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SUBMANIFOLDS OF COSYMPLECTIC MANIFOLDS

G. D. LUDDEN

1. Introduction

Recently B. Smyth [6] has classified those complex Einstein hypersurfaces
of a Kaehler manifold of constant holomorphic curvature. This paper was
followed by the papers of Chern [2], Nomizu and Smyth [4], Kobayashi [3]
and others researching this problem. Yano and Ishihara [7] have studied the
analogous problem for Sasakian manifolds, i.e., they have studied invariant
Einstein (or »-Einstein) submanifolds of codimension 2 of a normal contact
manifold of constant curvature. The result of Smyth rests on the fact that the
hypersurface is locally symmetric. We show in this paper that a normal contact
manifold which is z-Einsteinian but not Einsteinian cannot be locally sym-
metric. Thus, since an invariant submanifold of codimension 2 in a normal
contact manifold is itself a normal contact manifold, the 7-Einstein case studied
by Yano and Ishihara will not yield to a study similar to that of Smyth.

Let M be a normal contact manifold or a cosymplectic manifold of constant
$-sectional curvature, and M an invariant submanifold of codimension 2. The
main purpose of this paper is to study the case where M is 7-Einsteinian. In
particular, we show that if M is cosymplectic then M is locally symmetric.
This suggests that a classification similar to that of Smyth may be obtained in
this case.

2. Almost contact manifolds

Let M be a C>-manifold and ¢ a tensor field of type (1, 1) on M such that

$=—-1+£5Q®7,

where I is the identity transformation, £ a vector field, and 7 a 1-form on M
satisfying &€ = 70 = 0 and 7(§) = 1. Then M is said to have an almost
contact structure. It is known that there is a positive definite Riemannian
metric g on M such that g(§X,Y) = —&(X, §Y) and 8(, &) = 1, where X
and Y are vector fields on M. Define the tensor @ by &(X,Y) = g(X, §Y).
Then @ is a 2-form. If [§, 4] + d7j ® & = 0, where [¢, $1(X, Y) = ¢)[X, Y]
+18X, Y] — ¢l3X, Y] — X, $Y1], then the almost contact structure is said
to be normal. If = dj, the almost contact structure is a contact structure.
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A normal almost contact structure such that @ is closed and dj = 0 is called
cosymplectic structure. It can be shown [1] that the cosymplectic structure is
characterized by

2.1 Ve =0 and Fyj=0,

where F is the connection of g. Henceforth, we assume M possesses a normal
contact (Sasakian) structure or a cosymplectic structure. We note here that in
a Sasakian manifold

(2.2) TxPY = H(NX — gX, V)E .

The curvature operator R of g is defined by RyyZ = [V, Vy1Z — 7[;:,1'32
and the Ricci tensor S is the trace of the mapping X — R, W. If X and Y
form an orthonormal basis of a 2-plane of M, the sectional curvature KX,Y)
of this plane is given by g(Ry,X,Y). If X is a unit vector which is orthogonal
to £, we say that X and ¢X span a ¢-section. If the sectional curvatures K(X)
of all g-sections are independent of X, we say M is of constant @-sectional
curvature. It has been shown that in a normal contact manifold or a
cosymplectic manifold of constant g-sectional curvature C,

ERZ, W) = a{8(X, 2)g(Y, W) — g(X, W)g(Y, Z)}
+ BIX)i(WE(Z, Y) + W Dp(Y)&(X, W) — (X)NZ)&(Y, W)
— iNHWEX, Z) + X, WHZ,Y) — dX,Z)HW,Y)
+ 20X, Y)N(Z, W)} ,

(2.3)

where & = (C + 3) /4 and g = (C — 1)/4 is the normal contact case and
a= 8= C/4 in the cosymplectic case. This formula was shown for the normal
contact case by Ogiue [5] and for the cosymplectic case by D. E. Blair
(unpublished). We also note that the Ricci tensor is given by

(2.4 SX,Y) = a*g(X, Y) — g*9(X)7(Y) ,

where a* = (na + $)2 and g* = 2(n + 1)B in the normal contact case and
a* = B* = 2(n + Da in the cosymplectice case. Here the dimension of M is
assumed to be 2n + 1.

3. Invariant submanifolds

Let M be a submanifold of codimension 2 imbedded in M by i: M — M.
We will assume that M is invariant under 4, i.e., for every tangent vector X
of M there is a vector Y tangent to M such that ¢i, X = i, Y. Henceforth, we
will use X, Y, -- - to represent tangent vectors to either M or M, the meaning
being clear. Thus, there is a vector & tangent to M such that i & = & (restricted
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tf) i(M)). It is easy to show that there are tensors ¢, 7 and g defined on M by
ol X = i, X, (i, X) = p(X) and (i, X,i,Y) = gX,Y). Then

i ($°X) = $i X = $%i X = —i, X + (i, X = i, (—X + 7(X)8) .

Also, 7(8) = §(ix8) = 7(8) = 1, i,(§§) = §iu& = $& = 0, and 7($X) = (i $X)
= 7(¢i,X) = 0. We can then see that g(¢X,Y) = —g(X, ¢Y) and g(&, &) = 1.
Thus, we have the following theorem.

Theorem 3.1 (Yano & Ishihara [71). ($,&,7n) is an almost contact
structure on M with g as an associated metric.

If we let &(X,Y) = g(X, ¢Y), then @i X,i,Y) = §(i.X, $i,¥Y) =
8, X, i,0Y) = g(X,¢Y) = (X, Y). From the coboundary formula we see
that dyp(X,Y) = dij(i, X, i, Y) and also that dO(X, Y, Z) = aAd(i X, i, Y,i,Z).
From these identities we see that djj = @ implies that dy = @. It is also
straightforward to show that [¢, §1(i,X, i, Y) = i [é, ¢1(X, Y). Thus the
following propositions are clear.

Proposition 3.2 (Yano & Ishihara [7]). If gZ is a normal contact structure
on M, then ¢ is a normal contact structure on M.

Proposition 3.3. If ¢ is a cosymplectic structure on M, then ¢ is a cosym-
plectic structure on M.

Let C be a unit vector field defined on i(M) such that g(C,i,X) = 0 and
g(gZC, iy X) = 0 for all X. Since M is invariant, it follows that such a C can
be found. Then we have

(3.4) V,x(i,Y) = i,(7xY) + HX,Y)C + K(X,Y)3C ,

where I is the covariant derivative with respect to g, and H and K are
symmetric tensors of type (0,2) on M. H and K are called the second
fundamental tensors of M. Furthermore, we may write

V,xC = —i (hX) + s(X)¢C ,

G- Vix($C) = —i(kX) — s(X)C,

where s is a 1-form on M, g(hX,Y) = H(X,Y), and g(kX,Y) = K(X, Y).
Lemma 3.6. The following identities hold:
i) HX,Y) = K(X,¢Y),
i) K(X,Y)= —H(X,¢Y) .
Proof.

(ﬁi*xﬂz)i*y = ﬁi*X(SZi*Y) - 5(‘7i*xi*Y)
= Vi x(ixdY) — 3,7 xY + HX,Y)C + KX, Y)$C)
= i, (Vx¢Y) + H(X, ¢Y)C + K(X, ¢Y)gz~SC — I (V1Y)
— H(X, Y){SC — KX, )(-0O).
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It can now be seen from (2.1) and (2.2) that (7,~*Xq3)i*Y = i, Z for some Z.
The lemma then follows by noting that we have used the fact that 7(C) = 0.
The identities of Lemma 3.6 show that

(3.8) hg = —gh .

From this it follows that tr 2 = tr k = 0. Here tr 2 denotes the trace of 4. We
also note that H(X, &) = 0 and K(X, &) = O for all X.

The following lemma is proved in [6].

Lemma 3.9. Let V be a 2n-dimensional real vector space with a complex
structure J and a positive definite inner product g which is hermitian (i.e.,
JP= —1I and g(JX,JY) = g(X,Y)). If A is symmetric with respect to g and
Al = —JA, there exists an orthonormal basis {e,, - - -, e,,Je, ---,Je,} of V
with respect to which the matrix of A is diagonal of the form

— —_

A

"—Zn__

This lemma and equation (3.8) then show that at each point m of M there
is an orthonormal basis {§, e, ---,e, ., de, - - -, de,_;} of M, the tangent
space of M at m, such that & at m is diagonal of the form

—~ —

(3.10) —

—

with respect to this basis.

4. Main Theorems

The following Gauss-Codazzi equation for the curvature operator of M is
well-known and follows directly from equations (3.4) and (3.5).
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~

R, xiyisZ = i,[RyyZ — (H(Y,Z)hX — H(X, Z)hY)
— (K(Y, 2)kX — K(X, 2)kY)] + g(Fxh)Y — Fyh)X
— S(X)KY + s(V)kX,Z)C + g(Vzk)Y — Pyh)X
+ s(X)hY — s(Y)hX, Z)$C .

“.1)

From this it follows that

S(X,Y) = S, X,i,.Y) + tr hH(X,Y) — g(hX, hY)

4.2)
+ trkK(X,Y) — gkX, kY) ,

where S is the Ricci tensor on M. Because of Lemma 3.6, equation (4.2)
simplifies to

4.2y S(X,Y) = 8(i.X,i,Y) — 28(*X, Y) .

Lemma 4.3. If M is a cosymplectic manifold of constant $-sectional
curvature, then V yh* = 0 implies that I xS = 0.
Proof. Using equation (2.4), equation (4.2)’ simplifies

SX, Y) = (L+2—”—C(g<x, Y) — 5(X)(Y)) — 28(BX, Y)

from which the lemma follows.

If we assume M is of constant g-sectional curvature, then (2.3) can be used
to show that Ri*X,.‘Yi*Z is in fact tangent to M. Hence, the coefficients of C
in (4.1) must vanish, i.e.,

4.3) T xh)Y — Vyh)X — s(X)KY + s(Y)kX =0 .

The vanishing of the coefficient of JC adds nothing new. M is said to be
totally geodesic it H = K = 0.

Theorem 4.4. M is totally geodesic if and only if M is of constant
¢-sectional curvature.

Proof. Let X be a vector orthogonal to §. Then from (4.1), we have that

8(Ry;xX, ¢X) = 8(R, 3 5:.xBisX, i, X) + H(¢X, X\)H(X, $X)
+ H(X, X)H($X, $X) + K($X, X)K(X, $X)
+ K(X, X)K(¢X, $X)
= (R, x 51,2815 X, i, X) + 2H(X, X) + KX, X)) .
Now g(i, X, £) = g(X, &) so that if X is orthogonal to & then i, X is orthogonal

to £. Hence, H =K = 0 implies that M is of constant ¢-sectional curvature .
Now assume that M is of constant ¢-sectional curvature. Then S(X,Y) =
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a*g(X,Y) — B*p(X)n(Y) for constants @* and g* by (2.4). Thus, by (4.2),
(4.5) B=al +bE® 7y

for appropriate constants a and b. Since hé = 0, we see that a + b = 0. Let
X = (e; + pe,)/v/ 2, where i + j and the e,’s are from the basis for M,
mentioned after Lemma 3.9. Then g(X,X) = 1 and it can be shown that
8(Ry ,xX, ¢X) = ¢. This shows that H(X, X) = 0 and K(X, X) = 0 for all X.
However, since H and K are symmetric, we have that H = K = 0 and the
proof is finished.

Definition 4.6. Let (¢, £, 7, g) be an almost contact metric structure on a
manifold M. Then M is said to be y-Einsteinian if S = ag + by ® 7 for some
a and b, necessarily constants, where S is the Ricci tensor of M.

Definition 4.7. A manifold M is locally symmetric if V yR = O for all X.

Proposition 4.8. If M is a normal contact y-Einsteinian but not
Einsteinian manifold, then M is not locally symmetric.

Proof. Certainly if ¥ yR = O then V' ,.S = 0. However, from Definition 4.6,

VxS, Z) = bW x)(Y)(Z) + by(Y)W x9)(Z) .

Therefore, since (Fyp)(Y) = dy(X,Y) and dyp(¢, X) = O for all X, we have
that

FeSUY,8) = bdy(X,Y) # 0.

Note that if M is of constant ¢-sectional curvature 1, then M is in fact of
constant curvature. Thus, we have the following crollary.

Corollary 4.9. If M is a normal contact manifold of constant ¢-sectional
curvature +1, then M is not locally symmetric.

We now proceed to prove our main theorem.

Theorem 4.10. If M is a cosymplectic manifold of constant ¢-sectional
curvature and M is an invariant submanifold of codimension 2 of M which is
y-Einsteinian, then M is locally symmetric.

Lemma 4.11.

Vih = s(X)k .
Proof of Lemma 4.11. By (4.3) we have that
ThY — Ve — s(§)kY =0 .

However, Vyh)é = Vy(h&) — WV &€ = 0. Thus V .k = s(§)k. If X is orthogonal
to &, the proof of Proposition 7 of [6] and the fact that (F y4)é = O show that
Vih = s(X)k.

Now, since k = ¢h, we see that

Vik = Vy(gh) = ¢V xh = s(X)gk = s(X)¢h = —s(X)h .
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The following lemma is proved in [6].
Lemma 4.12. If M is an arbitrary Riemannian manifold with metric g,
then the tensor field P defined on M by

P(X,Y,Z,W) = g(BX, Z)g(BY, W) ,
where B is a tensor field of type (1, 1) on M, has covariant derivative given by
VyP)X,Y,Z, W) = g(VyB)X, Z)g(BY, W) + 8(BX, Z)g(VyB)Y, W) .

Proof of Theorem 4.1 1~. Now let R(X,Y,Z, W)~ = g(RXYZ,~W). By
equation (2.3), we see that (I +RYX,Y,Z, W)= 0since V& = 0and I 7 =0.
Let

DX,Y,Z,W) = g(hX, W)ghY,Z) — g(hY, W)g(hX, Z)
+ g(kX, W)g(kY,Z) — g(kY, W)glkX, Z) ,

so that ﬁ(i*X, i Y, i Z, i W) = i, RX,Y,Z, W) — D(X,Y,Z,W)). Hence,
by Lemma 4.12,

VD)X, Y,Z, W) = (Vv X, W)g(hY, Z) + ghX, W)e((Vvh)Y, Z)

— 8((FyWY, Wig(hX, Z) — g(hY, W)g((V yW) X, Z)
+ 8Py X, W)gkY , Z) + glkX, W)g((VvK)Y, Z)
— 8y Y, WigkX,Z) — g(kY, W)g((V k)X, Z)

= s(V){g(kX, W)g(hY, Z) + g(hX, W)g(kY, Z)
— g(kY ,W)g(hX,Z) — ghY, W)g(kX, Z)
— g(hX, W)g(kY,Z) — g(kX, W)g(hY, Z)
+ ghY, W)g(kX, Z) + g(kY, W)g(hX, Z)}

=0.

Thus, the proof is finished.

Assume now that M is a normal contact manifold. Again we have that
RG.X,i,Y,iZ,i, W) = i,(RX,Y,Z,W) — D(X,Y,Z,W)). If M is of
constant curvature, then //, R = 0. (If we merely assume that M is of constant
$-sectional curvature then 7, R can be computed. It turns out to be a rather
long expression involving the @, 7 and g. Since we are interested in
(Z*VR)(i*X , 1Y, 1. Z, i, W), this can be expressed in terms of ?, pand g.) If
M is Einsteinian, then (4.2)’ shows that g(A’X,Y) = 2g(X,Y) for some A.
However, since h& = 0, we have A2 = 0 and hence 7 = 0. Also £k = 0 so
that M is totally geodesic and hence D = 0. Thus, V'R = 0 (see [7]). It is
slightly more complicated to consider the case where M is y-Einsteinian. In this
case we have that F,R =+ 0 (see [7]).
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