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CONVEX BODIES OF CONSTANT BRIGHTNESS
AND A NEW CHARACTERISATION OF SPHERES

FRANCOTS HAAB

Abstract

Nakajima showed that if a convex body in R? satisfying certain smoothness
conditions has constant width and constant brightness, then it is a ball.
This work extends Nakajima’s result to higher dimensions. We prove that
if K is a convex body in R¢ of class C’_Z,;_ with constant i-brightness and
constant j-brightness, then K is a ball. We also generalize this result to
relative differential geometry.

1. Introduction

In this article we obtain a new characterisation of balls among convex
bodies in R” of class C_Qi_. A convex body K in R" is of class Cf_, k> 2,
if its boundary, denoted by bd K, is a hypersurface of class C* and if the
Gauss-Kronecker curvature of bd K is positive at any point = € bd K.

A convex body K in the Euclidean space R” is of constant k-bright-
ness ([10, 3.3.10]) or of constant outer k-measure ([6, p.81]) if all its
orthogonal projections on k-dimensional linear subspaces of R"® have
the same k-volume. When k = 1, K is of constant width (Similary when
k=n—1, K is of constant brightness).

If K is a convex body in R" with constant width and constant k-
brightness for a given k > 1, is K a ball ?

This classical question ([14, p.368]; [6, p.82]; [7, problem A10]) is
called the Nakajima problem by Goodey, Schneider and Weil in [13]. In
1926, Nakajima [18] answered positively if n = 3 and k = 2 and K is of
class C2 (see also Bonnesen and Fenchel’s book of 1934 ([3, p.140]) or
([10, 3.3.20]) for a more recent viewpoint).

Received May 15, 1998, and, in revised form, February 23, 1999.

117



118 FRANCOIS HAAB

We will answer this question in the affirmative for convex bodies in
R™, n > 3, of class C_% where 1 < k < n.

Recently Goodey, Schneider and Weil [12] asked a more general ques-
tion. It is justified by the fact that every centrally symmetric convex
body in R" is determined by two of its projection functions. Recall that
the ith projection function (1 < i < n) of a conver body K in R" is
defined on the Grassmann manifold G(n,1) of i-dimensional subspaces
of R”. Tts value at E € G(n,i) is equal to the i-dimensional volume of
the orthogonal projection of K on E.

If K is a convex body in R with constant i-brightness and j-bright-
ness (1 <i<j<n), is K aball ?

Our main theorem gives a positive answer to this second question
(and therefore to the first one) with some differentiability conditions:

Theorem A. Lel 0 <1 < 5 <n be inlegers and K a convez body in
R™ of class C_Qi_. If K has constant i-brightness and j-brightness, then
K is a ball.

It is not possible to weaken the hypothesis by only considering one
type of brightness. In fact, one must remember that for all n > 2
and 1 < k < n — 1, there are non-spherical convex bodies in R" with
constant k-brightness ([10, 3.3.15-16]). However, every convex body
with constant k-brightness which is centrally symmetric is necessarily
([10, 3.3.11]) a ball, by Aleksandrov’s projection theorem ([10, 3.3.6]).

Note that the first question is open, even in R?, without differentia-
bility assumptions on the boundary ([10, problem 3.9]). Remember too
that the dual problem for sections always has a positive answer. A star
body L in R" having the origin in its interior is said to be of constant
i-section if the ¢-volume of LN Y is the same for every i-dimensional sub-
space S of R”. Gardner and Vol¢i¢ showed ([11]; [10, 7.2.16]) that every
star body in R", having the origin in its interior, of constant {-section
and j-section (1 <14 < j < n) is a centered ball.

A more general question can be formulated ([10, problem 3.10]; [12]):

Let K and L be two convex bodies in R, L being centrally sym-
metric. Are K and L homothetic if the ratio of the volumes of their
projections on any i-dimensional subspace is, for two distinct values of
i (1 <i<mn), a constant (depending on i)?

When n = 3, i = 1,2, Chakerian [5] proved that K and L are
homothetic by imposing differentiability restrictions on the gauge body
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L and the convex body K. This gave a generalisation of the Nakajima
theorem to a 3-dimensional Minkowski space.

The following theorem answers the last question positively with some
differentiability hypotheses:

Theorem B. Let two convex bodies K, L in R be of class C_%, where
L is centrally symmetric. If, for two distinct values of 1 (1 < i < n), the
ratio of the volumes of their projections on any i-dimensional subspace
is a constant (depending on 1), then K and L are homothetic.

The notion of constant k-brightness implies that of constant k-girth
(as defined in Section 2). In the final section, we observe that for a
convex body K in R*T! with constant width, the continuous functions
of u € S which represent the k-girth in the direction u, satisfy linear
dependence relationships. We thereby deduce:

Theorem C. Let K be a convex body in R*" of class C_Qi_ and con-
stant width.

a) If 2n > 6 and K has constant (2n — 2)-girth and constant i;-girth
for n — 2 distinct integers i; with 2 < i; < 2n — 3, then K is a ball.

b) If n =2 and K has constant 2-girth, then K is a ball.

To finish, let us briefly explain the idea of the proof of Theorem
A. Tt consists of three stages. First of all, the case ¢ = 1, j = n—1
must be treated separately. Then the following two theorems allow us
to deal with the other cases. Let us recall that a point = of a smooth
n-dimensional manifold M (n > 2) is called an umbilic point of an
immersion f : M — R+ if all the principal curvature of f at x are
equal.

Theorem D. Lel 2 < j < n be integers and let K be a convex body
in R" of class C_% such that bd K has a pair of umbilic points belonging
to two parallel support planes. If K has constant i-brightness and j-
brighiness, then K is o ball.

Theorem D implies Theorem A if we admit the existence of umbilic
points. Hypersurfaces of dimension n > 2 in R"*! do not generally
have umbilic points. This is in contrast with closed surfaces immersed
in R* having non-zero Euler characteristic. In fact, if M is a manifold
of dimension n > 2, then the set of immersions of M in R**! contains a
dense and open set of immersions without umbilic points ([8, 4.8 p.10]).
However, we prove:
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Theorem E. Let K be a convez body in R" (n > 4) of class C%. If
K has constant k-brightness for a certain integer k where 1 < k < mn—2
or if K has constant 1— and (n — 2)-brightness, the hypersurface bd K
has a least one pair of umbilic points which belong to two parallel support
planes.

The proof of one of the important lemmas used in the proof of this
last theorem was communicated to us by Jacques Boéchat. We wish to
thank him for his contribution. We also thank R. J. Gardner, R. Schnei-
der and J. Thévenaz who contributed to improving a preliminary version
of this article.

2. Definitions, notation and known results about convex
bodies of constant :-brightness and i-girth

We will denote by B” the unit ball in R”, by S?~! the unit sphere
in R, by A; the (outer) k-dimensional Hausdorfl measure in R”, and
by ky the volume of B®. We will denote by u the subspace of R”
orthogonal to u € S*! and by E | S the orthogonal projection of the
set F onto the subspace S. All the projections we will consider will be
orthogonal.

We will denote by K™ the space of convex bodies in R”, i.e., the
compact convex subsets in R” with non-empty interior. If K € K" is
of class C?, we will denote by v : bd K — S"~! the Gauss map, by IT
the second fundamental form of bdK, by k,(z,t) the normal curvature
at x € bdK in the direction ¢ € T,bdK and by k;(x) the principal
curvatures of bd K at x.

When K is of class C_Qi_, we will consider the reverse

v 1S sbd K
of the Gauss map, the reverse Weingarten map (|21, 2.5])
Dv~i(w): T,8" > T1,8" L

u € S™1, the second reverse fundamental form of K at u defined by
IT,(v,w) = <Dv~'(u)(v),w> and for all t € T,,S"~\{0},

(1) r(u,t) = TTy(t,t) < t, ¢ >71

the radius of curvature at u in the direction t. The formula (1) is the
analogue for TT,, of the normal curvature ky, (z,t) of I'T, at x = v~ (u) for
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the direction ¢. If ¢ is parallel to a principal direction X;(z) of I'T,, then
r(u, X;(w)) is equal to k! (x, X;(z)) with u = v(z). The eigenvalues of
the reverse Gauss map are therefore equal to 7, = r(u, X;(u)). They
are called principal radii of curvature of K at u. We will denote by S,
j > 0, the jth elementary symmetric function of the principal radii of
curvature r; = kL (i =1,..,n — 1)

S; = g Tiy © " T where j =1,...,n— 1.
1<ir < <ig<n—1

The jth normalised elementary symmetric function is defined to be

=1
Sj:(njl) Sj.

The notation Fl(g ) is sometimes used (see [10]) in place of s;. We use the
notation SJK when it is useful to indicate that it depends on the convex
body K.

Let rT be the continuous map, defined by

TT(U,) = (rl(u),... ,7"”_1(u))T

whose value at u € S”~! is the vector of principal radii of curvature of
K in increasing order. We denote the ith component of rT(u) by rj(u)

A chord of a convex body K is a normal (or a double normal) if it is
perpendicular, at one (or two) of its extremities, to the support plane(s)
of K.

We denote by W™ the class of all the convex bodies in K™ with
constant width.

Lemma 2.1 ([10, 7.1.13]). If K € W", any normal of K is a double
normal.

In fact, a body K € K™ has constant width if and only if every
normal is a double normal ([6, p.54]). For all K € W", u € S"71, the
chord [v=1(u), v~ (—u)] is orthogonal to the support hyperplanes to K
at its extremities. Consequently, if K € W" has width b,

2) v (—u)=v7Yu)—bu and Dv~'(u)+ Dv'(—u) =bId.

We deduce the following theorem from (2) and the above observations.
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Theorem 2.2. ([10, 3.3.19]; [6, p.65]) Let K € W™ be a convex
body of class C_Qi_ and width b. The principal radii of curvature of K
satisfy

3) i) +r (—u)=b foreachuecS" tand1<i<n-—1.
1

n—i

The k-girth of K € K" in direction u € S"~! is equal ([6, p.81])
to the mixed volume nV (K, ..., K,B",...,B",[u] ) where K appears k
times, B™ appears (n — k — 1) times and where [u] is a line segment of
unit length parallel to u. A convex body K € K" has constant k-girth
if its k-girth is the same for any direction u € S"™ 1. If k = n — 2, K
is simply said to have constant girth, because the (n — 2)-girth of K in
direction u is equal to $A,_o(bd(K |ul)) ([10, p.110]).

Theorem 2.3 ([9]; [10, 3.3.12-13]). a) (Firey) Every convex body
K € K™ with constant k-brightness where 1 < k < n also has constant
k-girth.

b) (Minkowski, 1904, for n=38) If k =1, a convex body K € K™ has
constant width if and only if it has constant 1-girth.

¢) If k =n—1 or K is a convex body of revolution, then constant
k-brightness and constant k-girth are equivalent.

Theorem 2.4. a) ([10, 3.3.14]) A convez body K € K" of class
C_% has constant k-girth if and only if sk(u) + sg(—u) is constant for all
u € S" L

b) ([9]) A convez body K € K™ of class C% has constant k-brightness
of and only if

(4) sk(u) + sk(—u) = 25, M (K| E)
for each k-dimensional subspace F2 C R™.

Recall that G(n,k) denotes the Grassmann manifold of k-dimen-
sional subspaces of R”.

Proposition 2.5 ([10, 3.1.6]). Let K € K™ and let k be an integer
where 2 < k < n — 1. If every projection K | E, E € G(n,k) is a
k-dimensional ball, then K is a n-dimensional ball.

Theorem 2.6 ([10, 9.3.3]). Let 1 < k < n — 1, and suppose that
K € K" and that L is a zonoid in R*. Then

(An<L>)’“/"> win w(E[B)
M(K)) 7 EeGmk) A(K|E)

with equality if and only of K and L are homothetic.



CONVEX BODIES

3. Proof of Theorem D

Let a = (a1, ...,ay) be an n-tuple of positive real numbers and let
r be an integer where 1 < r < n. The power mean of order r of a is
defined by

1 n . 1/r
MT = (g Zi—l ai> .

It satisfies Jensen’s inequality ([16, 3.1.1])
M, < Mg if r < s,

with equality if and only if a; = --- = ay,.

Theorem D. Lel 2 < j < n be integers and let K be a convex body
in R" of class C_% such that bd K has a pair of umbilic points belonging
to two parallel support planes. If K has constant i-brightness and j-
brighiness, then K is o ball.

Proof. By hypothesis the hypersurface bd K has a pair of umbilic
points belonging to two parallel support hyperplanes. Choose ug € S*~!
in such a way that v~'(ug) and v~!(—ug) are umbilic points. We will
denote their radii of curvature by x and ¢. Suppose that K has constant
j-brightness. We have by (4), s;(u) + sj(—u) = 2%]1 A (K | E) for all
E € G(n,j), u € S""L. Consequently,

@ _ % (35(uo) + s(—u0)) = %(xj +4).
)

If K has constant i-brightness, we have for all F' € G(n, 1),

%JF) = % (si(uo) + si(—uo)) = %(fﬂi +y').

As ¢ < 7, we have by Jensen’s inequality:

123

Suppose that E € G(n,j). We observe that K | E has constant i-
brightness. If L denotes the unit ball in R = E, we have x; = A;(L)
and k; = N(L | F) for all F € G(n,i). Theorem 2.6 applied to K | E
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and L asserts that the following inequalities are equalities if and only if
K |E is a ball:

The reverse inequality derived above implies that the latter inequality is
in fact an equality. Consequently K | E is a ball for all F € G(n, j). We
conclude that K is an n-dimensional ball by Proposition 2.5.  q.e.d.

4. Characterisation of convex bodies of constant k-brightness

In order to guarantee the existence of umbilic points on the hyper-
surfaces we will consider, we will generalize the criterion of Theorem 2.4
b) which characterizes convex bodies with constant k-brightness.

Let Qg be the set of all strictly increasing k-tuples of integers
belonging to the set {1,...,n}. The multi-index Z belongs to Q. if
and only if Z = (i1,... ,ig) where 1 < i3 < ip < -+- < i, < n. Let
(e1,... ,e,) be an orthonormal basis of a Euclidean space H. For all
T € Qin, let er = e;; A...Ae;,. The family (eI)IEQk,n is an orthonormal
basis of the Euclidean space AFH.

Suppose that Z,J € Q. If, relative to the basis (e1,... ,e,) of
H, the endomorphism A is represented by the matrix (a;;), we will
denote by A[Z|J] the square sub-matrix of order k of A equal to (a;;)
with i € Z, j € J. The coefficient (Z, J) of AFA relative to the basis
(e1)zeq;., 1s equal to (N A)r7 =< er,NFAes >= det(A[T|T]).

Theorem 4.1. Let K € K™ be a convex body of class C_% and lel k
be an integer with 1 < k < n. Then K has constant k-brightness if and

only if
A Dy Hu) + A Dy —u) = 25 ' N (K | E) A¥ Id,  Yu € S"7H,
Dv=Yu) : T,S" ' = T,S" ! denoting the reverse Weingarten map of

K at u. Thus, for all u € S*™1, A*Dv=1(u) + A*Dv=1(—uw) is a scalar
multiple of the identity of AT, S?~ 1.

Proof.  Suppose that K has constant k-brightness. For all E €
G(k + 1,n), the convex body K | E has constant (k-)brightness. Let
u €SP 'NE and let

7:T,bdK - T,bd(K|E) and n:T,bd(K|E)— T,bdK
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be respectively the orthogonal projection and the canonical inclusion.
The second reverse fundamental form of K | E at w is equal, for all
v,we T,bd(K | E), to

ﬁf'E(fu,w):< Dr~Y(w)v,w >=< 7Dv~ (u)n (v),w > .

We denote by p;(u) the principal radii of curvature of the second reverse
fundamental form of K | E at u, and by sf'E(u) = Hle pi(u) the kth
elementary symmetric function of the principal radii of curvature of
K|E at u.

Let (wi,...,wyg) be an orthonormal basis of T, bd(K | F), and
(u1,... ,up—1) be an (orthonormal) basis of T;;bd K consisting of eigen-
vectors of Dv~'(u). The vector w = wy A ... Awy, € AFT,bd (K| E) C
AFT,bd K can be written as a linear combination of the vectors in the or-
thonormal basis (ur)zeq,.,_, of AN(T,bd K), say w = ZIer,n_l Qa7 UT
where az =< w,uz >. Consequently, by ([16, 1.4.6 (3)]),

<w, N Dv=Hw)w >= ZJEQ <w, N*DvHw) uy >< w,ug >
kn—1

:ZJEka_ldet <(<wi,D1/_1(u) u;j >) zj=€1jk> det ((<wi,uj >) f:eljk)

The coeflicients of the matrix A € M,_; ;(R) of the inclusion 7
relative to the pair of ordered bases (w1,...,wg) and (u1,... ,Up—1)
are equal to aj; = < w;,u; >. Those of the matrix B € M}, ,,_1(R) of
7 Dv~!(u) relative to the same bases are equal to

bij =< ’wi,Dl/_l(U,) Uj > .

Suppose that Zop = (1,... ,k) € Qg; then the former expression, by the
Binet-Cauchy formula ([16, 1.2.4.14]), is equal to

> reon ., d€U(BITo| 7)) det(ALT |To)

= det(BA)[Zo | Zo]
= det(BA)

=TI, pitw) = 55"

We denote by T the matrix of Dv='(u) (or Dv~!(—u)) relative to
the orthonormal basis (ug,... ,un_1). As Dv~1(u) and Dv~'(—u) are
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self-adjoint linear automorphisms of 7;,,bd K, we have

<ur, N¥Tuz> = det(T[Z|J])
= det(T'[J|1))
= det(T[TJ|Z))
= <Uj,/\kTUI>.

Thus A¥ D=1 (u) and A¥ Dv~='(—u) are self-adjoint linear automorphisms
of A*(T,bd K). The function Q : A¥(T;,bd K) — R defined by

Q(w) =< w, (A* Dv™'(u) + A¥DvH(—u)) w >

is therefore a quadratic form on A*(T,bd K).

Let E € G(k + 1,n) such that w € S"' N E, let (w;)¥; be an
orthonormal basis of the subspace of E orthogonal to 4 and let w =
wy A -+ Awg be the elementary symmetric tensor of norm one. In view
of (5), the value of the quadratic form @ at w is equal to

sf'E(u) + sf'E(—u) = 2%,;1Ak(K]E) .
This number is independent of w by Theorem 2.4 b). In particular @
takes the same value on each of the vectors w7, which constitute an or-
thonormal basis of AF(T,bd K). The quadratic form @ is therefore con-
stant on the unit sphere of A¥(T},bd K). The self-adjoint endomorphism
A Dv=(u) + A*Dv~'(—u) associated to Q is thus a scalar multiple of
the identity.

The converse follows from Theorem 2.4 b) and the fact that trAF A is
the kth-elementary symmetric function of the eigenvalues of A.  q.e.d.

Corollary 4.2. Let K € K" be a convex body of class C_% and let
k be an integer with 1 < k < n. If the convex body K has constant k-
brightness, then the reverse Weingarten maps Dv~'(u) and Dy~ (—u)
are simultaneously orthogonally diagonalisable.

5. Schur-convex functions and elementary symmetric
functions

Let us introduce the notion of a Schur-convex function. This will
enable us to characterize balls in R” as convex bodies with constant
width and (n — 1)-brightness without needing to establish the existence
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of umbilic points. In the second half of the section, from Lemma 5.4
onwards, we establish the lemmas needed in the following section in
order to prove the existence of umbilic points on (n — 1)-dimensional
hypersurfaces with constant k-brightness for & <n — 1.

Let A = (A1,..., ) € R”. We will denote by AT (or A¥) the vec-
tor of R” obtained by reordering the components of A in increasing
(or decreasing) order. We will denote by A[i] (or Az, j]) the vector of
R*~ (or R*~2) obtained from A by omitting its ith (or ith and jth)
component(s).

If z,y € R*, we will say that y majorizes £ and will use the symbol

k k
’ Shier <Yyl k=1..n-1,
T <Y 1 " L " !
Dim1 T =D Y-

More generally, z is said to be weakly supermajorized by y, written

. k k
z <"y if Zizlngzizlyg E=1,...,n.

Suppose that A C R*. We will write z < y on A if z,y € A and
z < 9. A real function ¢ defined on A is said to be Schur-convex on A
if z < y on A implies ¢(z) < @(y). It is strictly Schur-conver on A if
we have ¢(z) < ¢(y) when 2 < y on A and if z is not a permutation of
y. Finally the function ¢ is said to be (strictly) Schur-concave on A if
—¢ is (strictly) Schur-convex on A.

Theorem 5.1 ([17, 3.A.4]). Let I C R be an open interval and let
¢ : I = R be a continuously differentiable function. The function ¢ is
Schur-conver on I™ if and only if it is symmetric on I™ (i.e., ¢(x) =
d(o(x)) for all x € I™ and all permutations o) and if for all i # 7,

6) (5 —a)) [a%m) - %

Condition (6) is called Schur’s condition. If the inequality (6) is
strict for all x € I" where x; # x;, the function ¢ is strictly Schur-
convex on I™; see [20, Theorem VIII].

Theorem 5.2 ([17, 3.A.8.a]). Let I C R be an open interval and
let ¢ : I" — R be a continuously differentiable function. The function ¢
is strictly decreasing and strictly Schur-conver on I if and only if the
following condition holds:

()] >0 forall zeI™.

whenever x <" y on I and x is not a permutation of y, then ¢(x) <

P(y)-

127



128 FRANCOIS HAAB

We will introduce some more notation.

Let R ={z € R":2; >0,Vi} and R} | = {z € R": z; > 0, Vi}.
For alla € R, let a = (a,... ,a) E R*. M x = (21,... ,2,) E R, a—2x
is the vector with components (a — x1,... ,a — xy,).

If k € N, the function Sg : R* — R defined by

Sp(x) = Y @iy,
1<ip < <ip <
is called the kth elementary symmetric polynomsial of the n wvariables

T1,...,Zn. The identities

0
—8 =S;_ '
o oz, k() = Se—1(z[5]),
Sk(xli]) — Se(zli]) = (z; — x3) Sp-1(=[t, 5])
easily imply ([17, 3.F.1]) that the function S is Schur-concave on R’
and that Sy, is strictly Schur-concave on R, if & > 1.

Lemma 5.3. For all x € R*, let £ = 1 — x. The function F :
(0, 1) = R defined by
~ n ;
P(z) = Su(@) + Sn(#) = Su(z) + > (~1)'Si(x)
=0
is, for n > 1, strictly increasing on (0,1)™ and strictly Schur-concave.

Proof. In view of ([17, 16 A.l.a]), it is enough to verify that
VF(xz) > 0 in order for F' to be strictly increasing. This condition is
satisfied, because, by (7), we have

oF

%j(%‘) :Sn—1($[j])+2j:1(—1)i5i—1($[j]) = Sn—1(2[j)+Sn-1(2[5]) > 0.

To conclude, one verifies Schur’s condition (using the identities (7) be-
tween the elementary symmetric polynomials). q.e.d.

Now we will prove some lemmas which determine the solutions of
equations in which elementary symmetric functions appear.

Recall that, by definition, S_1(\) = 0 and Sg(A\) = 1 and that
(8) Se(A) = Se(Al]) + A - Sip—1(A[d]) VA eR".

We are grateful to Jacques Boéchat for having communicated to us
the proof of the following lemma:
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Lemma 5.4. Let A = (A,...,\,) € R* where n > 3 and let
1 <1< p<j<n beintegers. If there are two integers 1 < k <l <n
such that

Sk(Ali]) + Sk(Al7]) = 25k(Alp]) and Se(A[i]) + Se(Al7]) = 2Se(Alp)) ,
then )\Z' = )\j = /\p.

Proof.  For simplicity, we write Sy = Sp(A[i, p,5]). We will apply
(8) successively to Si(A[7]), Sk(Alp]) and Sk(A[j]). We obtain

Sp(Al7]) = Sk + (Ap + /\j)gk—l + )\p)\jgk_g

and, after permuting the indices, similar expressions for Sj(A[p]) and
Sk(Al7]). The first equality in the hypothesis is now written as

25k + (Ai + 20 + X)) Sko1 + Ap(Ai + Aj)Sk2
= Z(Sk + (N + Aj)gk—l + >\i/\jf§k—2)

or
2)\p;§k_1 + (A + /\j)P\pS'k_g — gk—l] — 2/\i/\jf§k—2 =0.

The second equality gives the same relationship except that & is replaced
by £. That is to say, (A; + A, AiA;) is a solution of the following system
of linear equations in (X,Y):

Sk—1— ApSk—2 282 ) ( X ) ( Sk—1 )
9 . Ly < =2A - .
) ( Se—1— NpSi—2 2509 Y P\ Szt

However (2X,, ) is also a solution of (9). To arrive at a conclusion, we
only have to prove that (9) has a unique solution, i.e., that

(Sk—1Se—2 — Se_15k—2) # 0.

We claim that Sg_o/Si_1 < S¢_2/Se_1.
For all fixed A € R™, we recall that the kth normalised elementary
symmetric function is written

m

or = sk()) = (k)_lsk(x) (h=0,... m)

129
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The inequalities 5];_;1 < 2k known as Newton inequalities ([16, 11.3.2.1]),

Sk+1
between the successive ratios of sg for £ = 0,... ,m—1 and the inequal-
ities (,”,) (72)_1 < (M (kTI)_I enable us to prove
Sk—1(N) Sk(A)

_ (my (m\y—15k—1 my ( m\—1 Sk _
Sk(/\) - (k—l) (k) Sk < (k) (k—i—l) Sk - Sk+1(/\) :

This proves the claim. q.e.d.

Lemma 5.5. Let A = (A,...,\,) € R" where n > 4 and let
1< 4,p,q,5 <n be distinct integers. If an integer 1 < k < n exists
such that

Sk(Ali, p]) + Sk(Mg, 1) = 25k (Alp, q]) and

(10) Sk(Als p]) + Sk(Ag, i]) = 25:(Alp. q]) ,
then /\i = )\j ’Lf )\p 75 )\q.

Proof. For simplicity, write S, = Sp(\[4,p,¢,4]). By applying (8)
successively to Sk(A[4, p]), Sk(Ag, j]) and Si(A[p, q]), we obtain

Sk(Ali,p]) = Sk + (Aj+ /\q)gk_1 + /\j)\qgk_z,
Sk(/\[q,j]) =5, + (/\i + )\p)Sk_1 + )\i/\psk_z,
Sp(Alp,al) = Sk + (M + Xj)Sk—1 + AiXjSk—o.

After having made the above substitutions, the first of the equations
(10) becomes

(Ap + Ag) Skt + (Mg + Xidg) Skea = (A + A7) Skt + 20X Spo.

In order to move from one equation to the other in (10), one only has to
exchange the roles of ¢ and j. Thus (AjA, + XiAg) = (NA, + AjAy), ie,
Ai(Ap — Ag) = Ai(Ap — Ag). Consequently \; = A; if Ay # Ay. qeed.

Lemma 5.6. Let A = (A1,..., ;) € R” where n > 4, and let
1 < i,p,q,5 < n be distinct integers. If there are two integers
1<k<¥t<n—1 such that

Sk(A]) + Sk(Al]) = Sk(Alp] + Sk(Alg])
and
(11) Se(Ali]) + Se(Al7]) = Se(Alp) + Se(Ala)) ,
then (Ap, Ag) = (Ais Ag) o7 (Ags Ao,
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Proof. For simplicity, write Sy = Sk(A[i,p,q, j]). By applying (8)
successively, we obtain that Sg(A[7]) is equal to

Sk + N+ A+ A)Sk_1 + g + AAg + ApA) Sk + XA A Sk_3 -

By permuting the indices, we obtain similar expressions for Sj(A[j]),
Sk(Alp]) and S(Alg]). Then (11) tell us that (A, +Ag, ApAy) is a solution
of the following system of linear equations in (X,Y):

( 5:1@—1 - /\i>\j$’k—3 25}—2 + (A +A5) Sk—s ) ( X )
(12) Sp_1— /\i>\jSé—3 259+ (A + )\j) Si_3 Y
A Skot 20,5k

a ( (N + A7) Sem1 + 200 Seo ) '

But (A; +Aj, A;A;) is also a solution of (12). In order to reach a conclu-
sion, one only has to prove that (12) has a unique solution, i.e., that

(Sk—1S0—2 — Se—1Sk—2)+(Ni + X)) (Sk—1Se—3 — Se—15%-3)
FAiA; (Sk—2Sr—3 — Se—28)_3) # 0.

This expression is non-zero by the claim established at the end of the
proof of Lemma 5.4. q.e.d.

6. Proof of Theorem E

Proposition 6.1. Let K € W" be of class C% where n > 4. If K
has constant (n — 2)-brightness, the hypersurface bd K has at least one
pair of umbilic points which belong to two parallel support hyperplanes.

Proof. We shall use the notation 7' (u) introduced before Lemma
2.1. By the Borsuk-Ulam theorem ([4, 4.20.2]), there is a point uy €
S”=! such that rT(ug) = r’(—ug). In addition we know, by Theorem
2.2, that if the width of K is equal to 2b, then rj(u) + rg_i(—u) = 2b,
Vu € SP7L

Suppose that n = 2m is even. Then r:n(u()) = b. In addition, by
Theorem 4.1, we have, for all 1 < ¢ < n,

Sy, (T (uo)[i]) + Sk (r(uo)[n — 4]) = 28k (r T (uo)[m]), k=1,n—2.

Consequently, TI(UO) = 7“2_1(710) = rh(u) = b by Lemma 5.4. The

points v~ (2ug) are therefore the umbilic points we sought.
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Suppose that n = 2m + 1 is odd. By Theorem 4.1, we have for all
1<i,j<nandfork=1orn—2

Sk (r" (o) [i]) + Sk (" (o) [ — 41) = S (" (u0) 1]) + S (" (o) [ — 1) -

Therefore, if we let 26 = ) (ug) — TI(UO), then by Lemma 5.6,

2m
(13) rg(uo):b—a if i<m and TZT(UO):IH—a if i > m.
Let X;(u) € T,-1(,)bdK be a principal direction corresponding to the

eigenvalue rj(u) of Dv='(u). The convex bodies K | X;(u)" have con-

stant (n—2)-brightness. The following functions, by Theorem 2.4, are all
equal to the same constant C, equal to 2k, s \,_2(K | E), E € G(n, k):

sl V@ +al =0, wexw!nsm.

By 4.2, X;(u) = X;,—;(—u). Thus these equations are equivalent to

Hj;ﬁi ’I“;(u) + Hj;,gn_i TJT(_U) = (2:3) C¢=0C.

Theorem 2.4 b) implies that

C=(])C= Hj ro(u) + Hj r}(—u) .

By (13), the previous two equations with u = ug give
2(b— %)™ = C = 2b(b— )" .

Consequently ¢ = 0. The points v~!(£ug) are therefore the umbilic
points we sought. q.e.d.

Proposition 6.2. Let K € K" be of class C_% where n > 4 and
let k be an integer such that 1 < k < n — 2. If K has constant k-
brightness, the hypersurface bd K has at least one pair of umbilic points
which belong to two parallel support hyperplanes.

Proof. As before (see Proposition 6.1), there is a point ug € S"~!
where 7T (ug) = rT(—ug). The convex bodies

K; = K| (X1 (ug)™ N X;(ug) ™)
have the same constant k-brightness for ¢ = 2,... ,n — 1. Since

A (K2 | E) = M (Kp-1| E) = M (Kp—2| E)
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for any E € G(n, k), by applying Theorem 4.1 to K; for i = 2,n—2 and
n — 1, we have, that

S(rT (o) [1,2]) + Sk (r" (uo)[n — 2,n = 1]) = 254 (rT (ug)[1,n — 1])
and

Sk(rT(wo)[1,m — 2]) + Sk(rT (o) [2,n — 1]) = 2k (r" (uo) [1, 1 — 1)),

Suppose that Dv~1(ug) is not an umbilic point. Then, by Lemma 5.5,

ry(uo) = r}_y(uo)

because

] (ug) # 7 _ (tg)-

Choose an integer ¢ where 1 < 4 < n— 1 and let ¢ = r;(uo). As
the components of rT(ug) are in increasing order, ¢ does not depend
on the choice of 7. As k < n — 3, it follows from Theorem 4.1 that
2k = (TI(UO) + 1! (u))eb~! and that 2e% = QTI(uo)rg_l(uo)ak_?

n—1
Consequently TI(UO) = T,Tl_l(uo) = ¢. Therefore Dv~=*(ug) is an umbilic
point, a contradiction.
Hence Dv~'(ug) must be an umbilic point. The point
Dv~Y(—uyg) is also one by Theorem 4.1.  q.e.d.

Theorem E follows directly from Propositions 6.1 and 6.2.

7. Proof of Theorem A

Theorem 7.1. A convez body K € W" (n > 3) of class C3 which
has constant (n — 1)-brightness is a ball.

Proof. Suppose that b is the width of K € W". For all u,v € S*7!,
Sn—1(rT () + Sp—1 (1 (=u)) = Sua (K1 (0)) + S (1 (=)
by Theorem 2.4. Consequently, for all u,v € S"~!, we have
Sn—1(r () + Sp—1(b =1 (w)) = Su1 (1 (0) + Spi (b — 7 (v)),
because the principal radii of curvature of K satisfy

rl (—u)=b— r;(u), Vu € S"1

n—1
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(Theorem 2.2). Lemmas 5.2 and 5.3 enable us to claim that r'(u) =
rT(v), Yu,v € S"7L,

Thus K is a ball (see [21, p. 301]), because the elementary symmetric
functions of the principal radii of curvature are constant (or more easily
because the Gauss-Kronecker curvature of bdK is constant).  q.e.d.

Theorem 7.2. A conver body K € W" of class C_% which has
constant k-brightness, where 1 < k < n, s a ball.

Proof. For all E € G(n,k+1) the convex body K | E is of class C7,
and has constant width and k-brightness. Consequently, by Theorem
7.1, K| E is a ball for all E € G(n,k + 1). We conclude that K is an
n-dimensional ball by Proposition 2.5.  q.e.d.

Theorem A. Lel 0 <1 < 5 <n be inlegers and K a convez body in
R™ of class C_Qi_. If K has constant i-brightness and j-brightness, then
K is a ball.

Proof. 1f (i,j) = (1,n — 1), we know that the hypersurface bdK is
a sphere by Theorem 7.1.

If (i,7) # (1,n — 1), we have either 2<i<n—3,0or2<j<n-—3,
or (i,7) = (1,n — 2). Consequently the hypersurface bdK has a pair of
umbilic points belonging to two parallel support hyperplanes, either by
Proposition 6.1 or by Proposition 6.2. Theorem D now enables us to
complete the proof. q.e.d.

8. Constant relative brightness

In relative differential geometry in a finite dimensional vector space
X, a given convex body B C X (which is not necessarily centrally
symmetric) is used as the “unit ball” in the geometry we are considering
(cf [3, p.64]). Tt is called the gauge body. We note that if B € K" is
centrally symmetric, then B can be considered as the unit ball in X. The
space X endowed with the associated norm is a Minkowsk: space denoted
by (X, || ||B) (see [23, 1.1.8]). The notions of constant Minkowski width,
of Minkowski k-girth, etc., are obtained from those of relative geometry
by taking the unit ball of the Minkowski space as the gauge body.

Numerous authors have studied sets of constant width in a Minkowski
space, i.e., in a finite-dimensional normed space. We can quote Chake-
rian and Groemer’s survey [6] and that of Heil and Martini [14], as well
as Thompson’s book ([23, §4.2 and 4.8]) and that of Boltyanski, Martini
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and Soltan ([2, §32]). Obviously there are several characterisations of
convex bodies of constant width in a Minkowski space (X, | ||z) with
unit ball B.

Let B € K" be a gauge body of class C_% and let K € K" be a convex
body of class C3. We refer to Leichtweiss ([15, §6, pp.1075-6]) for the
definitions of the relative principal curvatures, written .ki,..., yknp_1,
and those of the vrelative principal radit of curvature written,
#T1s vy pTn—1, Of the pair (B, K). Actually Leichtweiss works with
a gauge body of class Ci, but all the results we need holed in the C_Qi_
case (see Chakerian [5, p.32]). We will denote by ,s; the jth normalised
elementary symmetric function of the relative principal radit of curva-
ture.

A point of bd K is a relative umbilic point if all its relative principal
curvatures are equal.

Definition 8.1. Suppose that B is a centrally symmetric convex
body in R"* with center at the origin.
A (K|E)
A (BIE)

a) A convex body K has constant relative width if the ratio
is constant for any line E of G(1,n).
b) A convex body K has constant relative j-brightness if the ratio

%% is constant for any j-dimensional plane F of G(j,n).

¢) The relative k-girth of K € K" in the direction u € S"~! is
equal ([5, §3]) to the mixed volume nV(K,...,K, B, ..., B, [u]) where K
appears k times, B (n — k — 1) times and where [u] is a line segment of
unit length parallel to u.

d) A convex body K € K™ has constant relative k-girth if the ratio
of the relative k-girth of K € K" in the direction u to that of B in the

same direction is constant for all u € S*~1.

Theorem 8.2. Let B € K™ be a gauge body of class C_% and lel
K € K™ be a convex body of class C_Qi_.

a) ([5, Theorem 5]) If K has constant relative width equal to b, the
relative principal radii of curvature of K (with the usual convention
vri(u) € pry(u) < - < el () satisfy
(14) .l (w) + .7 _(—u)=b, foralueS" ' and1<i<n-—1.

% n—i
b) If K has constant relative j-girth, then

(15) 55 () + rsj(—u) is constant for all u € S"7T.
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Part b) of the theorem is a consequence of the corollary of Theorem 2
of [5] and of Theorem 4 of [5].

Let K; be convex bodies in R” for / =1,... ;nandlet 1 <j <i<n
be integers. f K1 = K3 =--- =K jand if Ky = Kj o = --- = K;, we
will denote by V (K7, i, Ko,i—j,.A) the mixed volume where K7 appears
i times, Ky appears ¢ — j times and where A = {K;41,...,K,}. Now
we will prove a result similar to Theorem B for relative differential
geometry:

Theorem 8.3. Let B € K" be a centrally symmetric gauge body
of class C_Qi_, let K € K™ be a convex body of class C_% having two rela-
tive umbilic points belonging to two parallel support hyperplanes, and let
1 <4 < n—1 be an integer. If K has both constant relative i- and
(n — 1)-girth, then K is a relative ball, i.e., homothetic to the gauge
body B.

Proof. Let Vi(K, B,[u]) be V(K,i, B,n —1 —1i,[u]). If K has con-
stant ¢-girth, then there exists a constant ¢; such that for all
ueSt

(16)  Vi(K, B [u]) = & Vo(K, B [u]) = Vo(K, 7 B, [ul])

If we choose (QCi)n_ilB as gauge body, we have ,s;(u) + ,s;(—u) =1 by
the corollary of Theorem 2 of [5]. Consequently if the gauge body is B,

(17) rSi{u) + psi(—u) = 2¢;, for all w € S"7L.

We choose ug € S™! such that v~ (ug) and v~ (—ug) are relative
umbilic points. We will denote their relative radii of curvature by z and
y. Suppose that K has constant 4- and j-girth. The equalities (16) and
(17) are true for ¢ and j. Thus, if ¢ < j, we have by Jensen’s inequality:

<{‘//é(([[§:—?[£]]))) ' :<l(r5i(uo) + rSz'(—Uo))) i

2

=



CONVEX BODIES 137

On the other hand, the Aleksandrov-Fenchel inequality ([10, (B.16)])
implies

(19) Vi(K, B, [u]) "' > V,_1 (K, B, [u]) ¢ Vo(K, B, [u]) "' .

Consequently V;(K, B, [u])% > V,_1(K, B, [u])ﬁ Vo(K, B, [u])(%—ﬁ)
ie.,

El

(20) (LB [yt (VKB [y

Inequality (18) is, by hypothesis, satisfied for j = n — 1. Tt implies
that inequality (20), and therefore inequality (19), are in fact equalities.
We know that

Vi(K, B, [u]) =n~ 'V ((K|u"),i,(B|lu"),n —1—1)
by ([5, p. 28]), that
Vo(K,B,[u]) =n"'V(Blut,n—1) = n~ N1 (B|ub)
and that
Vi1 (K, B, [u]) = n W (K |ut,n—1) = n7 N, (K |ub).
Therefore the inequality

V((K’UL),Z', (B‘U,L%n i 1)71—1
> V(K u' )= 1) V((Blub)n—1)""

is in fact an equality. This implies that, for all u € S"7!, K |u' and
B |u!' are homothetic by the observations on the cases of equality of
(B.16) on page 372 of [10]. Consequently K and B are homothetic by
Theorem 3.1.3 of [10].  q.e.d.

Theorem 8.4. Let (X, | ||B) be a Minkowski space whose gauge
body B is of class C_Qi_. Any convex body K C X of class C_%, which has
constant Minkowski width and constant Minkowski brighiness is homo-
thetic to the gauge body B.

Proof. We proceed as for Theorem 7.1 but using relative principal
radii of curvature. We conclude using Formula (4.4) of [5] or Theorem
6.2 of [15]. q.e.d.
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Theorem 8.5. A convex body K of class C_% which has constant
relative width and constant relative k-brightness for a given k > 1, s a
ball.

Proof. We proceed as for Theorem 7.2 and we conclude using
Theorem 3.1.3 of [10].  q.e.d.

Let K,L € K" be of class C_%, and let J : bd K — bd[L be the
canonical map sending the point z € bd K to the point J(z) € bd L
with the same normal as z. This is Petersen’s map (see [15, p. 1075];
[5, p. 31]).

Theorem 8.6. Suppose that K, L, are convex bodies in R" of class
C_%. If the gauge body L s centrally symmetric and if K has constant rel-
ative k-brightness, we have for all z € bd L, that AFJ 1 (z)+AF T~ (—x)
is a scalar multiple of the identity of AN*Tybd L, where J denotes Pe-
tersen’s map, and —x the unique point of bd L whose tangent hyperplane
18 parallel to that at x.

Proof. We proceed as for Theorem 4.1.  q.e.d.
Identical reasoning to that of Theorem E leads to

Theorem 8.7. Suppose there are two conver bodies K, L € K"
(n > 4) of class C_Qi_, where the gauge body L 1s centrally symmet-
ric. If K has constant relative k-brightness for a given integer k where
1 <k <n—2 or K has both constant relative 1- and (n—2)-brighiness,
then the hypersurface bd K has at least one pair of relative umbilic points
belonging to two parallel support hyperplanes.

Theorem B. Let two convex bodies K, L in R" be of class C_%, where
L is centrally symmetric. If, for two distinct values of i (1 <14 < n), the
ratio of the volumes of their projections on any i-dimensional subspace
is a constant (depending on i), then K and L are homothetic.

Proof. If (i,j) = (1,n — 1), we know that the hypersurface bd K is
a relative ball by Theorem 8.4.

If (4,7) # (1,n—1), the hypersurface bd K has a pair of relative um-
bilic points belonging to two parallel support hyperplanes by Theorem
8.7. If i < j, the convex bodies K | E and L| E are of class C% for all
E € G(n,j+1). The convex body K | E has a pair of umbilic points (rel-
ative to the gauge body L|FE). Theorem 8.3 enables us to deduce that
K |E and L|E are homothetic for all E € G(n,j +1). Consequently K
and L are homothetic by Theorem 3.1.3 of [10].  q.e.d.
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9. Linear relations between k-girths in direction u for a body
of constant width

We recall some combinatorial results.
The binomial coefficients (_p"), where n € N and p € N, are defined

([19, §156 (1)]) by
(21) (51 = (=17 (”+§j—1).

Up to sign, this is equal to the number of way of choosing p elements
among n with repetitions allowed. We know that, for all p € N,

(22) (5) =0 if 0<n<p, y=("),

and

(23) () () =G Gh) = G (737,

and we recall the combinatorial identity ([19, §164 (42) and §158 (25)])

(24) S EDICE) = Y.

Let a = (a1,...,ay) and b = (b1, ..., by) be n-tuples of real numbers,
and let @ — b be the n-tuple (aq — b1,...,a, — by). For any integer j
(1 < j < n), we will denote by S;(a) or SJ(-n)(a) the jth elementary

(n)

symmetric function in a and by sj(a) or s, (a) the jth normalised

elementary symmetric function in a. Let so(a) = So(a) = 1.

In this section we may suppose without loss of generality, by applying
a homothety, if necessary, that the width of the convex body K €

W™ is equal to one. We recall that S](n_l)(u) = (";l)sj(u) is the jth
elementary symmetric function S](”_l)(rT(u)) of the principal radii of

curvature of K at u. We have 7' (u) + 7+(—u) = (1,...,1) by Theorem
2.2. Consequently

j
("7 si(=w) =8V (=u) = D=0 (5T SV 0T (w)
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Therefore, as (Zj:;) =0for0<j<i<n-—1, wehave
-1 n—1 P n—1—i -1
(25) Sy =3 (=0 () S ().

For any convex body K € K" of class C%, the functions
PrS"ISR (0<i<n—1)

defined by PJ.K(u) = Sj(n_l)(u) + Sj(n_l)(—u) represent, up to a constant
multiplicative factor, the k-girth of K € K™ in the direction v € S*~1.
LetPjKEOifj<Oorj>n—1.

Lemma 9.1. Let n and a be integers with n — 1 > 2a > 2. If
K € W't s of class C_Qi_, the (a + 2) continuous functions
K
PO ’Pal—(&-lvpal—(i—% P2a+1

or
K K
PO ’P2 5P+27P+37 P2a+1

are linearly dependent.

Proof. For any integer b < a, let

Ajpari—(b) = (=1)! <2bb_j> (” s j>.

n—2a—1
The linear combination Z?:o Ajoa+1-5(b) 55221-1—]‘(_“) is equal to
b 2a+1

Z Z z+] Qb -~ (nr_LE%;i—{]) (n—QTiL_—i1+j) Sz(n) (U’)

§=0 i=0

=3 S I ) (25 ) )
=3 D () (2“’—“2”—1) 5w
=[S e () e )
_ [_ Zji;;l — ijo] Aj2ar1—(0) S5y (u)
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by using successively (25), (23), (24) and (22). Consequently

b 2a+1
(26) Y Ajzari—jO) PEL_j(w) =~ Y Ajaari—j(b) Sely_(u).
§=0 j=2b+1

If b = a, (26) shows that the functions Pf*, P&, PX,, ...  Pf
are linearly dependent.
If b = a — 1, the right-hand side of (26) is, by (21), equal to

(1 [ 2 S5 ) — (%) (520 7 + () (o) 557w

a 1 n—2 K 0’2 n K
— (07 |32 P - 5 ) A

l]:;ec(a;;)e as %(Z:;)(&_}l) = %(n—n;al—l)(m?gl) = (n2_al)(ag1) by (23), we have,
Yy )

578 PR = (23) 85700 - 5023 S + 50 5700

= (3n3) 857 (w) = () (5.1) S + 3 (523 (3) 85"w).

This proves that the functions Pf*, Py*, PE,,... , Pfi. | are linearly de-
pendent. q.e.d.

Lemma 9.2. Let a, b and n be integers with n —1 > 2a > 2 and
0<b<a. IfKecW'isof class C_Qi_, the (a+2) continuous functions
POK,PQK, - ,Pglg, P£b+1vpal-<|-b+2> e ,PQIE_H are linearly dependent.

Proof. We proceed by induction on a. If @ =1 or 2, it is a special
case of Lemma 9.1. In order to establish the induction step from a to
a+ 1, we proceed again by induction on b, using Lemma 9.1 with b =0
orl. q.ed.

Corollary 9.3. Let a and n be integers such as n—1 > 2a > 2 and
let K € WL be of class C_Qi_. For any choice of a—1 distinct integers i;

where 2 < i; < 2a—1, the a+2 continuous functions POK,PZ{(, e ,Pif_l,

PQIE,PQIEH are linearly dependent.
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After integration, these linear relations resemble those betweeen
quermassintegrals W; = W;(K) of a convex body K € W", quoted
in [21], Section 5.3, Note 4 and in [6]. However, we have observed that
they do not coincide, even if they have a common intersection. It would
be interesting to analyse more closely these two sequences of relations.

Theorem 9.4. Let K € W't be of class C_%.

a) Let a and n be integers such that n — 1 > 2a > 4. If K has
constant 2a-girth and constant i;-girth for a — 1 distinct integers i;
where 2 <1i; < 2a — 1, then K has constant (2a + 1)-girth.

b) If K has constant 2-girth, K also has constant 3-girth.

Proof. This a direct consequence of Corollary 9.3 and Theorem 2.4
a). q.e.d.

Theorem C. Let K be a convex body in R*" of class C_Qi_ and con-
stant width.

a) If 2n > 6 and if K has constant (2n — 2)-girth and constant i;-
girth for n — 2 distinct integers i; with 2 < 4; < 2n — 3, then K is a
ball.

b) If n =2 and K has constant 2-girth, then K is a ball.

Proof. We recall that a convex body in R?" of constant (2n — 1)-
girth has constant (2n — 1)-brightness by Theorem 2.3 ¢). We conclude
by using Theorem A. q.e.d.
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