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C O N V E X B O D I E S OF C O N S T A N T B R I G H T N E S S 

A N D A N E W C H A R A C T E R I S A T I O N OF S P H E R E S 

FRANÇOIS HAAB 

Abstract 

Nakajima showed that if a convex body in ffi3 satisfying certain smoothness 
conditions has constant width and constant brightness, then it is a ball. 
This work extends Nakajima's result to higher dimensions. We prove that 
if if is a convex body in M.d of class C^_ with constant i-brightness and 
constant j-brightness, then if is a ball. We also generalize this result to 
relative differential geometry. 

1. Introduction 

In this article we obtain a new characterisation of balls among convex 
bodies in W1 of class C\. A convex body K in W1 is of class C\, k > 2, 
if its boundary, denoted by bdK, is a hypersurface of class Ck and if the 
Gauss-Kronecker curvature of b d K is positive at any point x GbdK. 

A convex body K in the Euclidean space W1 is of constant k-bright-
ness ([10, 3.3.10]) or of constant outer k-measure ([6, p.81]) if all its 
orthogonal projections on fc-dimensional linear subspaces of Rn have 
the same A;-volume. When k = 1, K is of constant width (Similary when 
k = n — 1, K is of constant brightness). 

If K is a convex body in Wl with constant width and constant k-
brightness for a given k > 1, is K a ball ? 

This classical question ([14, p.368]; [6, p.82]; [7, problem AIO]) is 
called the Nakajima problem by Goodey, Schneider and Weil in [13]. In 
1926, Nakajima [18] answered positively if n = 3 and k = 2 and K is of 
class C\ (see also Bonnesen and Fenchel's book of 1934 ([3, p.140]) or 
([10, 3.3.20]) for a more recent viewpoint). 
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We will answer this question in the affirmative for convex bodies in 
Mn, n > 3, of class C\ where 1 < k < n. 

Recently Goodey, Schneider and Weil [12] asked a more general ques­
tion. It is justified by the fact that every centrally symmetric convex 
body in W1 is determined by two of its projection functions. Recall that 
the ith projection function (1 < i < n) of a convex body K in W1 is 
defined on the Grassmann manifold G(n,i) of i-dimensional subspaces 
of W1. Its value at E G G(n,i) is equal to the i-dimensional volume of 
the orthogonal projection of K on E. 

If K is a convex body in W' with constant i-brightness and j-bright­
ness (I < i < j < n), is K a ball ? 

Our main theorem gives a positive answer to this second question 
(and therefore to the first one) with some differentiability conditions: 

T h e o r e m A. Let 0 < i < j < n be integers and K a convex body in 
W1 of class C\. IfK has constant i-brightness and j-brightness, then 
K is a ball. 

It is not possible to weaken the hypothesis by only considering one 
type of brightness. In fact, one must remember that for all n > 2 
and 1 < k < n — 1, there are non-spherical convex bodies in W1 with 
constant ^-brightness ([10, 3.3.15-16]). However, every convex body 
with constant ^-brightness which is centrally symmetric is necessarily 
([10, 3.3.11]) a ball, by Aleksandrov's projection theorem ([10, 3.3.6]). 

Note that the first question is open, even in R3, without differentia­
bility assumptions on the boundary ([10, problem 3.9]). Remember too 
that the dual problem for sections always has a positive answer. A star 
body L in W1 having the origin in its interior is said to be of constant 
i-section if the i-volume of LnS is the same for every i-dimensional sub-
space S of W1. Gardner and Volcic showed ([11]; [10, 7.2.16]) that every 
star body in W1, having the origin in its interior, of constant i-section 
and j-section (1 < i < j < n) is a centered ball. 

A more general question can be formulated ([10, problem 3.10]; [12]): 

Let K and L be two convex bodies in Wl, L being centrally sym­
metric. Are K and L homothetic if the ratio of the volumes of their 
projections on any i-dimensional subspace is, for two distinct values of 
i (1 < i < n), a constant (depending on i)? 

When n = 3, i = 1,2, Chakerian [5] proved that K and L are 
homothetic by imposing differentiability restrictions on the gauge body 
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L and the convex body K. This gave a generalisation of the Nakajima 
theorem to a 3-dimensional Minkowski space. 

The following theorem answers the last question positively with some 
differentiability hypotheses: 

T h e o r e m B . Let two convex bodies K, L in W1 be of class C\, where 
L is centrally symmetric. If, for two distinct values of i (1 < i < n), the 
ratio of the volumes of their projections on any i-dimensional subspace 
is a constant (depending on i), then K and L are homothetic. 

The notion of constant ^-brightness implies that of constant k-girth 
(as defined in Section 2). In the final section, we observe that for a 
convex body K in M n + 1 with constant width, the continuous functions 
of u G S" which represent the &-girth in the direction u, satisfy linear 
dependence relationships. We thereby deduce: 

T h e o r e m C. Let K be a convex body in R2n of class C\ and con­
stant width. 

a) If In > 6 and K has constant (2n — 2) -girth and constant ij-girth 
for n — 2 distinct integers ij with 2 < ij < In — 3 ; then K is a ball. 

b) If n = 2 and K has constant 2-girth, then K is a ball. 

To finish, let us briefly explain the idea of the proof of Theorem 
A. It consists of three stages. First of all, the case i = 1, j = n — 1 
must be treated separately. Then the following two theorems allow us 
to deal with the other cases. Let us recall that a point a; of a smooth 
n-dimensional manifold M (n > 2) is called an umbilic point of an 
immersion f : M —>• Rn+1 if all the principal curvature of / at x are 
equal. 

T h e o r e m D . Let i < j < n be integers and let K be a convex body 
in W1 of class C\ such that bd K has a pair of umbilic points belonging 
to two parallel support planes. If K has constant i-brightness and j -
brightness, then K is a ball. 

Theorem D implies Theorem A if we admit the existence of umbilic 
points. Hypersurfaces of dimension n > 2 in R" + 1 do not generally 
have umbilic points. This is in contrast with closed surfaces immersed 
in R3 having non-zero Euler characteristic. In fact, if M is a manifold 
of dimension n > 2, then the set of immersions of M in R" + 1 contains a 
dense and open set of immersions without umbilic points ([8, 4.8 p.10]). 
However, we prove: 
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T h e o r e m E. Let K be a convex body in W1 (n > A) of class C\. If 
K has constant k-brightness for a certain integer k where 1 < k < n — 2 
or if K has constant 1— and (n — 2)-brightness, the hypersurface hdK 
has a least one pair of umbilic points which belong to two parallel support 
planes. 

The proof of one of the important lemmas used in the proof of this 
last theorem was communicated to us by Jacques Boécliat. We wish to 
thank him for his contribution. We also thank R. J. Gardner, R. Schnei­
der and J. Thévenaz who contributed to improving a preliminary version 
of this article. 

2. Def ini t ions , no ta t ion and known results about convex 
bod ie s of constant i -brightness and i-girth 

We will denote by Bn the unit ball in W1, by § n _ 1 the unit sphere 
in W1, by A& the (outer) ^-dimensional Hausdorff measure in W1, and 
by Kn the volume of Bn. We will denote by uL the subspace of W1 

orthogonal to u G § n _ 1 and by E | S the orthogonal projection of the 
set E onto the subspace S. All the projections we will consider will be 
orthogonal. 

We will denote by ÏCn the space of convex bodies in W1, i.e., the 
compact convex subsets in W1 with non-empty interior. If K G KT1 is 
of class C 2 , we will denote by v : hdK —>E>n~l the Gauss map, by II 
the second fundamental form of hdK, by kn(x,t) the normal curvature 
at x G hdK in the direction t G TxhdK and by kj(x) the principal 
curvatures of hdK at x. 

When K is of class C\, we will consider the reverse 

of the Gauss map, the reverse Weingarten map ([21, 2.5]) 

- D i / - 1 ( u ) : T u S n - 1 - > T u S n - \ 

u G § n _ 1 , the second reverse fundamental form of K at u defined by 
JJu(v,w) = <Du-l{u){v),w> and for all t G T u S n - 1 \ { 0 } , 

(1) r{u,t) = Hu{t,t)<t,t>-1 

the radius of curvature at u in the direction t. The formula (1) is the 
analogue for / / „ of the normal curvature kn(x, t) of IIX at x = v~l(u) for 
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the direction t. If t is parallel to a principal direction Xi{x) of IIX, then 
r(u,Xi(u)) is equal to k~1(x,Xi(x)) with u = v{x). The eigenvalues of 
the reverse Gauss map are therefore equal to r, = r(u,Xi(u)). They 
are called principal radii of curvature of K at u. We will denote by Sj, 
j > 0, the jth elementary symmetric function of the principal radii of 
curvature ri = k~ (i = 1, ...,n — 1): 

Sj = ^ rh ' " " rij where j = 1,..., n - 1. 
l < i i < . . . < i j < n — 1 

The jth normalised elementary symmetric function is defined to be 

•̂ = (V) -1^ 
The notation F^' is sometimes used (see [10]) in place of Sj. We use the 
notation sf when it is useful to indicate that it depends on the convex 
body K. 

Let r^ be the continuous map, defined by 

rî(it) = ( n ( u ) , . . . ,r„_i(u)) 

whose value at u G S " - 1 is the vector of principal radii of curvature of 
K in increasing order. We denote the ith component of r^(u) by rj(u). 

A chord of a convex body K is a normal (or a double normal) if it is 
perpendicular, at one (or two) of its extremities, to the support plane(s) 
of K. 

We denote by W n the class of all the convex bodies in ÏCn with 
constant width. 

Lemma 2.1 ([10, 7.1.13]). If K G Wn, any normal of K is a double 
normal. 

In fact, a body K G Kn has constant width if and only if every 
normal is a double normal ([6, p.54]). For all K G W", u G S""1, the 
chord [v~l (v), v~l (—u)} is orthogonal to the support hyperplanes to K 
at its extremities. Consequently, iî K G Wn has width ft, 

(2) v~l{-v) = v~1{v) -bu and fly"1(w) + Di/" 1 ( -«) = !)M. 

We deduce the following theorem from (2) and the above observations. 
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Theorem 2.2. ([10, 3.3.19]; [6, p.65]) Let K G Wn be a convex 
body of class C\ and width b. The principal radii of curvature of K 
satisfy 

(3) rj(u) + r^_^(—u) = b for each u G § n _ and 1 < i < n — 1. 

The k-girth of if G AT1 in direction u G § n _ 1 is equal ([6, p.81]) 
to the mixed volume nV(K, ...,K,Bn, ...,Bn, [u] ) where K appears k 
times, Bn appears (n — k — 1) times and where [u] is a line segment of 
unit length parallel to u. A convex body K G Kn has constant k-girth 
if its fc-girth is the same for any direction u G S" - 1 . If k = n — 2, K 
is simply said to have constant girth, because the (n — 2)-girth of K in 
direction u is equal to ìAn_2(bd(if (ir1)) ([10, p.llO]). 

Theorem 2.3 ([9]; [10, 3.3.12-13]). a) (Firey) Every convex body 
K G ÏCn with constant k-brightness where 1 < k < n also has constant 
k-girth. 

b) (Minkowski, 1904, for n=3) If k = 1, a convex body K G ÏCn has 
constant width if and only if it has constant l-girth. 

c) If k = n — 1 or K is a convex body of revolution, then constant 
k-brightness and constant k-girth are equivalent. 

Theorem 2.4. a) ([10, 3.3.14]) A convex body K G Kn of class 
C\ has constant k-girth if and only if Sk(u) + Sk(—u) is constant for all 
u G S™"1. 

b) ([9]) A convex body K G K,n of class C\ has constant k-brightness 
if and only if 

(4) sk(u) + sk(-u) = 2K^ \k(K\E) 

for each k-dimensional subspace E e l ™ . 

Recall that G(n,k) denotes the Grassmann manifold of A;-dimen-
sional subspaces of W1. 

Proposition 2.5 ([10, 3.1.6]). Let K G ÏCn and let k be an integer 
where 2 < k < n — 1. If every projection K | E, E G G(n,k) is a 
k-dimensional ball, then K is a n-dimensional ball. 

Theorem 2.6 ([10, 9.3.3]). Let 1 < k < n — I, and suppose that 
K G Kn and that L is a zonoid in W1. Then 

(\n(L)\k'n . Xk(L\E) 
> mm • 

Xn(K) - EeG(n,k) Xk{K\EY 

with equality if and only if K and L are homothetic. 
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3. P r o o f of T h e o r e m D 

Let a = (ai, ...,an) be an n-tuple of positive real numbers and let 
r be an integer where 1 < r < n. The power mean of order r of a is 
defined by 

Mr=Wn a\ 
l/r 

It satisfies Jensen's inequality ([16, 3.1.1]) 

Mr < Ms if r < s, 

with equality if and only if a\ = • • • = an. 

T h e o r e m D . Let i < j < n be integers and let K be a convex body 

in W1 of class C\ such that bd K has a pair of umbilic points belonging 

to two parallel support planes. If K has constant i-brightness and j -

brightness, then K is a ball. 

Proof. By hypothesis the hypersurface h&K has a pair of umbilic 

points belonging to two parallel support hyperplanes. Choose UQ G § n _ 1 

in such a way that v~l(u$) and v~l{—UQ) are umbilic points. We will 

denote their radii of curvature by x and y. Suppose that K has constant 

j-brightness. We have by (4), Sj(u) + Sj(—u) = 2K~ XJ(K\E) for all 

E G G(n,j), u G S " - 1 . Consequently, 

\j(K\E) 1 . , . , . , 1 
— = g (si(Mo) + Sj(-uo)) = -

If K has constant i-brightness, we have for all F G G(n,i), 

Xi(K\F) 1 1 i i 
J = 2 (s<(«o) + Si(-u0)) = -(xl + yl). 

As i < j , we have by Jensen's inequality: 

Suppose that E G G(n,j). We observe that K \ E has constant i-

brightness. If L denotes the unit ball in W = E, we have KJ = \j(L) 

and Ki = Xi(L | F) for all F G G(n,i). Theorem 2.6 applied to K \ E 
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and L asserts that the following inequalities are equalities if and only if 
K | E is a ball: 

< / J > _ * _ i.e., (\(K\F)\ll\HK\E)^l] 

\j(K\E) \{K\FY «i 

The reverse inequality derived above implies that the latter inequality is 
in fact an equality. Consequently K | E is a ball for all £7 G G(n,j). We 
conclude that if is an n-dimensional ball by Proposition 2.5. q.e.d. 

4. Characterisation of convex bodies of constant k-brightness 

In order to guarantee the existence of umbilic points on the hyper-
surfaces we will consider, we will generalize the criterion of Theorem 2.4 
b) which characterizes convex bodies with constant ^-brightness. 

Let Qk,n be the set of all strictly increasing fc-tuples of integers 
belonging to the set { 1 , . . . ,n}. The multi-index X belongs to Qk,n if 
and only if X = ( i i , . . . ,ik) where 1 < i\ < i<i < • • • < %k < n. Let 
(e i , . . . ,en) be an orthonormal basis of a Euclidean space H. For all 
I G Qk,n, let ex = ej-L A... Aeik. The family (ex)xeQk,n

 i s a n orthonormal 
basis of the Euclidean space /\kH. 

Suppose that T, J G Qk.n- If) relative to the basis (e i , . . . , en ) of 
H, the endomorphism A is represented by the matrix (a^), we will 
denote by A[X\J] the square sub-matrix of order k of A equal to (ciij) 
with i G X, j G J. The coefficient (X, J) of /\kA relative to the basis 
{ei)xeQk,n is equal to (AkA)xj = < ex, AkAej >= det{A[X\J]). 

Theorem 4.1. Let K G ÏCn be a convex body of class C\ and let k 
be an integer with 1 < k < n. Then K has constant k-brightness if and 
only if 

AkDu~1(u) + AkDu-1(-u) =2nll\k{K\E) Ak Id, Vu G S™"1, 

Du~l(u) : T u § " - 1 —> T u S n _ 1 denoting the reverse Weingarten map of 
K at u. Thus, for all u G § n _ 1

; AkDu~l(u) + AkDv~l(-u) is a scalar-
multiple of the identity of AkTuS

n~1. 

Proof. Suppose that K has constant ^-brightness. For all E G 
G(k + l ,n) , the convex body K \ E has constant (A;-)brightness. Let 
u G § n _ 1 n E and let 

n:TubdK ^Tubd(K\E) and rj : Tubd (K \ E) ->• Tubd K 
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be respectively the orthogonal projection and the canonical inclusion. 
The second reverse fundamental form of K | E at u is equal, for all 
v,w£Tubd(K\E), to 

IIU (v,w)=< Du~ (u)v,w>=<irDu~ (u)rj(v),w > . 

We denote by pi(u) the principal radii of curvature of the second reverse 
fundamental form of K \ E at u, and by sk (it) = Y\i=i Pi(u) the kth 

elementary symmetric function of the principal radii of curvature of 
K | E at u. 

Let (wi,... ,Wk) be an orthonormal basis of Tuhd(K \ E), and 
(ui,... ,un-i) be an (orthonormal) basis of Tubd_K" consisting of eigen­
vectors of Dv~l(u). The vector w = w\ A . . . A wk G AfcT„bd {K\E) C 
AkTubdK can be written as a linear combination of the vectors in the or­
thonormal basis (ui)ieQk,n-i

 o f A f c(T„bdK), say w = YjXeQk n_1 « i « i 
where ax =< w,ux >• Consequently, by ([16, 1.4.6 (3)]), 

< vj,AkDu~1(u)w > = y ^ < w,AkDu~1(u)uJ >< w,uj > 
*-^J£Qk,n-i 

= ^ - T ^ d e t {{<wuDu~l{u)Uj>) jej )det((<Wi,Uj>) jej ) • 

The coefficients of the matrix A G Mn_i ^(W) of the inclusion 7] 
relative to the pair of ordered bases (wi,... ,Wk) and ( u i , . . . ,un-i) 
are equal to ciji = < tOj,Uj > . Those of the matrix B G Mfc^n_\ (R) of 
n Du~l{u) relative to the same bases are equal to 

bij =< Wi,Dv~l{u)uj > . 

Suppose that Io = ( 1 , . . . , k) G Qk,k\ then the former expression, by the 
Binet-Cauchy formula ([16, 1.2.4.14]), is equal to 

E det(B[Io\J])det(A[J\Io\) 

(5) 

= IT #(u) = sklE(u) 

j£Qk,n-

= det(BA)[l0\l0] 

= det(BA) 

a Au) = 
j = l 

We denote by T the matrix of Du 1(u) (or Du 1(—u)) relative to 
the orthonormal basis ( u i , . . . ,un-i). As Du~l(u) and Dv~l(—u) are 
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self-adjoint linear automorphisms of Tubd K, we have 

<ux,A
kTuj> = det(T[l\J}) 

= det(T*[J|T]) 

= det(T[J\l}) 

= <uj,AkTux> • 

Thus AkDu~1(u) and AkDv~l (—u) are self-adjoint linear automorphisms 
of Ak(TubdK). The function Q : Ak{TubdK) ->• R defined by 

Q{w) =< w, ( Afc Du'1^) + AkDv-1{-u)) w > 

is therefore a quadratic form on Ak(TubdK). 
Let E G G(k + l ,n) such that u G S " - 1 n E, let ( w , ) ^ be an 

orthonormal basis of the subspace of E orthogonal to u and let w = 
w\ A • • • A lOfc be the elementary symmetric tensor of norm one. In view 
of (5), the value of the quadratic form Q at w is equal to 

4'%) + 4lE(~u) = Z^XkiK IE). 

This number is independent of w by Theorem 2.4 b). In particular Q 
takes the same value on each of the vectors uj, which constitute an or­
thonormal basis of Ak{TubdK). The quadratic form Q is therefore con­
stant on the unit sphere of Ak(TubdK). The self-adjoint endomorphism 
AkDv~l{u) + AkDv~l(—u) associated to Q is thus a scalar multiple of 
the identity. 

The converse follows from Theorem 2.4 b) and the fact that txAk A is 
the fcth-elementary symmetric function of the eigenvalues of A. q.e.d. 

Corollary 4.2. Let K G Kn be a convex body of class C\ and let 
k be an integer with 1 < k < n. If the convex body K has constant It-
brightness, then the reverse Weingarten maps Dv~l{u) and Du~l(—u) 
are simultaneously orthogonally diagonalisable. 

5. Schur-convex functions and elementary symmetric 
functions 

Let us introduce the notion of a Schur-convex function. This will 
enable us to characterize balls in W1 as convex bodies with constant 
width and (n — l)-brightness without needing to establish the existence 



CONVEX BODIES 127 

of umbilic points. In the second half of the section, from Lemma 5.4 
onwards, we establish the lemmas needed in the following section in 
order to prove the existence of umbilic points on (n — l)-dimensional 
hypersurfaces with constant ^-brightness for k < n — 1. 

Let A = (A i , . . . , An) E l " . We will denote by A1" (or A+) the vec­
tor of ffi" obtained by reordering the components of A in increasing 
(or decreasing) order. We will denote by X[i] (or A[i, j]) the vector of 
j jn - i ^o r j jn-2) obtained from A by omitting its i th (or i th and j t h ) 
component (s). 

If x, y G Mn, we will say that y majorizes x and will use the symbol 

f Ef=i 4 < Ef=i rf k = l,...,n-l, 
X y i n i n i 

I 2̂ i=l xi = Z^i=l Vi • 
More generally, x is said to be weakly supermajorized by y, written 

x<wy if S i = i œî - S i = i ^ k = l,...,n. 

Suppose that A C ffi". We will write x -< y on A if x,y G A and 
x -< y. A real function (f> defined on A is said to be Schur-convex on A 
if x -< y on A implies (p(x) < (p(y). It is strictly Schur-convex on A if 
we have (p(x) < (f>{y) when x ~< y on A and if x is not a permutation of 
y. Finally the function cf) is said to be (strictly) Schur-concave on A if 
—(f) is (strictly) Schur-convex on A. 

T h e o r e m 5.1 ([17, 3.A.4]). Let I C ffi be an open interval and let 
4> : / " — ) • R be a continuously differentiable function. The function 4> is 
Schur-convex on In if and only if it is symmetric on In (i.e., <f){x) = 
(f)(a(x)) for all x G In and all permutations a) and if for all i ^ j , 

d d 
(6) (xi - Xj) [TJ—4>(X) - T^—4>{x)} > 0 for all x G / " . 

Condition (6) is called Schur 's condition. If the inequality (6) is 
strict for all x G In where X;b ^ Xj, the function cf) is strictly Schur-
convex on I n ; see [20, Theorem VIII]. 

T h e o r e m 5.2 ([17, 3.A.8.a]). Let L C ffi be an open interval and 
let (f> : Ln —>• R be a continuously differentiable function. The function <f> 
is strictly decreasing and strictly Schur-convex on Ln if and only if the 
following condition holds: 

whenever x -<w y on Ln and x is not a permutation of y, then (p(x) < 

Hy)-
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We will introduce some more notation. 
Let K£ = {x G W : x{ > 0, Vi} and M™+ = {x G W : Xi > 0, Vi} . 

For all a G R, let a = ( a , . . . , a) G ffin. If x = (xi,... ,xn) G W1, a - x 
is the vector with components (a — xi,... , a — xn). 

If k G N, the function S* : K" - • M defined by 

bk{X) = / y ^ii ' ' ' ^ij. 

l<ii<-"<i;i<n 

is called the A;th elementary symmetric polynomial of the n variables 
xi,... ,xn. The identities 

(7) ^Sk(x) = Sk-Mj}), 

Sk(x[i]) - Sk(x[j]) = {xj - Xi) Sk_i{x[i,j]) 

easily imply ([17, 3.F.1]) that the function Sk is Schur-concave on R" 
and that Sk is strictly Schur-concave on M™+ if k > 1. 

L e m m a 5.3 . For all x G W1, let x = 1 — x. The function F : 
(0, l ) n -> R defined by 

F(x) = Sn(x) + Sn(x) = Sn(x) + T (-iySi(x) 
*—'1=0 

is, for n > I, strictly increasing on (0,1)" and strictly Schur-concave. 

Proof. In view of ([17, 16 A.l.a]), it is enough to verify that 
VF(x) > 0 in order for F to be strictly increasing. This condition is 
satisfied, because, by (7), we have 

BF n 
— (x) = Sn.1(x[j])+J2t=1(-^ySî-i(x[j}) = Sn.1(x[j})+Sn.1(x[j}) > 0. 

To conclude, one verifies Schur's condition (using the identities (7) be­
tween the elementary symmetric polynomials). q.e.d. 

Now we will prove some lemmas which determine the solutions of 
equations in which elementary symmetric functions appear. 

Recall that , by definition, S-i(X) = 0 and .So(A) = 1 and that 

(8) Sk(\) = Sk(\\i]) + A, • 5fc_i(A[i]) VA G su 

We are grateful to Jacques Boéchat for having communicated to us 
the proof of the following lemma: 
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L e m m a 5.4. Let A = (A i , . . . ,An) G W1 where n > 3 and let 
l<i<p<j<nbe integers. If there are two integers 1 < k < £ < n 
such that 

Sk(m) + Sk(X\j]) = 25fc(A[p]) and S*(A[i]) + S^j}) = 2Se(X[p}), 

then A, = Xj = Xp. 

Proof. For simplicity, we write Sk = Sk(X[i,p,j]). We will apply 
(8) successively to Sk(X[i]), <Sfc(A[p]) and Sk(X[j]). We obtain 

Ski^]) = Sk + (Ap + Xj)Sk-i + XpXjSk-2 

and, after permuting the indices, similar expressions for Sk(X[p\) and 
Sk(X[j]). The first equality in the hypothesis is now written as 

2Sk + (A, + 2Xp + Xj)Sk-i + Xp(Xi + Xj)Sk-2 

= 2{Sk + (Aj + Xj)Sk-i + XiXjSk-2) 

or 

2XpSk-i + (Aj + Aj)[Ap5'fc-2 — Sfc-i] — 2XiXjSk-2 = 0 . 

The second equality gives the same relationship except that k is replaced 
by £. That is to say, (A, + Xj, A,Aj) is a solution of the following system 
of linear equations in (X, Y): 

(Q\ ( fc_1 ~~ \'Sk-2 2Sk-2 \ { X \ _ ( Sk-l \ 
[ ) & - i - XpSe-2 2Sf_2 Y - ^ S t - ! ' 

However (2AP, Xp) is also a solution of (9). To arrive at a conclusion, we 
only have to prove that (9) has a unique solution, i.e., that 

{Sk-iSe-2 — SV-iSfc-2) 7̂  0-

We claim that Sk-2/Sk-i < S^-il St-i-
For all fixed A G W71, we recall that the kth normalised elementary 

symmetric function is written 

1 m\ 
Sk = Sk{X)= Sk(X) (k = 0,...,m). 
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The inequalities -j^- < ^ - , known as Newton inequalities ([16, II.3.2.1] 

between the successive ratios of sk for k = 0 , . . . , m — 1 and the inequal-

ities (A) (I)"' < (I) Gìi)"1 enab le us t o P r o v e 

5*(A) - ^ - i H J Sfe <WU+J Sk+1 - sk+1(\) • 

This proves the claim. q.e.d. 

L e m m a 5.5. Let A = (A i , . . . ,An) G IR" where n > 4 and /et 
1 < i,p,q,j <n be distinct integers. If an integer 1 < k < n exists 
such that 

Sk(X[i,p]) + Sk(\[q,j]) = 2Sk(X[p,q]) and 

(10) Sk(X[j,p]) + Sk(X[q,i]) = 2Sk(X[p,q]), 

then Xi = Xj if Xp ^ Xq. 

Proof. For simplicity, write Sk = Sk(X[i,p,q,j]). By applying (8) 
successively to Sk(X[i,p\), Sk(X[q,j]) and Sk(X[p,q\), we obtain 

Sk(X[i,p\) = Sk + (Xj + Xq)Sk-i + XjXqSk-2, 

Sk(X[q,j]) = Sk + (Aj + Ap)Sfc_i + XiXpSk-2, 

Sk(X\p, q\) = Sk + (Ai + Xj)Sk-i + XiXjSk_2 • 

After having made the above substitutions, the first of the equations 
(10) becomes 

(Xp + Aç) Sfc_i + (AjAp + AjAq) 5"fc_2 = (Xi + Aj) Sfc_i + 2AjAj Sk_2 • 

In order to move from one equation to the other in (10), one only has to 
exchange the roles of i and j . Thus (AjAp + XiXq) = (A,AP + XjXq), i.e., 
Xj(Xp — Xq) = Xi(Xp — Ag). Consequently A, = Xj if Xp ^ Xq. q.e.d. 

L e m m a 5.6. Let X = (A i , . . . ,A„) G IR" where n > 4, and let 
1 < i,p,q,j < n be distinct integers. If there are two integers 
l<k<£<n — 1 such that 

Sk(X[i}) + Sk(X[j}) = Sk(X[p] + Sk(X[q}) 

and 

(11) S£(X\i]) + Se(X[j}) = Se(X[p}) + Se(X[q}), 

then (Xp,Xq) = (A,,Aj) or (Xj,Xi). 
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Proof. For simplicity, write Sk = Sk(X[i,p,q,j]). By applying (8) 
successively, we obtain that S^Afi]) is equal to 

Sfc + (Aj + Xp + XqjSfz-i + {XpXq + AjAg + ApAj)Sfc_2 + XjXpXqSk- 3 • 

By permuting the indices, we obtain similar expressions for Sk(X[j]), 
Sk(X[p\) and Sk(X[q\). Then (11) tell us that (Ap + Xq, XpXq) is a solution 
of the following system of linear equations in (X, Y): 

Sk-i — ̂ i^jSk-3 2S'fc_2 + (Xi + Xj) 5"fc_3 \ I X 
, . -%-i — \^jSe-3 25^_2 + (A, + Aj) 5^_3 ^ 

(Aj + Aj) S'fc-i + 2A,AjS'fc_2 
(Aj + Aj) 5^_i + 2XiXjSi_2 

But (Aj + Aj, AjAj) is also a solution of (12). In order to reach a conclu­
sion, one only has to prove that (12) has a unique solution, i.e., that 

(Sk-iSi-2 — Si-iSk-2)+(Xi + Xj)(Sk-iSi-3 — Si-iSks) 

+AjAj(5fc_2<S^-3 — S^2Sk-z) 7̂  0-

This expression is non-zero by the claim established at the end of the 
proof of Lemma 5.4. q.e.d. 

6. P r o o f of T h e o r e m E 

Propos i t i on 6 .1 . Let K G Wn be of class C\ where n > 4. If K 
has constant (n — 2)-brightness, the hypersurface hdK has at least one 
pair of umbilic points which belong to two parallel support hyperplanes. 

Proof. We shall use the notation r^(u) introduced before Lemma 
2.1. By the Borsuk-Ulam theorem ([4, 4.20.2]), there is a point uo G 
§ " _ 1 such that r^(uo) = r^(—UQ). In addition we know, by Theorem 

2.2, that if the width of K is equal to 26, then rj(u) + r^^—u) = 2b, 
Vu G S"" 1 . 

Suppose that n = 2rn is even. Then rJn(uo) = b. In addition, by 
Theorem 4.1, we have, for all 1 < i < n, 

Sk(r\uüM)+Sk(r\u0)[n-i])=2Sk(r\u0)[m]), k = l,n-2. 

Consequently, r]_(uo) = r„_1(wo) = rJn(uo) = b by Lemma 5.4. The 
points V~1(±UQ) are therefore the umbilic points we sought. 
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Suppose that n = 2m + 1 is odd. By Theorem 4.1, we have for all 
1 <hj < n and for k = 1 or n — 2 

Sk{rHuo)\i])+Sk{rHUo)[n-i])=Sk{rHu0)[j])+Sk{rî(uo)[n-j]). 

Therefore, if we let 2e = r2TO(uo) — rj(ito), then by Lemma 5.6, 

(13) rj(uo) = b — £ if % < m and rj(uo) = b + e if % > m. 

Let Xj(v) G T^-w^bdif be a principal direction corresponding to the 

eigenvalue rj(u) of Dz^_1(u). The convex bodies K | X^u)1- have con­
stant (n—2)-brightness. The following functions, by Theorem 2.4, are all 
equal to the same constant C, equal to 2K~_2\n-2(K\E), E G G(n,k): 

SnTU) («) + sK
n[fW (-t,) = C, V, G X ^ n S». 

By 4.2, Xi(u) = Xn-i(—u). Thus these equations are equivalent to 

n3,/i(«)+n^,''î(-«)=c:^=c. 
Theorem 2.4 b) implies that 

c=(»:i)c=a^)+n 
By (13), the previous two equations with u = Uo give 

2{b-£2)m = C = 2b{b-£2)m-\ 

Consequently e = 0. The points v~l(±uo) are therefore the umbilic 
points we sought. q.e.d. 

Proposition 6.2. Let K G Kn be of class C\ where n > 4 and 
let k be an integer such that I < k < n — 2. If K has constant k-
brightness, the hypersurface bd K has at least one pair of umbilic points 
which belong to two parallel support hyperplanes. 

Proof. As before (see Proposition 6.1), there is a point UQ G S " - 1 

where r^(uo) = r^(—UQ). The convex bodies 

Ki = K\(X1(Uo)
±nXi(u0)

±) 

have the same constant ^-brightness for i = 2 , . . . , n — 1. Since 

Xk (K2 \E) = \k (üfn_i | £ ) = Afc (üfn_2 | £ ) 
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for any E G G(n, k), by applying Theorem 4.1 to Kj for i = 2, n — 2 and 
n — 1, we have, that 

,Sfc(r
t(no)[l, 2]) + Sk(r\uü)[n - 2,n - 1]) = 2Sfe(rt(w0)[l,n - 1]) 

and 

Sk(r*(uQ)[l,n- 2]) + Sk{r\u0)%n - 1]) = 2(Sfc(r
t(w0)[l,n - 1]). 

Suppose that Du~l (UQ) is not an umbilic point. Then, by Lemma 5.5, 

4M =rl_2(u0) 

because 

rî(«o) ^ K Ï - i K ) -

Choose an integer % where 1 < % < n — 1 and let e = rj(uo). As 
the components of r^(uo) are in increasing order, e does not depend 
on the choice of i. As k < n — 3, it follows from Theorem 4.1 that 
2£k _ ( r |(Mo) + r^_1(u0))eA:~1 and that 2efe = 2r[(w0) ^^(UQ) £h~2. 
Consequently r[(uo) = r„_1(uo) = e. Therefore DZ^_1(MO) is an umbilic 
point, a contradiction. 

Hence Dv~l(u$) must be an umbilic point. The point 
Dv~l{—UQ) is also one by Theorem 4.1. q.e.d. 

Theorem E follows directly from Propositions 6.1 and 6.2. 

7. Proof of Theorem A 

Theorem 7.1. A convex body K G Wn (n > 3) of class C\ which 
has constant (n — l)-brightness is a ball. 

Proof. Suppose that b is the width of K G Wn. For all u,v G S n _ 1 , 

S„-i(r*(u)) + S n_!(r î ( -«)) = Sn-rirHv)) + 5n_i(r^(-«)) 

by Theorem 2.4. Consequently, for all u,v G S" - 1 , we have 

Sn_!(rî(«)) + S„_i(b - r^(«)) = 5n_!(^(«)) + 5n_!(b - r ^ ) ) , 

because the principal radii of curvature of K satisfy 

rl_i(-u) = b-rj{u), V W G S " " 1 , 
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(Theorem 2.2). Lemmas 5.2 and 5.3 enable us to claim that r^(u) = 

rî(«)> Vu,« e S"" 1 . 
Thus K is a ball (see [21, p. 301]), because the elementary symmetric 

functions of the principal radii of curvature are constant (or more easily 
because the Gauss-Kronecker curvature of bdK is constant). q.e.d. 

T h e o r e m 7.2. A convex body K G Wn of class C\ which has 
constant k-brightness, where 1 < k < n, is a ball. 

Proof. For all E G G(n, k + 1) the convex body K \ E is of class C+, 
and has constant width and ^-brightness. Consequently, by Theorem 
7.1, K | E is a ball for all E G G(n, k + 1). We conclude that K is an 
n-dimensional ball by Proposition 2.5. q.e.d. 

T h e o r e m A. Let 0 < i < j < n be integers and K a convex body in 
W1 of class C\. IfK has constant i-brightness and j-brightness, then 
K is a ball. 

Proof. If (i, j ) = ( l , n — 1), we know that the hypersurface bdK is 
a sphere by Theorem 7.1. 

If (i, j) ^ ( l , n — 1), we have either 2 < i < n — 3, o r 2 < j < n — 3, 
or (i,j) = ( l , n — 2). Consequently the hypersurface hdK has a pair of 
umbilic points belonging to two parallel support hyperplanes, either by 
Proposition 6.1 or by Proposition 6.2. Theorem D now enables us to 
complete the proof. q.e.d. 

8. Constant relat ive br ightness 

In relative differential geometry in a finite dimensional vector space 
X, a given convex body B C X (which is not necessarily centrally 
symmetric) is used as the "unit ball" in the geometry we are considering 
(cf [3, p.64]). It is called the gauge body. We note that if B G Kn is 
centrally symmetric, then B can be considered as the unit ball in X. The 
space X endowed with the associated norm is a Minkowski space denoted 
by (X, || | | B ) (see [23, 1.1.8]). The notions of constant Minkowski width, 
of Minkowski A;-girth, etc., are obtained from those of relative geometry 
by taking the unit ball of the Minkowski space as the gauge body. 

Numerous authors have studied sets of constant width in a Minkowski 
space, i.e., in a finite-dimensional normed space. We can quote Chake-
rian and Groemer's survey [6] and that of Heil and Martini [14], as well 
as Thompson's book ([23, §4.2 and 4.8]) and that of Boltyanski, Martini 
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and Soltan ([2, §32]). Obviously there are several characterisations of 
convex bodies of constant width in a Minkowski space (X, || \\B) with 
unit ball B. 

Let B G fCn be a gauge body of class C\ and let K G K,n be a convex 
body of class C\. We refer to Leichtweiss ([15, §6, pp.1075-6]) for the 
definitions of the relative principal curvatures, written rki,... , rkn-i, 
and those of the relative principal radii of curvature written, 

r r i , . . . , r-fn-i-, of the pair (B,K). Actually Leichtweiss works with 
a gauge body of class C+, but all the results we need holed in the C\ 
case (see Chakerian [5, p.32]). We will denote by rSj the jth normalised 
elementary symmetric function of the relative principal radii of curva­
ture. 

A point of bd K is a relative umbilic point if all its relative principal 
curvatures are equal. 

Definit ion 8 .1 . Suppose that 5 is a centrally symmetric convex 

body in W1 with center at the origin. 

a) A convex body K has constant relative width if the ratio x (B\E) 

is constant for any line E of G(l,n). 

b) A convex body K has constant relative j-brightness if the ratio 

X (B\E) 1S c o n s t a n t for any j-dimensional plane E of G(j,n). 

c) The relative k-girth of K G Kn in the direction u G § n _ 1 is 
equal ([5, §3]) to the mixed volume nV(K,..., K, B,..., B, [it]) where K 
appears k times, B (n — k — 1) times and where [u] is a line segment of 
unit length parallel to u. 

d) A convex body K G ÏCn has constant relative k-girth if the ratio 
of the relative A;-girth of K G K,n in the direction u to that of B in the 
same direction is constant for all u G S " - 1 . 

T h e o r e m 8.2 . Let B G Kn be a gauge body of class C\ and let 

K G K,n be a convex body of class C\. 

a) ([5, Theorem 5]) If K has constant relative width equal to b, the 

relative principal radii of curvature of K (with the usual convention 

r\{u) < r r | ( u ) < ••• < rrl_i{u)) satisfy r 

(14) rrJ(u) + rrl_i(-u) = b, for all u G § n _ 1 and 1 < i < n - 1. 

b) If K has constant relative j-girth, then 

(15) rSj(u) + rSj(—u) is constant for all u G S n _ . 
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Part b) of the theorem is a consequence of the corollary of Theorem 2 
of [5] and of Theorem 4 of [5]. 

Let Kg be convex bodies in W1 for £ = 1 , . . . ,n and let 1 < j < i < n 
be integers. If K\ = K^ = • • • = Kj+\ and if K^ = Kj+2 = • • • = ÜQ, we 
will denote by V(Ki,i,K^,i —j, A) the mixed volume where K\ appears 
i times, K2 appears i — j times and where A = {iQ+i, . . . ,Kn}. Now 
we will prove a result similar to Theorem B for relative differential 
geometry: 

Theorem 8.3. Let B G Kn be a centrally symmetric gauge body 
of class C\, let K G ÏCn be a convex body of class C\ having two rela­
tive umbilic points belonging to two parallel support hyperplanes, and let 
1 < i < n — 1 be an integer. If K has both constant relative i- and 
(n — 1)-girth, then K is a relative ball, i.e., homothetic to the gauge 
body B. 

Proof. Let Vi(K, B, [«]) be V(K, i,B,n-l-i, [«]). If K has con­
stant i-girth, then there exists a constant c, such that for all 
u G S™"1, 

1 

(16) V,(K,B,[u]) = CiVo(K,B,[u]) = Vo(K,cr1 B,[u]). 

If we choose (2ci)n~1 B as gauge body, we have rSi(u) + rSj(—u) = 1 by 
the corollary of Theorem 2 of [5]. Consequently if the gauge body is B, 

(17) rSi(u) + rSi{—u) = 2ci, for all u G S"~ . 

We choose UQ G S n _ 1 such that U~1(UQ) and v~l(—UQ) are relative 
umbilic points. We will denote their relative radii of curvature by x and 
y. Suppose that K has constant i- and j-girth. The equalities (16) and 
(17) are true for i and j . Thus, if i < j , we have by Jensen's inequality: 

fVi(K,B,[u])\j /I. ,\\ 
W0(K,B,[u])) = 2 ^ M + ^ ( - M o ) ) J 

l ^ + 'U1) 

(18) < ( ^ ( ^ ' + y r 

-(rSj(u0) + rSj(-U0))y 

(V3(K,B,[u})^ 

v0(K,B,[u}) ' 
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On the other hand, the Aleksandrov-Fenchel inequality ([10, (B.16)]) 
implies 

(19) F i(ür,ß,M)"-1>yn_1(ür,ß,M) iFo(Ä',ß,M)n-1-< . 

Consequently Vi(K,B,[u])i > K _ i ( i f , B , [u])^ V0(K,B, [u])^~^\ 
i.e., 

( 2 0 ) sVi(K,B,[U])^ > (Vn-^B,^])^ 
V0(K,B,[u]) Vo(K,B,[u}) 

Inequality (18) is, by hypothesis, satisfied for j = n — 1. It implies 
that inequality (20), and therefore inequality (19), are in fact equalities. 

We know that 

Vi(K,B,[u]) = n - V ( ( K | u ± ) , i , ( S | u ± ) , n - l - i ) 

by ([5, p. 28]), that 

VQ(K,B,[U]) =n-1V(B\u±,n-l) = n~l\n-X{B \u^) 

and that 

yn_i(ür,ß,[«]) =rClV(K\u-L,n-l) = n~l \n-i{K \u^). 

Therefore the inequality 

F ( ( A ' | « - L ) , î , ( J B | « ± ) , n - î - l ) n ~ 1 

>V({K\uL)ìn-iy VdB^.n-iy1'1"1 

is in fact an equality. This implies that, for all u G S n _ 1 , K \ uL and 
B | u1- are homothetic by the observations on the cases of equality of 
(B.16) on page 372 of [10]. Consequently K and B are homothetic by 
Theorem 3.1.3 of [10]. q.e.d. 

Theorem 8.4. Let (X, || \\B) be a Minkowski space whose gauge 
body B is of class C\. Any convex body K C X of class C\, which has 
constant Minkowski width and constant Minkowski brightness is homo­
thetic to the gauge body B. 

Proof. We proceed as for Theorem 7.1 but using relative principal 
radii of curvature. We conclude using Formula (4.4) of [5] or Theorem 
6.2 of [15]. q.e.d. 
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Theorem 8.5. A convex body K of class C\ which has constant 
relative width and constant relative k-brightness for a given k > I, is a 
ball. 

Proof. We proceed as for Theorem 7.2 and we conclude using 
Theorem 3.1.3 of [10]. q.e.d. 

Let K,L G ÏCn be of class C+, and let J : bdK —> bdL be the 
canonical map sending the point x G b d K to the point J(x) G bdL 
with the same normal as x. This is Petersen's map (see [15, p. 1075]; 
[5, p. 31]). 

Theorem 8.6. Suppose that K,L, are convex bodies in W1 of class 
C\. If the gauge body L is centrally symmetric and if K has constant rel­
ative k-brightness, we have for all x GbdL ; that AkJ~1(x)+AkJ~1(—x) 
is a scalar multiple of the identity of AkTxbdL, where J denotes Pe­
tersen's map, and —x the unique point of bdL whose tangent hyperplane 
is parallel to that at x. 

Proof. We proceed as for Theorem 4.1. q.e.d. 

Identical reasoning to that of Theorem E leads to 

Theorem 8.7. Suppose there are two convex bodies K,L G Kn 

(n > 4) of class C\, where the gauge body L is centrally symmet­
ric. If K has constant relative k-brightness for a given integer k where 
1 < k < n — 2 or K has both constant relative 1- and (n — 1)-brightness, 
then the hypersurface bd K has at least one pair of relative umbilic points 
belonging to two parallel support hyperplanes. 

Theorem B. Let two convex bodies K, L in W1 be of class C\, where 
L is centrally symmetric. If, for two distinct values of i (1 < i < n), the 
ratio of the volumes of their projections on any i-dimensional subspace 
is a constant (depending on i), then K and L are homothetic. 

Proof. If (i,j) = ( l ,n — 1), we know that the hypersurface bdK is 
a relative ball by Theorem 8.4. 

If (h j) ¥" (1?n ~ 1)) the hypersurface bd K has a pair of relative um­
bilic points belonging to two parallel support hyperplanes by Theorem 
8.7. If i < j , the convex bodies K | E and L \ E are of class C\ for all 
E G G(n, i + 1). The convex body K\E has a pair of umbilic points (rel­
ative to the gauge body L \ E). Theorem 8.3 enables us to deduce that 
K | E and L | E are homothetic for all E G G(n,j + 1). Consequently K 
and L are homothetic by Theorem 3.1.3 of [10]. q.e.d. 
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9. Linear relations between A;-girths in direction u for a body 
of constant width 

We recall some combinatorial results. 
The binomial coefficients (~n), where n G N and pGN, are defined 

([19, §156 (1)]) by 

(2i) (-;)=(-ir rr 1 ) . 
Up to sign, this is equal to the number of way of choosing p elements 
among n with repetitions allowed. We know that, for all p e N , 

(22) Ç ) = 0 i f O < n < p , ( D = (n_"J, 

and 

(no\ (n\(m\ (n\(n—p\ I n \ (n—m,+p\ 
\ ' m p pm—p m—p p ' 

and we recall the combinatorial identity ([19, §164 (42) and §158 (25)]) 

(24) E L „ ( - i ) ' ü ( B » ' ) = (m"r1)-

Let a = (ai,..., an) and b = (bi,...,bn) be n-tuples of real numbers, 
and let a — b be the n-tuple (a\ — b\, ...,an — bn). For any integer j 
(1 < j < n), we will denote by Sj(a) or S1-" (a) the jth elementary 

symmetric function in a and by Sj(a) or s J1 (a) the jth normalised 
elementary symmetric function in a. Let so(a) = So(a) = 1. 

In this section we may suppose without loss of generality, by applying 
a homothety, if necessary, that the width of the convex body K G 
W n is equal to one. We recall that Sj \u) = (n~1)sj(w) is the j th 
elementary symmetric function S]-n '(r^(u)) of the principal radii of 
curvature of K at u. We have r^(u) + r^-(-u) = ( 1 , . . . , 1) by Theorem 
2.2. Consequently 

(«J1) Sj(-u) = £ f - V ( - « ) ) = E ( " 1 ) î ( r t j ) st'HrHu)) 

=ELo(-1)<(n:t;)(B71)^(«)-
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Therefore, as ("_,_!•) = 0 for 0 < j < i < n — 1, we have 

(25) S^i-u) £"(-i) ' C£;J $ l - A c ( " - 1 ) 
u . 

For any convex body K £ !Cn of class C l , the functions 

A" « —1 P " • R ( 0 < j < n - l ) 

. (n- l ) (n - l ) defined by P ^ (u) = S1 • (M) + SI- (—u) represent, up to a constant 
multiplicative factor, the k-girth of K G /C" in the direction « e § n - l 

Let P/^ = 0 if j < 0 or j > n - 1. 

Lemma 9.1. 7e£ n and a be integers with n — 1 > la > 2. 7/ 
UT G W n + 1 «s o/ dass C\, the (a + 2) continuous functions 

pK pK pK pK 
M) ' - r a + l ' - r a + 2 ? •••i- r2a+l 

or 
pKT pK pK pK pK 

are linearly dependent. 

Proof. For any integer b < a, let 

'lb - j \ fn-2a-l + j 
Ah2a+l_3{b) = (-\y 

n — la — 1 

The linear combination ^_o ^j,2a+i-j{b) S^+1_A—u) is equal to 

b 2a+l 

E \ ^ (-UÌ+Ì (2b-i\ (n-2a-l+j\ ( n-i \ n 
Z ^ ^ > b n-2a-l n-2a-l+j) Ji 

(«) 
U) 

j=0 i=0 

E L O E ^ V D ^ evo Lx-ù ca+ns^^ 
2a+l 

j=0 YZ^-'YLv-ù^-r^s^M 
2a+l E

2(a—6) ^ — ^ / a r i 

j=0 Z - ^ = a + i (-D'u^r-r'-1)^"'« 
[-E::;+1-E;j^.+.-,(^a, u 
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by using successively (25), (23), (24) and (22). Consequently 

(26) £ A 

3=0 

2a+l 

j,2a+l-j(b) P£+1-j(u) J2 ^ + H ( 6 ) ^ n ( « ) -
j=2b+l 

If b = a, (26) shows that the functions Pçf,P^+1, P<^2 , • • • iP-fa+i 
are linearly dependent. 

If b = a — 1, the right-hand side of (26) is, by (21), equal to 

( - i r [ (2T-2i) 4B)(«) - C-J (Va1) *SB)(«) + Gli) u 5<B)(«) 

i ) a J(";-i)^)4u^o 

because as 0 0 = ÌL- B Ì i )0 = (Ï)(a-i) by (23)> w e h a v e > 
by (25), 

-M-^P2K(u) = (2
n-_\) Àn)M-k:zïis[%) + ^)sinH 

= GT-î) sin)(u) - C_t) ("-1) s{%) + \{i-_\) (") s<n)(«). 

This proves that the functions P^, P2^, ^ i+2 ' • • • •> Pia+i a r e linearly de­
pendent. q.e.d. 

L e m m a 9.2. Let a, b and n be integers with n — 1 > 2a > 2 and 

0 < 6 < a. 7 / K G W n + 1 is of class C\, the ( a + 2) continuous functions 

pK,pK,... ,P2f, ^ 6 + 1 , ^ 6 + 2 , - • • ip2^+i a r e KneaWy dependent. 

Proof. We proceed by induction on a. If a = 1 or 2, it is a special 
case of Lemma 9.1. In order to establish the induction step from a to 
a + 1, we proceed again by induction on b, using Lemma 9.1 with 6 = 0 
or 1. q.e.d. 

Corollary 9 .3 . Let a and n be integers such as n — 1 > 2a > 2 and 

let K G Wn+1 be of class C\. For any choice of a —I distinct integers ij 

where 2 < ij < la—1, the a + 2 continuous functions P^, P£,... , Pt
K_1, 

P 2^,P 2^+i are linearly dependent. 
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After integration, these linear relations resemble those betweeen 
quermassintegrals W;b = Wi(K) of a convex body K G Wn, quoted 
in [21], Section 5.3, Note 4 and in [6]. However, we have observed that 
they do not coincide, even if they have a common intersection. It would 
be interesting to analyse more closely these two sequences of relations. 

Theorem 9.4. Let K G Wn+1 be of class C\. 
a) Let a and n be integers such that n — 1 > 2a > 4. If K has 

constant la-girth and constant ij-girth for a — 1 distinct integers ij 
where 2 < ij < 2a — I, then K has constant (2a + l)-girth. 

b) If K has constant 2-girth, K also has constant 3-girth. 

Proof. This a direct consequence of Corollary 9.3 and Theorem 2.4 
a). q.e.d. 

Theorem C. Let K be a convex body in R2n of class C\ and con­
stant width. 

a) If 2n > 6 and if K has constant (2n — 2)-girth and constant ij-
girth for n — 2 distinct integers ij with 2 < ij < 2n — 3 ; then K is a 
ball. 

b) If n = 2 and K has constant 2-girth, then K is a ball. 

Proof. We recall that a convex body in R2n of constant (2n — 1)-
girth has constant (2n — 1)-brightness by Theorem 2.3 c). We conclude 
by using Theorem A. q.e.d. 
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