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CONTACT RIEMANNIAN SUBMANIFOLDS

MASAFUMI OKUMURA

Introduction

In a previous paper [3] the author studied a submanifold of codimension 2,
which inherits a contact Riemannian structure from the enveloping contact
Riemannian manifold.

In the present paper, the author generalizes the results obtained in [3] to
submanifolds of codimension greater than 2. In §1 we recall first of all the
definition of contact Riemannian manifolds and some identities which hold in
such manifolds, and in § 2 we give some formulas which hold for submanifolds
in a Riemannian manifold. After these preliminaries, § 3 contains some identi-
ties which hold for submanifolds in a contact Riemannian manifold. In § 4 we
define the notion of contact Riemannian submanifolds in the same way as
given in [3]. In §5 we define an F-invariant submanifold and study the rela-
tions between contact Riemannian submanifolds and F-invariant submanifolds.

§ 6 is devoted to a condition for a submanifold to be a contact Riemannian
manifold. In the last section, § 7, we introduce the notion of normal contact
submanifolds in a normal contact manifold, and obtain a condition for a con-
tact Riemannian manifold to be a normal contact manifold.

1. Contact Riemannian manifolds

A (2n + 1)-dimensional differentiable manifold M is said to have a contact
structure and called a contact manifold if there exists a 1-form 7, to be called
the contact form, on M such that

(1.1) 7A@ # 0

everywhere on M, where d7 is the exterior derivative of 7, and the symbol A\
denotes the exterior multiplication.
In terms of local coordinate {y*} of M the contact form 7 is expressed as

(1.2) 7 = nady .

Since, according to (1.1), the 2-form dj is of rank 2n everywhere on M,
we can find a unique vector field & on M satisfying
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(13) 771511 =1, (df])x,;&: =0.

It is well known that there exists a positive definite Riemannian metric g,,
such that the (1, 1)-tensor F,*, defined by

1.4 28, F =), ,

satisfies the conditions

1.5) FfF} = —& + 7,6,
(1.6) 7Fr=0,
(1.7 g8 =1,
(1.8 &FFr=28,— i, .

(S. Sasaki [4], Y. Hatakeyama [1]). The set (F, &, 7 &) satisfying (1.1),
(1.3),(1.5) and (1.7) is called a contact Riemannian (or metric) structure, and
the manifold with such a structure is called a contact Riemannian (or metric)
manifold.

If in a contact Riemannian manifold the tensor, defined by

N, =F@F — 0F5) — F0F,; —0,F))

(1.9 . .
+ 315‘77,‘ — a”‘s“ﬂz s

where 9, = 3/dy” vanishes everywhere on M, then the structure is said to be

normal, and the manifold is called a normal contact manifold or a Sasakian

manifold. In a normal contact manifold we have

(110) V,i],z:an

¥
(1.11) Vo= 78 — 718 »

where F denotes the covariant differentiation with respect to the Riemannian
metric §. Conversely, if (1.11) holds, the manifold is a normal contact mani-
fold (Y. Hatakeyama, Y. Ogawa, and S. Tanno [2]).

2. Submanifolds in a Riemannian manifold

Let M be an m-dimensional oriented differentiable manifold and ¢ be an
immersion of M into an (m + k)-dimensional oriented Riemannian manifold M.
In terms of local coordinates (x!, ---,x™) of M and (3!, - - -, y™**) of M the
immersion ¢ is locally expressed by y* = y*(x', .-, x™), k=1, -..,m+k.
If we put B;s = 9,y*, 3; = d/dx?, then B are m local vector fields in M spann-
ing the tangent space at each point of M. A Riemannian metric g on M is
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naturally induced from the Riemannian metric § on M by the immersion in
such a way that

2.1 g = &.B/B" .

Since M and M are both orientable, in each coordinate neighborhood U of
peM, we can choose k fields of mutually orthogonal unit normal vectors
Ns(A=1,..--,k) of M at each point of U in such a way that (N}, - - -,
N5, B;) is positively oriented in M, provided that the frame (B, i=1, - - -, m)
is so in M.

Let H,;; (4 =1, .-, k) be the second fundamental tensors, and L 5, the
third fundamental tensors of the immersion ¢. Then we have the following
Gauss and Weingarten equations:

k
(2.2) VjBJ = ngAjiNAK 9
X k
2.3) PNy = —H, B + 3 LagNs*

where V; is the so-called van der Waerden-Bortolotti covariant differentiation,
where V ;B and V' ;N ,~ are defined respectively by

h . ®
s e [ e

~

By =0, — |

VjNA‘ - ajNA‘ + { }BJ#NAX (A = 1’ . ak) >

K
Ap

{].i k} and { 2 #} being the Christoffel’s symbols of M and M respectively.

3. Submanifolds in a contact Riemannian manifold

Let M be a (2n + 1)-dimensional contact Riemannian manifold with a con-
tact Riemannian structure (F*, &, 7;, £,) and M a 2m + 1)-dimensional sub-
manifold in M. The transform F;*B;* of the tangent vector field B;* by F,* can
be represented as a sum of its tangential part and its normal part, that is,

(3-1) FfB = fihBh‘ + ; fAiNA‘ .
In the same way, we can put

(3.2) FiN/2=hBs + S hyNy, A=1,---,2(n —m) .
A B

From these two equations we have



24 MASAFUMI OKUMURA

(3.3) hy = —f:,
4 4
(3.4 hAB = _hBA .

On the other hand, & being tangent to M is expressed as a linear combina-
tion of B;* and N,*. Hence we can put

(3.5 § = u'B," + ; UNy
which implies

(3.6) u; = 7B,

3.7 uy = 5.N,~ .

Transforming both members of (3.1) by F,* and making use of (1.5), (3.1),
(3.2), (3.3) and (3.5), we find

—B# + ui”ij" + 23 uugNg* = (f .7 + 2 fs fj)Bj”
B A 44
+ 2 (M + 2 fihas)NB"
B B 4
which implies

(3.8) fiMf = —6] +uu? + 3, f,

A 4 A

(3.9 fihZh = Uyl; — ;gihBA .

Transforming again both members of (3.2) by F,* and taking account of (1.5),
(3.1), (3.2), (3.3) and (3.5), we obtain

uAuij” — N+ ;: uugNgt = —(fif,7 + ; hABl]:j)Bj”
+ 2 (= fifi + 2 huches)Ng"
B A B c

which implies

(3.10) fifd = — 20 hupf! — u ul
4 B B

(3.11) fofs = 0up — Uqup + 3, huches .
4 B C

On the other hand, conditions (1.6) and (1.3) can be rewritten respectively as
Fz‘él = FXu'B} + 2 uNH =0,
A

ﬁxél = (W'B,;, + ; uyN,JW'B ;s + ; upNg) =1,
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from which we easily have

(3.12) i = 35 uufa"
A
(3.13) u'fy = — 2 ughg, ,
A B
(3.14) uu, =1 — > u,t.
A

Let M be a normal contact manifold. Differentiating (3.1) covariantly and
making use of (1.11), (3.2) and (3.5), we obtain

u,B; — g;,(u"B,* + ; uyN %) + ; H,;(— "By + z; h,sNp")
=V "By + ; (f"H 4 juN 4~ + Vj‘{i]AV‘ - {iHAthh‘
+ 2 fiLkpaiN4®
B B
which implies
(3.15) Vifin = Ugin — Up8j; — ; (InHAm‘ _ZiHAjh) s
(3.16) Vj;i = —U,8; + ; (Hpjhgy —ll:iLBAj) — f*H g .

Differentiating (3.2) covariantly and making use of (1.11),(3.1),(3.2) and
(3.5), we have

usB — H, "(f,'B* + ; ghNB‘) + 2 L,s(— f5'BS + _07'_. hgeNe?)
= —Vifa"Bu* — 3 (Fa'Hpji — V han)Ny*
+ 3 hag(— Ha/Be + 3 Lyo,No) |
which implies
Vifat = —wady + Hy'fu' + 3 (hagHp;® — Lasifs)

(3-17) thAc = fAiHC’ji - giHAji + %: (LAthBC - LBthAB) .

Differentiating (3.5) covariantly and using (1.10) which holds in a normal
contact manifold, we find

fjiBi‘ + ; ZjNA‘ = V]uth‘ + ; uiHAjiNA‘
+ %{ {VjusN< + u(— Hy By + é} Ly, N9},

which implies
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(3.18) Vul = f;t+ ; uH,y b,

(3.19) . Viu, = fj — uiHAji - ; UgLpyj -

A

4. Contact Riemannian submanifolds

Let M be a (2n + 1)-dimensional contact Riemannian mani”fold, and M a
(2m + 1)-dimensional orientable differentiable submanifold in M. We define a
1-form u on M by

“4.1) u = udx* = 7,Bldxt

in terms of the contact form 7 = 7,dy*.

Definition 4.1. Let g,; be the induced Riemannian metric of M, and u
the 1-form defined by (4.1). If there exists a pair of positive constants ¢ and
c¢ such that » = tu and G,;; = cg;; constitute a contact Riemannian structure
on M, then we call the submanifold M a contact Rzemannzan submanifold
of M.

Since (3, G) is a contact metric structure in a contact Riemannian sub-
manifold M, the linear mapping ¢,': T(M) — T(M) and the vector field &
defined respectively by

(4.2) 2¢thhi = aﬂ?i - aiﬂj s M = Gji"fj

satisfy the conditions

4.3) 9E =
(4'4) ¢ji5j = 0 5 7/7,¢jZ - 0 >
4.5) byt = —0% + n& .

Directly from Definition 4.1 we have

Proposition 4.2. Let M be a contact Riemannian submanifold in M, and
’M a contact Riemannian submanifold in M. Then 'M is a contact Riemannian
submanifold in M.

Proposition 4.3. Let M be a contact Riemannian submanifold of M, and
'M a submanifold of M. If 'M is a contact Riemannian submanifold of M,
then 'M is also a contact Riemannian submanifold of M.

Proposition 4.4. Let M be a contact Riemannian submanifold of a contact
Riemannian manifold M. If the dimension of M is greater than the codimen-
sion of M in M, then we have

(46) ¢ji = fji ’
@.7n ut =gt .
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Proof. From the definitions of &%, »;, G;; we have

(4.8) gl = Giip, = Lgiy, =Ly |
c c

from which

(4.9) 1 =98 = tujiuf = t_zuiui ,
c c

4.10) uut =cfet.

On the other hand, the two equations

2.fji = 2BJIBZ_‘:FZ‘ = B]}Bi‘(ﬁlﬁl‘ — ﬁpfh) = Vjui — Viuj ,
20, = 0y — 0un; = 1V ju; — Viuy)
imply f;,; = (1/0¢;, and hence

4.11) fr = ghif, = —j—G“séﬁ = %b/‘ -

Since f;*, ¢, satisfy (3.8) and (4.5) respectively, (4.11) together with (4.10)
implies

4.12) N R X 2 c_:<_ 5t + ‘_zujun) .
4 A A t [

We assume now that there is a point p in M, at which the 2(n — m) + 1
vectors uf, f,4 (A =1, --.,2(n — m)) are linearly dependent. Then we
can find a vector v¥(p) orthogonal to the subspace spanned by u?! and
fiiAd=1,...,2(n — m)), since M is of dimension greater than 2(n — m).
Transforming this vector v¥(p) by (4.12), we get v*(p) = (c/8)*v™(p), that is,
(c/®)* = 1, which together with (4.8) and (4.11) implies the Proposition.

Next we suppose that u? and f,: (4 = 1, ..., 2(n — m)) are linearly inde-
pendent at any point of M. Then (3.12), (4.4) and (4.8) imply }]  u,f,"=f;"u’
= (c/D¢;"(c/H)&? = 0. Since f,*’s are linearly independent, we have, in this
case,

(4.13) uy,; =0 4=1,.---,2(n—m)),
which and (3.1) give
(4.14) ~ wf, =0.

A

Transforming f,’ by (4.12), we have
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2
(4.15) — et TP = _%fh
A BB A B t“ a4

because of (4.14). Substituting (3.11) into (4.15) we get 3, h,chesf* =
—(c/t)*f* implying B¢ B
A

2
(4.16) %: hAChCB = - %5&4 >
and consequently
2 2
4.17) T hachos = — %§ Sus = —2(n — m)% )

Furthermore, from (4.11) we obtain (c/8)’p/ ¢, = —87 + uu + ¥ f: 17,

A 44

which yields
— ij—:z —2m — 1 + wut + 2(n — m)+ 3, hychgy
ic

because of (3.11). On the other hand, u, = 0 and (3.14) imply uu* = 1.
Thus we have, from the equation obtained above,

(4.18) —omS = 2n—2m) + ¥ huchos -
t 4,C

Combining (4.17) and (4.18), we have (¢/¢)* = 1, which completes the proof.
Corollary 4.5. G;;, = (wu")'g;;, 79 = Wu)'u,; .

5. F-invariant submanifolds

F-invariant submanifolds of a contact Riemannian manifold are recently
studied in [5]. In this section we show that any F-invariant submanifold is a
contact Riemannian submanifold.

Definition 5.1. Let M be a (2rn + 1)-dimensional contact Riemannian
manifold. A (2m + 1)-dimensional submanifold M of M is called an F-invariant
submanifold if the tangent space of M is invariant under the action of F,*.

Proposition 5.2. Let M be a 2m + 1)-dimensional submanifold of a con-
tact Riemannian manifold M. In order that M be an F-invariant submanifold
it is necessary and sufficient that

5.1 z; hAChCB = —045 -
Proof. We first assume M to be F-invariant, and then by (3.1) show that

FlsBiz = fihBh‘ B FA‘NAX = %: hBANB‘ »
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or equivalently f,'=0 (4 =1, ---, 2(n — m)). Consequently, we have
u;u, = 0 because of (3.9). If there is a point p on M, where u,(p) = 0, then
(3.8) implies f,'f;*» = —4§%, which means that the tangent space at p is even-
dimensional, contradicting our assumption. Hence we have u, = 0 in M.
Therefore we have ) h ches = —8,5 by virtue of (3.11). Next, we assume
that M is a submanifold of M satisfying the condition (5.1). Then, by means
of (3.11), we have f,,, + uuz = 0, and therefore Y, ,f,f,; + u,2 = 0.
Thus we get f, = 0, u, = 0, which show that M is F-invariant.

Proposition 5.3. If M is a 2m + 1)-dimensional F-invariant submanifold
of M. Then M is necessarily a contact Riemannian submanifold of M.

Proof. Since M is F-invariant, as seen in the proof of Proposition 5.2
wehave f, =0, u, =04 =1, -.-.,2(n — m)). Therefore, (3.8) and (3.14)
imply f.,*f,’ = —&{ + w,u’, uu* = 1. If we now put y = u, G;; = g;; then
we find

Vine — Vigy = Vyuy — Viuy = Vy(§BS5) — V(5B
= Bi‘leﬁzﬁ. — BilBj‘ﬁlﬁx + ; (H 43N & — H 44;N 7).
= Bi‘le(ﬁlf]x - ﬁxﬁl) = 2f]z ’

which means that the (3, G) is a contact Riemannian structure on M. Thus
the proof is complete.

6. Conditions for a submanifold to be a contact
Riemannian submanifold

In this section we states a condition for a submanifold M in a contact
Riemannian manifold M to be a contact Riemannian submanifold. Since for
this purpose we have to use Proposition 4.4 so that we always assume in this
section that the dimension of M is greater than the codimension of M in M.
First we have

Proposition 6.1. Let M be a (2n + 1)-dimensional contact Riemannian
manifold. In order that a submanifold M in M be a contact Riemannian sub-
manifold it is necessary and sufficient that the relations

6.1) uu" = const. # 0,
(6.2) fiifpd = —0% + (uu) 'u,ul

be both valid. ;
Proof. Let M be a contact Riemannian submanifold of M. Then from
Proposition 4.4 it follows that f,* = ¢, and consequently

(6.3 f"fn! = ¢! = —6] + 9§ = —o6] + tuul .



30 MASAFUMI OKUMURA
On the other hand, we have 7,&% = tu,§* = tu,u = 1, which implies

(6.49) uut = % = const. .
Combining (6.3) and (6.4), we get (6.1) and (6.2).
Conversely, if (6.1) and (6.2) are both valid, putting
7]1‘ = (u'rur)—lui ’ Gji = (urur)_lgji s
we have
9,8 = (wu")'u,G*p, = (wu)'uut =1,
fifat = =0} + Wu)'upud = —38] + 787 .

Thus (f%, 7, G'%;, G;;) is an almost contact Riemannian structure on M.
By virtue of (6.1) and (1.4) we now have

Vj7]i - Vi’]j = (urur)_l(Vjui — Viuj)
= (urur)_l(Vj(Bixﬁx) — V{(B;/9))
= (uu)(B/B/V 7, — BB iy + X (Haye — HuN i)
= (uu)"'B/B W i, — Vi),) = 2(u,u)'B;BF,
= z(urur)_lfji = 2Gi)zfjh s

which shows that (», G) is a contact Riemannian structure on M.

Proposition 6.2. Let M be a contact Riemannidn manifold. In order that
a submanifold M in M be a contact Riemannian submanfold, it is necessary
and sufficient that the following relations be both valid:

(6.5) u,u" = const. ,

(6.6) fat = =)™ 3 ughput .

Proof. Let M be a contact Riemannian submanifold in M. Then from
Proposition 6.1, we have (6.5). On putting

(6'7) Ai=PAui+PAi (A:l,---,2(n—m)),

where P,* are vectors orthogonal to u?, if we transvect (6.7) with u;, we get
falu; = u,utP,, which together with (3.13) implies

(6.8) Py = ) fiu, = —(uu)™! ; Ughg, .

Substituting (6.8) into (6.7), we have
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(6.9 fat = — @)™ 4; ughgsut + P4,

which implies 1,5, = (u,uf)“CZl:)uDhD alUches + P4'Py; and consequently
(6.10) 2 fa'fas = (uru’)“g;cushmuchm + ZA} P P,; .

On the other hand, since M is a contact Riemannian submanifold, from
(3.9) we have uif,*f,, = (uuu, — X, gfzuthg, = 0. Substituting (3.13) into
the above equation, we get

(6.11) wudu, = — BZ(:_}uChCBhBA .

Then a combination of (6.10) and (6.11) gives
(6.12) ZA: fa'fas = § (usl + PPy, .

However, by virtue of (3.8) we obtain }; ,f,f4; = f;f*9 + 2m 4+ 1 — wut,
which reduces to ' '

(6.13) ; fatfas =1 — uut = ZA: u,’

because of (3.14) since M is a contact Riemannian submanifold. Comparing
(6.12) with (6.13), we have },,P,P,, = O, thatis, P, =04 =1, ...,
2(n — m)). Hence we obtain (6.6).

Conversely, if the submanifold satisfies (6.5) and (6.6), according to (3.8)
we get

fi*fu? = —of + uu! + ; faif 4

(6.14)
= =0 + ud + (wu)? 3 ughpuchoun’ .
A/B,c

Since f;; is skew symmetric, the condition (6.6) implies f u'f,, = (uu’)u,
— Y fpithg, = O because of (3.9). Substituting (3.13) into the above equa-
tion, we get
(6.15) BZéuohCBhBA = —(uuMu, .
Therefore (6.14) reduces to
fi*f? = —o + ud + ()™ 32 ugluu’!
B
= —0! + () uur + 3 ugduu’
B

= _6{ + (urur)_luiuj .
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Thus the conditions stated in Proposition 6.1 are satisfied, and the proof is
complete.

7. Contact Riemannian submanifolds in a
normal contact manifold

Let M be a normal contact manifold. In this section we define the notion of
a normal contact submanifold M in M. After deriving a condition for M to be a
normal contact submanifold in M, we show that any (2m + 1)-dimensional
F-invariant submanifold M in M is a normal contact submanifold.

Definition 7.1. Let M be a normal contact manifold, and M a contact
Riemannian submanifold in M. If the induced contact structure of M in M is
normal, the submanifold M is called a normal contact submanifold.

Proposition 7.2. Let M be a normal contact submanifold in M, and 'M a
normal contact submanifold in M. Then 'M is a normal contact submanifold
in M.

Proof. Since M and ‘M are normal contact submanifolds respectively in
M and M, there exist two pairs of positive constants (¢, ¢) and (¢, ¢’). Then,
as we have seen in §4, M becomes a contact Riemannian submanifold in M
with respect to the pair (¢¢, ¢’c). We denote these contact metric structures on
M in M and on ‘M in M respectively by (y;, G,;) and (3., G,,), and denote
~ the contact metric structure on ‘M in M by ('y,,’G,,). Then we have

2’¢Da = ab/va - aalvb = tt/Bsza‘(aif]: - 61772)
— /BB /B, /B0, — 8.4) = 1ByB,{@,u; — d.u;)
= t/BbjBa.i(aﬂ?i - aﬂ?]) = alﬂ?a - aaﬂb - 2¢ba 5

and therefore

,Vc,¢ba = Vc¢ba = 7]ch@ - ﬂaGcb
= t'¢():By'G»BB," — 1,B,"G;;B./B;?)
= tt’cc/(f]XBbzgpth”Ba‘ - ﬁxBa'g,uch/‘Bbx)
= ’vb/Gca. - /va,Gba s
which proves by virtue of (1.11) that the structure (7, ’G,;) is normal.
Proposition 7.3. Let M be a contact Riemannian submanifold of a normal
contact manifold M, and suppose that the dimensior of M is greater than the

codimension of M in M. In order that M be a normal contact submanifold in
M it is necessary and sufficient that

(7.1 2 P.H, ;= Hgy + Kuju,
A

hold, where
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(7.2) Py = —u)™" Y ughp, ,
B

and H and K are suitable scalar functions defined on M.

Remark. As it is easily checked, the left hand member of (7.1) is inde-
pendent of the choice of the unit normal vectors to M.

Proof of Proposition 7.3. Let M be a normal contact submanifold in M.
Then by the definition of normality we have

Njih = ij(Vrf‘ih _ Vifrh) - fiT(V'rfjn - ijrh) + 0jViuh - viVjuh' = 0

because of Proposition 4.4. Substituting (3.15) and (3.18) into the above

equation and taking account of (4.4), (6.6), Proposition 4.4 and Corollary 4.5,
we find

N;* = fruor + 2 PoH™,) — firuy oy + 23 PH ™)
(7.3) 4 4
+ (uun) 4 + ; u H " u; — (fy + ; uHy"u} =0 .

On the other hand, we know that the vector field &¢ is a Killing vector field if
the contact Riemannian structure is normal. Thus, from (3.18) and (4.7),
we have

(7.4) S sy =0

Substituting (7.4) into (7.3) and taking account of (3.14), we obtain
N;* = {2 PH,* — (uu)™' 35 us*op}(fiu; — firu) =0,
A A A

and therefore }; P,H,;; = (u,u)~' }; u4g;; + Ku,u;, which proves the ne-
A A
cessity of the given condition.

Conversely, suppose that in a contact Riemannian submanifold M in M the
condition (7.1) holds. Differentiating

(7.5) fi = Pu,

covariantly, we get V,f,;, = V ;P u;, + P,V ;u;. Substituting (3.16) and (3.18)
into the above equation, we find

— Uy8j; + ; (HBjihBA —giLBAj) — fihHAjn
=V ,Pu; + f(sz‘ + ;: uBHBji) s

which together with (7.5) implies
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-2 PAuAgji + 21 (HpjhpaPy — PPuiLBAj) -2 PAHAjhfih
a B4 B4 4
=2 uiPAVjPA + 2 Pz(fji + 2 uBHBji) .
) 4 4 B

Transvecting this with f/* and making use of (7.1), we get — f/if,*(Hg;;, +
Ku,u,) = 2m ), P, from which H = }; P 2. Therefore (7.1) reduces to
A A

(7.6) 2 PaH g = 2 Pigyi + Kujus .
Substituting (7.6) into the left hand member of (7.3), we find
Njih = (fjhui - fihuj)(l + Z P — (urur)-l

A A

= () + wur 3Py — D, — fu) .
A

a.7

On the other hand, (7.2) and (6.11) imply
2P = ) Y ughpauches = (uur)™" 3 ug .
4 B,C C

Thus, from (3.14) and (7.7) it follows that N;* = 0, which completes the
proof of the sufficiency.

Corollary 7.4. Let M be a contact Riemannian submanifold in a normal
contact manifold M. If M is a totally geodesic or a totally umbilical sub-
manifold in M, then M is a normal contact submanifold.

As we have mentioned in the previous paper [3], every totally umbilical
submanifold M in a normal contact manifold M is not a normal contact sub-
manifold. In [3] we have proved that a normal contact submanifold of co-
dimension 2 in a normal contact manifold of constant curvature is either an
F-invariant submanifold or a totally umbilical submanifold. However, if the
codimension is greater than 2 we cannot prove this fact, because by Proposi-
tion 7.2, for example, an F-invariant submanifold ‘M in a totally umbilical
submanifold M in M is also a normal contact submanifold in . In general, a
normal contact submanifold in a normal contact manifold is neither F-invariant
nor totally umbilical.

Proposition 7.5. An F-invariant submanifold in a normal contact mani-
fold is a normal contact submanifold.

Proof. Since the submanifold is F-invariant, it follows that f,=0, u, =0
A4=1,--.,2(n — m)). Consequently we have u;u’* = 1 because of (3.14).
Substituting these into the left hand member of (7.3), we find

N;* =1 — (wu) ) ;*u; — f'u;)) =0,

which completes the proof.
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