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NONDEGENERATE CURVES ON A RIEMANNIAN
MANIFOLD

E. A. FELDMAN

1. Introduction

Let X be a connected Riemannian manifold of dimension » > 3. By a non-
degenerate curve we mean a C? immersion y of the interval I or the circle C
into X, such that the square of the geodesic curvature k,(y)’ never vanishes.
By forcing the geodesic curvature to be positive we are able to associate with
7 a moving orthonormal 2-frame (1(y)(2), n(y)(9), t()(D), n(y)()eT(X),, along
v, where #(y)(¢) is the unit tangent to y, and n(y)(#) is the principal normal;
these all will be discussed in more detail in the next section. We can also as-
sociate with 7 the continuous positive function k,(y)(#) given by the geodesic
curvature. Let r,: V (X) — X be the Stiefel bundle of orthonormal two frames
constructed from 7'(X). Thus, we can associate with y, a curve o(y)(f) =
G, ()@, n(N@), k(7)) in the bundle z: V — X where V = V,(X) X R*
(R* being the positive reals) which is a cross-section over y. Let us pick 6, ¢ C,
and v, = (x,, &, 1y, k;) € V. Let N, be the nondegenerate immersions y of the
circle C into X, such that ¢(y)(6,) =v,. Our main theorem states that ¢, which
associates with each y e N, a loop ¢(y) in V based at v,, in a weak homotopy
equivalence, and hence by Whitehead’s theorem a homotopy equivalence
(provided N, has a suitable topology). Hence we see that the arc-components
of N, (nondegenerate regular homotopy classes) are in a one-one correspon-
dence with the elements of 7,(V,(X) X R*,v,) = m,(v(X), (x,, ,, 1p)). In the
case where X = R?, with the Euclidean (flat) metric we recover the main
theorem of [3].

2. Definitions and an outline of the paper

Let X be a Riemannian manifold of dimension >3, g its Riemann metric,
and D the Riemannian connection (covarient derivative) induced by g (see [6]).
Let y: I — X be an immersion, ¢ parametrize the interval [a, b] = I, 7(z) be the
parametrized curve, and §(f) = dy/dt|, = dy(d/dt) e T(X),,, be the tangent
vector of the parametrized curve y(¢). The square of the geodesic curvature is
given by the formula k,(7)(0)*=|7(0) |3, | D; ., () |2, Where t()(O) =7/ 7))
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is the unit tangent vector of y at y(#), and [v|.,, = g(r®))(v,v)"* where
v € T(X),,,. It is easy to see by a direct calculation that this number is indepen-
dent of the orientation and parametrization chosen for I. Let us fix once and
for all, an orientation for /. If y is nondegerate, we can define a unique princi-
pal normal vector by the formula

n()@) = [D; o, (O] 7O (+ 4 k(D))" .

We will always follow this convention. It is again easily seen that n(y) is inde-
pendent of the choice of parameter on . (It does depend upon the orientation
which we have fixed.) Finally, we set k,(y)(?) = ++k,(p)(®)?. We note that
k,(y) and n(y) are of class C*~2, and #(y) is of class C*~!, whenever y is of
class C*,

Let =,: V,(X) — X be the Stiefel bundle of 2-frames in n-space associated
with the tangent bundle T(X). By this we mean for each x e X, the fiber
7y {(x) = V,(X), is the Stiefel manifold of orthonormal 2-frames in the Euclidean
vector space (T(X), g(x)). We recall that V,(X), is compact, and can be viewed
as a closed submanifold of S, X S, where S, is the unit sphere in 7(X),. In
fact most of the time we will view V,(X), as a closed bounded subset of
T(X), X T(X),, i.e., V,(X) = {(v,0) € T(X), X T(X),,|v|; = |o|, = 1, and
g(x)(v, w) = 0}. Finally, let ¥V = V,(X) X R*, where R* denotes the strictly
positive real numbers, and let z: ¥ — X be the composition of the projection
onto the first factor followed by x,.

Let us fix an orientation for the circle C, and let I = [0,2]. Let us set
E(I,X) = {f: [0,2] — X|f is C?, and f is a nondegenerate immefsion}. Let
E(C, X) be those elements of E(I, X) which can be extended to a C? periodic
map of period 2 and principal domain of definition [0, 2]. Let us endow these
sets with the C*-topology. (The two possible choices of C*-topology agree be-
cause I and C are both compact, [2],[8]. In fact, these are open subsets of
the function spaces consisting of all mappings C*(I,X) and C*C,X).) The
elements of E(I, X) and E(C, X) are the parametrized non-degenerate curves.
Let ND(I, X) and ND(C, X) denote respectively the set of equivalence classes
of elements of E(I,X) and E(C, X), where we identify f and g if and only if
they differ by an orientation preserving C? reparametrization of I or C. If we
identify an element of E(I, X) which is parametrized proportional to arc length
with the corresponding unique element of ND(I, X), we can view ND(I, X) as
a subspace of E(I, X). Let us define R: E(I, X) x [0, 1] - ND{, X) by the
formula R(y, u)(t) = y((1— w)t + us,(1)) where s, is the parameter proportional
to arc length, and ¢ is the given parameter. R is continuous and defines a de-
formation retract of E(I, X) onto ND(I, X), and therefore these spaces have
the same homotopy type. Let C*(I, M) denote the C* functions from I into a
manifold M with the C* topology.

If ye ND(, X) or E(I, X), let (y) e C'(I, T(X)) denote the map #(y)(#) = unit
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tangent vector to 7 at y(f). The induced map ¢: E(I, X) — C'(I, T(X)) is clearly
continuous. Similarly we can define continuous maps n: E(I, X) — C°(I, T(X))
and k,: E(I,X) — C°(I,R*) by the formulas n(y)(t) = principal normal to y
at'r(t), and k,(y)(f) = geodesic curvature of y at y(f). We can also define
v: E(I, X) — C', V) by v(1)(®) = (O, t()(®), n(y)@®), k,(7)(®)). When we re-
place I by C all the same statements hold true. Let us pick v, = (x,, ¢, #,, k) e V,
let E, = {r e EI, X) | v(#)(0) = v,}, and give E, the induced topology. We can
now state precisely our main theorem.

Theorem A. Letp: E,— V be defined by p(y) = v(y)(1); p is clearly a con-
tinuous map. Let us pick a base point y,e p~'(v,), and let p,.: x,(E,, p~'(v,); 10)
— m(V,v,) be the usual induced map on homotopy groups (and sets). Then
Dy is an isomorphism for all k > 2, and a bijection for k = 1.

We prove this by showing that the triple p: E, — V satisfies enough of a
homotopy lifting property to imply p,, is a bijection. We define and discuss this
property in some detail in § 3, and show among other things that it is a local
property.

Pick a point §,¢ C, and let N, = {y e ND(C, X)|v()(6,) = v,}. Thus the
deformation retract defined by R gives us a homotopy equivalence between the
spaces p~'(vy), p~'(vy) N E(C, X) and N,. We show in § 7 that 7,(E,,7,) = 0
for all i. Therefore the homotopy sequence implies that z;(N,, 7,) = ;.. (V, vy)
= 1;,,(Vo(X), (%, 8y, 1)), assuming r, is parametrized proportional to arc length.
If we set i = 0, we can classify the arc-components of N,, i.e., the based non-
degenerate regular homotopy classes, by looking at =,(V(X), (x,, %, n,)). Let
2, ={yeCC,V)|r6,) = v}, where 2, has the C° (compact-open) topology.
Let ¢: N, — £, be defined by o(y)(®) = (1), t(y)(®), n(y)(®), k,(1)(1) ;¢ is con-
tinuous and by our theorem a weak homotopy ‘equivalence. Both N, and 2,
carry the structure of paracompact Banach manifold [10]. Hence by theorems
of Palais [9] these spaces satisfy the hypotheses of the Whitehead theorem.
Thus ¢: N, — £, is a homotopy equivalence.

We will close this section by outlining the remainder of this paper. § 3 as
mentioned deals with a local lifting property which will imply Theorem A. In
§ 4 we compare locally the case of an arbitrary metric and the flat metric
induced by taking Riemann normal coordinates as orthonormal coordinates of
a flat space. We can then reduce the “curved” space problem to a slightly more
involved “flat” problem. The crucial lemma of this paper is Lemma 5.1. It is
a generalization of the proposition in [5]; also see [3,2.1]. The idea is as fol-
lows. Let 2: [0, 1] — S*~! be an immersion, and p(f) > 0 a C' function. Then

¢
10 = f A(2)p(r)dz is nondegenerate, #(y)(1) = (1), n(y)(1) = #A)(1), and
0
k,(n(1) = 1/p(1). If we use Proposition 4.1 to reduce the problem to a Eucli-

dean one, we can then try to apply Smales immersion theorem [11], to curves
on the sphere, and then try to construct the desired nondegenerate curves y by
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picking the appropriate weighting function p. However, in our lifting problem we
must be able to construct p such that y(1) = x, x being some relatively arbitrary
point near 0. In § 5.1 we see how arbitrary x can be, provided 1 has some nice
properties. In § 6 we prove some technical lemmas which enable us to apply
Lemma 5.1 by insuring that our A’s have the desired properties. § 7, entitled
odds and ends, contains a technical reparametrization, Lemma 7.1, and the
proof that E, is weakly contractable, Corollary 7.2. In § 8 we reduce the proof
of Theorem A to an abstract Theorem 8.2, which we prove in §9. In § 8 we
have to introduce certain Sobolev spaces. Anything we need can be found in
[1, pp. 165-168].

3. Abstract topology
Let I" = the n-cube={(x,, - - -, x,) |0<x,; <1, 1<i<n}CR", [} ;' ={xel" | x,
=i,i=0,1,F' = () ;7" = U I3, and J*' = {xeal”|x¢Int In7).
k=1

= (k,1%)

Definition 3.1. A one parameter family of maps h,: I" - I",0 < t < 1,
is said to be an admissible deformation of I if:

i) the induced map H: I X I* — I" defined by H(¢, x) = h,(x) is continuous,

i) hy=1id, h,|F** = id for all ¢ ¢ [0, 1], and

iii) h,(@I") < oI* for all ¢¢ [0, 1].

Remark. Let 4, be an admissible deformation of I”, and K: (I", F*™!) —
(I*,J"') a homeomorphism mapping F*~! homeomorphically onto J*~!. Let
h, = Koh,oK~" and let H:I X I"—I* be the induced map defined by H(¢, x)
= h,(x) = K o H(t, K~'x). Then H is continuous, #,(x) = x for all xeJ*,
te[0, 11, b, = id and h,(3I") C aI". Hence, if we replace F»~! by J*~! in Defini-
tion 3.1 we get a completely equivalent notion.

Definition 3.2. Let h,: I" —» I*,0 <t < 1, be an admissible deformation of
I*. We say h, is a strong admissible deformation if h,(I37") C I for 1 <k <n.

Definition 3.3. Let z: E — B be a triple where E and B are topological
spaces, and « is a continuous map.

7 %o

m—

We say {z: E — B} has (strong) property P, if for each n and each pair of
continuous maps ¢,: I* — B and ¢: F*~' — E such that 70 ¢ = ¢,| F""?, we
can find a (strong) admissible deformation 4, of I" and an extension ¥ of ¢ to
all I” such that 7 o ¥ = ¢, o A,.

Let us note that there is a notion exactly equivalent to Definition 3.3 if we
replace F*~! by J*~'. In fact, {z: E — B} has property P if and only if it has
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property P with J*~! replacing F*~! in Definition 3.3. If we use this remark,
and then apply the usual proof in the case where n: E — B is a Serre fibration
(see [7]) we get the following important proposition.

Proposition 3.4. Let n: E — B be a triple consisting of two topological
spaces and a continuous map which satisfies property P. Pick b,e B, and
Yoen (b)) = F. Then the canonical map r,: n,(E,F;y) — n,(B,b,) is a
bijection (1 —'1 and onto).

The following elementary proposition follows immediately from the defini-
tions.

Proposition 3.5. Let n: E, — B, and p: E, — E, have (strong) property P.
Then r o p: E, — B satisfies (strong) property P.

Definition 3.6. Let E and B be topological spaces, and z: E — B a con-
tinuous map. Let ¢: I* — B, and ¢: F*~' — E be continuous maps such that
mo¢ = o|F"'. By a deformation of (¢,¢) we mean a continuous map
¢: F»'xI—E such that 7o ¢, = ¢ on F*~! and ¢,=¢ where ¢, = § | F*~* x {1}.

Proposition 3.7. Let n: E — B be as above. Then n has (strong) property
P if and only if, for each n and each pair of continuous maps ¢: I* — B and
¢: F*~' such that n o ¢ = ¢|F""!, we can find:

i) adeformation ¢, of (¢, ¢),

ii) a (strong) admissible deformation h, of I*, and

iii) an extension ¥ of ¢, to I" such that x o ¥ = ¢ o h,.

Proof. 1If n: E— B has (strong) property P, this is a triviality. Let ¢: I* — B
and ¢: F*~! — E be a pair of continuous maps such that o ¢ = ¢|F*~'. We
want to find a (strong) deformation A, of I" and an extension ¥ of ¢ to I* such
that 7 o ¥ = g o h,. Let us define a (strong) admissible deformation 4, of I as
follows. Let A, be the (strong) admissible deformation given by ii) in the hypo-
theses. Let C,=(xeI"|t/2<x,<1) for 0<t<1, and T ={(x,, - - -, X,) | xeI",

Xy = stf2,5t/2 < x, < 1for I # k,0 < s < 1}. Then I" = () T& U C, for
k=1

each fixed ¢. Let us introduce the following shorthand if v = (x, - - -, x,,)_e R™
and a¢ R, by x — a we mean (x, — a, - - -, x, — a). We will now define 4,. If
x ¢ C,, then define (,(x)), = (ht<“; — tg)) , and if x e T®,, then x, = st/2,
0<s< 1, and set (ht(x)),, =0 and (h x), = (x, — st/2)/(1 — st/2). We then
see by direct calculation that &, = id, h,| F*~* = id, and , is well-defined and
is a (strong) admissible deformation of I*. Let ¥ be the extension of ¢, to I"
given by i) and iii). We define the desired ¥ on C, by ¥(x) = ( ij ;)
xeT®, then 0 < x, < 1/2, say x, = /2,0 < s < 1, and therefore 5/2 < x, < 1
for | + k. We then set ¥'(x) = ¢,(h,(x)). We can then check directly that
extends ¢, and ¥ is continuous and well-defined, and that 7 o &' = ¢ o h,. This
completes this proof.
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Definition 3.8. Let E and B be topological spaces, and n: E — B a con-
tinuous map. We say n: E — B has strong local property P if for each xe B
there exists a neighborhood U of x such that z: z~(U) — U has property P.

Theorem 3.9. If n: E — B has strong local property P, then it has strong
property P.

Proof. For each be B, let U, be an open neighborhood of b such that
w: - '(U,) — U, has property P. Let ¢: I — B, and ¢: F*~' — E be continuous
maps such that 7o ¢ = ¢ on F*~'. The sets ¢~'(U,) forms an open cover of I".
Hence by the Lebesgue covering lemma there exists an integer N > 0 such that
any subcube of I*, with sides parallel to those of I* and side of length 1/N, is
contained in one of the sets ¢~'(U,). Let B, =B, ... ;, = {x e I"|i,/N < x;, < i,
+ 1/N}LO0L i, <N — 1,1 < k< n Set By, = {xeB;|x; = iy/N}, By

={xeB;|x;, =i, + 1/N}, and F; = 6 By xo- The B;’s cover I", and each B,
k=1

is contained in one of the sets ¢~'(U,). We will order the (N)" n-tuples
I=(,---,i,) lexicographically. If I is an n-tuple, let I + 1 be the n-tuple
immediately succeeding I, and v(I) the number of n-tuples less than or equal
to I. We now construct the continuous extension ¥ of ¢ and the strong admis-
sible deformation 4, of I by induction.

Induction step I. LetC; = F*!' (J U Bj.. Assume there exist a continuous
I'<I

mep ¥;: C;— E extending ¢, and a continuous function H;: [0, J(D] X I" — I"
where J(I) = v(I)/N® with the following properties. Set h; (x) = H,(t, x).
Then h;, = id, h;,|F* =id for 0 < ¢t < J(D, h; (I37) S I and wo ¥,
=@ohs a)-

We will now prove our theorem by showing that step I implies step I + 1,
and noting that step O is trivially true, and step (V)" is the desired result. Look
atB;,,andnotethat F;,, = B;,,NC;. Letf=¢oh; ;4 |Br,, andp=";|F;,,.
But we know that B;,, is contained in one of the ¢~*(U,). Hence we can find
continuous maps K: [J(I), JI + 1)] X B;,,— B;,,, and P: B;,, — E extending
p with the following properties. K(J(I),x) = x,K(t,x) = x for xe F;,, and
teJ(D,JI + D), K(t,x) e By, 1, for xe By, ;, and te [J(1),JUI + 1)], and
m o P(x) = f(KUU + 1), x)) for xe B;,,. Define ¥;,,: C;,,=C; U B;,, » E
by ¥;,,|C; =¥; and ¥;,,|B;,, = P. ¥;,, is clearly a well-defined contin-
uous extension of ¢. We now extend K: [J(I),JI + 1)] X B;,;, —» B;,, toa
map K: [J(),JI + 1)] x I" — I* as follows. If for some k, x; < i,/N", then
we set K(t,(x,, ---,x,) = (x,, -+ -, x,). We are left with the case where
x; > ix/N™ for all k. We then set K(¢, x), = x,, provided x, > (ix,,)/N". We
define % by the formula (%), = x; if {y/N" < x; < (i;,)/N™ for some index I,
and by (%); = (ix,)/N"™ if x; > (iz,)/N". Then X e B;,, and we set K(t, x),
= K(t, %), where ! is an index such that i;/N" < x, < (i,,,)/N™. Note if we
set k,(x) = K(¢,x), the k, have the following properties. k,(x) = x for all
xeCy, k4 (x) = x for all xeI”, and k,(I37) C I3 for all ¢. Let us define
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h(x) , o<t<JU,
hynk(®), JD)<t<JI+1),

h1+1,t =
and set H; (¢, x) = h;,, ,(x). It is then easy to directly check that H;,, and
¥'; ., have all the desired properties.

In the remainder of this paper we will prove the following theorem.

Theorem A’. Let p: E, — V be the triple defined in §2. Then p: E, -V
has strong local property P.

By using Proposition 3.4 and Definition 3.8 we see that Theorem A’ implies
Theorem A. Let (x,, v, k) € V, we want to look at neighborhoods U of this point
of the form U =W X V, X (k,, =), where k, < k and W is a sufficiently small
neighborhood which is the domain of x, centered Riemann normal coordinates
(x;, -+ -, x,). The exact form of the neighborhood U will be chosen in the next
section. However, given ¢: F*~'— p~(U) and ¢: I"— U such that po =0 | F"~*
we cannot lift ¢ immediately because of the nature of our lifting mechanism.
We must first “reparametrize” the cube I”, and preform some preliminary de-
formations on the curves in ¢. It is because of this that the topological abstrac-
tions of this section are needed.

4. A local comparison to determine the desired neighborhood

Let (X,g) be the given Riemannian manifold, and let (%, 7, keV,keR",
p=(@,A),and Ve Vy(X);. Let U=W X V, X (k, ), where 0 < k < k, W
is the domain of ¥-centered geodesic coordinates (x,, ---,x,) and V, is the
Stiefel manifold of orthonormal 2-frames in n-space. Let the metric tensor g
take its usual coordinate form g(x) = ) g;;(x)dx’dx? on W. We recall that
8:/(0) = g;;(%) = 0,5, (9g,;/9x)(0) = 0, and therefore the Christoffel symbols
I't(0) = 0. If we identify the tangent space T(X),, x € W, with R™ in the usual
way (i.e.,a = (a,, - - -, a,) is identified with >} a,(3/0x;)(x)), then we note that
as x varies over W, we identify V,(X), with a slightly different subset of
R™ X R™ determined by the variation in the metric. This identification clearly
varies smoothly with x e W. We can also define upon W the flat metric g, =
2. 0ydxtdx?. If y: 1 — W is a nondegenerate immersion with respect to g(gz)
we call it g(gp)-nondegenerate. If y: I — W is g(gy)- degenerate let #(y), n(y),
k,(Dlte(y), np(p), kx(y)] denote the unit tangent vector, the principal normal
vector, and the geodesic curvature of y calculated with respect to g(gyr).

Let us pick (x, v,0) e W X V, X (k, o). Furthermore, assume v = (a, b) ¢ R"
X R™, where 3, (a)* = > (b)*=1 and ] a;b, = 0 (i.e., (a, b) is a 2-frame
with respect to the flat metric). Let #,¢ I, and y: I — W be a gp-nondegenerate
curve such that y(t,) = x, tz(y)(t,) = a, nx(y)(t,) = b, and k(7)(t,) = 1. We then
see H(p)(t)=a/(} g:;(x)aa)?, and (k,()(t)) = (X g:;(X)aa) ([ X 8:,(0)a,a;]
[3 g:;(®)cic;] — [ gi;(0)asc;]), where ¢; = byl + jZk I'iy(x)aa;. Hence
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t(y)(t,) and k,(y)(t,) depend upon x,a,b and I alone and not on our choice of
7. We can use these formulas to define the functions #(x,a) = #(y)(¢,) and
ky(x,a,b,l) = k,((t). Now k,0,a,b,l)* = I, and 3(k,(0, a, b, 1)?)/al = 2I.
Hence because of the compactness of ¥, we can find a neighborhood W, of
0, W, © W such that k,(x,a,b,)* > (2k/3)% if k <l and xe W,. In that
k,(p) = k,(x,a,b,1) >0 if xeW,, wecan define the principal normal
n(pt) = ky(x, a, b, DY g;;(x)a,a;)*[d] where d = (3] g;;(x)a,a;) —
a(}; g“(x)alcj),cj =b;l + Z I'i(xya;a, and ¢ = (¢, - - -, ¢,). We see that

n(y)(t,) does not depend on r but only on x, v = (a, b) and I, and we can then
set n(x,a,b,l) = n(y)(t,). Hence we have defined a smooth 1-1 map «:
W, X V, X (k, 0) > W, X V, X (2k/3, o) by the formula a(x, (a, b),l) =
(x, tx,a),n(x,a,b, D), k,(x,a,b,1)).

Let us pick (x, v, ) e W X V, X (k, o) where we assume v = (a, b)) e R® X R",
2 8y(Waa;= Y g, (x)bb; = 1, and ] g;;(x)a;b; = 0 (i.e., (a, b) is an ortho-
normal 2-frame in the metric g(x)). Let #,eI, and let us choose a g-nonde-
generate curve y: I — W such that y(t) = x, t()(t,) = a,n(p)() = b and
k,()(t,). We then see that 1:(y)(2,) = a/(3] (a,))"* = tz(x, a). We also see that
k(@) = (X @)X (c))(X (@) — (Taxe)’]l = kx(x, a, b, 1)* where
¢ = byl — Z I'*;(x)a;a;. Hence kz(y)(t,)* depends only on (x, a, b, I). Further-

more kz(0, a b, = I, and a(kz(0, a, b, )*)/5l = 21. By the compactness of
V,, we can find a neighborhood W, of 0, W, C W such that kz(x, a,b,l)* > (2k/3)?
for I > k and x e W,. Since kz(y)(t,) = ky(x,a,b,) > 0 for xe W, (I > k),
we can define the principal normal n,(y)(t,) = ny(x,a,b,l) = kp(x,a,b,)*
(X @)H7A2] (ap)c — (3] ayep)al, where ¢, = bl — Z I'*(x)a;a;. Thus

ny(y)(t,) depends only upon (x,a,b,l). Then as before we have defined a
smooth 1-1 map 8: W, X V, X (k, ) —» W, X V, X (2k/3, =) by the for-
mula B(x, (a, b),)) = (x, tz(x, a), ny(x,a, b, 1), kp(x,a,b, D). Finally we note
that @ o 8 = id and Bo & = id whenever these compositions are well-defined.
This discussion can be summerized by the following proposition.

Proposition 4.1. Let us pick k > 0. Then we can find a neighborhood W,
of 0, W, C W, which depends only upon our choice of k, with the following
properties::

1) If y: I — W, is g-nondegenerate, and k,(y)(t) > k, then y is gy-nonde-
generate and kp(y)(¢) > 2k/3. Furthermore, if y: I — W, is gp-nondegenerate
and kyp(y)(©) > 2k/3, then y is g-nondegenerate and k,(y)(t) > k/3.

2) Let us pick (x,v = (a,b),) e W, X V, X (k, o0)[(x,v = (a,b),)) e W,
X V, X (2k/3, o0)]. Pick t,el, and let y: I — W, be a glgyl-nondegenerate
curve such that y(t,) = x, t(y)(t,) = a, n(p)(t) = b and k,()@,) = liy(t) = x,
ty(P) = a,ng(Pt, = b and kp()t) = 11. Then tz()(t), nx(y)(t,) and
ke ()@ [t(7)(y), n(y)(t,) ond k,(y)(t,)] are all well-defined and depend only upon
(x,a,b,1). We therefore set tz(y)(t) = tz(y)(x,a, b, 1), ny(1)(t) = ny(x,a,b,l)
and kp(Y)(t,) = kp(x,a, b, D[t(P)(t,) = (x,a,b, 1), n(p)(t,) = n(x,a,b,l) and
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k, (1)) = k,(x,a,b,D]. In this way we define smooth 1-1 maps a: W, X V,
X (k, 0) > W, X V, X (2k/3, ) and B: W, X V, X (2k/3, o) — W, X V,
X (k/3, o) defined by a(x,a, b, 1) = (x, tz(x,a, b, ), ng(x, a, b, ), kp(x,a, b, )
and B(x,a,b,l) = (x,t(x,a,b,D,n(x,a,b,),k,(x,a,b,). Finally aofp = id
and B o & = id whenever the composition is well-defined.

5. A generalization of Fenchel’s lemma

Let R” possess its usual Riemann (Euclidean) structure, S* ' C R” be the
unit sphere with its usual Riemann structure, and y: I — R" be an immersion.
We recall that 7 is nondegenerate if and only if #(y): I — S™' is an immersion.
If we are given an immersion A: [0, 1] — S"~!, we want to find a curve r: [0,1]
— R™ such that #(y) = 2, (1) = a predetermined point x, and k(y)() > k > 0,
k being some some predetermined number.

Lemma 5.1. Let D C R" be a disc radius R, 0 < R < 1, centered at 0.
Let c(n) = 18n/+/n, and B(n) = some number, B(n) > 1, which depends only
upon n and which we will determine in the next section. Let k be a real num-
ber such that 0 < k < [e¢(m)B(n)]7%, (¢,, n,) and (t,, n,) be two given orthonormal
2-frames, and k;,i = 0, 1, be two positive numbers such that k; > k,i = 0, 1.
Pick xe D such that |x| < Ryn/(2n). Let 2: [0, 1] — S"~* be an immersion
such that

1) 200) = ¢, 2(1) = ¢, 4(2)(0) = n, and t(A)(1) = n,,

2) 2|10, 1/2] is parametrized proportional to arc length and | (s)| < B(n)
for se[0,1/2], ‘

3) - the set {(1)|0 < t < 1/2} contains the 2" vertices of the inscribed cube.
Then we can find a C* function p(t),0 < p(t) < 1/k, such that the curve

7)) = f s,2(1-)p(-z-)d-z- has the following properties:

a) r(l) = X, t(T)(l) = tun(r)(l) = n, k(T)(l) = kwl =0,1.

b) 70| < R, and k()(®) > k.

Proof. 1t is easy to see k(y)(¥) = (o(1))~*. Hence if 0 < p() < c(n)B(n),
then k(y)(t) > k. Furthermore #(y)(#) = () and n(y)(®) = t()(®). Let K =

{y|y - f 'o(D)A(2)dz, where p(z) is smooth, 0 < p(z) < 1/k, p(i) = (k;)" for
i=0,1, 0and flp(‘:)dz' < .QR}. We note that K is a convex. set. Let

0
t;€(0,1/2),1 < j < 2", be the points such that A(t;) are the vertices of the
inscribed cube. If we can show that each vertex .9RA(z;) of the inscribed cube
in the sphere of radius .9R is within .9R+/n/(3n) of K, then we see that KD
open ball about 0 of radius Ry/n/(2n), which implies that x ¢ K.
Pick one of the ¢,,0 < ¢; < 1/2, such that A(¢,) is a vertex of the inscribe
cube. Let us pick p,;(f) as follows. Let p;(0) = (k)" p,(1) = (k)7,



196 E. A. FELDMAN

f "0,(0dt = 9R, p,(1) > 0, and p,() be smooth.
0

-

atyb 1/2

}
|
1
Pick an interval [a, b] about ¢; such that [a, )] C (0,1/2) and b — a = 2(.9R)/
(c(n)B(n)). But (b — a)/2)c(n)B(n) = .9R, so we can choose p;(f) to also

satisfy the relations f 0,(<1/2(.9R/n/(9n)), f 0,(0dt<1/2(.9R/n(9n))
and p,(0 < 1/k. Let 2, = f 0,(A()dt. Then 2,¢K, and |2, — .9RA(t,)|
= ’ f Q@@ — }l(tj))pj(t)dty because .9RIA(t;) = fp,(t)l(t )dt. Therefore

12, — 9Rz(t)|<|ﬂ+u +U]<2 2(1/2)(9R¢n/(9n))+‘ﬂ But

|2(®) — A(t;)| < |b — a|sup u’(r)[ g |b — a| B(n) by Taylor’s formula There-
fore | J' "0 — z(zj))pj(:)dtl < |b — a| B f "0,(dt < 1.8R c(n)"'(.9R) <

(1.8R)c(n)~ = (.9R)(w/n /(9m)). Hence |2, — -9RA(t,)| < .9R+/n /(3n), which
is what we wanted to show.

6. Smashing and stretching

Let us fix some notation for this section. Let D C R™ be an open disc of
radius R centered at 0. Give D its usual Riemann structure, and let (e, e,) be
an orthonormal 2-frame. Let E = {y: [—1, 1] — D| a C*-nondegenerate im-
mersion 7}, where we give E the C? topology. Let k, be some strictly positive
real number, and set Eyk) = {reE|7(0) = 0, t(y)(0) = e,, n(p))(0) =
e, k(P)(®) > kot e [—1,1]}

In this section we will prove two main lemmas (6.3, and 6.4) which easily
imply the following theorem.

Theorem 6.1. Let X be a compact set, and ¢: X — Ey(k,) a continuous
map. Then we can find a continuous deformation @: X x [0, 1] — E(k,) of
o (i.e., p(x) = D(x,0)) with the following properties:

1) There exist numbers S and T,0 < S < T < 1, such that @(x, u)(t)
= o(x)(®) forall |t| > T,xe X,uel0,1], and &(x,1) = Oy, 1)(H) = f(®) for
al0 < |t] < S, x,ye X, and C= f(1).
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2) The path t(f(1)),0 < t < S, passes through each of the 2" vertices of
the inscribed cube, and fsk(f)(t)dt < B(n) = 2580 + (n — 1)?).
[}

If we are to employ Lemma 5.1 it is clear that a theorem of this type is
needed.

Sublemma 6.2. Let X be a compact set, and a: X — C*([—1,1]; R) be a
continuous map, and assume a(x)(0) = a’(x)(0) = a’(x)(0) = 0. Then there
exist continuous functions b;: X — €°([—1,1],R),i = 0, 1, such that

D a(x)(s) = s°by(x)(s), a'(x)(s) = sb,(x)(s) and

2)  by(x)(0) = by(x)(0) = 0.

Proof. 'This is a direct consequence of the fact a(x)(s) = s f 1Da(x)(st)dt
0

where D denotes differentiation with respect to the variable v = st.

Lemma 6.3 (Smashing lemma). Let X be a compact set, and ¢: X — E(k,)
a continuous map. Let U = [—a,al,0 < a < 1, and assume ¢(x)|U is para-
metrized by arc length for all xe X. Let us extend (e, e,) to an orthonormal basis
(e,, - - -, e,) of R*, and use these as coordinates. Then we can find two neigh-
borhoods V = [—c,c]l and W = [—b, b] such that 0 < ¢ < b < a, and a con-
tinuous deformation @: X X [0, 2] — Ey(ky)(i.e., D(x,0) = ¢(x)) of ¢ such that

1) O, WD) =p(00) if b<|t] < 1, 0(x, O =y, 2)()) = (1, K2, - - -,0)
for |t| < c,x,y e X, K > max (k(x)) where k(x) = k(p(x))(0),

zeX

b
2) f K@(x, w)(Ddt < 1.

Proof. Step I. Let us restrict ourselves to the interval [—a, al. We see
e(x)(s) = se, + (s°k(x)/2)e, + a(x)(s), a(x)(s) = i a(x)(s)e;, and a,(x)(s)

satisfy the hypotheses of Sublemma 6.2: 0 < |s| < a. Let 2 be a C~ function so
chosen that A(s) = 1 on [—1/2,1/2],0 < A()<1,4(s) = O for |s| > [,I < a,
and that there exists positive constants C,; and C, which are independent of our
choice of I, such that |2(s)| < C,/l and |2’(s)| < C,/I. Set p(x,s) = se,
+ (s%(x)/2)e,, and let O(x,u)(s) = p(x,s) + a(x)(s)[1 — A(Hul,0 < u < 1.
O(x, u)(s) = p(x)(s) if |s| > I. Note that we have not yet chosen I. There exists
an ¢ > 0 such that if ||p(x) — @(x, w) ||, < e for all x e X, u ¢ [0, 1] where | ||, is
the C?-norm, then @(x, u) € E,. But @(x, u)(s) — ¢(x)(s) = a(x)()uils), |s| < 1,
and @(x, u)(s) —(x)(s) = 0, |s| > I. Hence |@(x, u)(s) — o(x)(s)| < sup la(x)(s)|,

se[-1,1
|0 (x, u)(s) — ¢’()($)| < [2(5)]|a(x)(s)]| + [A(s)||a’(x)(s)|, and |@"(x,u)(s) —
¢’ (] < (@] ]ax)(®)] + 2[X(9)]]a’(x)(s)| + |A(s)||a”(x)(s)|. Hence by
Sublemma 6.2, the compactness of X and the estimates on 2’ and 2"/, we can

find an [ so small that || @(x, ) — () |, < ¢ and f ‘K@(x, w)(®)dt < 1/10.
)

Set b = I (b = b in the statement of Lemma 6.3).
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Step II. Let us limit ourselves to |s] < 1/2. Hence @(x, 1)(s) = (s, s*k(x) /2,
0,.--,0), and let @(x)(s) = D(x, 1)(s). Let ¢(s) be a C= function so chosen
that ¢(s) = O for |s| > d, ¢(s) = 1 for |s| < 5d/6, and 0 < ¢(s) < 1, and we
can choose positive constants C, and C, independent of d such that |¢'(s)| < C,/d
and |¢"'(s)| < C,/d*. Let us assume 2d < I/2. Let @(x, u)(s) = (s, s/ 2(K¢(s)u
+ (1 — ug(s))k(x)), ué(s), 0, - - -, 0), where &(s) is an even (§(s) = §(—s)) C*
real-valued function such that &(s) = O for |s| < d/6 and |s| > 2d, and where 0 <
u < 1. By this formula there exist 4, and B, such that if |£(s)| < 4, and d < B,
then @(x, u)(s) e D for all (x, u, s). @’'(x, w)(s) = (1, sh(x, u, s), u¢'(s), 0, - - -,0)
where h(x, u, s) = s[Kug(s) + (1 — ud(s)kx)] + (s*/2)[K — k(x)ug’'(s)]. Pick
e < 0 so small that k(x)?/(1 + ¢)* > k. There exist A, and B, such that if
|€'(s)] < A, and d < B,, then |@'(x, u)(s)]} < 1 + & for all (x, u) and |s| < 2d.
"(x,u)(s) = (0, m(x, u, s), u¢"(s),0, - -.,0), where m(x, u,s) = k(x) + u(K
— k(x)p(s) and p(s) = [¢(s) + 2s¢'(s) +(s?/2)¢"(s)]. There exists a positive
constant C, independent of our choice of d such that [u(s)| < C,|s| < 1/2. If
|s| < 5d/6 or |s| > d, then m(x, u, s) # 0 and hence @(x, u)(s) is nondegenerate.
We assume £(s) # 0,5d/6 < |s| < d. This implies @(x, u)(s) is everywhere
nondegenerate.

k(@(x, w)(s)*=k(x, u)(s)* = [1+ A+ u*(§)1*[(1 + A* 4 (&) (m* + u*(E")?)
— (mh + w&'6")] = [1 + A% + (&)1 [m* + w(&")* + (mu&’ — hug”)’].
But m(x, u,s) = k(x) + ulK — k(x)]pu(s), and therefore there exists u, > 0
such that m(x, u, s)*/(1 + &)* > ki for 0 < u < u,;, u, is clearly independent
of the choice of d and &. Set &7(s)* = (1 + &)* k2 + 1)(u))> = « for 5d/6 <
|s] £ d, and let |£”(s)]? < « for all other s. Then u*"(s)?/(1 + ¢)* > k} for
5d]6 <|s| < d,u, < u <1. Hence |§(s)| < 2da and |&(s)| < 4d%a. k(x, u)(s)*

< m(x, u,s)* + u&’(s)* < KA1 + C,)? + o, and therefore f 2dk(d?(x, w))(s)ds

< 4d(KX(1 + Cy) *+ o)’ Let d < min (B, B,, 4,/ 20, (;12:1/4a)1/2, 91/4
(K*(1 4+ C)* + a)7%). Then [§(s)| < A,,[E'(s)| < A,, k(@(x, w)(s) > k, and

dek(@(x, u))(s)ds < 9/10. This proves our lemma if we let c = d/6.

-2d
Lemma 6.4 (Stretching lemma). Let D be a disc centered at 0, and with

radius R < 1 and the usual metric, etc. Let 0 < A <1, and let p: [—A, A] —> D
A
be a nondegenerate immersion such that ¢(0) = 0, k(p)(t) > k, >0, f k(p)(Ddt
—4

< 1 and H(p)(0) = vye S™'. Pick we S™~' such that the geodesic (great circular)
distance dg(vy, w) < w/6. Then we can find a deformation ¢, of ¢,0 < u < 3,
such that

D ¢.(0) = 0 for all u, t(p;)(0) = w, (1) = ¢(1),

2) .(?) is nondegenerate for all u and t, and k(p,)(t) > k,,

3) thereexists a real numbdr a, 0<a<A, such that ¢,(t) = ¢(¢),0 < u < 3,
[t| > a,
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4) ¢, defines a continuous curve in CX[— A, A], D),
A -
5) f k(p)(®)dt < L(n) = 2280 + vn — 1.

-4
Proof. Step 1. Pick coordinates in R™ such that v, = e, and n(p)(0) = e,,
and a positive number K such that K > sup (1, 2°k,, k(¢)(0)). Let us repara-
metrize ¢ so that near 0, ¢ is parametrized by arc length. By applying Lemma
6.3, we can find a deformation ¢,(¢) of ¢, 0 g u < 1, and numbers B and C
such that 0<C<B <4, ¢,()=(¢, K /2,0, - - -,0) for || < C, and ¢,(?) = ¢(?)

for |t| > B. Furthermore choose ¢, so that k(p,)(?) > k,, f k(pD(Hdt < 1,

and |¢(t)] < R/2 for 0 < |t|] < B. (Jp.(1) <R, of course, for all u and
te[—A,Al)

Step 2. Let us pick a real number D > 0 such that D < min( C, 2K)™Y).
Let 2 be a smooth strictly increasing monotone function on [1,2] such that
A1) =0and 22) =1. Setw = (1, w,, - - -, w,) /(1 + w2 + - .. + w?)"% But
ds(v,, w) < r/6 implies w2 + - .- + w2 < 3/4. Hence |w,| < +/3/2. Let w,(£)
be a C function such that w,(0) = 0, w;(¥) = w, for 0 < |¢t| < B,. We can also
assume |Wi(H)| < +/3/2, w,(f) = 0 for [t| > 4B,, |w,(t)] < v/ 3 B, and |w,(t)| <
(By)~'. Pick B, so small that 16B, < min (R/8, D). Finally, let us pick m such
that 2™*'K)~! < B, < (2"K)!; note m > 5. Let us choose another C* func-
ion £(#) such that {(¢) = O for |¢| < B,/2,{(#) = O for [t| > 9B,, {(¥) is even,
g’ = K2™* = « for B, < |t| < 4B,, and || < K2™~* elsewhere. Further-
more, we can choose { such that [{’| < (8B)(K)(2™*) = B,K2™ ' < 1/2.

I
|
|
| ’ \
|
L 1 H !
0, B, B, 2B¢, 4Bn
12 \ /
|
|
|

graph of ¢

We now set ¢,(t) = (1, 2K /2 + 2ww,(1), 2(w)(®),0, ---,0) for |¢t] < D,
1<u<?2. For|t| > 9By, 0, (1) = ¢,(t). ¢, (1) = (1, Kt + 2wy (D), 2w’ (), 0, - - -, 0)
and ¢}/(t) = (0,K + awy/,2£”,0, ---,0). By our choice of w, and { we see
¢, (t) is nondegenerate. Note that 1 < |@,()[?<1+(1/2 + v/3/2 + 1 <4=22
k)0 > [(K + 2w} + GC"Y|gu®F > 2K + awf} + ("] Now
[wy(®)| < 1/B, < 2™*'K. Look at u, such that () = 2~"*». Hence for
1 < u<uy,(yy) <272 and therefore [Aww; ()] < K/2. So k(p,)(D)?
> K?/2° = (K/2%* > k2. If |t| < B, or |t| > 4B,, then wy({) =0 and
k(p,)(@)? > K?/2° > k2. Finally, let B, < |t| < 4B,, and A(4) > (2)~™*?). Then
AW’ (s) > (2)-m*rK2m-? = K278 Therefore -k(p,)(#)* > (K/2°)* > kj. Let
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us estimate J = f ko).

—9By

I < f D P I OPd < 2 f (K + W, (024 LD

—9Bg
< ) J‘([K + l/Bo]Z + K222m—8)1/2 < 2K f(l + (2m+1)2 + (2m—4)2)1/z
< K2m+418B0 S K2m+418(K2‘m)—1 —_ (9)(25) .

Note ¢, (1) = (1) + 20, w,(®),{(®),0, - --,0) for [t] < D. |p, ()| < R/2 +
R/4 < R, because 16B,< min(R/8, D), |w,(?)| < v/ 3B, and |{(H)| < (8B,)(1/2).

Step 3. Let us restrict ourselves to ¢,(t) = (¢, (#/2)K + tw,,0, - - -, 0) for
|t| < By/2. Now wj + -+ + w2 < 3/4. Let us pick B, = B,/8 and let w,(2),
3 < k < n, be C~ functions such that wj(¢) = w, for |¢] < B, w,(¢) = 0 for

|t]| > 4B, w,(0) = 0, 3 (wi(0)* < 3/4,|w{ (D] < (B)~', and ;ﬁ: wi(0)

< (3/4)(B,/2) < (R/4)*. Let A(u) be a strictly increasing monotone C* func-
tion on [2, 3] such that A(2) = 0 and A(3) = 1. Let ¢, () = (¢, 2K /2 + tw,,
Awwy(0), - - -, w(DA(w)). Then ¢(H) = (1,tK + w,, Awi(@), - - -, W, (1)) and
o0 = (0,K, awy/, - - -, 2w})). Hence ¢,(¢) is nondegenerate, and |¢, ()| <
3R/I44+R/4=R. 1 < |g®OF <1+ (Kt + w)* + 3/4< 4 = (2)*. Hence
k(p,)(®)? > (K/8)* > (ky)*. Look at

_ f4Blk(go3)(t)dt <2 f(Kz + I W/ <2 f(KZ + (B)7*(n — 2))

—4B;

<2 f(KZ + (n — K22 )2 < 2K2™* Y (n — 1)’By < 44/n — 1.

Hence fAk(¢3)(t)dt <14 14 32.9 4+ 4y/n — 1, which completes the proof
-4
of this lemma.

7. Odds and ends

Lemma 7.1. Let X be a compact set, ¢: X — R be a continuous function
such that ¢(x) > 0 for all x e X, and K be a fixed positive number. Then there
exists a continuous function A: X — €=, I),I = [0, 1], such that A(x)(0) = O,
A1) = 1, 7x)@® > 0, 7(x)(0) = ¢(x)/K, and A(x)(@) = t if $(x) = K.

Proof. Let us set {(x) = ¢(x)/K. Since X is compact, there exists s,,
0 <1, <1, such that 0 < {(x)s, < 1. Set

s¢(x) —1<s5< s,

SO0 = 1 ) — D= Do — D, s <s<2.

Then g(x)(0) = 0,g(x)(1) = 1, and g(x) is continuous and is C~ everywhere
except at s,; in fact, g: X — ¥°([—1, 2], R) is continuous. Extend g(x) to all
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of R by making it O outside [ —1, 2]. Denote this extension also by g(x), and
note that g(x) e L?(R),1 < p < o, and that g: X — L?(R) is continuous. Let
0 <e <min(s)/2,(1 — s59)/2). Let ¢,(t) > 0 be the usual C* approximate

identity, ¢.(t) = o.(—1), support (¢,) C [—e, ¢] and f “odt = 1.

1
—¢E

T

|
|
|
|
!
|
|
I
l
0 ¢

Set 2(x)(1) = (g(x) 40 )(8) = J‘mg(x)(s)gos(t — s)ds. Then by our choice of g and

the usual properties of the convolution, we can see that A(x) is C=, it has all
the desired properties, and 1: X — €*(I, ) is continuous for each k (this last
2is g40.10, 1]).

Corollary 7.2. Let X be compact, K > 0 a real number, and ¢;: X — R,
i = 1,2, continuous real valued functions such that ¢,(x) > 0. Then there exists
a continuous function 1. X — €~,I) such that 2(x)(0) = 0, 2A(x)(1) =1,
A(x)(0) = (0K, 2(x)(0) = ¢,(x), ’(x)()) > 0, and A(x)(t) =t provided
¢(x) = K and ibz(x) = 0.

Proof. Let A(x)(¢) be the functions constructed by LLemma 7.1. Set A(x)(z)
= Ax)(@) + o [2[P(x) — A(x)’(0)] where ¢ is a C~ function, 0 < ¢ < 1,
©0) = 1,0() =0 for t > ¢,¢'(0) = 0,|¢'(1)] < 2/e, and we will choose e,
0 <e <1, as follows:

1)@ = 20’ + [tp) + (/2)¢' NP x) — Ax)"(0)) .

Hence we can find a number B > 0 such that if 0 < e < B, then (x)(¢) > 0.
Let us choose ¢ so small that 0 < ¢ < B. Then A(x)(¢) is the desired family of
curves.

Remark. Let g be a Riemann metric on R*, X a compact set, y: X —
C¥([0, 11, R™) a continuous map such that y(x) is g-nondegenerate for all x ¢ X,
and f(r), —1 <t <0, be another g-nondegenerate curve. Assume f(0) =
7(2)(0), t(H)(0) = t(3(x)(0), n(y(x))(0) = n()(0) and k,(H(0) = k,(y(x))(0) for
all xe X. By applying Corollary 7.2 we can find r: X — €=(I, I), r(x)(¢), re-
parametrization of the y(x)(¢) with the following properties:

a) r(x)(@® = tif f(0) = r(x)’(0) and f’(0) = 7(x)"(0),

b) f(0) = (dy(x)/dz(x))(0) and f'(0) = (&*r(x)/(dz(x))*(0), where z(x) =
r(x)(¥) is the new parameter.
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Theorem 7.3. Let E, be as in § 2, and pick e;e E,. Then rn;(E,, e,) = O,
0<k < .

Theorem 7.4. Let X be a compact set, and f: X — E, a continuous map.
Then f is homotopic to a constant map.

We note that Theorem 7.4 implies Theorem 7.3 so we now prove Theorem
7.4.

Proof. Let W be a neighborhood of x,, which is the center of geodesic
normal coordinates (x,, - - -,x,) so chosen that e, = 9/9x,(0) = ¢, and e, =
9/0x,(0) = n,. Let us reparametrize the f(x)(¢) such thatfor 0 <t < S < 1,
f(x)(®) e W and f(x)(#) is parametrized by arc length for 0 < ¢ < S (S > 0). There-
fore by Taylor’s theorem, f(x)(t) = te, + (k,/2)e, + a(x)(f), where k, =

ky(f())(0), &, = 1, = ((f(x))(0), &, = n, = n(f(x))(0), and a(x)(1) = Z} a,(x)(De;

where a,(x)(¢) satisfy the hypothoses of Sublemma 6.2 if we set az(x)(—t) =

a,(x)(?) [because a,(x)(0) = aj(x)(0) = a’/(x)(0) = 0]. Hence we can find
0 <8, < S such that te, + r’k,/2e, 4+ ua(x)(¢) is nondegenerate for all ¢,
0<t<S,and 4,0 < u < 1. Let 2(u) be a C~ function which is strictly mono-
tone decreasing, 4: [0, 1/2]— R, such that 2(0) = 1, 2(1/2) = S, /2. Set f(x, u)(?)
f)@w). Hence f(x, 1/2)(1) = f0)(1Sy/2) = (15,/2)e, + ((tSy/2ka/2De, +
a(x)(tS,/2) because 25,/2 = S,. Let 2: [1/2,1] — R be another smooth mono-
tonically decreasing function such that 2(1/2) = 1 and A(1) = 0. Set f(x, w)(?)
= (1S,/2e, + (1S,/2)(ko/2)e, + A(w)a(x)(tS,/2),1/2 < u < 1. This defines
the desired homotopy between f and the constant map f(x, 2)(t) = (¢S,/2)e;, +
(#S,/2)%(ky/2)e,, 0 < t < 2.

8. Proof of the main theorem

Let (x,v,k)eV,v = ({,n) e T(X), X T(X),, g(x)(t,t) = g(x)(n,n) = 1 and
g(x)(¢,n) = 0. Let k, be a real number 0 < &k, < min (k, C(n)~'B(n)~!) where
B(n) = 2"*%80 4+ +/n — 1) and C(n) = 18n/4/ n, W be the domain of x-
centered geodesic coordinates (x,, - - -, X,.), gz = , 8;;dx’dx? be the flat metric
on W, and ty,ny, and k; be the unit tangent vector, the principal normal
vector, and the geodesic curvature computed with g,. We adopt the rest of the
notation of §4. Let W, be the disc )] (x;)* < (2R)’R < 1 such thatif yis a
g-nondegenerate curve in W, and k,(y)(¢) > k,, then 7 is gr-nondegenerate and

kp(P)(®) > 2k,/3. Furthermore, if y is g nondegenerate in W, and kz(y)(t) >
2k, /3, then 7 is g-nondegenerate and k,(y)(t) > k,/3. Let D = {x e W,| 3] (x,)*
<(R/ 2w/ n | 2n)*} and V, =D X V, X (k,, «). V, will be the desired neigh-
borhood of (x,v,k). We will now show that p: p~'(V,) — V, satisfies strong
property P.

Let I? be a g-cube, F?°' C I? the zero faces, and ¢:I?— V, and
¢: F©=' — p~(V)) continuous maps such that p o ¢(c) = ¢(c) for all ce Fe'.
Let ¢(c) = (x(c), t(c), n(c), k(c)).
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If & is the map of Proposition 4.1, then set ap(c) = (x(c), tz(c), nz(c), kx(c)).
Note that we do not have to “lift” (¢, ¢) but only a deformation of (¢, ¢); see
Definition 3.6 and Proposition 3.7.

Step 1. Look at ¢(c)(#),0 < t < 2. We see, by the compactness of F4-,
that there exists a number ¢#,, 0 <t, <2, such that ¢(c)(#) € D and k,(¢(c))(¥) > k,
for all t e [t,,2] and c e F?~'. By a deformation we can reparametrize ¢(c)(f) so
that 1, = 1/2, so we can assume ¢, = 1/2. Since the group E(n) of Euclidean
motions is connected, we can find a map M: I? — E(n) such that M(c)((¢(c)(1),
te(P())(1), np(P(c))(1)) = (0, e,, e,) where e, = (1,0, - - -,0) and e, = (0, 1,0,

-, 0). Let m(c)(®) = M(c)(¢(c)(®)), t € [1/2,2]. Then |m(c)(t)| <R+'n |(2n),
m(c)(?) is gp-nondegenerate, and kz(m(c))(t) > 2k,/3. Applying Theorem 6.1
to the curves m(c)(9)(with 1 replacing 0, etc.), we can find a continuous defor-
mation m,(c)(®),0 < u < 1, of m(c)(®O)[m(c)(®) = m(c)(¥)] and two numbers
Sand T, 0 < S < T < 1/2, such that

D [my()®)|<RY n [(2n), tz(m,(c))(1) =e,, np(m,())(1) = e,, m,(c)(1) =
0, and kz(m,(c))(®) > 2k, /3 for 0 < u < 1,te[1/2,2], and ce F?},

2) my)) =m@@)for|t—1|>T,0<u<1,ceF?},

3) myc)(®) =m(c)(®) = f(r) where f(2) is C, for [t—1| < S, and ¢, ' e F?~1,
and

4) the path 1;(f(r)), 1 <t <1 + S, passes through each of the 2*-vertices

of the inscribed cube, k(f)(1) > B(n)~'C(n)~!, and fS“kF(f)(t)dt < B(n).

1

Let z: F=' — ¢=([1/2,21,[1/2,2]) be a continuous map such that z(c)(?)
=1,1/2<t<1-T,z(c)(1)=1,7(c)(S + 1) =3/2, z(c)(2) =2, z(c)’(®) > 0.

If m,(c)(z) denotes m,(c) parametrized by z(c)(?), then t,(m(c))(z) is para-
metrized by the reduced arc length for 1 < 7z < 3/2. Let my,,(c)@®) =
m,(c)(ur(c)(t) + (1 — w1r),0 < u < 1, and let m,(c)(¢) be m,(c) parametrized
by z(c). Hence my(c)() is defined for 1/2 <t <2, and the curve
ty(my(0))|[1, 3/2] is parametrized by the reduced arc length. Let

@, 0<t<1/2,

Gbu(t) = _
M) '(m,(o@®), 1/2<t<2,0<u<L?2.

¢, (t) defines a continuous deformation of (¢, ¢), and it is ¢,(c)(¢) which we will
try to lift.

Step II. Let T,(S*")) be the unit tangent bundle over the unit sphere
S$7~1 C R". Recall T,(S*"") is diffeomorphic to the Stiefel manifold V, by re-
viewing the point x € $*~! as the first vector of a 2-frame and v e T,(S"7"), as
the second vector. Let £, = [1: [3/2,2] — $*~!|4 is an immersion, 2(3/2) =
1:(N(3/2), DB3/2) = np(f)(3/2)] where (1) = myc)(®, 1 < t < 3/2. Define
Ty E,— T,(S*™) by 7,(2) = (A(2), t(D(2)). Let ¢s: FI~ 1, E, be a continuous
map defined by ¢5(c)(t) = tx(my(c))(1),3/2 <t < 2, and ¢5: [ -V, be the
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continuous map defined by ¢(c) = (M(A)tz(c), M(c)nz(c)). We see that
mohs(c) = @g(c) for ¢ e F~'. By Smale’s theorem [11], we can find ¥ extend-
ing ¢ to all I? such that 7, o ¥y = 5. We now apply Lemma 7.1, and repara-
metrize ¥5(c)(t),3/2 <t < 2, so that we can assume (dtz(f)(t)/dt)(3/2) =
(d¥ 5(c)(®)/d)(3/2), and we can do this in such a way that we need not repara-
metrize ¢(c)(¢) at all if ¢ e F?*. Let us define 2(c)(t) = tz((®) for 1 <t < 3/2,
and A(c)(r) = the reparametrized ¢(c)(t) for 3/2 <t < 2. Then Ac)(t) =
tp(my(O)D), ce F1™', 1 <t <2, Ac)(t) is an immersion cel?, 1 <t < 2,
A 17— ¢Y([1,2]; S*7Y) is continuous, A(c)(1) = e,, H(A())(1) = e,, 2(0)(2)
= M(0)tz(c), and #(A(c))(2) = M(c)ny(c). We want to set y(c)(z + 1) =

f 0O + Dde where p(c)(2) is C', 0 < p()(z) < 3/(2k) for 0 < < 1,

p(©)(1)=kg(c)™", p(c)(0) = kp(A(1), f 1p(C)(t)dt < R, and y(c)(2) = M(c)x(c).

0
If we can find such function p(c)(z) and they depend continuously on c e I¢,

and p(c)(®) = i%(mz(c))(t 4+ 1)|,0<t <1, for ce F¢! we would have our

problem solved, by reparametrizing the y’s so the end points match up and
then translating back by M(c)'.
Step III. Let €'(S', R) be the C'-periodic functions from R to R with period
2z. Then € = €'(S', R) is a Banach space in the norm ||, = sup |p(®)| +
0<t<2r
sup |¢'(#)|. Let H*S', R) be the Sobolev space of square integrable periodic

0<t<2x
functions of period 2z, which possess square integrable weak derivatives f and

f”. Then H*S', R)=H is a Hilbert space with inner product
2x 2z 2n
(o) = [fwswar + [rwgd + [T10g 0
0 0 0

By Sobolov’s lemma (in this case an easy proposition about the absolute con-
vergence of the Fourier series of f')[1, pp. 165-168] we have a continuous linear
injection i: H — ¥. Furthermore i(H) is dense in €. Let i*: €* — H* be the
formal adjoint, pick cel? and define the following linear functionals on

€: a(c) = p(0), w(c) = p(1), pi(c) = i-th coordinate of f (0O + Ddt. Tt

is easy to see that a(c), w(c), p(c), 1 <i < neC*: 17— C* are all continuous,
that a(c), w(c) and p4(c),1 < i < n, are linearly independent for each fixed
cel? and that i*a(c), i*w(c) and i*u;(c),1 < j < n, are also linearly inde-
pendent for each ceI? Define n 4+ 2 continuous real valued functions on ¢
by: y;(c) = j-th coordinate of M(c)x(c),1 < j < n, A(c) = kx()(1)~*, and

2(0) = kp(©". Let P = {peH 10< o(t) <3/(2k) for 0< 1< 1, flp(t)dt < R} .
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Then P is an open convex set. We now apply Lemma 5.1 and find for each ce I¢

an element p, ¢ P such that y,(c) = p,(c)(p),1 < i < n,alc) = A(c)(p) and

o(c) = 2(c)(p). Therefore the curve y(c)(t + 1) = f tpc(z')l(c)(z- + 1)dr has
0

the following properties: 7(c)(2) = M(c)x(c), tp(y(0))(2) = M(c)tz(c),

np(7()(2) = M(c)ng(c), k()@ > (2/Dk,, 1 <t <2, kp(1(€))(2) = kz(0),
tx(()(1) = tx(H1), np(y())(1) = np(H(), 7(©)(1) = f(1) = 0, kx(r())(1) =

ke(P(1). Let P, = { peCl0 < pt) < (2/3)k,, tel0,1]; f oAt + )t

<R, zel0, 1]}. P, is convex, and P C P,. For each ce F?! let p(c)(t) =
[my(c)'(t + 1)],0 <t < 1. Then p: F* ' — ¥'([0, 1], R) is continuous, and
my(o)t + 1) = f tp(c)(r)Z(C)(z' + 1)dr. We want to extend each p(c)(?) to S*

0
(i.e., to [0, 2x] so that it is C'-periodic). It is clear that this can easily be done.
Hence assume we have defined a continuous map p: F?~! — @X(S', R) = € such
that p(e)(®) = |my(e)'(t + D},0 < ¢ < 1.

We will now quote two facts; the first, Lemma 8.1 is a restatement of the
Gram-Schmidt process, and its proof follows word for word the usual proof,
the second, Theorem 8.2 is our main abstract analytic lemma, which we
prove in § 9.

Lemma 8.1. Let H and C be respectively a Hilbert space and a Banach
space, i: H — C be a continuous linear injection, i*: C* — H* be its formal
adjoint, X be a topological space, ¢;: X — C*,1 < i < k, be k continuous
maps such that ¢, (x), - - -, ¢i(x) and i*p(x), - - -, i*¢,(x) are linearly independ-
ent for each x e X, P: H* — H be the duality isomorphism, and y;: X — R be
k continuous real valued functions. Then we can find @,: X - C*,Y,: X - R,
1 < i < k, continuous functions with the following properties:

a) O,(x),---,0,(x) for each xe X span the same subspace of C* as
0, (x), - - -, (%) for each 1,0 <1 < k.

b) If Fy(x) = P(i*(@(x)), then {F;(x), F,(x)> = d;; for all x.

©) ¢0)(p) =y x),1 <i <k, ifandonlyif (x)p =Y, x),1 <i<k.

Theorem 8.2. Let H be a Hilbert space, C a Banach space, i: H— C a
continuous linear inclusion, i*: C* — H* its formal adjoint, D: H* — H the
duality map, P C H an open convex set, I"* the n-cube, and F"~' the union
of zero faces.

a) Let v¥: I* — C* be continuous maps 1 < j < k, set v; = D@*(v})),
and assume (v;(x), v;,(x)> = §;5, x e I".

b) Let h;: I" - R,1 < j < k, be continuous real valued functions.

c) For each x e I" a convex set P, C C is given such that P C P,. Assume
there exists p, € P such that {p,,v,(x)y = h;(x),1 <j< k.
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d) Let p: F*'! - C be a continuous map such that p(x)eP, and
v¥x)(p(x)) = hy(x) for each xe F*'and 1 < j < k.

Then we can find a strong admissible deformation ¢, of I* and a continuous
map p: I" — C extending p*: F*~' — C with the following properties:

i) p(x) e Po,(x) for all xeI".

i) X0 = hylp, (), xel"1 < j < k.

We apply this to the case where H = H*(S*, R), C = C!(S', R), i = the Sobolev
inclusion, and P, P,(P,) and p: F?' — C are defined as in the discussion pre-
ceeding Lemma 8.1. We take «, 8, y;,1 < j < n, as our families of linear
functionals, and 4, 2,y,,1 < j < n, as our families of continuous functions.
Hence we find a strong admissible deformation v, of I? and an extension p of
p: F°!' — C with the following properties: Set

WO+ 1) = f o(O@A(O)e + Dde.

Then 15(ry()(1) = tp(N(1), np(r () = np(N(D), kp(r(cN(1) = kpz(f)(1),
tr(7(0))(2) = M(v(0)), tp(1,(€)), np(r(c)(2) = M(v,(c)), np(vi(c), kr(yy(c))(2)
= kp(v(0)), To(z) = M(v,(0))x(v,(0)), kF(TO(c))(t) >2k,/3,te[1,2], and |7,(c)(®)]
< R. We now apply Corollary 7.2 in order to reparametrize 7,(c)(¢) so that
7:(e)’(1) = (1) and 7,(c)”’(1) = f’(1), where y,(c)(®), t e [1,2], are the repara-
metrized 7,(c), and we do not reparametrize y,(c)(t) at all if y,(c)’(1) = f'(1)
and y,(c)’(1) = f’(1). Let y,(c)() denote the suitably reparametrized y,(c)(?).
Pick a retract 2: 19 — F97', and define

m(EN®, 1/2<t<1,

)0 = {h(c)(t) , 1<1<2.

Then set 7,(c)(#) = M(v,(c))"'r,(c)(¥). Finally set

RN, 0<1<1/2,

nO®, 1/2<t<2.

Note that |7,(c) ()| <2R, kz(1,(c))(®) >2k, 3, tz(1;,(c)(2) =1 (v,(c)), np(7,(c))(2)
= n;(0,(0)), kp(7()(2) = kr(,(c)), and 1,(c)(2) = x(v(c)). Hence r,(c) is g-

nondegenerate and has the correct terminal data. ¥': I? — E, is continuous,
U|Fi ' = ¢, (seeend of Step ), and po ¥ = @ oy;.

V(o)) = {

9. Proof of Theorem 8.2

Step 1. For each x eI, pick p, € P such that {p,, v;(x)> = h;(x),1 <j<k.
Look at the expression

Pe) = P — 33 ey D) — h@D)O) .
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p.-(x) is continuous in x, and there exists ¢,, > O such that if |x — x| < ¢,
then p,.(x) e P, because P is open. Then {p,.(x),v,(x)> = h;(x),1 < j < k,
and therefore p,.(x) has all the desired properties in a neighborhood of x'.
Since these ¢,. neighborhoods about x’ form an open covering of the cube I”,
by the Lebesgue covering lemma we can find an integer N > 1 such that any
cube with side of length = 1/N must lie in one of the ¢, balls. Let B, ... ;.
={( -+, X0 |8 /N <%, < i+ 1/N},0<i, <N—1. Oneachof the B, ... ;.
we have one of the p,.(x) defined, call it p,,.... ;,(x). Hence we have N™ boxes,
and N™ “good” functions.

Step II. Let us construct the ¢,: I — I™ as follows. Let ¢,(x,, - - -, x,);
denote the k-th coordinate of ¢,(x).

a) Ift/3<x, <1 —1t/3forallk, 1< k< n,then we set

oy -+, X = iy N
for
t/3 + (1 — 2t/3)/N — t/ON) < x, < t/3 4+ i,(1 — 2t/3)/N + t/(ON) ,
and
Xy - X = I[N + {x;, — [t/3 4+ i,(1 —2¢/3)/N + t/(ON)I}[9/(9 — 81)]
for
t/3+i(1—2t/3)/N+t/ON) <x,<t/3+ (i, + D1 —2¢t/3)/N—¢t/ON) .

A direct calculation shows ¢, = id, and ¢, is continuous and well-defined on
the inside cube C; = {(x;, -+, %, |/3 < x, < 1 — ¢/3}

b) Let us fix . Let Ty,, = {(x;, -+, %) |x, = 15/3,0 < s <1, and
ts/3<x,<1—1s/3,0<s< 1, forl+k}, and Ty, = {(x;, - -+, %) | X
=1—15/3,0<s<1,and ts/3 < x, <1 —ts/3forl+ k,0<s<1}. The
cube I is broken up into the inner cube C; and the 2n “trapazoids” Ty,;,,,
i = 0,1. We now define ¢, on Ty, ;. If x € Ty, set @, (x,, - -+, X,); = 0. Let
x;, = St/3. Then ¢,(x;, - - -, x,); = i;/N if

St/N + (i;/N)(1 — 25t/3) — St/(9N)
< x; < 8t/3 + (i;/N)(A — 25t/3) + St/N,
and
(X, -+ oy x); = 1;/N + [x; — St/3 + i;(1 — 28t/3)/N
+ St/(ON)I[9/(9 — 8Sn]
if
St/3 + (i;/N)A — 25t/3) 4+ St(9N)
< x; < 8t/3 4+ (i; + DA — 28¢/3)/N — St/(ON)
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for j # k. It is easy to see that ¢, = id, and ¢, is well-defined and continuous
onC,UTy,, U--- UTy,.

c) We will now extend ¢, to T;,,,1 <1< n.LetxeT,,, Thenx, =
1 — St/3 for some §,0 < S <1, and St/3 < x; <1 — St/3 forj + k. Let

ox, -, x,)
oo na = (Lo AR (1),

where the ¢, on the right is the ¢, defined on C,. Again a direct calculation
shows that this formula makes sense. A further check shows that (¢,), 0 <t < 1,
define a strong admissible deformation of I™.

Step III. Note that ¢,(Ty,,,) = I3'. We define p on G Ty.0, by p(x) =
k=1
p(p,(x)). We immediately see p| F*~' = p. Let us look at the cubes

Coronty = {0ty -+, x)1/3 + i /BN) + 1/(ON)
< x < 1/3 4 G + D/GN) — 1/ON)} .

Since ¢, maps C;,.... ;, homeomorphically onto B;, ... ;,, we can define p on
Ci,.....in by the formula p(x) = p,, ... ;,(0,(x)) for xeC,, ... ;,. We will now
extend p to all C, by the following induction hypothesis.

Hypothesis | — 1. We assume p is defined for all (x,, - - -, x,,) € C, such that
1/3<x,<2/3fork=1,---,1—1, and 1/3 + i,/(3N) + 1/(ON) < x;
<1/3 + (i, + 1)/(3N) — 1/(ON) for k = I, - - -, n. Assume p satisfies i) and
ii) of the statement of Theorem 8.2 wherever p is defined. To show (I — 1) = (),
pick x = (x;, ---,x,) such that 1/3 < x, <2/3fork=1,---,],and 1/3 +
i,/BN)+1/ON) <x, <1/3+ i, +1/3N) —1/ON) fork=1+1,---,n.
If1/3 +4§/(3N) + 1/ON) < x;, < 1/3 + i, + 1/(3N) — 1/(9N), then p is
already defined on x. If 1/3 < x, < 1/3 + 1/(9N), we see that ¢, is constant
along the line (x,, ---,x;,_,1/3 + t/(ON),x;,, - -+, %,),0 <t < 1. Hence
we can define p along this line by the formula

P(xu ° 'yxl-l) 1/3 + t/(9N)’ xl+19 i ')xn)
== (1 - t)P(xn Xl 1/3a Xpprs v 0 axn)

+ tP(xl, s Xy 1/3 + 1/(9N)3xl+1, ot ‘3xn) .
o is continuous in x and ¢, and has all the desired properties due to the con-
vexity of the P,. Set

Ciivinyeyin = {0, -+, x)[1/3 <%, <2/3,1<i<1—1,1/3 4+ i, /(3N)
+ 1/ON) < x, < 1/3 + (@ + 1)/(3N) — 1/(9N)
for k=1L1+1,.-.-,n}.

If1/3 +§/(3N) — 1/ON) < x, < 1/3+§;/(3N) + 1/ON),1 < i, <N — 1,
we look at the line (x;, ---,x,_;,1/3 + (G, — 1)/(3N) + 2/(ON) + 2t/(ON),
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X1 005 %), 0 <t < 1, which joins (x;, -+, x,_,,1/3 + i,/(3N) — 1/(9N),
Xigs e ”xn) € Cil—1,tl+1,---,in to (xla ccs X 1/3 + ll/(3N) + 1/(9N)7 X115
5 X,) eCyy, ¢, is a constant along this line, and hence we can set

U +1s0e05ln®

Xy, -, X, 1/3 4+ (G — D/BN) + 2/OON) + 2t/(ON), X1y, - -+, Xy)
= (1 - t)P(x19 sy Xy 1/3 + (il - 1)/(3N) + 2/(9N)’xl+1’ M '3xn)
+ tp(xl’ s Xy 1/3 + ll/(3N) + 1/(9N)axl+1, ° ‘,xn) .

If2/3 — 1/(ON) < x, < 2/3, we again note that ¢, is constant along the line
(xl’ ° '>xl_192/3 - 1/(9N) + t/(9N)5xl+19 ot '7-xn)10 S t S 1. Set

P(xla b "xl—la 2/3 - 1/(9N) + t/(gN)axL.H: . 'sxn)
= p(xy, 5 x_,2/3 — 1/ON), x;0q, - -5 X5) -

It is easy to see that we have now constructed by induction p with the desired
propertieson C; U Ty, U --+ U Tpoq. T ={(xy -5 x) | x,=1—8/3,
0<8S<L1,5/3<x; < 1—S/3 j+ k}. ForxeT,c“weseexk__ 1—-S/3
for some k. Set 2,(x) = [(xy, ---,x,) — (1/2,---,1/2)][1/3 — 28] + (1/2,

,1/2). Then 2, defines a retraction of T 1 onto T, ,, N C,. The 2,’s agree

on the overlaps, so they define a retraction 2: U Ti11— ( U Ty, 1) N C,. We

see immediately that ¢,(x) = ¢,(A(x)) for x e U Tk L1 Hence we can extend p
to Ty, 1 < k < n, by setting p(x) = p(A(x)).
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