9 x') up to a real factor.
(Since the dimension of the normal space is now > 1, it is no longer true that
x' dgt = 0 implies that x' is a multiple of x — g(t).)

It is natural to suppose at first that the parabolic points of Σ2>2f belong to
212'2'1/ but this is not so. The singularity type 272'2'1 has codimension 7 and
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therefore does not occur generically for surfaces in R4. It will occur for sur-
faces in R5. In that case, for a surface M, the focal set in each normal three-
dimensional space is a quadric cone, and points g(t) of M may be classified as
elliptic, hyperbolic or parabolic according to the nature of the cubic form P3(t, x)
at the vertex of the cone in the normal space at g(t). The parabolic points form
a curve on the surface separating the elliptic and hyperbolic regions. At a
hyperbolic point two real directions on the surface are determined by the
Hessian of the cubic. One gets situations such as that illustrated by the figure

where the oval consists of parabolic points, with elliptic points outside and
hyperbolic points inside, the points L and M being points where the vertex of
the normal focal quadric belongs to I*2'2'1/. The lines shown inside the oval are
some of the Hessian lines. Further details are left to the reader!

12. Flexional points

As we remarked earlier in § 7 we have ignored the nature of the focal set at
infinity. In the case of a surface in R3 a point where one of the two principal
centres of curvature lies at infinity is classically said to be a parabolic point, but
to avoid confusion with the other use of the word 'parabolic' in this paper we
refer to such a point as a flexional point of the surface, in accord with the even
simpler case of a curve in R2, in which case a flex or inflexion is a point where
the unique centre of curvature lies at infinity. The inclusion of flexional points
in the argument may be effected by a simple 'compactification'

/ : R m X RPn+ι » S1 x RPn+ι

of the original local map /. Details are left to the reader.

13. Thorn's elementary catastrophes

Thorn's elementary catastrophes [22, Chapter 4] provide analogues to the
material of this paper.

As an example consider the function

h: R 2 ^ R (x,y) -• x3 + y3 .
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Then, as Thorn has remarked and Kuo [15] and Mather have verified, any
function close to h is topologically or differentiably equivalent to one of the
forms

R2 — R O, y) >-> x5 + y3 + axy + bx + cy

which leads us to consider the map

/ : R 2 X R 3 - > R χ R 3 ,

((*, y), (α, b, c)) *-> (x3 + y3 + tf*y + Z?JC + cy, (β, 6, c)) .

What can one say of the Whitney-Thorn singularities of this map? Clearly, Σ2f
may be regarded as a line-bundle over R2, for the condition for ((JC, y), (a, b, c))
to be a point of Σ2f is that

3x2 + ay + b = 0 and 3y2 + ox + c = 0 ,

defining, for each (x, y) <= R2, an affine line in R3. The reader may care to pur-
sue further the analogy with a surface in R3, and to show that the origin in
R2 X R3 is in this case a point of 212'2/ of hyperbolic type with a single rib
passing through it.

In similar fashion the map

/:R2χR3-RχR3,

((*, y), (a, b, c)) ~ (JC3 - 3xf + a(x2 + y2) + bx + cy, (a, b, c))

exhibits an elliptic umbilical centre at the origin, with three ribs passing through

it.
Finally, a parabolic umbilical centre is exhibited at the origin by the map

/: R2 x R 4 - + R x R4 ,

(O, y), (a, b, c, d)) *-+ (x2y + y4 + ax2 + by2 + ex + dy, (a, b, c, d)) ,

the analogy here being with a surface in R4.

14. Intrinsic differentials

This paper provides several examples of the intrinsic higher order differen-
tials of a smooth map. These differentials, first presented in [14] and in a short
talk at the Moscow International Congress in 1966, are also discussed in [1].
The following is a brief sketch of the author's original approach to them.

Let / : Z - > 7 b e a smooth map, X and Y being smooth manifolds. The first
intrinsic differential dj of / is the tangent map Tf: TX -> TY. Let &a(TX)
denote the Grassmannian of α-planes in the fibres of TX. Then there is a
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smooth injection sa: Σaf —> &a(TX) sending each point x of Σaf to the kernel
of the tangent map there Tfx: TXX -> TYf(x). On ^a(TX) we have following
diagram of bundles

where TX and TY should be replaced, strictly, by their pull-backs to &a(TX)
by the obvious routes. The bundle Ka is the canonical α-plane bundle over
&a(TX), associating to each point of ^a(TX) itself as an α-plane. The bundle
Ma is the quotient bundle TX/Ka, with rank dim X — a.

Clearly sa(Σaf) is a subset of the set of zeros of /α, the subset Σψ of
&a(TX), and this is the set of zeros of the induced section of the bundle
Horn (Ka, TY). The generic case is when this section is transversal to the zero
section. In that case, Horn (Ka, TY), restricted to the set of zeros, is naturally
isomorphic to the normal bundle of the set of zeros in &a(TX). Moreover the
tangent bundle along the fibres of &a(TX) is naturally isomorphic to
Horn (Ka, Ma) (Cf. [20, p. 411]). Now, on sa(Σaf), the bundle Ka is exactly the
kernel of Tf, so the diagram of bundles extends to

Qa

where Qa = TY/Ma. From an easy argument it follows that the normal bundle
of Σaf in X is naturally isomorphic to Horn (Ka, Qa), pulled back to Σaf from
&a(TX) by sa. On Σaf we have the diagram of bundles:

TΣaf
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For Σa>bf we take those points where Tf\TΣaf has kernel rank b, but, by easy
diagram-chasing, this is exactly where the induced map

dj: Ka-+ Horn (Ka,Qa)

has kernel rank b. This map, which can be shown to be symmetric in the ob-
vious sense, is what we call the second intrinsic differential of /. It is defined
at each point x <= X, (Ka)x being the kernel of (dj)x and (Qa)x being the co-
kernel of (di/),,.

In the examples discussed in the paper it is easy to see that at a point (t, x)
of Σ2f in R2 x R3, (K2)ittX) is isomorphic to R2, naturally, (β2)(ί,J.) is iso-
morphic to R, naturally, and up to that factor —2, the map

is just the second intrinsic differential at (t, x) e Σ2f.
In the general case one proceeds further by analysing the bundle map

dj: Ka-+ Horn (Ka,Qa)

over Σaf in like fashion. The normal bundle of Σa'bf in Σaf is generically iso-
morphic to Hom s (KΛtb9 Qa>b) where Ka>b is the kernel of d2f over Σa*bf and
Qab is the cokernel of 32f over Σa>bf, the S denoting that the bundle homo-
morphisms Katb -> Qab which we consider are all symmetric in the appropriate
sense of that word. The third-order singularities of / are then definable in terms
of the kernel rank of the third intrinsic differential

dj: Ka>b -> Horn (Ka>b, Qa>b) ,

and the fourth intrinsic differential in terms of its kernel and symmetric maps
of its kernel to its cokernel, and so on.

In the examples discussed in the paper,

is essentially the third intrinsic differential of /, for (t, x) € Σ1^].
For 0, x) e 22'1/, (K2Λ)it>x) = [u]. Moreover, since dj: R2^(R2)* = L(R2, R)

is a self-dual map, (β2fi)ί,Λ is isomorphic to [w]* = L([w],R), the sequence

{0} > [iι] - U R2 ^L L(R2, R) ^U L ( M , R) > {0} ,

where i is the inclusion, and i* its dual, being exact. So the restriction of

P3(t,x) to [w],

M->L(M,L(M,R)) ,



NORMAL SINGULARITIES 563

is just the third intrinsic differential of /, for (t, x) e Σ2^f. As we saw in § 8,

this is zero exactly when (ί, x) e Σ2iltlf.

Higher-order intrinsic differentials become more complex in their expression

in terms of local coordinates, as is exemplified by the fourth intrinsic differential

34(ί, x) of / at a point (ί, x) of I'2'1'1/, which (cf. the end of § 8) is the map [u]

— L ( M , L([w], L([M], R))) defined by

This is a linear map

vA2,i,i'(ί,#) ""*" ̂ s(A2,i,i)(ί,

as it should be, since (K2ΛΛ)itfX) = [w] and
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