
J . DIFFERENTIAL GEOMETRY
5 (1971) 39-58

REGULARITY THEOREMS FOR PARTIAL
DIFFERENTIAL OPERATORS

RICHARD S. HAMILTON

1. In this paper we introduce the notion of a regular space and a regular
linear or non-linear map. This is done in such a way as to abstract the notion
of a space of smooth sections of a vector bundle and a linear or non-linear
partial differential operator with smooth coefficients. The abstraction depends
upon the notion of being able to take covariant derivatives of the sections as
well as of the operators. This creates a category of spaces and maps, which is
closed under composition and also inversion. These regular spaces, while being
Frechet spaces in one sense, have enough extra structures so that we may retain
a number of the important theorems of the corresponding theory for Banach
spaces. We prove for example that the set of regular linear maps with a regular
inverse is open. We also prove an inverse function theorem: if a regular non-
linear map has a derivative at a point which has a regular inverse, then the
non-linear map has a regular inverse in a neighborhood of the point. It is hoped
that the reader will find this a useful framework for passing from results for
Banach spaces to results for smooth sections.

2. A regular space is a Frechet space whose topology is defined in the fol-
lowing way by a norm and a finite collection of linear operators. Let £ be a real
(or complex) vector space with norm || ||, and let F 1 ? , FN be a finite collec-
tion of linear operators which map E into itself and have closed graphs in the
norm topology. If / = (z\, , ik) is a multi-index of length \I\ = k with 1 < ix,
• , ίjc < N, we define the higher-order operator F 7 : E—>E as the composition

I7/ = * W °Pik

For each integer r we define the higher-order norm

ll/llr= Σ - Γ - ^ - M
\I\<r | / | !

Note that ||/||0 = ||/||. Let &\ be the topology on E induced by the norm || | | r.

If the topology &'«, = (J $~r is complete (and hence Frechet) we say that E, or
r = 0

more precisely the triple
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is a regular space. As an example, if M is a compact manifold and A a vector
bundle over M, then let Γζ(A) denote the regular space whose vector space
E is the space of smooth sections of A with a norm measuring the L2 norms of
r derivatives, and with the operators F 1 ? , F N being covariant differentiation
with respect to vector fields z1? , zN having the property that they span the
tangent space of M at each point. Note that Ll(A) is the completion of Γζ(A)
with respect to the norm of Γi(A). In general it should be clear that at many
points it would be possible to use norms other than the L2 norms on our func-
tion spaces.

Let E and F be two regular spaces with the "same" operators F 1 ? , FN. If
L: E —> F is linear, we define FtL: E —> F by

and define FΣL for all multi-indices / by a repeated application of this definition.
We say that the map L: E —» F is regular if the maps Γ7L are norm-bounded
for all /. We shall show in the next section that if L is a linear partial differential
operator of degree r then (for any k > 0) L is a regular linear map of .Γj+*(./4)
into ΓJCB) in this sense. For this purpose we first prove some basic properties
of regular linear maps.

If L is norm-bounded, then | |L | | denotes the smallest number with ||LΛ:|| <
| |L| | ||Λ:||. Consequently, the vector space RL(E, F) of regular linear maps of E
into F admits the operators F19 , VN and a norm. We shall show that
RL{E, F) is itself a regular space.

Lemma 1.

Vj{L{x)} = Σ είκ(FjL)(Fκx) ,
j,κ

F,{LoM) = Σ είκ(FjL)o(FκM) ,
J,K

where e^K is the number of different ways in which the multi-indices J and K
can be combined to form I without disturbing their internal orders. {Thus εJ

Σ

κ

= 0 unless \I\ = \J\ + \K\.)
Proof. If |/| = 1, then Fi{L(x)} = (VJL){x) + L{ViX) follows directly from

the definition, while

= (FiL){M(x)} + LφtiMid)} - (LOM)(F4JC)

= {(F,L)OM}(JC) + {Lo(

so Fi(LoM) = (F^L)oM + Lo{FtM). The cases |/| > 1 now follow by an in-
duction which is as easy to believe as it is clumsy to write.
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Lemma 2.

\\Ux)\\r< Σ \\L\\J\\X\\JC,
j + k = r

\\LoM\\r< Σ \\L\\j\\M\\k.
j + k = r

Proof. These estimates follow from the previous formulas (and explain the
presence of the factor 1/1/|! in the definition of || | | r ) . Thus

\\L(χ)\\r= Σ -r^-WΛUxM

\I\<r | / | !

\I\<r | / | ! J,K

< Σ Σ Σ U
j+k = r \J\<j \since Σ είκ = — —

r \J\\\K\\

< Σ ( Σ ^| |^L| | )( Σ i ^
J+k~r \\J\<j \J\\ / \\K\<k \K\\

= Σ HίΊUI*ll»,
j + k = r

and the other formula is proved in the same way. Note that the composition of
two regular linear maps is a regular linear map by the second formula. More-
over, these two formulas show the very useful fact that the evalution maps

RL(E, F)XE-*F , RL(E, F) x RL(F, G) — RL(E, G)

are continuous in the Frechet topologies, a property which in general is lacking
for Frechet spaces.

Also we see that L has a unique continuous extension Lr: Er —> Fr.
We now prove that RL(E, F) is itself a regular space. For let {Ln} be any

sequence in RL(E,F) which is Cauchy in each norm || | | r. By Lemma 2, for
each x e E

\\Ln(x) - Lm(x)\\r = \\(Ln - LJx\\r

j + k = r

Hence {Ln(x)} is a Cauchy sequence in F for each xe E. Let Ln{x) —• L(x).
This defines a linear map L of E into F. Moreover since Fj{Ln(x)} =
Σ είκ(FjLnWκx) it follows by induction on |/| that (FjLn)(x) -> (FjL)(x) for

K,J

each x. But since {F^} is Cauchy in the norm || ||0 it follows that Fjhn^F^
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in the norm || ||0 for each |/|. Hence Ln -> L in each norm || | | r. Thus Ln^> L
in the Frechet topology of RL(E,F), so RL(E,F) is complete and hence a
regular space.

We shall also define regular multi-linear maps. If L: Eγ X X En-+ F
is multi-linear we define F\L: Ex X X En -* F by

, x n ) = Ft{L(x19 ",xn)} - L(PiX19x29 , x n ) —

* , Xn-\i * i^n)

Then the space of regular multi-linear maps of Eλ x X En into F is again
a regular space, denoted RL(Eι x x En, F), or RLn(E, F) if £ x = =
£ w = £ . The evaluation maps ε: RL(E,F) x E^ F and g: RL(E,F) x
RL(F, G)-^RL(E, G) are regular bilinear maps in fact, V\ε = 0 and F ê = 0,
as follows directly from the definition.

3. Let A and B be vector bundles over M, and λ be a functor mapping the
category V of finite-dimensional vector spaces and linear maps into itself. We
say that λ is smooth if for any vector spaces E, E', F, Ff in V the map

λ: L{E\ E) X L(E, F') -> LU(E, F), i (£ ' , FO)

is always smooth, where for convenience we assume λ to be contravariant in
the first variable and covariant in the second. Then we can define a new vector
bundle λ{A9 B) in the following way. If p e M, then the fibre λ(A, B)p is just
λ(Ap9 Bp), while if Φ: U X £ -> A and ?Γ: C/ X F -> JB are charts on A and β
over an open set U CZM, then ^(Φ"1, Ψ): U X λ(E, F) -• λ(A9B) is a chart on
λ(A9 B), where of course

In order to do covariant differentiation we need to have connections on our
bundles. If π: A —> M is the projection map for the bundle A9 and if a <= A,
then VTAa = Ker Tπa '• TAa -> TMπ α is the subspace of vertical tangent vectors
at a. A connection on the bundle A selects at each point aeA a complementary
subspace HTAa of "horizontal" tangent vectors. For each tangent vector
zεTMπa let C(z9a) be the unique vector in HTAa with Tπ{C(z,a)} = z.
Clearly C is linear in z for each fixed a. If C is also linear in a for each fixed
z, then the connection C is called an affine connection. If Φ: U X E —• A is
a chart on ^4, then TΦ: TU X TE —> T 4̂ is a chart on TA and we can write
a = Φ(M, e), and for z

where T£ « £ X E and ;-: Tt/ -• L(E, E). We call γ the local representative
of the connection in the chart Φ. In case the reader is lost in all the linear
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algebra, let xι, , xn be coordinates on U, so that d/dx1, , d/dxn form a
basis for TU at each point, and let eu , en be a basis for E. Then we can
write

where the Γ)k are smooth functions on U and are called the Christoffel symbols
of the affine connection. It is an easy matter to show that for any connection
and any point /?€ ί/we can choose the chart Φ: U X E —• A so that γp — 0.
Moreover, for any symmetric connection on the tangent bundle TM of M, we
can choose around any point p e M a chart ^ : W c: jRw --• £/ c: M such that
if Φ: U X Rn -> ΓM is the natural chart Φ(̂ >H>, τ;) = Γp(w, v) then pp = 0 in
the natural chart Φ; this is just the familiar theorem on the existence of
geodesic coordinates. A symmetric connection on TM is one with C(z, w) =
C(w, z). We say that the chart Φ is flat at p if γp = 0. This means just that
HTAa = TΦ(TUπa X {0}) and VTAa = TΦ({0} x E).

Now it is not hard to prove that if A and B are bundles with connections
and if λ is a smooth functor of Fuinto itself, then there exists a unique con-
nection on λ(A, B) with the property that if the charts Φ and Ψ are flat at p then
so is the chart λ(Φ~ι, Ψ). This can be expressed more generally by the following
formula; if γ: TU —* L(E,E) and δ: TU —• L(F, F) are the representatives of
the connections on A and B in the charts Φ: U X E -^ A and Ψ: U X F -^
B, then the representative of the connection on λ(A,B) in the chart λ(Φ~ι,Ψ)
is given by

φ: TU->L(λ(E,F),λ(E,F)) ,

= Dλ(id,id)(-r(z),δ(z)) ,

where Dλ(id, id) is the derivative of

λ: L(E, E) x L(F, F) — L(λ(E, F), λ(E, F))

evaluated at the identity maps of E and F.
Suppose now that we take λ to be L. Let A and B be bundles over M with

connections, and let Vz represent covariant differentiation with respect to the
vector field z. If / is a section of L(A, B) and x is a section of A, then l(x) is
a section of B defined by l{x)v = /pOp).

Lemma 3. There exists a connection on L(A, B) such that

Proof. If the chart Φ is flat at /? and if x also denotes the representative of
the section x in the chart Φ, then the covariant derivative is given at p by
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Fzx = Dx(z) .

Choose charts Φ and Ψ on A and B which are flat at p, and let L(A,B) have
the unique connection such that λiΦ'1, Ψ) is flat at /?. Then by the product rule
at p

Fa{Kx)} = D[Z(*)](z) = Dl(z)(x)

+ uy*χ).

Now let ΓJ(O denote the induced map of Γξ(A) -* Γ\(β) defined by

Γξ(t)(x) = Kx) for * € Γ * U ) .

Remembering that F4 is covariant differentiation with respect to zt we see that

(FMx) - F^/W} - l(Ptx)

Hence Γ%(Fil) = FtΓξ(J). In fact, this is what motivated our original definition
for the covariant derivative of a linear map. If I is a smooth section, then so
is Fjl for every /. Consequently FτΓ\(J) — Γ\Ψ J) is always a norm-bounded
linear map, and the map Γξ(f) is regular.

Next we claim that the r-jet extension map j r : Γζ+k(A) -> Γl(jrA) is regular
To see this we must recall the definition of the jet bundle. If we choose con-
nections on A and TM, then

ΓA πPr(TM,A) ,

where Pr(E, F) is the functor of polynomial maps of E into F of degree < r,
and the r-jet extension is given by

jrx(z) = x + Fx(z) + +—Frx(z, ,z) .
r\

In particular, if we choose flat coordinates on A and geodesic coordinates on
M, then the local representative of jrx is just the rth order Taylor polynomial
for the local representative of x. We can write (in local coordinates)

/'(*)(*) = \ϋrx{z, , z) + "- ,
r\

where the dots denote derivatives of x of degree < r. Consequently
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= [D{Πχ)}(Zί) - ΠDx(Zi))](z)

= - L D ' + 1 * ( Z , . . . , z, zd - ±-D'+Kχ){zi9 z, - , z) + ,

where the dots denote terms involving derivatives of / of degree < r. Now
ordinary derivatives are symmetric, so the two terms we have written cancel.
Moreover any derivative of / of degree < r can be recovered from jrf. Hence
there exists a smooth section lt of L(jrA, jrA) with

ViV = h(jr)

Hence

= (Fa + hohxn = ιki(n,

and in general we can show by induction on |/ | that there always exists a smooth
section lτ of L(jrA,jrA) with Γjf = /7(/ r). Consequently f: Γ 2

r + λ(^) -^ Γξ(A)
is regular. Now the composition of two regular linear maps is regular. There-
fore any linear partial differential operator L — Γ$(l)ojr is a regular linear map
of Γl+k(A) -> Γξ(B), if / is a smooth section of L(jrA, B).

4. Now we shall prove some theorems about the inverses of regular linear
maps. Let E and F be regular spaces with the "same" operators and let L: E
—> F be a regular linear map.

Theorem 1. // L is invertible, and L1 is norm-bounded, then L" 1 is
regular.

Proof. We will show that FjL'1 is norm-bounded for all / by induction on
|/|. This is assumed to hold if / = 0. If |/| > 1,

by Lemma 1. Thus

= - L - o Σ εjκ(FjL)o(FκL-i) .
\K\<\I\

Now VκL~ι is norm-bounded for \K\ < |/| by the induction hypothesis. Since
the composition of two norm-bounded maps is norm-bounded, the Theorem is
true.

Theorem 2. // A is a regular linear map of E into itself and \\A\\0 < 1,

then I — A has a regular inverse.

Proof. Consider the power series

/ + A + A 2 + . . . + A n + ••• .
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By a multiple appplication of Lemma 2, if n > r, then

\\Λn\\r< Σ \\A\\h'. \\A\\Jn

<rf\\A\\;\\A\\S-' ,

since at most r of the /,, , /'„ can be non-zero and there are rf terms alto-

gether. Consequently

Therefore the above infinite series converges by the root test in each norm || | | r.
Since RL(E, E) is complete, the series converges to a regular linear map in
RL(E, E), which we denote by B. Since the series converges absolutely in each
norm || | | r, we can rearrange terms, so B(I — A) = (I — Λ)B = I. Hence
I — A has a regular inverse.

Corollary 1. // L and A are regular, L has a regular inverse, and \\A\\0

< | |L" 1^" 1, then L — A has a regular inverse, and hence the set of maps in
RL(E, F) with a regular inverse is norm-open.

Proof. (L - A)-1 = L^Q - AL'1)-1.
Corollary^. _ If A e L(Er, Er) and \\A ||0 < HL" 1 ^ 1 , then Lr-A has an in-

verse in L(Er,Er).
Proof. This follows from the convergence of the series in || | | r. We shall use

this fact later.
We say that the regular map L has a left (or right) quasi-inverse M, if M is

regular and for each r there is a constant Cr with

||(ML - 7)* | | r + 1 < C r ||Jt||r (or ||(LM - I)x\\r+λ < C r | | * | | r ) .

Theorem 3. // L is regular and has a left (or right) quasi-inverse M, and A
is regular with \\A\\Q < HMH^1, then L — A has a left (or right) quasi-inverse
given by

N = M + MAM + MAMAM + .

Proof. For the ntu term, if n > r + 1, then

\\MA AM\\r < (In + l ) " | μ |

as before, so the series converges absolutely in each norm || ||r by the root test.
Rearranging terms we see that

N(L - A) - I = (M + MAM + . )(L - A) - I

= (I + MA + MAMA + -)(ML - /) .

The rest of the proof is obvious.
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5. Let V be a real finite-dimensional vector space, and E and F be complex
ones. The Fourier transform defines an isomorphism of the regular space
Γ\{y, E) of maps of V into E, all of whose derivatives lie inL2, and with operators
d/dxJ, onto another regular space Γ(

2

r)(V*, E) of functions which are in L2 with
respect to any polynomial weight function, and with operators multiplication

by ixj. In the first case the norm is Σ ί |d7/O)|2<ijc where 37 = - ,
\i\<rJ dxll> dxίk

and in the second case the norm is

| I | S Γ y*

(\g(x)\2 x2Idx

If Q is a partial differential operator from E to F of degree r with constant
coefficients, then Q e L(Pr(V, E), F) and there is a unique Q e P r ( F * , L(E, F))
with

Q(f)(v) = Q(v)f(v) for all v e V* .

We say that Q is elliptic if QrW is invertible for all v Φ 0, where Q r is the rth

order part of (λ

If Q is elliptic, then Q: Γir){V*,E) -> Γ f ( F * , F ) clearly has a two-sided
quasi-inverse given by ψ(y)Q(y)~ι where ψ is a smooth function which is Ξ 1
for large v and vanishes for those v for which Q(v) is not invertible. This is a
quasi-inverse, since it is a true inverse except for v in a bounded set, where all
polynomial weight functions are comparable. By applying the inverse Fourier
transform we see that Q: Γr

2(V,E) —• Γ°2(V,F) has a two-sided quasi-inverse
if Q is elliptic with constant coefficients. By Theorem 3 it follows that any
linear partial differential operator whose coefficients are sufficiently close to
constant elliptic ones in the supremum sense has a two-sided quasi-inverse as
a map of Π(V9 E)-> Γ&V9 F).

Suppose M is a compact manifold and that Q is a section of the bundle
L(Pr(TM,A),B), so that Q defines a linear partial differential operator of
degree r from A to B (remember jrA « Pr(TM, A)). Then there is a natural
transformation of functors which takes Q into a section Q of the bundle
P r (ΓM*, L(A, B)). The highest order homogeneous part Qr e L r (ΓM*, L U , £))
is called the symbol of β, and Q is elliptic if and only if Qr(v) is invertible for
all non-zero cotangent vectors v e TM*. It p eM and we choose charts in a
neighborhood of p, then we can write Q = Qp — Bp where β p has constant
coefficients equal to those of Q at p and Bp vanishes at p. If φp is chosen to be
= 1 on a neighborhood Wp of p but to vanish outside a neighborhood ^ of
p which is sufficiently small, then regarding Qp — φpBp as an operator on a
whole vector space by setting it equal to Qp outside the domain of the coordi-
nate chart we can make Qp — ψpBp have a two-sided quasi-inverse Np by the
previous remark, provided we make W\ sufficiently small. Choose a finite
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number of points p such that the {Wp} cover M, and let {λp} be a partition of
unity with respect to this cover. Finally, let μp be chosen to be = 1 on the
support of λp and to have compact support in Wp.

Let N = Σ μpNptp- Then

NQF -

(since λpψp

f = Σ
P

= Σ
P

= λp)

= Σ

= Σ
P

p, QP - ψpBP]f - f
P

- /]V + Σ

(since μpλp = λp and Σ h = 1)
But Np is a two-sided quasi-inverse for Qp — φpBp, and [λp, Qp — φpBp] is

a differential operator of degree at most r — 1. Hence for each k we can find
a constant Cfe with

Likewise,

QNg -g=Σ(QP- ψpBp)μpNpλpg - g
P

(since the operator (1 — φp)Bpμp vanishes everywhere)

= Σ \QP - φPBp,μp]Npλpg + Σ μP(Qp - ψpBP)Npλpg -g
P P

= Σ tβp - φPBP' Λ W P S + Σ μPttQp - ψpBp)Np - mpg,
P V

and hence also

\\(QN-I)g\\k + ι<Ck\\g\\k .

Let Qk and Nk denote the unique continuous extensions of Q and N to
Ll+k(A) and L*(B) respectively. It now follows from the Rellich selection
theorem that NkQk-I: Lr

2

+k(A)->Lr

2

+k(A) and QkNk-I: L«(B)->Lk

2(B) are
compact for every k. Hence Qk\ L^+k(A) —• Lξ(B) is Fredholm for every k, as
in JV :̂ L2

fe(5) -> L 2

r + A :U). Moreover dtg NteQk = 0 so degiV* = - d e g β f c .
Since dim ker Qk cannot increase with k while dim coker Qk cannot decrease
with k, we have that deg Qk is a non-increasing function of k. But the same
applies to degΛfΛ, so degβ* is constant. This means that dim kerβ f c and
dim coker Qk must be constant. Consequently Q: Γl+Ίc(A) —> Γk(B) is
Fredholm. This proves the well-known result that every linear elliptic operator
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is Fredholm on the smooth functions. It also shows that if / e Lζ(A) and Qf is
smooth, then / is smooth.

6. We add a few remarks on duality. Let E be a regular space with operators
F i 5 9 VN> and let these operators act trivially on R, the real numbers. Then
£ * = RL(E, R) is a regular space. If L: E —• F is regular, it is easy to show
that the adjoint L* defines a regular linear map of F* into E* with Γ 7L* =

(F/D*.
Suppose that the norm on £ comes from a regular bilinear inner product

B: E x E-^R .

We say that E is a regular Hilbert space if E = E*, i.e., if every / e E* is given
by l(x) = B(x, y) for some y eE.

Theorem. Γr

2(A) is a regular Hilbert space with the inner product

B (1,8) = Σ (<rif,?i8>dV,
\I\<r J

where < , )> is a Rίemannian metric on the bundle A, and dV is a smooth
measure on M.

Proof. First we show that Br is regular. The map Γζ(A) X Γζ(A) -* Γ°2(I)
given by (/, g) —> 2 {Fj/, F 7 ^) is regular by the same reasoning we applied

\I\<r

to linear partial differential operators. We must show that any map of the form

f ~* I ί ψdV where φ is a smooth function is a regular map of Γr

2(I) into R.
M

We can always write locally

= jf(x)φ(x)dx,

where ψ is a function depending on the connection. If

US) = jf φdV,
M

then

(FtL)(S) =

= jf(χ) yL[z
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- jf(x)y(x)dx = jf ηdv ,

for some globally defined function η. Hence covariant differentiation of a map
of the type of L always gives another map of the same type. Since such a map
is norm-bounded, it is regular.

Finally, suppose L: Γζ(A) —> R is regular. Then L is norm-bounded, so
L(f) = Br(f, g) for some g e Lr

2(A). Moreover, Br(f, g) = B0(f, Qg) by Green's
theorem, where Q will be an elliptic (self-adjoint) operator of degree 2r. Since
L is regular,

where /* is / backwards this formula follows easily by induction on L(FJ) =
— (FiL)(f), and is true because the operators on R are trivial. Therefore |L(F7/)|
< CΣ\\f \\Lr for some constant Cτ and all /. Hence

Uϊ

It is a standard argument in distribution theory that if h e L°2(A), and

for all /, then h is smooth. Hence Qg is smooth, and g will be smooth since Q
is elliptic. Thus L(f) = Br(f, g) for g e Γr

2(A).
Regular Hubert spaces have the following beautiful property.
Theorem. Let E and F be regular Hilbert spaces, and L.E^F be regular.

If Lo: E° —> F° is ίnvertible, then so is L, and L~ι is regular.
Proof. Form the adjoint L*: F* —• E*. Since E and F are regular Hilbert

spaces, E = E* and F = F*. Hence L*L maps £ into itself and is regular.
Moreover,

(L*Lx, x) = (Lx, LΛ) > e(jc, JC)

for some ε > 0, since Lo is invertible. Therefore

((/ - /CL*L)JC, (/ - kL*L)x)

= (x,x) -2k(L*Lx,x) + k\L*Lx,L*Lx)

Choose k < 2ε/||L||2. Then ||7 - kL*L || < 1. It follows from Theorem 2 that
A:L*L has a regular inverse. Hence L*L and likewise LL* have regular inverses
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A and B. Since AL*L = I and LL*B = I, L is invertible and has a regular
inverse L"1 = AL* = ZΛB.

Corollary. // ίΛe linear partial differential operator Q is invertible as a map
of Banach spaces Q: Lr

2

+Ίc(A) —> Lξ(B), then it is invertible as a map of Frέchet
spaces Q: C°°(A) -> C°°(B).

7. We now turn our attention to non-linear partial differential operators.
Let U be an open set in the vector bundle A, and a: U c:A-^ B be a smooth
map which takes fibres into fibres, i.e., πB o a = πA. If we choose connections
on /4 and B, then for any point a e U we have direct sum decompositions 7Ma

« # 2 M α 0 FΓ,4α and ΓJ5α(α) « H T 5 α ( α ) 0 VTBa{a). Consequently we can
write Taa as a matrix

/ / 0

^ α " \Vaa Daa

If τr̂ α = p e M, then # Γ , 4 α « ΓΛfp, F Γ ^ α « Ap, HTBa(a) « TM p, and
VTBaW « 5^. Hence Γ^α is determined by two linear maps F α α : ΓMP -> 5 P

and Daa: Ap-+Bp. This defines new maps Fa: U (Z A -+L(TM,B) and
Dcr. U cz 4̂ —> L(>4, J5) which also take fibres into fibres. We can think of Fa
and Dα as being the horizontal and vertical derivatives of a.

The map a induces a map Lξ(a) of an open set W in L\{A) into L£(B) for k
greater than the dimension of M by the Sobolev inequalities. This map has a
Frechet derivative; in fact it is easy to see that DL\{a) — L\(Pa). If we regard
Γξ(A) as a normed vector space, we can also write DΓ%(a) = Γl(Da) with the
derivative being taken in the norm topologies. (Recall that Lξ(A) is the com-
pletion of Γξ(A)9 which as a space contains only smooth sections.)

Let x be a section of A whose range lies in U. Then

in terms of the horizontal and vertical decomposition of TAX{V). Here Fx is a
section of L(TM, A); if z is a vector field, then Fzx = Fx(z). Since

T(aoχ)p = Tax(p)oTxp ,

we have

Ϊ
Daxip)j\Fxp

so FCαojc), = Forx(J)) + Daxlp)Fxp. Hence, if z is a vector field, then

F2(αojc) = F2α°;κ + (Da°x)°Vιx .
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Consequently, since aox = Γ&ά)(x)9 we have

F,{Γ}(α)(*)} = ΓWzcdix) + Γk

2(Da)(x)(Fz(x)) .

Now ΓiΦa) = DΓξ(a). We would also like to write Γk

2(Vza) = Γ,Γf(α). This
suggests the following definition.

Let E and F be regular spaces with the "same" operators F 1 ? , FN. Let
£/ be a norm-open set in E, and let P : U c: E -> F. We say that P is jzorra-
smooth, if all the derivatives Z>WP: £/ cz £ —> Ln(E,F) exist in the norm-
topologies and are norm-continuous. The map F extends in this case uniquely
to a map Pr:Ur ciEr ^ Fr on the closure of 17 in || | | r, and this map Pr will
be differentiate and Dn(F) = (WP)r. We define F^F: £/ C £ -> F by the
formula

(FiPXx) = Γ,{P(JC)} - DPfccXFίJc) .

If F Ϊ P is norm-smooth, we can define FjFiP = VjtP, and so on. If FjP is
defined and norm-smooth for every multi-index /, we say that P is regular.

We now prove a series of lemmas leading up to the assertions that DkP(x)
is a regular ^-multilinear map, and that DkP: U C E —> RL"(E, F) is regular
with DjiD^P)

Lemma 4.

Proof. If A: = 0, the lemma follows from the definition of FtP. We proceed
by induction on k.

= l i m [D«P(x + tyKvιt •• , v k ) - D«P(.x)(vu ••-, vk)]/t ,

where the convergence is in the norm topology. Since F t has a closed graph in
the norm topology, we must have

= l i m F t [ £ > * P ( j c + t y ) ( v l t , v k ) - D k P { x ) ( v λ , • • - , v k ) ] / t ,

which by the induction hypothesis equals

lirn [Ft{D«P(x + ty)(vlt •••, vk)} - F ^ P O t ) ^ , , vk)}]/t

= l i m [ F t { £ > * P ( j e + t y ) } ^ , •••,vk)

+ DkP(x + tyWtvu v2,---,vk)+ . . .

+ DkP(x + ty)(.vu , F t v k ) - FiiDKPix)}^, •• ,vk)

- D ^ P i x W i V , , v 2 , - - , v k ) - •••

-D"P(x)(vu---,Fivk)]/ί
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= lim YD
t-*0

I Γ)k-

= lim UL

+ lim
ί-»0

+ Dk

+ lim
ί—0

= Dk+ι(P

+ DkΛ

k(PiP)

+ Dk

) fc(F ίP

(X +
nP(x

fiPK

%χ +

[{Dk+Ψ(x -
nP(x)(

7iP)(χ)

"'PixH

}(χ +

ty)ivι

+ ty)\

x)(Vi,

v2,

ty) -

f ty)

V 2 9 " '

ty)(vλ

• , vk)

-,vk,y)

- DKFJ

- Dk+ιF

,Vk,y) +

., -',Vk

,y) + D

,vk,y) +

)

vk,F

+ ••
')(*)}•

Kχ)}(

? ' iJ>

,fc + 2p (

. . .

\χ

•

(v

+
)
x)

+

+
ψ

+

D

(v

D

• tFty)

{x)(yu • • •, v

D^ΨixXv,,

••,vk)]/t

••,vk,FiX)]/

'"?(*„••

•••JiVk,y)

t

,FiVk,y)

!, •• ,vk,Fix,y)
l t IPW(D,, ••,vk,F{y).

Hence recalling the formula for applying Ft to multi-linear maps we have

Fi{Dk+Ψ(.x)} = Dk+1(PiP)(x) + D

which is the formula for k + 1. This completes the induction.
Lemma 5.

c, • • ,FKnx) ,

where £j
κi - κn (s the number of ways of combing the multi-indices J,K19 ,

Kn to form I without changing their internal orders, and such that the last
number in Kp preceeds the last number in Kp+ι. Here we must always have
\KP\ > 1? but J can be empty.

Proof. We merely use the above formula and induction on |/|. Indeed, if
|/| = 1 this is Lemma 4, while

Fu{D«P(x)} = Fi{rΛ

= F*{Σ είKί~ KnDn+k(FjPXxWKlx, -,VKnx)}

= Σ είKl "Kn{Dn+k(FtjP)(χ)(Fκίχ, ' ,Pznχ)

+ D»+*+1(PjP)(xWiX, PKS, , VKnx)

+ D^\VjP)(x)(yίKχx, FK2x, , VKnx)

+ ... + D^\VjP){xWKlx, , VίKnx)} .

Consequently Fu{DkP(x)} is composed of the right sort of terms, and we merely
need to count the multiplicities. As we apply the numbers in /, each time we
can do one of three things:

(a) add i to the front of /,
(b) add i to the front of some Kp,
(c) form a new index with /.
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Parts (a) and (b) require that we can combine J, K19 , Kn to form / with-
out changing their internal order (since i is always added to the front of / or
Kp from the front of /), while part (c) requires that the first number in Kp

should preceed the first number in Kp+1. This completes the proof.
As a corollary we have the following very important formula.
Corollary 2.

Fj{P(x)} = DPixXFjx) + ,

where the dots denote terms of the form

D»(rjPχxwKlx,. .,rKnχ)

with \J\ + \K,\ + + \Kn\ = \I\ and \KP\ < \I\ for all Kp, i.e., the dots in-
volve only derivatives of x of degree < |/|.

It is clear from Lemma 5 that FI{DkP{x)} is a norm-bounded multi-linear
map for all /. Hence DkP{x) is a regular multi-linear map and DkP: U Q.E —>
RLk(E,F). It therefore makes sense to ask if DkP is regular. Since DkP is
smooth as a map into the larger space Lk(E,F), it is smooth as a map into
RLk(E, F) C Lk(E, F) in the norm topology. From the formula of Lemma 4,

ψlD^ix) = Fi{DkP(x)} - D*+1P(x)(Ptx) = D*(PtP)(x) .

Thus Fi(DkP) = Dk(FiP). It follows that Fj(DkP) = Dk(FτP) for all /. Thus
DkP is regular for all R.

8. Let Er denote the completion of E in the norm || | | r. If U is a || ||0-open
set in E, we define the completion Ur of U in the norm || | | r to be the unique
open set in Er with Όr Π E = U. If P: U c E -> F is regular, then by the
formula of Lemma 5 the maps DkP all have continuous extensions

: ϋr c Er -+ Lk(Er, Fr) .

Lemma 6 Pr is smooth and DkPr =

Proof. Assume we have shown that DkPr exists and equals DkPr for some
k > 0. For x€ U and y εE sufficiently small we will have

DkP(x + y) - DkP(x) = ΓZ)* + 1 P(JC + ty){y)dt .

0

By continuity, for all x e Ur and y eEr sufficiently small we will have

DΨr(x + y) - WPr(x) = Γw^Ψ^x + ty){y)dt ,
0

and hence
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DkPr(x + y) - DkPr(x) - Dk+1Pr(x)(y)

= ΓlW^Ψ^x + ty) - W+Ψr(x)](y)dt .
0

Now if ||y\\r is sufficiently small, we can make

\\Dk+Ψr(x + ty) - Dk+ψr(x)\\r

for any ε > 0. Then we will have

- DkPr{x) - Dk+ψr(x)(y)\\r < ε \\y\\r .

This proves that DkPr is differentiable and DDkPr = Dk+1Pr. Hence by in-
duction on k, Pr is smooth and DkPr = DkPr.

Theorem 4. // P and Q are regular, so is PoQ. If PjP and VτQ exist and
are norm-smooth for \I\ < r, then the same holds for PoQ. Also Pi(PoQ) =
FfoQ + (DPoQWiQ).

Proof. If P and Q are norm-smooth, then so is PoQ and

Wi(PoQ)}{x) = V^PoQXx

+ DP{Qx)WlQx)λ - DP(Qx)[DQ(x)(Fίx)]

+ iWX)

So ViiPoQ) = ViPoQ + (DPoQWiQ). Hence if VtP and VtQ are both norm-
smooth, so will be Vi(PoQ). Moreover by applying the formula repeatedly, we
see that if Γ7P and VτQ exist for |/| < r, so will Fi(PoQ) which can be ex-
pressed as a formula involving terms of the form

w i t h I J I + I X 1 I + . - .
9. Now we prove an inverse function theorem for regular maps.
Theorem 5. Suppose that P: U C E —> F is regular, and that for some

xeU, DP{x) has a regular inverse. Then P gives a bijection of a norm-open
neighborhood V of x onto a norm-open neighborhood W of P(x), and
P1: W^F-^V^Eis regular.

Proof. First we observe that DP\x) will be invertible, so by the inverse
function theorem for Banach spaces, P° gives a diffeomorphism of an open set
V° containing x onto an open set W\ Let V = V° Π E and W = W° Π F. With
no loss we can assume that W° is the ball of radius p around P(x), and hence
is convex. Then Wr = W° Π Er will be convex, and hence connected, for
every r.

Consider the completions Pr: F rJΞ Er -> Wr c F\
Lemma 7. Pr(Vr) is open in Wr for all r, if p is sufficiently small (in-
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dependent of r).
Proof. Choose p so small that for all y e V°,

\\DP\y) - DP\x)\\0 < l/\\DP\x)-'\\0 .

By Corollary 2, if y e Vr, then the map DPr{y) will be invertible. Hence by
the inverse function theorem for Banach spaces, Pr(Vr) will contain a neigh-
borhood of Pr(y) for every y e Vr. Hence Pr(Vr) is open in Wr.

Lemma 8. Pr(Vr) is also relatively closed in Wr, and hence Pr(Vr) = Wr.
Proof. Suppose zne Vr and Pr(zn) -*we Wr. Choose yne V with \\yn—zn\\r

< I In. Then P(yn) —• w e Wr in || ||r. We proceed by induction on r. Suppose
pr-i(pr-i) _ ψr-im s | n c e po i § One-to-one, P7*"1 must be as well. Therefore
Pr~ι will have a smooth inverse (recall that DPr~\y) is always invertible) so
the sequence yn will converge to some point y e Vr~ι with Dr~\y) — w. More-
over by Corollary 2, if |/| = r, then

Fj{P(yn)} = DP{ynWiyn) + ,

where the dots denote terms of the form

with \KP\ < r. Since P(yn) converges in || ||r, F^PiyJ} will converge in |[ ||0; as
will each sequence VKpyn with \KV\ < r, and hence each expression denoted
by the dots. Therefore the sequence DPiy^ίVrfn) = un converges in || ||0. More-
over each DP(yn) is invertible and DPO J " 1 converges to DP(y)~ι in || ||0. There-
fore the sequence V{yn — DP{y7)~ιun converges in || ||0 for every / of length r.
But this implies that yn converges to y in || ||r. Thus w = Pr(y) 6 Pr(Vr), which
proves that Pr(Fr) is relatively closed in Wr, and hence Pr(Fr) = Wr since Wr

is connected.
It follows immediately that P(V) = W. Also P is one-to-one, since P° is.

We must show that P" 1: ί f C F - > F c E i s also regular.
Lemma 9. P"1 is norm-smooth.
Proof. We know from the inverse function theorem that P° is invertible and

(P0)-1 is norm-smooth. Moreover, D(P°)-ι(x) = DPUP0)" 1*)" 1, so if xeF,
then DP-\x) exists and equals DP(P-ιx)~ι. Since DP(P~ιx) has a regular in-
verse, DP~\x) maps F into E. Hence P" 1: W cz F -> F c E is C1 in the norm
topology. Since

is follows that if P"1 is of class Cfc, then so is DP~l; so P"1 is of class Cfc+1.
Hence P"1 is norm-smooth.

Lemma 10. VιP~ι is norm smooth and



REGULARITY THEOREMS 57

Proof. We showed before that

FiiPoQ) = FfoQ + (DPoQWtQ) ,

if P and Q are both norm-smooth. Hence letting Q = P~\

0 = F^PoP" 1) = F.PoP"1 +

so FiP-1 = - (DPoP-'y'iFiPoP-1). Since FtP, DP and P" 1 are all norm-smooth,
so is ViP.

We now conclude that P is regular. For if VτP~ι exists and is norm-smooth
for all / with \I\ < r, then it will also exist and be norm-smooth for all / with
\I\ < r + 1 by the above formula, once we have shown the following.

Lemma 11. Let U cz RL(E, F) be the set of elements in RL(E, F) with a
regular inverse, and let Q: U C RL(E,F) -> RL(F,E) be given by Q(L) =
L"1. Then Q is regular.

Proof. We know that β(L) is smooth and DQ(L)(M) = -Q(L)oMoQ(L).
Therefore

(FtQXL) = F,{β(L)} -

= -QiUoVJLoQiJL) + QiUoFtLoQiL) = 0

Hence VtQ = 0.
10. Finally we point out how this result can be applied to non-linear partial

differential operators. If a is a smooth map of an open set U in the bundle jrA
into the bundle B, then the induced map Γξ(a): Π(U) c Γk

2Q
rΛ) -> Γξ(B) is

regular, since for every multi-index / we can find a smooth map VΊa: U cz jrA
—> B which also takes fibres such that

FjΓξM = Γξ(Pjά)

this follows from the remarks at the beginning of the last section. Moreover
the r-jet extension j r : Γl+k(A) —» Γl(jrA) is regular, and the composition of
two regular maps is regular. Hence any non-linear partial differential operator
Q — Γξ(ά)ojr is a regular map of an open set in Γl+k(A) into Γξ(β). Moreover
for any section x with Im jrx c U the derivative of Q at x

DQ(x) = ΓiΦaMhr

will be a linear partial differential operator and hence a regular linear map of

Γl+\A) into Γk

2(B). Suppose that its completion

DQ(x\: Lζ+k(A)-^ Lk(B)

is invertible. It follws from the results of § 6 that

DQ(x):Γ2

+k(A)^Γk(B)
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is invertible and has a regular inverse. Therefore by Theorem 5 the non-linear
partial differential operator Q gives a bijection of a neighborhood of x onto a
neighborhood of Q(x) and the inverse will be regular. Consequently the condi-
tion for inverting the operator Q on the smooth functions is just the same as
that for inverting it on an appropriate L2 completion.
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