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H A R M O N I C M A P S O N H Y P E R B O L I C S P A C E S 
W I T H S I N G U L A R B O U N D A R Y V A L U E 

YUGUANG SHI, LUEN-FAI TAM & TOM Y.-H. WAN 

0. In troduct ion 

In [10]-[12], it was proved that a C 1 map / : S™"1 ->• S " " 1 with 
nowhere vanishing energy density can be extended to a proper harmonic 
map u from one hyperbolic space HP to another one HP. For the case 
that m = n = 2 and / is C 4 , the result was also proved by Akutagawa 
[1] independently. Here we identify the geometric boundaries of HP 
and HP with § m _ 1 and S n _ 1 respectively. Moreover, it was proved in 
[11]—[12] that the constructed u is C 1 up to the boundary S m _ 1 and 
is unique with respect to the boundary data within the class of maps 
which are C 1 up to the boundary. The purpose of this paper is to study 
the Dirichlet problem at infinity of proper harmonic maps for boundary 
data / : § m _ 1 —> S " _ 1 which may not satisfy the conditions mentioned 
above. Namely, / may not be smooth or the energy density of / may 
vanish somewhere. For simplicity, boundary data of this kind is said to 
be singular. The set where / fails to satisfy one of these conditions will 
be called the singular set of / . 

One of the motivation for the study of this problem is to understand 
a conjecture of Schoen [16], which says that: Given a quasi-symmetric 
homeomorphism f of S 1 there is a unique quasi-conformai harmonic 
diffeomorphism from H2 onto itself with boundary value / , and its gen­
eralization [13] : Every quasi-conformai map from the boundary at in­
finity of a rank-1 symmetric space M to itself can be extended uniquely 
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to a harmonic rough-isometry from M to itself. The uniqueness part of 
Schoen's conjecture was proved by Li and the second author [12] and 
the uniqueness part of the generalized conjecture of Li and Wang was 
proved by themselves in [13]. As for the existence part, there are not 
so many results except for the works of [10]-[12] mentioned above and 
their generalizations to rank-1 symmetric spaces of noncompact type by 
Donnelly [6], to Damek-Ricci spaces by Ueno [20], and to Carnot spaces 
by Nishikawa and Ueno [14]. All these results are under the assump­
tions that the boundary map is smooth (at least C1) such that its energy 
density is nowhere zero. For singular boundary maps, it was proved by 
the second and third authors in [18] that if one can solve the bound­
ary value problem for harmonic map for a particular quasi-symmetric 
function / on S1, then one can solve similar problem for near by (with 
respect to the Teichmüller metric on the universal Teichmüller space) 
quasi-symmetric functions. Its generalization to higher dimensional hy­
perbolic spaces has been obtained in [8], [19] and [23]. 

On the other hand, by studying the Gauss maps of rotationally sym­
metric constant mean curvature cuts in Minkowski three space, Choi 
and Treibergs [5] had constructed some interesting harmonic diffeomor-
phisms from H2 onto itself by solving an ordinary differential equation. 
It turns out that if we identify B 2 with the upper half plane equipped 
with the Poincaré metric, then the boundary value of their maps are 
given by 

(0.1) f(t) = Iti""1*, 

where a > 0 is a constant. In fact, one can solve this problem directly 
without using the idea of constant mean curvature cuts. That was 
done by Wang in [22] by solving an ordinary differential equation again. 
Based on this result, Li and Wang [13] were able to construct harmonic 
maps on H2 with boundary value / : S 1 —> S 1 which is C 1 with nowhere 
vanishing energy density except at finitely many points and near each of 
these points / behaves like (0.1). Namely, near such a point, after some 
transformations, f(t) = \t\a~1h(t), where h is C 1 and h'(0) ^ 0. For 
higher dimensional hyperbolic spaces, it was proved in [22] that if / : 
g m - i _£. g m - i j s a m a p w i t h singular set consisting of only finitely many 
points and if near each singular point p, after conformai transformations 
of the domain and the range, / is given by f(x) = \x\a~1x, then one can 
extend the map to be harmonic by solving a more complicated ordinary 
differential equation. 
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Observe that the boundary value (0.1) is a special case of 

(0.2) /(*) 
I t i" - 1 * if t > 0, 

C\t\a-H if * < 0, 

where C > 0 is a constant. In this case f(t) = \t\a~lh{t)J where h(t) 
is only Lipschitz, h(0) = 0 and h! is bounded away from zero. It is 
unknown up to now whether such a map / can be extended to a quasi-
conformal harmonic diffeomorphism o n t f . In this paper we will prove 
a more general result: Suppose f : § m _ 1 —> S n _ 1 is a map with singular 
set S which is a disjoint union of embedded submanifolds o / S m _ 1 , such 
that f is C 3 on S m _ 1 \ S . Suppose near E ; if f is considered as a map 
from M m _ 1 to M" _ 1

; each component of f will behave like (0.2) (see $2 
for more details). Then one can extend f to a proper harmonic map 
with bounded energy density. The idea of proof is to use an observation 
of Bando [2] that if one can extend the boundary map to a map v such 
that the Poisson equation Ag = — | |T (U) | | has a bounded solution, where 
| |T(I>)| | is the norm of the tension field of v, then one can extend the 
boundary map to a harmonic map. We will also prove that if / is a 
smooth map from S m _ 1 to § " _ 1 such that the zero set of the energy 
density e(f) of / is a disjoint union of embedded submanifolds and e(f) 
behaves well near the zero set (see §2 for more details), then / can be 
extended to a harmonic map. As a consequence, one can show that if / 
is a nonconstant analytic map from S 1 to § m _ 1 , then / can be extended 
to a proper harmonic map from H2 to H P . This generalizes the result 
in [13], where the case m = 2 was proved. 

From the above mentioned existence results, it is not hard to prove 
that the boundary map (0.2) can be extended to a quasi-conformal har­
monic diffeomorphism o n t f . In fact, one can find explicit solutions for 
the particular boundary data (0.2) and compute the Hopf differentials 
explicitly. From this, one can show that if / is a homeomorphism from 
S 1 onto S 1 with only finitely many singular points such that near each 
of them, / behaves like (0.2) and if h is another quasi-symmetric home­
omorphism on S 1 which can be extended to a quasi-conformal harmonic 
map on H 2 , then so does ho f. As in [18], one can then prove that each 
element in the closure of the set of such / in the universal Teichmüller 
space has a quasi-conformal harmonic extension. 

Using the method of ordinary differential equations, other harmonic 
diffeomorphisms on H2 can be obtained [11]. One may wonder whether 
one can construct more harmonic maps on H2 by this method. In order 
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to reduce the harmonic map equations to ordinary differential equations, 
usually we have to assume the solutions are invariant under groups 
acting on the solutions space. In this paper, we will find all group-
invariant harmonic maps from a domain in R2 into H 2 . The first step 
is to find the infinitesimal generators (see [15]), and then we will prove 
the following: 

T h e o r e m 5.2. The Lie point symmetry group of the system of 
harmonic map equations from a domain in R2 into H2 is the product 
of the local group of local conformai transformations of the domain and 
the isometry group of B 2 . 

From this, we will find all group-invariant harmonic maps from a 
domain in M2 into H2 up to a conformai transformation of the domain 
and an isometry on H 2 . They are invariant either under the group gen­
erated by a translation on R2 and a translation on the upper-half plane 
model of H2 , invariant under the group generated by a translation on 
M2 and a dilation on the upper-half plane model of H2 , or invariant 
under the group generated by a translation on M2 and a rotation on the 
unit disc model of H 2 . Not all of the harmonic maps obtained are dif-
feomorphisms. Among the group-invariant harmonic diffeomorphisms 
only those with boundary value (0.2) are quasi-conformal. 

We will also discuss the problem of uniqueness on the Dirichlet prob­
lem at infinity for the class of singular boundary maps. As mentioned 
before, it was proved in [11] that if / has no singular point, then any 
two harmonic extensions of / which are C 1 up to the boundary must 
be the same. However, even if the boundary map is very nice, for ex­
ample, the identity map of S m _ 1 , there are examples of non-uniqueness 
[11]—[12], [7]. In fact, given k points on § m _ 1 , one can construct a k-
parameter family of harmonic maps u from W11 to itself with u|gm-i 
being the identity map; see [12]. Each member u in the family is C 1 up 
to the boundary except possibly at those k points. That is, u fails to 
satisfy the conditions of the uniqueness theorem in [11] only at finitely 
many points. If we take two different such maps u and v, then d^m (u, v) 
will be zero at the geometric boundary dMm of Mm except possibly at 
finitely many points. Near at least one of the points, d^m (u, v) will grow 
like exp((m — l ) r ) , where r is the distance function from a fixed point 
in H P . Hence it seems that the reason for u ^ v is that d^m (u, v) grows 
too fast. In this work, we will prove the following. 

T h e o r e m 3 . 1 . Let E be a closed subset o / S m _ 1 . Let u and v be two 
harmonic maps from HP to HP such that the function distai (u(p),v(p)) 
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satisfies: 

(i) liiiip^a; dist^n (u(p),v(p)) = 0 for any boundary point x G S m _ 1 \ S ; 
and 

(ii) either (a) % m _ 2 ( S ) < oo and distwi{u{p)iv(p)) = o(exp(r(p)) as 
p —> oo ; or (b) Hm~2(E) = 0 and dist^n (u(p),v(p)) = O (exp(r(p)) 
as p —> oo. 

Here V.m~2 is the (m — 2) -dimensional Hausdorff measure on S m _ 1 and 
r(p) is the distance function in HP from a fixed point o. 

Then u = v. 

Note that the growth condition will be satisfied if both u and v have 
uniformly bounded energy density. Hence, one may wish to compare 
Theorem 3.1 with the following result: if u is a harmonic diffeomorphism 
on B 2 with bounded energy density so that u|gi is the identity map, then 
u is quasi-conformal by [21], and hence u must be the identity by the 
uniqueness theorem in [12]. As a consequence, if the boundary map is 
analytic and if u and v have bounded energy density such that u and v 
are C 1 up to the boundary portion which is the complement of the zero 
set of e ( / ) , then u = v. 

The structure of this paper is as follows. In §1, we will give an 
estimate for solutions of the Poisson's equation in E P . In §2, we will 
prove the existence theorems. In §3, we will prove some uniqueness 
results. In §4, we will give an explicit solution for (0.2), using the method 
of ordinary differential equations. We will also give some applications 
of the result to the theory of universal Teichmüller space. In §5, we will 
find all group-invariant harmonic maps from a domain in R2 into H 2 . 

The first author would like to thank Kung-ching Chang and Youde 
Wang for their interests in this work. The second and third authors 
would like to thank Kai-Sing Chou and Guanxin Li for many useful 
discussions. 

1. E s t i m a t e s of so lut ions of the Poisson's equat ion 

We will use the Poincaré unit ball model for HP and identify the 
geometric boundary of HP with the unit sphere § m _ 1 . Let o be the 
center of the unit ball B m ( l ) . Let S be a compact manifold without 
boundary of dimension m — 1 — k with k > 1 and let i : S —> S m _ 1 

be an immersion. Denote t(S) by S. Denote the distance of a point 
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f] in § m _ 1 to S by d^(r]). Using geodesic polar coordinates at o, the 
coordinates of a point x G EP are (r](x),r(x)), where r)(x) G S m _ 1 is the 
point of infinity of the geodesic ray from o to x and r(x) is the distance 
between o and x in HP. The main purpose of this section is to prove 
the following lemma. 

Lemma 1.1. Let f be a nonnegative function on HP such that 

C-i e~T(-x) 

f(x) < _!_ 

ds(v(x)) + e - 'M 

for some constant C\, then there is a constant C<i such that 

G(x,y)f(y)dy<C2 

for all x G Mm . Here G(x,y) is the minimal positive Green's function 
ofW1. 

Proof. Note that G(x,y) is a function of r(x,y), where r(x,y) is the 
distance between x and y. Using the fact that / is bounded, we have 

G(x,y)f(y)dy = G(x,y)f(y)dy + G(x,y)f(y)dy 
r(x,y)<l r(x,y)>l 

<C3(1+ f e-^m-1>^f(y)dy) 

(1.1) = C3 1 + / + / e-^-l>^f(y)dy 

\r(y)<l r(y)>l 

<CA\+ f e-(m-l)r(x,y) e " V , \ 
- V Mv)>X dz(ri(y)) + e-r(y) yJ 

for some constants C3 and C4 which are independent of x. We have the 
following relation: 

er(x,y) > coshr(a;,y) 

= cosh r(x) cosh r(y) — sinh r(x) sinh r(y) cos Ö 

= coshr(a;) coshr(y) (1 — tanhr(œ) tanhr(y) coso) 

> ]_er{x)+r(y) ^ _ t a n h r ( x ) t a nh r (y) cos 0), 
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where 9 is the angle between the geodesies at o from o to x and y. Note 
that coso =< i](x),ri(y) >. Hence 

(m— l)r(x,y) _ 
r(y) 

e-{m-L)r{x,y) > 

r12) Jr(y)>i d^(r,(y)) + e " ^ ) 

< Cue-l™-1™ e~r / h{r],r)dr] 
1 s™-1 

7J dr[, 

where C5 is a constant depending only on m and 

(1— <r],r](x) > tanhr(a;) t a n h r ) -

M^H ds(ri) + e r 

By the definition of E, there are finitely many open sets Uj of E such 
that [J • i/j = E, and there are rjj G S m _ 1 and pj > 0 such that L{UJ) C 
BVj (pj). Here i ^ . (pj) is the geodesic ball of radius pj with center at rjj 
in § m _ 1 . Moreover there are diffeomorphisms Gj such that the following 
hold: 

(i) Gj maps BVj(APj) into {|z| < 2} C R™"1, s = (*i,.. . ,zm-i), 

with Gj [i{Üj) n Brij(2pj)J C {(21,. . . ,2m_i) | zi = • • • = zk = 0}, 

where k > 1 is the codimension of E and Gj [Bv.(2pj)) C {\z\ < 

i} ; 

(ii) There is a Æ0 > 0 such that for any j , (a) if 77 G B7ìj(2pj) and 
rf $ BVj (3Pj), then | < r?,77' > | < 1 - Æ0, (b) if r) £ BVj (2Pj), then 
d^j(i]) > Æo! and (c) there is a constant C > 0 such that for each 

i, if r, G 5„, (2Pj) then dE (r?) > C e = i ( ^ 2 * 

where Ej = t(f/j) fl BVj(pj) and dsj (??) is the distance of a point r\ in 
§ m _ 1 to Ej. For each point r\ G § m _ 1 , d^{rj) = d^j (/?) for some j . Hence 

(1.3) h(V,r) <J2hj(v, 

where 
(1— < 77,77(2;) > tanhr(œ) t a n h r ) -

hj{'f],r) = 
d-sAriiy)) +e-



558 YUGUANG SHI, LUEN-FAI TAM & T O M Y . - H . WAN 

Let us first assume that r(x) > 1. For each j , 

hj(ri,r)dri = hj(rj,r)drj 
S™"1 Bv.(2Pi) 

[1.4) J 

+ / hj{r],r)dr] = I + IL 
sm-1B(2o) S"*-1 \B, i(2p J-) 

By (ii), 

/ ^ ( Æ o + e - r 1 / ( l - < , , ^ ) > t a n h r ( , ) t a n h r ) - ^ ^ 

gm-i j s ^YIQ sphere ^7=i(xi)2 = 1- ^-° estimate II, we may assume that 
r)(x) = (1 ,0 , . . . , 0). If r] = (xi,..., xm), then < r?,77(3;) > = x\. Let 

e = tanh r (a;) tanh r. 

By the co-area formula for m > 3, we obtain 

/ I < Æo + e - T 1 1 ' (1 - eXl)-
m+1(l - (x1f)f-

1 

• \V^m-lX\\~ dX\ 

( L 5 ) ,1 

< CQ [ÆQ + e~r) / (1 — ex\)~^~^dx\ 

^CjÆ + e-ry^l-e)-^ 

for some constants C*6 and C7 which are independent of x. Here we 
have used the fact that the area of the sphere X ^ ^ f e ) 2 = 1 ~~ (^l)2 f° r 

fixed xi is (1 — (x\)2)~~l times the area of the unit sphere in Rm _ 1 , 
|V§m-ia;i| = (1 — (xi)2)? and 1 — |a;i| < 1 — ex\ because 0 < e < 1. 
We have also used the fact that r(x) > 1 and r > 1. For m = 2, direct 
computation shows that (1.5) is still true. 

To estimate I, let Æ = e~r(xK For each j , 

hj(r),r)dr) 
V 2 " j ) 

= / 

+ / 

, (2pi ) , 

(2pi), 

= III + IV. 

dSj(ri)>6 

dSj(V)<ö 

hj(7], 

hj(r), 

r)dr) 

r)dr) 
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As in the estimate of II, there is a constant Cg independent of x such 
that 

V (1.6) III < C78 (6 + e~r (1-e) 

Suppose rj(x) ^ Brij(?>pj). Since 77 G BVj(2pj), by (ii) we have 

1— < ri,ri(x) > tanhr(œ) t a n h r > 1 — (1 — <?o) > <?o-

Hence 

(1-7) 

IV < \ 
BVj ( 

< CgÔQ 

-Cl0 

<Cur 

h 

m+l 

/ 
\z\<l 

j(V: 

Br,. 

\zi\ 

r)dr] 

(2Pi) 

1 
+ e-' 

1 
fe,(r?) 

: ^ i • • 

+ e~r 

• uZm—i 

for some constants Cg, Ciò, C u independent of a;. Suppose rj(x) G 
BVj(3pj). Using the fact that < 77,77' > = 1 — ^ll7/1 — 77'||2 and (iic), we 
see that if m > 3, 

(1.8) 

(l-e+\z-z0\*)-m+1 

IV < C12 1 i cfei • • • dzm-i 

{\z\<i,{T.Li(zir)2<c135} ( ? = i ( * ) 

( l - e + | s 

2V 

- ^ 0 

+ 

I 2 ) 

e~r 

-m+l 

< C14 ! : : dZ\ • • • dzm-l 
{|*l<i> (£*=i(*)2)7<Ci3*} F i | + e r 

< C 1 5 l - e + b ' | 2 ) " m + 1 ^ 2 - " ^ m - l | Cisf/ (1-e+k'l2) 
\ | z ' | < 3 

: ^ i 
|zi|<C*i3<5 R i + e 

< C16 (^(vT^ + r)^2^2)^-3^) log ( ^ 7 ^ ) 

<C16log(^±^) ^ j \ ^ l + r)-m-idr^ 

= Cl7\og(l + er-r^){l-e)-^i 
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where zo = Gj(r)(x)), z' = (z2, £ 3 , . . . , zm-\) and C12-C17 are constants 
independent of x. Here we have used the fact that \zo\ < 2. If m = 2, 
then 

IV < C718(l - e ) " 1 / —L-^dzu 

\zi\<c13s N + e 

and we see that the final result of (1.8) is still true. 

By the definition of e and the fact that t a rmi < 1 for all t, we have 

(1.9) 1 - e = 1 - t a n h r ( a ; ) t a n h r > 1 — tanhr{x) > e~2r{-x\ 

Similarly, 

(1.10) l - e > e - 2 r . 

From (1.2)-(1.8) it follows that 

/ e-(™-l)r(x,y) J y 

Jr(y)>i dz(r}(y)) + e-r(v) 

<C^e-{m-l>^{ f e ^ f t l e Y f l - f ^ * 
(1.11) i 

+ / e~r{8 + e-r)-l{\ - e)~m^dr 

e~rrdr+ / e " r log(l + e r _ r ( a : ) ) ( l - e)~^dr \. 

By (1.9) we get 

(m-l)r(x) 
0 0 

e-'Xäo + e-T^l-e)—i^dr 

(1.12) < (j^e-(m-i)r(x)+(m-i)r(x) g- r^ 

<c21. 

If r > r(œ), then we use (1.9) and ö + e~r > ô = e~r(x>, and if r < r(x) 
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then we use (1.10) and 6 + e r > e Mo conclude that 

/

°° - i 

e-r(ô + e-r)-1(l-e)-m^dr 
/ pr(x) 

< - (m- l ) r (x ) / / e - r + r + ( m - l ) r ^ r 
(1.13) - Jt 

oo 
+ / e-

r+r(x)+(m-1)r(x)ljlr 
r(x) 

Using (1.9) for r > r(x) and (1.10) for r < r(x) respectively, we have 

/

oo 
e" r log(l + e r " r ^ ) ( l - e ) - f dr 

/ r(x) 
< e-(m-1) rO) ( / e~r+mrdr 

r+mr{x) ^ _ ^ + ^ ^ 

(1.14) 
OO 

+ / e 
r(x) 

< C23, 

where we have used the fact that log(l + er_r(a:)) < log 2 if r < r(x), and 
log(l + er~r(x>) < log2 + r — r(a;) if r > r(x). Combining (1.11)—(1.14) 
yields that there is a constant C24 independent of x such that 

(m- l)r(x,y) e d < C 

r(„)>i ds(^(j/)) + e-'-(i/) y -

Putting this back to (1.1), we have 

(1.15) / G(x,y)f(y)dy<C2 

for some constant C2 for all x with r(a;) > 1. If r(x) < 1, then 
tanhr(œ) < 1 — 6\ for some <5i > 0. As in the estimate in (1.7), it 
is not hard to show that (1.15) is still true with a possibly larger con­
stant. q.e.d. 

Lemma 1.2. Under the same assumptions as in Lemma 1.1, sup­
pose ds(ri(x)) > ô* > 0. Then for r(x) large enough we have 

G(X,y)f(y)dy<C(ö*)r(x)e-^\ 
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where C(ö*) depends only on C\, S ; m and 8*. 

Proof. Note that for all y with r(x,y) < 1, we have <fe(/?(y)) > |<5*, 
provided r(x) is large enough. Use the notation as in the proof of Lemma 
1.1. Then (1.1) becomes 

G(x,y)f{y)dy 

Wm 

< C 2 5 e~rW + / e - (m- l ) r (x ,y ) K
 rf 

- V ^(«)>i ds(»7(y))+e-'-(i/) ^ 
Here and below C, will denote constants depending only on C\, E, m 
and (5*. Using the methods of obtaining the estimates (1.5) and (1.7), 
we get 

r(y) 
e-ym-L)ryx,y) > 

r(y)>i d^(r,{y)) + e-<v) 
(m—l)r(x,y)m 

< C 2 6 e - ( m - 1 ) r ( a : ^ e-r{ô0 + e-r)-1{l-e)-m^dr 

/ e~rrdr 

<C27e-{m-l>^ + 
l r(x) 

1 

+ 

r(x) 
r(1 dr + 1 . 

By (1.9) and (1.10) as before, the lemma follows. q.e.d. 

Remark 1.1. It is easy to see that in Lemmas 1.1 and 1.2, E can 
be replaced by a finite family of compact manifolds. 

By an observation of Bando [2], we have the following: 

Theorem 1.3. Let S k a finite union of compact submanifolds of 
codimension at least 1 without boundary in S m _ 1 . Using the Poincaré 
unit ball model ofW11, let o be the center ofWn(l). Let v be a map from 
HP to HP such that 

ne-r{x) 
\\r(v)(x)\\ < 

dx{ri(x)) + e~r(x) 

where (r)(x),r(x)) is the geodesic polar coordinates at o of x. Then there 
is a harmonic map F : HP —> HP such that d^n (F(x),v(x)) is uniformly 
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bounded on W11. Moreover, if v has bounded energy density, then F also 
has bounded energy density. 

Proof. We will sketch the proof for the sake of completeness. Let 
B(R) be the geodesic ball of radius R with center at o. Let FR be the 
harmonic map from B{R) to HP such that FR = v on dB{R). By [17], 
the assumption on v and Lemma 1.1, we can find a bounded positive 
function (f) on Wn such that 

A<p <-\\T(V)\\ <Admm(FR,v). 

Hence dwn(Fn,v) < (f>. Together with the energy density estimate in 
[4], the results follow. q.e.d. 

2. Harmonic m a p s w i t h singular b o u n d a r y value 

In [10]-[12], it was proved that i f / : S™"1 ->• S " " 1 is a C 1 map with 
nowhere vanishing energy density, then one can extend / to a proper 
harmonic map from W71 into HP. In this section, we will construct 
harmonic maps extending a class of boundary maps which may not 
satisfy the above conditions. Namely, / may not be smooth, or / may 
have zero energy density somewhere; that is, / is singular. We will 
show that in some cases one can solve the boundary value problem for 
harmonic maps provided the singular set of / is small. Let / : § m _ 1 —> 
§ " _ 1 be a map. In this section, we always assume that / satisfies the 
following conditions: 

(a) / is C 3 with nowhere vanishing energy density except possibly 

at (Jj=i ^ j ! where { E j } ^ = 1 is a finite disjoint family of embedded sub-

manifolds without boundary of S m _ 1 and dim(Ej) < m — 1 for all j ; 

(b) if we use the upper half space model for H P , consider Ej to 
be an embedded submanifold in M m _ 1 and / a map from R m _ 1 into 
jjn-i _ Then n e a r j ] j , / = ( J 1 , . . . , / n _ 1 ) can be expressed as fa(x') = 

d^a'j(x')h°:(x'), with ßa4 > - 1 , such that: 

(i) each h" is bounded and Lipschitz continuous; 

(ii) each h" is smooth with uniformly bounded derivatives up to order 
3 on Uj \ E j , where Uj is a neighborhood of E J ; 

(iii) if ßaj + 0, then hf = 0 on E and |V 0 / i " | 2 >C>0mUj\ Hó for 
some constant C ; 
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(iv) if there is ßad = 0, then Y,a,ßa =o |V 0 / i " | 2 > C > 0 in Uj \ S j for 
some constant C . 

Here and below, efe. (xr) is the Euclidean distance from x' to Ej in Rm~l, 
Vo is the Euclidean gradient and Ao is the Euclidean Laplacian either 
in Rm or Rm~l. Let us consider some examples of maps satisfying these 
conditions. 

E x a m p l e 1. Let / : R ->• R be the function defined by f(t) = | t | a _ 1 t 
for some a > 0. Then / satisfies the above assumptions. In this case, 
the singular set consists of the point 0 and the point at infinity. The 
boundary value problem for / has been solved in [5], [22]. One may relax 
the condition on / . For example, one may assume that near 0, f(t) = 
\t\a~1h(t) where h(t) is smooth with nowhere vanishing derivative. The 
case that h is C 1 with nowhere vanishing derivative has been solved in 
[13]. 

E x a m p l e 2. Let / : R ->• R be the function defined by f(t) = | t | a _ 1 t 
for t < 0 and f{t) = C\t\a~H for t > 0. Here C > 0 and a > 0 are 
constants. We will discuss this kind of boundary maps in more details 
in §4. Note that if we write /(£) as \t\a~lh{t)J then h(t) is only Lipschitz 
at 0. 

E x a m p l e 3. Let / : M m _ 1 ->• R m _ 1 be the function defined by 
f(x) = \x\a~lx. Then / satisfies the above conditions with singular 
set consisting of the origin and the point at infinity. In this case, the 
singular set is of dimension 0. The boundary value problem for maps 
with similar behavior at finitely many isolated singular points has been 
solved in [22] 

E x a m p l e 4. Let / : IR2 —> R2 be defined by f(p, 9) = (r, (f>) in polar 
coordinates, where 

_ J ( 1 - / 9 2 ) V if/o< 1, 
r ~ \{l - p~2)ap~2 if p > 1. 

In this example, the singular set consists of the unit circle, the origin 
and the point at infinity. 

In this section we will prove the following: 

T h e o r e m 2 . 1 . Let f : S m _ 1 —> § " _ 1 be a map satisfying conditions 
(a) and (b). Then there exists a proper harmonic map F from HP to 
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HP with bounded energy density such that F = f at §>m 1. Moreover, F 
is C1 up to the boundary except possibly at ( L = 1 S j . 

We begin our proof of the theorem by the following well-known facts; 
see [9] and [12] for example: 

L e m m a 2.2. Let f be a bounded function on M m _ 1 with compact 
support and let u be its harmonic extension in the upper half space in 
W11. Let S be a closed and bounded set in M m _ 1 . Suppose f is C 3 on 
j jm-i y j] with uniform, bounded derivatives up to order 3. Then the 
following hold. 

(i) There is a constant C > 0 such that 

1 
\V0u\(x',Xm)<C-

ds(x') + x 

l im xmUi 

for 1 < i < m. 

(in) If, in addition, f is Lipschitz continuous, then there is a constant 
C depending only on f such that 

\ui\ < C 

for 1 < i < m — I, and that 

K\(x',xm)< , , 5 ^ m ds{x') + xm 

for 1 < i,j < m, where x' = (xl,... ,xm~l). 

(iv) If fi is continuous at x', then Ui is also continuous at (x',0) for 
1 < i < m — 1. 

To prove the theorem, we only consider the case that £ = 1, so that 
the boundary map / is smooth except at an embedded submanifold S. 
The general case can be proved similarly. Identify HP (HP respectively) 
with the upper half space in W11 (W1 respectively) with the Poincaré 
metrics. By choosing a point not in S as the point at infinity of R m _ 1 , 
we may assume that S is an embedded submanifold of R m _ 1 and / = 
( Z 1 , . . . , / n _ 1 ) satisfies conditions in (b). Then we have the following: 
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Lemma 2.3. There exist a neighborhood U of E in Rm _ 1 and 
a > 0 such that the map f can be extended from U to a map v from 
{(x',xm)\ x' G U, 0 < xm < a} into HP with the properties that v has 
bounded energy density and the norm of its tension field satisfies 

\\T(v)\\{x',Xm)<C- , . ?.m 

" v ,uy ' ; - d^{x')+xm 

for some constant C, where v is considered as a map from an open set 
in HP1 into HP. Moreover, v is Cl up to the boundary except at E. 

Proof. By choosing a tubular neighborhood of E, we can find neigh­
borhoods U and V of E, with U CC V, such that d | is smooth in 
V. Using cutoff functions, without changing the value of / in U we 
may assume that fa is zero outside V. By the assumptions on / , for 
1 < a < m — 1, 

fa(x') = d^{x')ha{x') 

in U with constants ßa > — 1. We may assume that ha is zero outside 
V. Moreover, the functions ha satisfy the following: 

(i) each ha is bounded and Lipschitz continuous; 

(ii) each ha is smooth with uniformly bounded derivatives up to order 
3 on I" 1" 1 \ E; 

(iii) if ßa ^ 0, then ha = 0 on E and \V0h
a\2 > C > 0 in U \ E for 

some constant C; 

(iv) if there is ßa = 0, then £ a > ßa=0 \V0h
a\2 > C > 0 in U \ E for 

some constant C. 

Let £(#', xm) = (d'^(x') + (xm)2) 2 and let u a be the harmonic extension 
of /ia in the upper half space for a = 1 , . . . , m — 1. Let 

If /?a 7̂  0, then ft" = 0 on E. Hence near E, 

ha(x') =< Voha(x'),Vodz(x') > ds(x') + 0(dl), 
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and there is a constant C\ > 0 such that if we choose U small enough, 
then in U, 

C\ > \V0h
a\2 + ßld^2{haf + 2ßad^ha < V0/ta,V0<fe > 

= \V0h
a\2 + (ßl + 2ßa)(< Vo/i", VO^E >)2 + 0(dE) 

= | V 0 / n 2 - ( < V o / > a , V o d s > ) 2 

+ (ßa + 1)2(< V0/ia , Vods >)2 + 0(rfE) 

> Cf1, 

where we have used (iii), and the fact that |Vo<fe| = 1 and ßa > — 1. 
Therefore, after choosing a smaller U, we can find a bounded nonnega­
tive function with support in V which is equal to 

( |V 0 / n 2 + ßld^(haf + 2ßad^ha < Vo/^Voefe >)* 

in U. Let ga be the harmonic extension of this function in the upper 
half space. Then, by choosing an even smaller U if necessary, we can 
find a > 0 such that 

(2.1) cr1 < (#a) v , ^ m ) < Ci 

for all (x',xm) such that i ' e f / and 0 < xm < a. If ßa = 0, let ga be 
the harmonic extension of |Vo/ia|- By (iv), we see that by choosing a 
smaller a and a larger C\, we have 

(2.2) Cf1 < ^ ( 9
a ) V , a ; m ) < Ci 

for all (x',xm) such that x' £ U and 0 < œm < a. ga is well-defined. 
Let Mn be such that 

n - l 

(m-l) (n«) 2 = 5]e2 /3a(0a)2-
a=l 

Define 
v " = œ

m « n . 

In the following computations, we always assume that x! G U and 
0 < a < xm. By Lemma 2.2(iii), there is a constant C<2 > 0 such 
that 

(2.3) \uf\(x',xm)<C2 
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for 1 < i < m — 1 and 1 < a < n — 1, 

(2.4) \V0uf\{x',xm)< ,. f2 . 

for 1 < i < m, 1 < a < n — 1 and (by Lemma 2.2(i)) 

(2.5) |Voö a | (^ ,a ; m )< 
a / jm 2 

£(V,a;m) 

for 1 < a < n - 1. By (2.1) and (2.2), 

n—1 n—1 

(2.6) c2^e2/3a > ( v v , ^ ) ) 2 > ^ - ^ e 2 ^ -
a = l a = l 

In particular, u" > 0. Note that if there is /3a = 0, then 

(u")2 > C^1 > 0. 

For 1 <a<n-l, by (2.4), 

l ^ ' V I v^ ^ ^ m / " î | — •£ fammi — 

and by Lemma 2.2(ii), 

(2.8) lim (va-xmv^)(x',xm)=ha(x'0). 
(x' ,xm)^(x'o,0) 

Hence for ßa ^ 0, by (2.7), 

|ua(V,a;m) - s m < ( i ' , s m ) - ha{x')\ < 2C2x
m. 

So, by assumptions (ii) and (iii), 

(2.9) \ua-xmu^\(x',xm) <C3Ç(x',xm). 

Since |V0£| = 1, by (2.1), (2.5) and (2.6), 

n - l 

|V0n"| < C 4 ^ e 2 / 3 a _ 1 

a = l 
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for some constants C\ and C\. Thus 

vn 
(2.10) |Vo«n| < C5 —• 

Ç 

Similarly, by choosing a larger C5, we can prove that 

|Ao(n«)2 |<C5Ä2 . 
Ç 

Then using (2.10), we conclude that 

vn 
(2.11) |A0n"| < C 6 - ^ 

Ç 

for some constant CQ. Since /3a > —1, (2.6) implies 

lim vn = 0. 

Combining this with (2.8) yields 

v(x',xm) = (v\...,vn)(x',xm) ->• (/(x'0),0) 

when (x',xm) —> (x'0,0). 
Now we are ready to estimate the norm of the tension field of v. The 

components of the tension field of v is given by 

m — ? 9 

T » = {X™y A0v
a - —^rvi - — < v0«a, v0«n > 

for 1 < a < n — 1 

and 
1 

a=l 

(xm)2 

To estimate ^ ' AQD" for 1 < a < n — 1, we have 

A 0« a = - 2 ^ u ° m + / U ^ " 2 (£A0e + (ßa - 1)) (ua - xmu^) 
/m—1 

mm 
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where we have used the fact that |Vo£| = 1- Suppose ßa = 0. Then by 
(2.4) and (2.6), we have 

m 2 
-A0v

c < 2C2
X—. 

lißa ^ 0, by (2.3), (2.4), (2.6), (2.9) and the fact that £A0C is bounded, 
we conclude that in any case: 

m2 

(2.12) ^ A ^ 

for some constant C-j. To estimate 

(xm)2 m-2 

-m 

1 
vn xm rn 

v" = (m — 2)—v, 
m \ Ju„ 

a 
n mi 

note that, since 

V 0« a = ißa (V0n° - xmV0u^ - n^V 0 s m )+/3 a ^ a " 1 VoC (ua - xm
U 

a \ 
mi ) 

we have 

a ßafn a 
s x umm ~r Pas 

/ 3 Q - 1 _ a mfì 

i 
Hi JU Lb 

lißa = 0, then from (2.6) and (2.4), it follows that 

{xmfm-2 
(2.13) 

vn xm m 

~m 

for some constant C%. If ßa ^ 0, then (2.4), (2.6) and (2.9) yield that 
(2.13) is still true. To estimate 

(rm\2 i i 

< V0v
a, W0v

n >= — - , < V0v
a, W0v

n >, 
v'b v [u n2 

note that 

V0v
n = xmV0u

n +unV0x
m, 
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and that 

< V ? / \ V V n > 

ßa-l 

Ìxm < V0n a , V0n" > -{xmY < V o < , V 0 n n > 

ma n _ m n a 

X 
+ ßax

m< VoC, Von" > +un • — (ua - xmul) 

ßa-l m—1 

dxm J2 « - {xmf < Vo<,Votin > -xmunu: m n a 
mm 

i = l 

+ & a;ra < VoC, V0n" > +n" • — (na - œ
m u° ) 

/ 3 Q - l 

u" 

m—1 

e J ] « - xm < V0*C V0n" > -n"n na 
mm 

i=l 

+ ßa< VoC, V0n" > +un • i (n° - A « ) 

Therefore 

m 2 

U" V ' 
< Vo«",V0«n > 

m ßa-l xm£ 
n2 

m—1 

d J2 u<ivJi -%m < v ° u ™' V°M™ > "U"M: n a 
mm 

i=l 

1 
+ /9a < VoC, V0nn > +n" • - (na - s m n 

By (2.3), (2.4), (2.6), (2.9) and (2.10) we have 

m2 i 
(X 

From (2.12)-(2.14) it follows that 

< V0wa, V0n" > < C 9 -

(2.15) 
i Tm 

I— T » | <Cio:V. 
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To estimate 
m 2 

vn un 

we use (2.10) and (2.11) to get 

(2.16) 
( m\2 
[ ' A0v

n 

vn 

Finally, to estimate 

m2 

V" 

m — 2 

x 

A0v
n = — (2un

m + xmA0u
n 

<CU 

+^(i:\vova\2-\v0v 
\a=l 

n2 
m m 

we note by (2.10) that 

m 2 / m 2 

(2.17) 
-v 

X 

X m 2 
(m — 2)u 

x ( m - 2 ) + 0 ( — ) . 

Using the fact that VQC = ^(^EVQC^E + xm'Voxm), we have 

V0v
a\2 =i2ßa |V0n° - xmV0u%, - U^VQX m2 

+ 2/U 

•2fßa-2(ua_xmver)2 

2^-1{ua -xmua
m) 

Wa 

• < V0u
a - xmW0u^ - « ; V 0 i m , Vo£ > 

Vo«a |2 + (a;m)2 |Vo<|2 + « ) 2 

-2xm < V 0 M a ,V 0 n^> 

— 2(uTOJ + 2a; umumm 

+ ß i r \ u a - xmua
mf 

+ 2ßaC
2{ua - xmu^)d^ < V 0u a , V0<fe > 

+ 0 ( T 
i2ßa Aa(x',xm) + 0(-

e 
where we have used (2.3), (2.4), (2.9) and the fact that 

< V0<fe,V0a;m > = 0 . 
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Here 

m—1 

A« = ^K)2 + ßlc 2{ua -xmua
m)2 

i=l 

+ 2ßaC
2(ua - xmu^)ds < Vow", V0(fe > • 

Also, by (2.10) 

|V0i>"|2 = (u")2 + (xmf\V0u
n\2 + 2xmvnul 

unyi + o{— 

Thus 

m2 

Vn V 
4 P E iv°-ai2 - ivo^ 

a = l 

n-\ 

(m - 2) + 7HÖ2 E ?ßaAa - (m - 1)(u")2 + °(^-)-
a = l 

Combining this with (2.17) yields 

m 2 

(2.18) 

m — 2 
n - l 

a;m m u + è £ |Vo«f - |V0«f 
a = l 

1 n—1 

U n 2 £ É 2 / ^ a - ( 0 a ) 2 ) + O ( y ). 
a = l 

It remains to estimate Aa - (ga)2. First from (2.1), (2.2), (2.3), (2.9), 
it follows that Aa and ga are bounded. At a point (x',xm) with a;m > 

h |CÌE(S ' ) , we have 

Aa-(gaY\ <C 12" 
e 

for some constant Cu- On the other hand, if xm < jd^(x'), then 
ds(x') > 0 and x' is a point of continuity of Voha. By the definition of 
ga and Lemma 2.2, 

Aa(x',0) = (ga)2(x',0). 
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From (2.3), (2.4), (2.5), (2.7) and (2.9) it follows that 

dAa d(ga)2, „ 1 
ldxm dxm ' ~ £ 

for some constant C13. Thus we also have 

\Aa-(ga)2\<Cl2 — 
Ç 

by choosing a larger Cu- Combining this with (2.16) and (2.18), we can 
find a constant Cu such that 

1 „ m 

I— Tn(v)\ < C i 4 : V , 

which together with (2.15) implies that 

\T(v)\\(x',Xm)<Clò 
£(x',xm) 

for some constant C15. To estimate the energy density of the map v, by 
(2.3), (2.4), (2.6) and (2.9), we have for l < a < n - l a n d l < i < m - l , 

a ùPa-l-tj. a _ „ma \ , cpa (,,a _ „ma \ 
Has sH"1 -° "m/ ^ > v i mi) 

(2.19) <Ci 6 e / 3 Q - 1 e + d 1 + 

< 3 C i 6 ^ a 

< Ci7n" 

for some constants Cie, Cyj. For 1 < a < n — 1, from (2.6), (2.7) and 
(2.9) it follows that 

(2.20) 

ßa-l a ma ßam0la ^ 
mm J ßa^" ^m{U - XUm) ~ ^"XU 

< C17^ 

< C18u
n 

for some constants C18, C19. On the other hand, by (2.10) we have 

|V0un | = \xmV0u
n + unV0x

m\ 

(2.21) <xm\V0u
n\+un 

< C20u
n. 



HARMONIC MAPS W I T H SINGULAR BOUNDARY VALUE 575 

The energy density of the map constructed above is given by 

a=l a=l 

Hence by (2.19)-(2.21), the map v has bounded energy density. It is 
easy to see that v is C 1 up to the boundary except at E. q.e.d. 

Proof of Theorem 2.1. Near xm = 0 and away from E, the map 
v constructed in the previous lemma has the following properties, v is 
smooth, vf —> ff as xm —> 0, for 1 < i < m — 1 and 1 < a < n — 1, 
v% -> 0 as xm ->• 0, and un ->• \Je(f)/(m - 1) as xm -> 0. By the 
method as in the proof of Theorem 4.1 in [12], we can extend the map 
/ : § m _ 1 —> S " _ 1 to a map v from HP into HP such that if we use the 
geodesic polar coordinates at the origin, then we obtain 

— T ( X I 

\\T(V)\\(X) < C , ' ^ 

for some constant C. Moreover, v has bounded energy density. Here 
we have used the notation as in Lemma 1.1. By Theorem 1.3, there is 
a harmonic map F from W71 into W1 such that 

dWa{F{x),v(x)) <C 

for some constant C for all x G E P . Hence F = v = f on S m _ 1 , and 
F as well as v also has bounded energy density. Using Lemma 1.2 the 
method in [12], one can show that F is C 1 up to the boundary portion 
ÖJHP \ E. q.e.d. 

By [21] and Theorem 2.1, we have the following: 

Corollary 2.4. Suppose f : S 1 —>• S 1 is a piecewise smooth map with 
nowhere vanishing energy density. Then there is a proper harmonic map 
F from B 2 to H2 with boundary value f and bounded energy density. If, 
in addition, f is a homeomorphism, then F is quasi-conformai. 

We will also consider another kind of boundary maps. Let 
/ : § m _ 1 —> § n _ 1 be a smooth map such that the zero set of the energy 
density e(f) of / is a disjoint union of finitely many embedded subman-
ifolds Ej for 1 < j < 1. Suppose near each E j , e{f)(x') = (iE

 3(x')gj(x') 
for some positive integer ßj > 0 and some smooth function gj > 0. 
Using similar method we can prove: 
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T h e o r e m 2.5. Let f : S™"1 ->• S™"1 be a smooth map satisfying the 
above conditions. Then there exists a proper harmonic map F from HP 
to W1 with bounded energy density such that F = f at § m _ 1 . Moreover, 
F is C1 up to the boundary except possibly at l L _ i ^j-

Proof. The proof is similar to that of Theorem 2.1 and is more sim­
ple. We only sketch the ideas. For simplicity, we assume that £ = 1 and 
E is the zero set of e ( / ) . Moreover, using the upper half space models 
for Mm and W1, we may assume that E is an embedded submanifold of 
M m _ 1 . Near E, e(f)(x') = <iE(x')g(x') for some positive integer ß > 0 
and some smooth function g > 0. Write / = (f1,..., f n ~ l ) . Let 4> be 
the harmonic extension of g to the upper half space. Then cp > 0 near 
S. Let 

ua(x',xm) = fa(x') for 1 < a < n - 1, 

and let 

un(x',xm) = xmf(x',xm)<l>(x',xm). 

Here as before, Ç(x',xm) = (d^(x') + (xm)2)ï. Using the fact that 

|Vo/° i (a / ) < Cdj,(x') near E, we may conclude that |Vo/ a | (a; ' ) < 

CdjT (xr) near E for some constant C. We can then prove that the 

tension field of u = ( i t 1 , . . . , un) satisfies 

\\T(u)\\(x',Xm)<C 
Ì{x'ìx

mY 

and that u has bounded energy density. One can proceed as in the proof 
of Theorem 2.1. q.e.d. 

It was proved in [13] that if / is a nonconstant analytic map from 
S 1 to itself, then / can be extended to a proper harmonic map from H2 

to itself with bounded energy density. Using Theorem 2.1, or Theorem 
2.5, one can show that similar result holds if / is a nonconstant analytic 
map from S 1 to S" _ 1 . 

3. Resu l t s on uniqueness 

In this section, we will discuss the problem of uniqueness for har­
monic maps constructed in the previous section. There are examples 
of non-uniqueness of proper harmonic maps constructed in [11], [7]; see 
also [12]. It was shown in [12] that given k points on § m _ 1 , there is a 
^-parameter family of distinct harmonic maps u from Mm to itself with 
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it|gm-i being the identity map. u is C 1 up to the boundary except at 
those k points where u grows very fast. On the other hand, if u is a 
harmonic diffeomorphism on H2 with bounded energy density so that 
u|gi is identity, then u is quasi-conformal by [21] and u must be the 
identity map by the uniqueness theorem in [12]. Hence one may guess 
that uniqueness or non-uniqueness depends on the growth rates of the 
maps to be considered. We will prove that in some cases this is correct. 
Namely, we have the following: 

T h e o r e m 3 .1 . Let E be a closed subset o / S m _ 1 . Let u and v be two 
harmonic maps from HF™ to HP such that the function dist^n (u(p),v(p)) 
satisfies: 

(i) livap^x distw- (u(p),v(p)) = 0 for any boundary point x G § m _ 1 \ E ; 
and 

(ii) either (a) % m _ 2 ( E ) < oo ; where 'Hm~2 is the (m — 2) -dimensional 
H aus dorff measure on § m _ 1 , and distjgn {u(p),v(p)) = o(exp(r(p)) 
as p —>• oo ; where r(p) is the distance function in Wn from, a fixed 
point o, or (b) i f m _ 2 ( E ) = 0 and dist^n (u(p),v(p)) = O (exp(r(p)) 
as p —> oo. 

Then u = v. 

Corollary 3.2 . Let E be a closed subset o / S m _ 1 . Let f be a map 
from S m _ 1 \ E to § n _ 1 which is C1 with nowhere vanishing energy den­
sity. Let u and v be two harmonic maps from E P to EP, which are Cl 

up to the boundary portion S m _ 1 \ E ; such that w|Sm-i\ s = i>|Sm-i\s = / . 
Suppose either 'Hm~2 (E) < oo and 

dista* (u(p),v(p)) = o(exp(r(p)) 

as p —>• oo, or % m _ 2 ( E ) = 0 and 

dista* (u(p),v(p)) = 0(exp(r(p)) 

as p —>• oo. Then u = v. 

Proof. By the proof of Theorem in [11] , for any x G § m _ 1 \ E, 

lim d i s t i l (u(p),v(p)) = 0. 

The corollary follows immediately from Theorem 3.1. q.e.d. 
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R e m a r k 3 .1 . The condition distn« (u(p), v(p)) = o(exp(r(p)) will 
be satisfied if e(u)(p)+e(v)(p) = O (r~2~e(p) exp(2r(p))) for some e > 0. 
In particular, if u and v both have bounded energy density, the above 
condition on distn« (u(p),v(p)) will be satisfied. Note that the examples 
of non-uniqueness for harmonic maps constructed in [11]—[12] and [7] 
mentioned above grow like exp((m — l ) r ) near those k points, where r 
is the distance function of a fixed point in W71. 

Let / : § m _ 1 —> S " _ 1 be an analytic map. Then either / =constant, 
or the zero set of the energy density e(f) of / is an analytic set of 
dimension m — 2. Note that if / is a constant map, then / cannot be 
extended to a harmonic map from Wn to HP. 

Corollary 3 .3 . Let f : S m _ 1 —> S n _ 1 be an analytic map and let 
u, v be harmonic extensions of f from HP to HP such that u, v have 
bounded energy density and are C1 up to the § m _ 1 \ S , where E is the 
zero set of e(f). Then u = v. 

In order to prove the theorem we need several facts. Using the upper 
half space model for HP1, for any to £ I P 1 - 1 , the function 

/ \ m—1 

\x-t0\
2 + y2 

is harmonic on HP*, where x G M m _ 1 and y > 0 are standard coordinates 
on H P . 

L e m m a 3.4. Let to G R m _ 1 and r > 0 and let Bto(r) be the 
Euclidean open ball of radius r with center to in R m _ 1 . Let 

c / \ m~i 
9(*>y)= i — W T - - ) dnm~2(t). 

tedBt0(r) \x-t\2 + y2 

Then g is harmonic on HF™. Moreover, there exists a positive constant 
C(m) depending only on m such that for any (xo,yo) G Mm, ifO<yo< 
r and d^m-i (xo,dBto(r)) < yo, then 

, C(m) 
g{xo,yo) > • 

yo 

Proof. It is easy to see that g is harmonic on W71. To obtain the 
estimate in the lemma, we may assume that to = 0 is the origin. Let 
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(xo,yo) G Wn be such that 0 < yo < f and d-^m-i (xo,dBo(r)) < yo. 
Also let *i G dB0(r) with 

\x0 -h\ = dRm-i (x0,dB0(r)) < y0. 

Then for any point t with \t — t\\ < yo, we have \xo — t\ < 2ÌJQ. Hence 

r / \ m — i 
,Q 1 , g(x0iyo)> , f^—^ dH m - 2 ( t ) 
(3.1) ^eaB0(r),|t-ti|<i,o F o - * r + J/o 

> (5yo)- ( m - 1 )^m" 2 ({ t G 35o(r), I* - <i| < yo})-

I f e i = * i / j / o , t h e n e i G 9 5 0 ( ^ ) a n d 

Hm-\{t G 55o(r), | * - t i | < y o } ) 

= (yo)ra-2^m-2({e e 95o(-), ie - 61 < i» 
yo 

> C(rn)(yo)m-2 

for some positive constant C(m) depending only on m. Here we have 
used the fact that r > yo- By (3.1), the lemma follows. q.e.d. 

If u and v are harmonic, then distn« {u,v) is subharmonic. Theorem 
3.1 will follow from the following lemma: 

Lemma 3.5. Let E be a closed set in § m _ 1 . Let f be a nonnegative 
subharmonic function on Wn such that limp^xf(p) = 0 for any point 
x G § m _ 1 \ E. Suppose either %m _ 2 (E) < oo and f(p) = o(exp(r(p)) 
as p —>• oo; or %m _ 2 (E) = 0 and f{p) = 0(exp(r(p)) as p ^ oo. Then 
f = 0. 

Proof. Let us assume that %m _ 2 (E) < oo and /(p) = o(exp(r(p)) 
as p —>• oo. Using the upper half space model for HP, we may assume 
that E is a compact set in Rm _ 1 with % m _ 2 (E) < oo. For any A > 0, 
there exists a family of open balls Bti(r.{), i G J\ with \J\\ < oo, such 
that max i£jA r, < A, {JieJx Bti(ri) D E and 

(3.2) ^W1'2^^ 

for some constant C\ which is independent of A. Let 

£>i,\ = {(x,y)\ x G Bti(ri), 0 < y < rh and dRm-i(x,dBti(ri)) > y}. 
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Also let Ax = Wn\ [JieJx Oi,x. Since (J î e jA Bt.(n) D E, for any a; G E 
there is % G J\ such that d^m-i(x,dBti(ri)) > 0. So there exists e > 0 
such that if \x — x\ < e and 0 < y < e, then (â;,y) G ÖJ,A- By the 
assumption of / , we see that / is bounded on A\. Moreover, if q is 
a point in the boundary of A\ in Mm and if q ^ off71, then g ^ E. 
For g ^ ÔEP, we must have q = (x,y) for some x G Mm_1 and y > 0, 
which implies that g G Ö^A H Ö?

C
A for some i G JA, where Ö?A is the 

complement of öj ^ in Hm . Then, on the one hand, we have x G B^fa), 
0 < y < ri and e^m-i (a;, dBti (r.{)) > y. On the other hand, we also have 
x £ Bti(ri), y > r-i or d^m-i (x,dBti(ri)) < y. Hence we can conclude 
that 0 < y < ri and d-^m-i (x,dBti(ri)) = y, which are the assumptions 
of the second statement of Lemma 3.4. Therefore, we can apply Lemma 
3.4 to the function 

ÊfJtedBt.(ri) \x-t\2 + y2 

Firstly, we conclude that gx is a harmonic function on HP. Then, 
together with the assumption that f(p) = o(exp(r(p))), we conclude 
that for any e > 0, there is a Ao > 0 such that if 0 < A < Ao, then 
£QX > / on boundary of A\ in Hm . Since / is bounded on A\, we have 

(3-3) egx(x,y)>f(x,y) 

on A\. Let (xo,yo) G HF™ be fixed. Since yo > 0, we have (xo,yo) G A\ 
for all 0 < A < yo- By (3-3), we have, 

(3-4) egx{x0,yo) > f(x0,yo) 

if 0 < A < min{Ao,yo}- For any A, by (3.2), we have 

(3-5) gX(x0iyo)< {yo)l-^ 

where Ci is a constant independent of A. Combining this with (3.4), 
and letting e —> 0, we conclude that f(xo,yo) = 0. If %m _ 2 (E) = 0 and 
f(p) = 0(exp(r(p)) as p —> oo, then (3.4) can be replaced by 

(3-6) C3g
x(x0,yo) > f{x0,yo), 

where C3 is a constant independent of A. Moreover, the constant C\ in 
(3.2) can be chosen so that C\ —> 0 as A —> 0. Hence the constant C2 in 
(3.5) also satisfies C<2 —> 0 as A —> 0. Letting A —> 0 in (3.6), the lemma 
follows. q.e.d. 
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4. A n expl ic i t so lut ion 

Consider the following boundary value problem on the infinite strip 
{—oo < x < oo and 0 < y < n} 

( 4 1 i f A 0 / - 2 c o t 5 < V 0 / , V o 5 > = 0 , 

{A0g + cotg{\V0.f\
2-\Vog\2) = 0 , 

such that f(x,0) = ax, f(x,ir) = ax + ß, g(x,0) = 0, g(x,ir) = n and 
0 < g(x, y) < 7T for 0 < y < 7T, where a > 0 and ß are constants. We may 
assume that ß > 0. If the infinite strips {—oo < x < oo and 0 < y < n} 
and {—oo < / < oo and 0 < g < n} are equipped with the metrics 

(*) s i n - y (dx + dy ) and s i n - g (df + dg ) 

respectively, then a solution of the above boundary value problem is a 
harmonic map (x,y) \—> (f,g) from tf to tf. Moreover, if we use a 
conformai map of the form z —> ez and transform the infinite strips to 
the upper half planes, then the boundary value of the map is given by 

, , , (\t\a~H if * > 0, 

{C\t\a-H if t < 0, 

where C = e/3'. By Corollary 2.4, we know that (4.1) has a quasi-
conformal solution with the given boundary data. For the case ß = 0, 
the solution can be expressed explicitly as solutions of some ordinary 
differential equations; see [5], [22]. In this section, we will show that for 
ß > 0, we can obtain explicit solutions by solving a system of ordinary 
differential equations. In fact, we will try to find a solution of (4.1) 
which takes the form f(x,y) = ax + h(y) and g(x,y) = g{y). In this 
case, (4.1) becomes: 

h"-2 cot g h'g' = 0, 

g" + œ t g (a2 + (h')2- (g')2) = 0 , 

with conditions h(0) = 0, h(n) = ß, g(0) = 0, g(ir) = n and 0 < g(y) < 
7T for 0 < y < 7T. It is not hard to obtain the first integrals of the 
systems. Since we would like to have solutions with h' > 0, we have 

(4.3) h'= a sin g, and (</) =a +(b +a —a ) sin g — a sin g, 
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where a = h'(^), b = g'(^) are constants to be chosen to satisfy the 
boundary conditions. Let z = cot g. Then 

I l\2 2 4 , 2 2 , i2 

(Z ) = a Z + C Z + 0 , 

where c2 = a2 + b2 + a4. Hence we let z(y) be the function defined by 

r^ dz ir 
(4.4) / dZ = = --y. 
y ' Jo Va2z4 + c2z2 + b2 2 

Lemma 4.1. For any a > 0, there is a unique constant ba > 0 such 
that 

dz IT o ^Ja2z4 + c2z2 + b2 2 

where c2
a = a2 + b2

a + a4. Moreover, ba < max{2o!, a - 1 } and ba depends 
continuously on a. 

Proof. Let 

j (b) = r dz 

U Jo Va2z4 + c2z2 + b2i 

where c2 = a2 + b2 + a4. It is easy to see that lim^o-f(&) = oo. Suppose 
b > max{2o!, a - 1 } . Then 

h(b) < f 
o 

dz 
— 

= 

< 

Jo 
00 

Jo 
oo 

Jo 
(ba) 

TT 

2' 

Va2z4 + 

Va2z4 + 
dz 

az2 + b 

2 ' " 

ò2z2 + 
dz 
2abz2 

b2 

+ b2 

Since h(b) is decreasing and continuous in b, the lemma follows easily. 
q.e.d. 

Lemma 4.2. Let 0 < a < oo and /et ba > 0 be the constants as in 
Lemma 4-1, which depend continuously on a. Given a > 0 and ß > 0, 
there is a = aaß > 0 such that 

a2 r dz = £ 
a Jo {l + z2)/a2z4 + c2

az
2 + b2

a 2 ' 
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ere cl
a 

Proof. 

= a2 + b2
a + 

Let 

h(a) = 

a4. 

a2 
oo 

o 

dz 

(1 + z2)^a2z4 + c2z2 + b2
a 

Let y = y(z) be such that 

dz it 
TT-y-

yja2z4 + c2
az

2 + b2
a 2 

Then, by the choice of b, z can be expressed as a function of y on 
0 < y < § and we have 

lia) = a 
i + y2 

o 

Hence linia^o ^2(0) = 0. In particular, if ß = 0, we simply pick a = 0. 
Since ba < max{2a, a - 1 } , there is a constant C(a) > 0 depending only 
on a such that 

/2(a) > C(a) • a 
0 0 dz 

0 (24 + a V + l ) M l + z2) 

C(a ) 9 f1 dz 
- ^ r 1 • a2 ' 2 Jo (a4z2 + 2p 

C{a) f1 dz 

^ + £) «P 
, 

as a —> 00. Since fta depends continuously on a, /2(a) is a continuous 
function of a. Hence the lemma follows. q.e.d. 

Let a > 0 and ß > 0 be given. Let a = aQj/g > 0 be the con­
stant obtained in Lemma 4.2, and ba be the constant in Lemma 4.1 
corresponding to a. Let z be the function defined in (4.4), and define 

ry 
(4.5) g = c o t - 2; and h(y) = a / sin g(r)dT. 

o 

It is easy to see that g : [0, f ] ->• [0, f ], ft : [0, f ] ->• [0, §], 

5(0) = fr(0) = 0, 9 ( f ) = § and /i(§) = f. Extend 9 and /1 to [0,TT] such 

that 

(4.6) h(t) = ß-h(n-t), g(t)=ir-g(ir-t). 
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Let 

(4.7) f(x,y) = ax + h{y) and g(x,y) = g{y). 

Theorem 4.3. Let u = (f,g), where f and g are given by Lemma 
4-1, 4-^i (4-4)-(4-V- Then u is a quasi-conformai harmonic diffeomor-
phism from B2 onto itself. Here we identify the domain and the range 
to be infinite strips with conformai metrics (*). u satisfies the boundary 
conditions u(x,0) = (ax,0) and u(x,ir) = (ax + ß, 0). Moreover, the 
Hopf differential ofu is equal to (c\+ic2)dz2, where c\ = — |(62+a4—a2) 
and C'i = —\ao?, which are constants depending on a and ß. 

Proof. It is not hard to see that u is harmonic and a diffeomorphism. 
Since g' > 0 and </(0) = a, </(f ) = 6 > 0 and g' is bounded away from 
zero. Hence 

a — g' + ih' 
1 

a + g' — ih' 

for some constant e > 0. We conclude that u is quasi-conformal. By 
direct computations, using (4.3), the Hopf differential is given by (c\ + 
ic<2)dz2 as claimed. q.e.d. 

Let us compute the norm of the Hopf differential of the harmonic 
map constructed in Theorem 4.3. Using w instead of z in the theorem, 
the Hopf differential is $ = cdw2, where c is a constant. Let w = logz. 
Then w is a conformai map from the upper half space into the strip 
0 < Im(tt>) < ir. Hence $(z) = cz~2dz2, and its norm with respect to 
the hyperbolic metric is given by 

m\(z) |c|y2 
x2 + y2 

where z = x + iy. For \x\ > 1, 

(4-5) ||$||(z) < \c\y2, 

and for \x\ < 1, 

(4-6) | | * H W < 2 |C|y 

\x\ + y 

Let / : S1 —> S1 be a homeomorphism satisfying the conditions in 
Theorem 2.1. Namely, / is C3 with nonvanishing energy density except 
possibly for finitely many points pi,...,pk. Near each pi, if we consider 
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/ as a map from M to M such that pi corresponds to 0 and / (0 ) = 0, 
then f(t) = | t |Q !-1(^i(t) + M*))> w h e r e M * ) = 0(f) ast^O, is C 3 

smooth away from 0 and is piecewise C 3 smooth at 0, and 

, , . ft if t > 0, 
hi(t) = i 

[Ct if t < 0 
for some constants a > 0 and C > 0. 

T h e o r e m 4.4. Xef / 6e as above and let h be a quasi-symmetric 
function from S 1 onto itself such that h has a quasi-conformai harmonic 
extension on B 2 . Then hÆ f also has a quasi-conformai harmonic ex­
tension. 

Proof. Let us consider the special case that / is given by (*) at the 
beginning of this section and let F be the quasi-conformal harmonic 
diffeomorphism constructed in Theorem 4.3. Suppose h : S 1 —> S 1 is a 
quasi-symmetric function such that h has a quasi-conformal harmonic 
extension H on H 2 . Let <frp a n d <&H be the Hopf differentials of F and 
H respectively. Then by Lemma 3.2 in [18], the norm of the tension 
field of H Æ F satisfies 

(4.7) \\T(H Æ F)\\(Z) < CXW^HWQD (1 + I I ^ I I Q Ö ) ^ \\$F\\(Z), 

where C\ is an absolute constant, and ||3>.H-||Q.D = supzeEf2 ||<I>#||(2;) 
which is finite by [21]. Moreover, H F has bounded energy density. 
By (4.5), (4.6) and Theorem 1.3, h Æ can be extended to a harmonic 
map on H2 with bounded energy Ænsity. It is easy to see that the 
harmonic map is a quasi-conformal diffeomorphism. 

In general, suppose / satisfies the conditions in the theorem. We 
remark that for each cp : M —> R which is of the form as in (*), we can 
modify <f> to another map ip such that ip = 4> outside a compact set, 
ip is C°° on M with tp(0) = 0 and i/i' / 0 on ffi. Hence we can find 
4>j : S 1 —> S 1 and ip such that , for each j with 1 < j < k — 1, <f>j is 
a composition of a map of the form (*) with conformai maps in the 
domain and the range, ip is of the form (*) outside a compact set and 
is C°° with V(0) = 0 and ip' ^ 0 on M, and 

/ = / i ÆipÆcpi Æ---Æ(pk_u 

where f\ is C with nonvanishing energy density. Let h : S —> S be a 
quasi-symmetric function such that h has a quasi-conformal harmonic 
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extension on H 2 . By the result in [18], ho fa also has a quasi-conformal 
harmonic extension on H 2 . It remains to show that i f / i r S 1 — ? - § 1 i s a 
quasi-symmetric function such that h has a quasi-conformal harmonic 
extension H on HP , so is ho'tp. By the construction of tp, we can extend 
ip to a map G from H2 to H2 such that near ÔH2 and away from 0, G 
is exactly the harmonic map constructed in Theorem 4.3. Near 0, G 
is conformai at the boundary and is smooth. Then as in [12], one can 
show that , as y —> 0, 

(4.8) \\T(G)\\(Z) = 0(y) 

and 

(4.9) \\<!>G\\(z) = 0(y), 

where &G is the dz2-part of the pull-back metric by G which is the 
Hopf differential if G is harmonic. We will call <&c the Hopf differential 
of G even G may not be harmonic and the differential may not be 
holomorphic. Similar calculation as in the proof of Lemma 3.2 in [18] 
yields 

(4.10) | | r (Jf o G)\\(z) < C(\\*H\\QD) ( | | * G | | ( S ) + l |r(G)| |(*)) , 

where C( | |<I># | |Q,D) denotes a constant depending only on ||3>.H-||QD. SO 

together with (4.5), (4.6), (4.8) and (4.9), we see that the map H o G 
satisfies the conditions in Theorem 1.3. Hence H o G can be deformed 
to a quasi-conformal harmonic diffeomorphism on H 2 . q.e.d. 

Corollary 4.5. Let Q be the subspace of the universal Teichmüller 
space T consisting of quasi-symmetric functions from S 1 onto S 1 satis­
fying the assumptions of Theorem 4-4- Then for all f in the closure of 
Q in T with respect to the Teichmüller metric, f can be extended to a 
unique quasi-conformal harmonic diffeomorphism. 

The closure of Q contains the closure N of C 1 diffeomorphisms of S 1 

as a proper subset. The characterization of the N in terms of the Hopf 
differentials of the quasi-conformal harmonic extensions is given in [18]. 
It is interesting to understand what is Q. Suppose that / G Q. Then 
there exists a sequence fn in Q such that fn —> f in Teichmüller sense. 
Let F and Fn be the corresponding quasiconformal harmonic extensions. 
By the main result in [18], \\&F„ — ^F | |Q_D —> 0. Since | | 3>F„ | | (Z) -> 0 as 
z —> cffl2 except at finitely many points and || • \\QD = sup z e Ep || • \\{z), 
we see that , for any e > 0, {£ G 9H2 | limsupz_>ç ||<I>i?||(2;) > e} is finite. 
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This implies that for any / G Q, there is a quasiconformal extension 
F of f such that for any e > 0, the set of boundary points £ with 
limsupz_>ç |\ip (z) | > e is finite, where \ip is the complex dilatation of 
F. We still do not know whether this condition is sufficient. 

5. Group-invariant harmonic m a p s 

fn this section, we will find all the harmonic maps from a domain in 
IR2 into hyperbolic 2-space which are explicitly solvable via systems of 
ordinary differential equations. In other words, we will find all group-
invariant harmonic maps from a domain in M2 into H2 with respect to 
Lie point symmetries. In terms of the standard coordinates (x, y) on 
IR2 and ( / ,g) , g > 0 on the upper half-plane model of H2 , the harmonic 
map equation can be written as 

, , n f A o/ = |<Vo / ,Vo5> , 
[ ' ] W =J(|Vo0|2-|Vo/|2). 

Therefore, the harmonic map equation can be considered as a sys­
tem of partial differential equations with space of independent and 
dependent variables tf = I 2 x rf which is considered as a subset 
of IR2 x IR2. Let G be a local group of transformations (i.e., a local 
group of local diffeomorphisms of IR2 x IR2) acting on M. Then a G-
invariant harmonic map is a solution (f(x,y), g(x,y)) of (5.1) whose 
graph r ^ j 9 ) = {(x,y,f(x,y),g(x,y))} C M is a locally G-invariant sub­
set of M. There is a standard computational procedure to determine 
group-invariant solutions of a given system of partial differential equa­
tions, and we will follow this procedure to find all the group-invariant 
harmonic maps. For a detailed discussion of the procedure and the 
theory behind, we refer the reader to the book [15]. 

First of all, we need to determine all the infinitesimal generators 
of the Lie point symmetry group of the harmonic map system, i.e., all 
vector fields along the solution space of harmonic map equation given 
by orbits of particular solutions under one-parameter subgroups. This 
involves a straightforward but tedious computation. 

T h e o r e m 5.1 . The infinitesimal generators of the Lie point sym­
metry group of (5.1) are of the form 

X = ^x, y)dx + TÌ(X, y)dy + ( a ( / 2 - g2) + bf + c)df + (2a f g + bg) dg, 



588 YUGUANG SHI, LUEN-FAI TAM & T O M Y . - H . WAN 

where a, b and c are real constants, and (£, rj) satisfies the Cauchy-
Riemann equations 

£>x f]y = Çy "T Vx = U . 

This can be written in complex form 

X = 2Re (F(z)dz + {au2 + bu + c)du) , 

where z = x + iy, u = f+ ig, and F(z) is a holomorphic function in z. 

Proof. Let X = C(x^ u^)di + cpa{x^u^)dua be an infinitesimal 
generator of the Lie point symmetry group, where we write (xl,x2) for 
{x,y), {uljU2) for (f,g), and the repeated indices mean summation. X 
induces a vector field on the 2-jet: 

pr^(X) = (% + (f)adu* + 4>a^duc + 4>a'tjdu«. 

for some functions (f)a,t and (\>a,%3 determined by £*, (pa, uf, and it"-. 
Applying it to the harmonic map equation (5.1), we have 

(5.2) y y > * = - - 4 T 2 0 2 < Von1, Von2 > + A V ^ ' X ' + ^ ^ ) , 
i i 

(5.3) 2 

^2'ii = - 7 - 2 ^ ( 1 v°u 2 i 2 - iv 0« 
^ i r r 

+ A E ^ 2 ' ^ 2 - ^ 1 ' X 1 ) 
i r 

i 

According to the prolongation formula in [15], for any i 

(5.4) </>">* = € + <£>? - W - 6"?"?> 

and 

E>a,"=ç(< ̂  + ^ß^ + €ßur^A + €ß< 

(5.5) eK-2^nf<-24 f en£ 
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Using the harmonic map equation, we see that A0u^ = Yli 
ufj can be 

expressed in quadratic terms in uf. So together with the observation 
that there is no second order derivative terms of u on the right-hand 
side of equations (5.2) and (5.3), we conclude by comparing the terms 
involving w"2 in equations (5.2), (5.3) and (5.5) that 

(ei+É2) + É > f + É > i = o . 

Hence 

(5-6) £i + &1 = 0, 

and for any ß 

(5-7) O = °-

The last equation means that £* are independent of ua. This simplifies 
the computation a lot. In fact, the formulae (5.4) and (5.5) become 

(5-8) 0a,< = 0?+ <#>?-#«? 

and 

E ^ = E (tä + 2€^ + €^r<< 
(5.9) i 

+ c ^ o / - (A0efcx - 2(ei<! + e2
2nf2). 

The remaining second order terms involve only u ^ and u^\- Using 
the harmonic map equation (5.1) again, we see that u^ = —U22 + 
quadratic terms in u". Therefore, by comparing the second order terms 
again, we conclude that 

(5.10) £ = il 

The system (5.6) and (5.10) is just the system of Cauchy-Riemann equa­
tions which implies that Ao£fe = 0. Hence, (5.9) further simplifies to 

E ***=E w+2C^f+<^« « 
(5.11) i i 

+ ÄA 0^-2eiA 0n a . 
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Now, we need to handle the first derivative terms. Using (5.8) and 
the Cauchy-Riemann system (5.6) and (5.10), we have 

R.H.S. (right-hand side) of (5.2) 
2 

n2 J2 i^i + $u\) 
V * / Zi ^ 

+ ^ « i | V o ^ | 2 + ^ 2 | V 0 u 2 | 2 

+ (n2)2 <? + J j<& + J ^ « 2 - - § " < Von1, Von2 > . 

On the other hand, using (5.11) with a = 1, we have 

L.H.S. (left-hand side) of (5.2) 

i 

(5.13) + ( ^ V - ^ ) | V o n 1 | 2 

+ [2^i„2 + J ^ i - 2^)] < Von1, Von2 > 

+ ( ^ V + ^ 2 ^ ) | V 0 n 2 | 2 . 

Therefore, by comparing the corresponding terms in (5.12) and (5.13), 
we have 

(5.14) AQC/)1 = 0, 

(5.15) ^(</>1
ivt + $u1

i) = 2<f>]ußu?, 

1 2 
(5-16) 0 Ì i u i - ^ 2 0 Ì 2 = ^ 2 ^ i , 

(5-17) *ìi«» = - 7 ^ 2 + ^ > 

(5-18) ^ 2 „ 2 = ^ 2 , 
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which implies that 

(5.19) (p1 = A(x1,x2,u1)(v2)2 + B(x1,x2,u1) 

for some functions A and B of a;1, x2 and n1 only. 
Similarly, we find that 

R.H.S. of (5.3) = ^(<p2u2 - 4)\u\) 

2 
+ ^2 («& -K*)< Vow1, V0n2 > 

(5-2°) } 4>2 2 ! ri\, 1|2 + (w-^ i+v) |VoM| 
2(^M2 _ 2£i \ 2 2 

n ^ U2 n 2 + - ^ 2 +-±--% lV0^ 

0«f 

and 

L.H.S. of (5.3) = ^ ( 4 + 2 ^ 

+ ( 2 </>^ + J > ^ i < Von1, Von2 > 

+ ( ^ V - ^ ( ^ - 2 e ì ) ) | V o n 1 | 2 

+ ^ 2
v + ^ ( 0 2

2 - 2 e 1
1 ) | V o n 2 | 2 . 

Then comparing the corresponding terms as before, we have 

(5.22) A0(t)
2 = 0, 

(5.23) </>l>f = -^{4>2u2-4>}u}). 

(^4) ^ - ±& = jU-è 

(5.25) < & , + - U 1 = 0, 
u 1 « ^ „ . 2 ï i 
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(5-26) 4>lV - ^ + j^4>2 = 0, 

which is an Euler equation and gives 

(5.27) <p2 = C(x1,x2,u1)u2 + D(x1,x2,u1)u2iogu2, 

where C and D are functions of (xl,x2) and ul only. Now substituting 
(5.19) and (5.27) into (5.25) and comparing the coefficients, we have 

(5.28) Dui = 0 and Cui + 2A = 0. 

Then substituting (5.28), (5.19) and (5.27) into (5.24) yields 

(5.29) D = 0 and Bui = C. 

Therefore (5.28) and (5.29) imply: 

(5.30) 4>l = --Buiui(x
l ,x2 ,ur){u2)2 + B{xx ,x2 , u 1 ) , 

(5.31) (f)2 = Bui(x
1,x2,u1)v2. 

Substituting these into (5.17), we conclude that 

so that 

(5.32) B = Eix^x2)^1)2 + Fix1, x2)ul + G{x\ x2) 

for some functions E, F and G of (xl,x2) only. By (5.30), (5.31) and 
(5.32), we see that (5.16) becomes identity and (5.15) implies that 

V 0 £ = V0F = V 0 G = 0, 

and hence E, F and G are real constants, says E = a, F = b and 
G = c. The remaining equations (5.23), (5.14) and (5.22) are then 
satisfied trivially. Therefore we arrive at our final answer 

(j,1 = a ((u1)2 - (u2)2) +bul + c, 

4> = lau u + bu . 
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Together with (5.6) and (5.10), the proof of the theorem is completed. 
q.e.d. 

It is easy to see that the infinitesimal generators are combinations of 
infinitesimal generators obtained by the local conformai transformations 
on the domain and the isometries of the target. Therefore, we have 

T h e o r e m 5.2. The Lie point symmetry group of the system of 
harmonic map equations from a domain in R2 into H2 is the product 
of the local group of local conformai transformations of the domain and 
the isometry group o / H 2 . 

From now on, we will use Theorem 5.1 to find all the group-invariant 
harmonic maps up to conformai equivalence. The procedure is to inte­
grate the vector field given by Theorem 5.1 in order to obtain the orbit of 
a particular solution under the corresponding one-parameter subgroup. 
Then by eliminating the parameter, one get enough invariants to obtain 
group-invariant solutions. The interested readers can consult Chapter 
3 of the book [15]. 

T h e o r e m 5.3. A group-invariant harmonic map from a domain 
in R2 into H2 is equivalent, up to a conformai transformation of the 
domain and an isometry on H 2 , to one of the following forms: 

1. Harmonic maps invariant under the group generated by a trans­
lation on R2 and a translation on the upper-half plane model of 

f(x,y)= x + hi(y), 

g(x,y)= h2(y), 

where h\, h2 are functions of y only with h2 > 0. 

2. Harmonic maps invariant under the group generated by a transla­
tion on M2 and a dilation on the upper-half plane model of H2 : 

f(x,y)= exhi{y), 

g{x,y) = exh2{y), 

where h\, h2 are functions of y only with h2 > 0. 

3. Harmonic maps invariant under the group generated by a transla­
tion on M2 and a rotation on the unit disc model of H2 : 

<Z(x,y) + ^îr,(x,y) = e^Tx (h^y) + ^lh2(y)) , 

where h\, h2 are functions of y only and satisfy h\ + h\ < 1. 
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Proof. Using the complex form of the admissible vector field in The­
orem 5.1, the orbit of a harmonic map (z,u(z)) under a one-parameter 
subgroup is given by the solution of the following initial value problem 
of ordinary differential system 

f = F(z), z(0) = z, 
(5.33) K ' u ' f^ = au2 + bù + e, ù(0) u. 

If F = 0, then z = z and û = 7(e)w for some one-parameter subgroup 
of the Möbius group. Hence there is no invariant harmonic map in this 
case, and we may assume that F does not vanish since we are only 
interested in local solutions at this moment. We define a holomorphic, 
hence locally conformai, change of the domain by 

s + it 

where the choice of the base point is not important. Then in terms of 
this new variable, 

2Re (F(z)dz) = ds. 

Since we are interested in classifying the local group-invariant harmonic 
maps up to conformai change of the domain and isometry on H2, we 
may as well assume that F(z) = 1 and the system (5.33) becomes 

§ = i, ~X{Q) = X, 

(5-34) I f = 0, y(0) = y, 

[ ^ = au2 + bù + c, ü(0) = u, 

where z = x + iy. The first two equations of (5.34) give 

(5.35) 

Hence, y is an invariant of the corresponding one-parameter subgroup 
generated by X. 

Let ö = b2 — Aac. We consider the following cases. The first case is 
(5 = 0. Suppose also that a = 0. Then 6 = 0 and the third equation of 
(5.34) gives 

û = u + ce. 
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Therefore, in this case, the orbit of a harmonic map under the group 
action is 

y= y, 

ü = u + ce. 

By eliminating the e, we obtain three invariants of the one-parameter 
group 

y, f - ex, g. 

Therefore, the group-invariant solution is of the form 

if-ex =ht(y), 

\g =h2(y), 

for some functions hi and hi of one variable. This is of course equivalent 
to the first case. 

Suppose (5 = 0, but a / 0 . Then 

1 1 
ae + 

Hence the invariants in this case are 

V, Re r ax , Im r ax\. 

V + la ) V+h ) 
Let U = , fc~/(2a) • Then U is harmonic and in fact equivalent to u in 
our sense. Therefore, in this case, the group invariant harmonic map is 
also equivalent to 

{Re U = ax + hi(y), 

ImU =h2(y), 

for some functions hi and h2 of one variable. This is also equivalent to 
the first case. Hence, we have proved that for ô = 0, all group invariant 
harmonic maps are equivalent to the first case. 

Secondly, we assume that ö > 0. Suppose also that a = 0. Then 
b T̂  0 and we get 

C he ( C 

u + - = e6e [u + -
b V b 

As before, we can find three invariants in this case 

y, e~bx(f + i)> e~bx9-
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Therefore, the corresponding group-invariant harmonic map is of the 
form 

e 
bx 

-bx 

/ + § =hi(y), 

e~bxg =h2{y), 

for some functions h\ and h2 of one variable. This is of course equivalent 
to the second case. 

If 6 > 0 and a / 0 , then 

û + Ai _ u + Ai ^e 

M + A2 u + A2 

where Ai = (6 — \fö)/{2a) and A2 = (6 + v5)/{2a). Hence the invariants 
are 

yt Re H±*Ie-Vfc im H±*Ie-Vï*. 
M + A2 M + A2 

Therefore, by letting V = (u+Ai) / (u+A2), the group invariant harmonic 
map is also equivalent to 

= e^xh2(y), 

for some functions h\ and h2 of one variable. This is also equivalent 
to the second case. Hence, we have proved that for 6 > 0, all group 
invariant harmonic maps are equivalent to the second case. 

Finally, if ö < 0, then a / 0 . Similarly, the group invariant solution 
is equivalent to 

(ReV =ey/~5xhi{y)J 

[ I m F =e^xh2(y). 

However, V does not map into the upper-half space since A& are complex-
valued. In fact, F is a mapping into the unit disc. So we see that the 
group invariant solution is equivalent to a harmonic map into the unit 
disc model of H2 of the form 

C + iri = ei\^(h1(y) + ih2(y)) 

for some functions hi and h2 of one variable. This is equivalent to the 
third case. The proof of theorem is completed, q.e.d. 

The remaining task for us now is to determine the functions hi and 
h2 in each case. 
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Case 1. For the first case, using the harmonic map equation for the 
upper-half space model, we see that h\ and h2 satisfy 

= 2h[ h'2, 

= (h'2f - {h\f - 1. 

It is easy to obtain the first integral of this system 

h[ =ci(h2) 
( 5 ' 3 6 ) (ti2? =c2(h2f-cl(h2f + l 

for some constants c\ and c2. Therefore, the general solution can be 
expressed in terms of elliptic functions explicitly. Instead of giving the 
general solution which is straightforward by consulting table of ellip­
tic integrals, we would like to point out that the second equation in 
(5.36) implies that if c\ 7̂  0, then the corresponding harmonic map is 
not surjective. So if one is interested in finding examples of harmonic 
diffeomorphisms, one can assume c\ = 0. Then 

\h\ = c 3 , 

l ^ ) 2 = c2(h2)
2 + l 

for some constant C3. The second equation has the general solution 

h2 = —= sinh(±^/c2~y + c4) 

VC2 
for some constant C4, provided c2 > 0. Therefore the harmonic map is 
equivalent to 

(f{x,y) =x, 

[9(x,y) = - ^ s i n h ( ^ y ) , 

which is the example given earlier by Li-Tarn [L-T 2]. If c2 < 0, then 
one can check that the harmonic maps are equivalent to the identity 

i.f(x,y) =x, 

\g{x,y) =y 

for c2 = 0, and to 

f(x,y) =x, 

g(x,y) = ^ = s i n ( / i c ^ | y ) , 
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which is not surjective for c2 < 0. 

Case 2. The second case is in fact handled in Section 4 already by an 
isometric change of the Poincaré upper-half plane to a horizontal infinite 
strip with width equal to n. The only difference is that we are interested 
in finding the harmonic diffeomorphism with suitable boundary data in 
Section 4. As a matter of fact, this is equivalent to showing that one 
can obtain the harmonic diffeomorphisms with the required boundary 
data by selecting the suitable integral constants. Moreover, one can also 
check that all the other group-invariant solutions except those obtained 
in Section 4 are not surjective as in the first case. 

Case 3 . Finally, for the third case, we use geodesic polar coordi­
nates (p, 6) on the unit disc model of the hyperbolic 2-space. Then the 
harmonic maps should have the form 

p = hi(y), e = x + h2{y) 

for some functions hi and h2 of y only. Also the equations of hi and h2 

become 
ih'l - s i n h f r i cosh hi (l + (h'2)

2) = 0, 
| h" I ocosh/ t i 7 / , / _ n 

Similarly, the first integral can be found 

(h[)2 =sinh2 hi-cfsinh~2 hi + c2, 

h'2 = c\ s i nh - hi. 

Again, general solutions can be expressed in terms of elliptic functions. 
Also, one sees that ci = 0 and c2 = X2 > 0 in order to have a surjective 
solution. In this case, 

(hi)2 = sinh2(/ii) + A2 and h2 = c3. 

Letting £ = cosh/ii , the equation for hi becomes 

(e')2 = ( e 2 - i ) ( e 2 - i + A2). 

Therefore, the solutions are equivalent to: 

1. If A = 0, then (x, y) G (—oo, +oo) x (—oo, 0) and the map is 

(x,y) ^ e 
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2. If 0 < A < 1, then (x, y) G (—oo, +oo) x (0, K{k)) and the map is 

l + cn(y,fc) -sn(y,k) 
1 + cn(y, fc) + sn(y, k) 

IX 

where k = y/l — A2 and sn, en and K(k) are Jacobi elliptic func­
tions and the complete elliptic integral corresponding to k respec­
tively [3, p.51]. 

3. If A = 1, then (x, y) G (—oo, +oo) x (0, 2n) and the map is 

1 + sm y — cos y , 
(x,y) *-> : e 

1 + sm y + cos y 
IX 

4. If A > 1, then (x,y) G (—oo,+oo) x (0,K(k')) and the map is 

1 + sn(Ay, k') - cn(Ay, fcQ 
1 ' y) 1 + sn(Ay, it') + cn(Ay, A;A 

Î X 

where &' = Vl — A -2 and sn, en and K(k') are Jacobi elliptic 
functions and the complete elliptic integral corresponding to k' 
respectively [3, p.45]. 

One can then see that all the solutions are not diffeomorphic in this 
case. 

Corollary 5.4. The only quasi-conformai and group invariant har­
monic diffeomorphisms from H2 onto itself are those obtained in Theo­
rem 4-3. 
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