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HARMONIC MAPS ON HYPERBOLIC SPACES
WITH SINGULAR BOUNDARY VALUE

YUGUANG SHI, LUEN-FAT TAM & TOM Y.-H. WAN

0. Introduction

In [10]-[12], it was proved that a C' map f : S™~! — S"~! with
nowhere vanishing energy density can be extended to a proper harmonic
map u from one hyperbolic space H"™ to another one H". For the case
that m = n = 2 and f is C*, the result was also proved by Akutagawa
[1] independently. Here we identify the geometric boundaries of H™
and H* with S™~1 and S”~! respectively. Moreover, it was proved in
[11]-[12] that the constructed u is C' up to the boundary S™~! and
is unique with respect to the boundary data within the class of maps
which are C' up to the boundary. The purpose of this paper is to study
the Dirichlet problem at infinity of proper harmonic maps for boundary
data f: S™ 1 — S"! which may not satisfy the conditions mentioned
above. Namely, f may not be smooth or the energy density of f may
vanish somewhere. For simplicity, boundary data of this kind is said to
be singular. The set where f fails to satisfy one of these conditions will
be called the singular set of f.

One of the motivation for the study of this problem is to understand
a conjecture of Schoen [16], which says that: Given a quasi-symmetric
homeomorphism f of S' there is a unique quasi-conformal harmonic
diffeomorphism from H? onto itself with boundary value f, and its gen-
eralization [13] : Fwvery quasi-conformal map from the boundary at in-
finity of a rank-1 symmetric space M to itself can be extended uniquely
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to a harmonic rough-isometry from M to itself. The uniqueness part of
Schoen’s conjecture was proved by Li and the second author [12] and
the uniqueness part of the generalized conjecture of Li and Wang was
proved by themselves in [13]. As for the existence part, there are not
so many results except for the works of [10]-[12] mentioned above and
their generalizations to rank-1 symmetric spaces of noncompact type by
Donnelly [6], to Damek-Ricci spaces by Ueno [20], and to Carnot spaces
by Nishikawa and Ueno [14]. All these results are under the assump-
tions that the boundary map is smooth (at least C') such that its energy
density is nowhere zero. For singular boundary maps, it was proved by
the second and third authors in [18] that if one can solve the bound-
ary value problem for harmonic map for a particular quasi-symmetric
function f on S, then one can solve similar problem for near by (with
respect to the Teichmiiller metric on the universal Teichmiiller space)
quasi-symmetric functions. Its generalization to higher dimensional hy-
perbolic spaces has been obtained in [8], [19] and [23].

On the other hand, by studying the Gauss maps of rotationally sym-
metric constant mean curvature cuts in Minkowski three space, Choi
and Treibergs [5] had constructed some interesting harmonic diffeomor-
phisms from H? onto itself by solving an ordinary differential equation.
It turns out that if we identify H? with the upper half plane equipped
with the Poincaré metric, then the boundary value of their maps are
given by

(0.1) F(&) =1t*7",

where o > 0 is a constant. In fact, one can solve this problem directly
without using the idea of constant mean curvature cuts. That was
done by Wang in [22] by solving an ordinary differential equation again.
Based on this result, Li and Wang [13] were able to construct harmonic
maps on H? with boundary value f : S' — S! which is C' with nowhere
vanishing energy density except at finitely many points and near each of
these points f behaves like (0.1). Namely, near such a point, after some
transformations, f(t) = [t|*"'h(t), where h is C* and A'(0) # 0. For
higher dimensional hyperbolic spaces, it was proved in [22] that if f :
Sm=1 — §™~1is a map with singular set consisting of only finitely many
points and if near each singular point p, after conformal transformations
of the domain and the range, f is given by f(z) = |z|* 1z, then one can
extend the map to be harmonic by solving a more complicated ordinary
differential equation.
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Observe that the boundary value (0.1) is a special case of

a—1 :
0.2) £(t) = {’t’ oo me=h,
Cltje—tt  ift<o,

where C' > 0 is a constant. In this case f(t) = [t|*"'h(t), where h(t)
is only Lipschitz, h(0) = 0 and A’ is bounded away from zero. It is
unknown up to now whether such a map f can be extended to a quasi-
conformal harmonic diffeomorphism on H2. In this paper we will prove
a more general result: Suppose f: ST = S" 7 is a map with singular
set ¥ which is a disjoint union of embedded submanifolds of S™™ ', such
that f is C* on S™1\ ©. Suppose near %, if f is considered as a map
from R™1 to R"~1, each component of f will behave like (0.2) (see §2
for more details). Then one can extend [ to a proper harmonic map
with bounded energy density. The idea of proof is to use an observation
of Bando [2] that if one can extend the boundary map to a map v such
that the Poisson equation Ag = —||7(v)|| has a bounded solution, where
||7(v)|| is the norm of the tension field of v, then one can extend the
boundary map to a harmonic map. We will also prove that if f is a
smooth map from S”~! to S”~! such that the zero set of the energy
density e(f) of f is a disjoint union of embedded submanifolds and e(f)
behaves well near the zero set (see §2 for more details), then f can be
extended to a harmonic map. As a consequence, one can show that if f
is a nonconstant analytic map from S* to S™~!, then f can be extended
to a proper harmonic map from H? to H™. This generalizes the result
in [13], where the case m = 2 was proved.

From the above mentioned existence results, it is not hard to prove
that the boundary map (0.2) can be extended to a quasi-conformal har-
monic diffeomorphism on H2. In fact, one can find explicit solutions for
the particular boundary data (0.2) and compute the Hopf differentials
explicitly. From this, one can show that if f is a homeomorphism from
S! onto S' with only finitely many singular points such that near each
of them, f behaves like (0.2) and if & is another quasi-symmetric home-
omorphism on S' which can be extended to a quasi-conformal harmonic
map on H2, then so does ho f. As in [18], one can then prove that each
element in the closure of the set of such f in the universal Teichmiiller
space has a quasi-conformal harmonic extension.

Using the method of ordinary differential equations, other harmonic
diffeomorphisms on H? can be obtained [11]. One may wonder whether
one can construct more harmonic maps on H? by this method. In order
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to reduce the harmonic map equations to ordinary differential equations,
usually we have to assume the solutions are invariant under groups
acting on the solutions space. In this paper, we will find all group-
invariant harmonic maps from a domain in R? into H?. The first step
is to find the infinitesimal generators (see [15]), and then we will prove
the following:

Theorem 5.2. The Lie point symmetry group of the system of
harmonic map equations from a domain in R? into H? is the product
of the local group of local conformal transformations of the domain and
the isometry group ofHQ.

From this, we will find all group-invariant harmonic maps from a
domain in R? into H? up to a conformal transformation of the domain
and an isometry on H2. They are invariant either under the group gen-
erated by a translation on R? and a translation on the upper-half plane
model of H?, invariant under the group generated by a translation on
R? and a dilation on the upper-half plane model of H?, or invariant
under the group generated by a translation on R? and a rotation on the
unit disc model of H?. Not all of the harmonic maps obtained are dif-
feomorphisms. Among the group-invariant harmonic diffeomorphisms
only those with boundary value (0.2) are quasi-conformal.

We will also discuss the problem of uniqueness on the Dirichlet prob-
lem at infinity for the class of singular boundary maps. As mentioned
before, it was proved in [11] that if f has no singular point, then any
two harmonic extensions of f which are C' up to the boundary must
be the same. However, even if the boundary map is very nice, for ex-
ample, the identity map of S™~ !, there are examples of non-uniqueness
[11]-[12], [7]. In fact, given k points on S™ ! one can construct a k-
parameter family of harmonic maps « from H™ to itself with u|gm—1
being the identity map; see [12]. Each member u in the family is C'* up
to the boundary except possibly at those k points. That is, u fails to
satisfy the conditions of the uniqueness theorem in [11] only at finitely
many points. If we take two different such maps u and v, then dgm (u, v)
will be zero at the geometric boundary OH™ of H™ except possibly at
finitely many points. Near at least one of the points, dgm (u,v) will grow
like exp((m — 1)r), where r is the distance function from a fixed point
in H™. Hence it seems that the reason for u # v is that dgm (u,v) grows
too fast. In this work, we will prove the following.

Theorem 3.1. Let ¥ be a closed subset of S~ . Let v and v be two
harmonic maps from H™ to H" such that the function distmn (u(p), v(p))
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satisfies:

(i) limy_, distyn (u(p),v(p)) = 0 for any boundary point x € S™N\X;
and

(ii) either (a) H™ 2(2) < oo and disty (u(p),v(p)) = o (exp(r(p)) as
p — 00, or (b) H"2(X) = 0 and disty (u(p),v(p)) = O (exp(r(p)
as p — oo.

~—

Here H™=2 is the (m — 2)-dimensional Hausdorff measure on S™ ™! and
r(p) is the distance function in H™ from a fized point o.
Then u = v.

Note that the growth condition will be satisfied if both v and v have
uniformly bounded energy density. Hence, one may wish to compare
Theorem 3.1 with the following result: if u is a harmonic diffeomorphism
on H? with bounded energy density so that u|g: is the identity map, then
u is quasi-conformal by [21], and hence u must be the identity by the
uniqueness theorem in [12]. As a consequence, if the boundary map is
analytic and if 4 and v have bounded energy density such that v and v
are C'' up to the boundary portion which is the complement of the zero
set of e(f), then u = v.

The structure of this paper is as follows. In §1, we will give an
estimate for solutions of the Poisson’s equation in H™. In §2, we will
prove the existence theorems. In §3, we will prove some uniqueness
results. In §4, we will give an explicit solution for (0.2), using the method
of ordinary differential equations. We will also give some applications
of the result to the theory of universal Teichmiiller space. In §5, we will
find all group-invariant harmonic maps from a domain in R? into H?.

The first author would like to thank Kung-ching Chang and Youde
Wang for their interests in this work. The second and third authors
would like to thank Kai-Sing Chou and Guanxin Li for many useful
discussions.

1. Estimates of solutions of the Poisson’s equation

We will use the Poincaré unit ball model for H" and identify the
geometric boundary of H™ with the unit sphere S”~!. Let o be the
center of the unit ball B™(1). Let ¥ be a compact manifold without
boundary of dimension m — 1 — k with & > 1 and let ¢, : & — $™!

be an immersion. Denote +(X) by ¥. Denote the distance of a point
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n in S™ ! to ¥ by ds(n). Using geodesic polar coordinates at o, the
coordinates of a point z € H™ are (n(z),r(z)), where n(z) € S~ !is the
point of infinity of the geodesic ray from o to z and r(x) is the distance
between o and z in H"™. The main purpose of this section is to prove
the following lemma.

Lemma 1.1. Let f be a nonnegative function on H™ such that

Cre~ @)

f(z) < @) 1@

for some constant Cy, then there is a constant Co such that

- Gz, y)f(y)dy < Cs

for all x € H™ . Here G(x,y) is the minimal positive Green’s function
of H'™.

Proof. Note that G(x,y) is a function of r(z,y), where r(z,y) is the
distance between z and y. Using the fact that f is bounded, we have

Glar,y) [ (y)dy = / Gz, y)f (y)dy + / G,y) ] (y)dy

r(z,y)<1 r(zy)>1

< Cs(1+/H eI £ () dy)

(1.1) = C4 (1 + (/ +/ ) e‘(m‘”’“(m’y)f(y)dy>
)<l Jry)zl

=r(y)
<o 1+ / o (m=Dpr(ey)____© i
' ( r(y)21 ds(n(y) + e "

THr

for some constants C's and C; which are independent of z. We have the
following relation:

e"@Y) > coshr(z,y)
= cosh r(z) coshr(y) — sinhr(z) sinhr(y) cos 6

= coshr(z) coshr(y) (1 — tanhr(z) tanh r(y) cos #)

> % (@)+7®) (1 — tanh r(z) tanh r(y) cos ) ,
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where 6 is the angle between the geodesics at o from o to x and y. Note
that cos @ =< n(z),n(y) >. Hence

/ T O S
r(y)>1 ds; (77(?/)) + e~

< 056_(m_1)r($){/ e " (/ h(n,r)dn) dr},
1 gm-1

where Cj is a constant depending only on m and

dy
(1.2)

(1— < n,n(z) > tanhr(z) tanh r) """

ds(n) +e T

h(77> T) =

By the definition of 3, there are finitely many open sets ﬁj of ¥ such
that |J; U; =3, and there are n; € S™ ! and p; > 0 such that «(TU;) C
By, (p;)- Here By, (p;) is the geodesic ball of radius p; with center at 7;
in S™~1. Moreover there are diffeomorphisms G; such that the following
hold:

(i) G; maps By, (4p;) into {|z| < 2} € R™, 2 = (21,...,Zm-1),

with G; <L(Uj) N Bm.(ij)) C {21y zmt)| 21 = - = 2 = O},
where k > 1 is the codimension of ¥ and G (B, (2p;)) C {|z] <

1};

(ii) There is a d9 > 0 such that for any j, (a) if n € By, (2p;) and
n' & By; (3p;), then | < 5,1 > | < 1—4dg, (b) if g ¢ By, (2p;), then
ds:;(n) > do; and (c) there is a constant C' > 0 such that for each

1

js 10 € By, (20) then ds;, () > € (S, (2)?)7,
where ©; = «(U;) N By, (p;) and ds;(n) is the distance of a point 7 in
S™=!to ¥;. For each point n € S™~!, ds;(n) = ds; (n) for some j. Hence

(13) h(nﬂ”) < Zh’j(na’r)v
J

where

(1— < n,n(z) > tanhr(z) tanh r) """

ds; (n(y)) +e"

hj(n,r) =
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Let us first assume that r(z) > 1. For each j,

/ hj(n,r)dn =/ hj(n,r)dn
gm-1 By, (20))

(1.4)
+/ hj(n,r)dn =T+ 11.
Sm_l\Bn]’ (205)
By (ii),
IT < (6o + 6_7")_1/ (1— < n,n(z) > tanhr(z) tanh r) """ dn.
gm—1

S™=1is the sphere Y 1" | (z;)? = 1. To estimate I, we may assume that
n(z) = (1,0,...,0). 'y = (z1,...,Zm), then < n,n(z) >= 1. Let

e = tanh r(x) tanhr.

By the co-area formula for m > 3, we obtain

1

< (f+e)™" /_1(1 —exy) T — (2)?) 5!

. ’VSm—lfL‘l‘_ld(I)l
(1.5) )

< Cs ((50 + e_r)_l/ (1 — Ewl)_%_%dflfl
-1

< % ((50 + e_r)_l (1 — 6)_mT_l
for some constants Cg and C7 which are independent of z. Here we
have used the fact that the area of the sphere > 1", (z;)? = 1 — (21)? for
fixed 21 is (1 — (#1)2)T " times the area of the unit sphere in R™~!,
|Vem—1z1] = (1 — (ml)g)% and 1 — |z1] < 1 —ex; because 0 < € < 1.
We have also used the fact that r(z) > 1 and r > 1. For m = 2, direct
computation shows that (1.5) is still true.
To estimate I, let § = e~"(*). For each j,

/B hj(n,r)dn

n; (2p5)

hj(n,r)dn

/77€an (2p5), ds; (n)20

+ / hj(n, r)dn
n€By; (2p5), ds; (M)<o

=1IT+1V.
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As in the estimate of I'I, there is a constant Cy independent of z such
that

m—1

(1.6) MI<Cs(6+e") (1—e) "5,

Suppose n(z) ¢ By, (3p;). Since n € By, (2p;), by (ii) we have
1— < n,n(z) > tanhr(z) tanhr > 1 — (1 — dg) > do.

Hence
v S/ hj(n,7)dn
By; (205)
1
< 095—m+1/ —dn
(1.7) 0 B, (20;) A5, () + €7
1
SCO/ ———dz - dZp—1
' lzj<1 |21 +e77 "
< Cur

for some constants Cy, Cig, C11 independent of z. Suppose n(z) €
By, (3pj). Using the fact that < n,7’ >=1— %Hn —7'||? and (iic), we
see that if m > 3,

(1.8)

IV < 012/
{l21<1, (Tioi(2)?)

(1 — €+ ‘Z — 20’2)_m+1

<) (S (2) " 4 e

)—m—l—l

dz1 e dzm_1

(S

1l—e+|2— Z0 2
< 014/ | ( | _L
{121<1, (ke (20)2) 7 <C1g0) 21| +e

S 015 / (1 — €+ ’2,’2)_m+1 sz ce dzm_1
|2/]<3

1
|z1|<C138 ’2’1‘ te

3 d+e "
< Cis (/ (V1—e+ r)(_2m+2)rm_3dr) log ( )
0

6—7"

< Ciglog (5 j; e_r> (/03(\/1_—6+ r)_m_ldr>

dz1 e dzm_1

—-r

m
2

= Cy7log <1 + eT_T($)> (1—¢)" 2,
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where zg = G(n(z)), 2 = (22, 23,..., 2m—1) and C12—Ci7 are constants
independent of z. Here we have used the fact that |z| < 2. If m = 2,
then

le,

1
IVSClg(l—E)_l/ I
|z1]<C130 ’2’1‘ +e

and we see that the final result of (1.8) is still true.
By the definition of € and the fact that tanh¢ < 1 for all ¢, we have

(1.9) 1 —e=1-tanhr(z)tanhr > 1 — tanhr(z) > o= 2r(@)
Similarly,
(110) 1—¢ Z 6_27".

From (1.2)—(1.8) it follows that

—r(y)
—(m=DL)r(z,y) ¢
e d
/r(wzl ds(n(y)) +e @Y

< 0196_(m_1)r($){ / e (0 +e ) TH1 - 6)_mTldr
1

(1.11) ~
_r —ry—1 e _mT—l "
+/1 e"(d+e )T (1—¢) d

0 o0 m
—I-/ e "rdr + / e " log(1 + e @) (1 — e)_7dr}.
1 1
By (1.9) we get

@) [T ey 4 ey - 07
1

(1.12) < Cype—(m=1r(@)+m=1)r() /OO o dr
1
< Cyy.

If 7 > r(z), then we use (1.9) and §+e™" > § = e @ and if r < r(x),
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then we use (1.10) and 6 + e™" > e™" to conclude that

@) [T ey i1 - o
1

r(@)

< 6—(m—1)r(m)</ e—r+r+(m—1)rd,r,
1

+ /oo €—r+r(:v)+(m—1)r(m)d,r,)
r ()

(1.13)

< Coo.
Using (1.9) for » > r(x) and (1.10) for r < r(x) respectively, we have
o0
e~ (m=1r(z) / e " log(l+ e "@)(1 — )" Fdr
1
r(z)

< e—(m—l)r(:t) (/ =Tt g

(1.14) 1

+ / eI (p — p(z) + 1) dr>
r(z)
< 0237

where we have used the fact that log(1+¢""(®)) <log?2 if r < r(zx), and
log(1 + €""®)) <log2 + r — r(z) if r > r(x). Combining (1.11)-(1.14)
yields that there is a constant C4 independent of x such that

/ o~ (m=Dr(og) €'Y
r(y)>1 ds, (n(y)) + e ")

Putting this back to (1.1), we have

dy < Coy.

(1.15) : Gz, y)f (y)dy < Ca

for some constant Cy for all z with r(z) > 1. If r(z) < 1, then
tanhr(z) < 1 — ¢; for some d; > 0. As in the estimate in (1.7), it
is not hard to show that (1.15) is still true with a possibly larger con-
stant. q.e.d.

Lemma 1.2. Under the same assumptions as in Lemma 1.1, sup-
pose dx(n(x)) > 6* > 0. Then for r(x) large enough we have

i G(z,y)f(y)dy < C(6*)r(z)e™" @,
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where C(§*) depends only on C1, ¥, m and §*.

Proof. Note that for all y with r(z,y) < 1, we have ds(n(y)) > 6%,
provided r(z) is large enough. Use the notation as in the proof of Lemma
1.1. Then (1.1) becomes

G(z,y)f(y)dy
Hm™

-r(y)
< Cor [ =@ 4 / o= (m=D)r(z.y) € g )
= 25( ()21 ds(n(y) + e

(1.16)

Here and below C; will denote constants depending only on C}, X, m
and 0*. Using the methods of obtaining the estimates (1.5) and (1.7),
we get

r(y)>1 n(y +e” )

< Chge™(m=Dr { "6 + e )L — ) T dr
+/°° d}
< Cyre=m=Dr {(/ /) eT(1—e)” 1]dr+1}.

By (1.9) and (1.10) as before, the lemma follows. q.e.d.

Remark 1.1. Tt is easy to see that in Lemmas 1.1 and 1.2, & can
be replaced by a finite family of compact manifolds.

By an observation of Bando [2], we have the following:

Theorem 1.3. Let ¥ be a finite union of compact submanifolds of
codimension at least 1 without boundary in S™'. Using the Poincaré
unit ball model of H™, let o be the center of B™(1). Let v be a map from
H™ to H"* such that

Ce ")

I @)l € gy

where (n(x),r(x)) is the geodesic polar coordinates at o of x. Then there
is a harmonic map F : H™ — H" such that dpn (F(x),v(x)) is uniformly
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bounded on H™. Moreover, if v has bounded enerqy density, then F also
has bounded energy density.

Proof. We will sketch the proof for the sake of completeness. Let
B(R) be the geodesic ball of radius R with center at o. Let Fr be the
harmonic map from B(R) to H" such that Fp = v on dB(R). By [17],
the assumption on v and Lemma 1.1, we can find a bounded positive
function ¢ on H™ such that

A¢ < —[|7(v)|| < Adyem (Fr,v).

Hence dpm (Fr,v) < ¢. Together with the energy density estimate in
[4], the results follow. q.e.d.

2. Harmonic maps with singular boundary value

In [10]-[12], it was proved that if f : S~1 — §"~lis a C' map with
nowhere vanishing energy density, then one can extend f to a proper
harmonic map from H” into H”. In this section, we will construct
harmonic maps extending a class of boundary maps which may not
satisfy the above conditions. Namely, f may not be smooth, or f may
have zero energy density somewhere; that is, f is singular. We will
show that in some cases one can solve the boundary value problem for
harmonic maps provided the singular set of f is small. Let f : S™~ ! —
S™ ! be a map. In this section, we always assume that f satisfies the
following conditions:

(a) f is C* with nowhere vanishing energy density except possibly
at U§:1 ¥, where {3; }§:1 is a finite disjoint family of embedded sub-
manifolds without boundary of S™~! and dim(Z;) < m — 1 for all j;

(b) if we use the upper half space model for H"™, consider %; to
be an embedded submanifold in R~ and f a map from R™~! into
R*~L. Then near ;, f = (f',..., /") can be expressed as f®(z') =
dg‘j’j (z)h$(2"), with Ba,; > —1, such that:

(i) each h{ is bounded and Lipschitz continuous;

(ii) each h$ is smooth with uniformly bounded derivatives up to order
3 on U; \ 3;, where U; is a neighborhood of 3;;

(ifi) if Ba,j # 0, then b =0 on ¥ and [Voh$[> > C > 0 in U; \ ; for
some constant C ;

563
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(iv) if there is fa,; = 0, then 35, 5 o [Voh$|* > C > 0in U;\ E; for
some constant C .

Here and below, dx; (2') is the Euclidean distance from 2’ to %; in R7L
Vo is the Euclidean gradient and Ay is the Euclidean Laplacian either
in R™ or R™~!. Let us consider some examples of maps satisfying these
conditions.

Example 1. Let f : R — R be the function defined by f(t) = [t|*~ ¢
for some o > 0. Then f satisfies the above assumptions. In this case,
the singular set consists of the point 0 and the point at infinity. The
boundary value problem for f has been solved in [5], [22]. One may relax
the condition on f. For example, one may assume that near 0, f(t) =
[t|*~1h(t) where h(t) is smooth with nowhere vanishing derivative. The
case that h is C' with nowhere vanishing derivative has been solved in
[13].

Example 2. Let f : R — R be the function defined by f(¢) = [t]*~ !¢
for £ < 0 and f(t) = C|t|* 't for t > 0. Here C > 0 and « > 0 are
constants. We will discuss this kind of boundary maps in more details
in §4. Note that if we write f(¢) as |t|*"*h(t), then h(t) is only Lipschitz
at 0.

Example 3. Let f : R"™! — R”"! be the function defined by
f(z) = |z|*'2x. Then f satisfies the above conditions with singular
set consisting of the origin and the point at infinity. In this case, the
singular set is of dimension 0. The boundary value problem for maps

with similar behavior at finitely many isolated singular points has been
solved in [22]

Example 4. Let f : R? — R? be defined by f(p,0) = (r, ¢) in polar

coordinates, where

(1—p*)*p? if p<1,
r =
(1—p)%? ifp>1
In this example, the singular set consists of the unit circle, the origin
and the point at infinity.
In this section we will prove the following:

Theorem 2.1. Let f : S™~! = S" ! be a map satisfying conditions
(a) and (b). Then there exists a proper harmonic map F from H™ to
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H"* with bounded energy density such that F = f at S™'. Moreover, F
is C' up to the boundary except possibly at U§:1 X,
We begin our proof of the theorem by the following well-known facts;

see [9] and [12] for example:

Lemma 2.2. Let f be a bounded function on R™™' with compact
support and let w be its harmonic extension in the upper half space in
R™. Let ¥ be a closed and bounded set in R™'. Suppose f is C° on
R™=L\ 3 with uniform bounded derivatives up to order 3. Then the
following hold.

(i) There is a constant C' > 0 such that

1

! m
<O —-.

(it)
lim z™u; =0
™ —0

for 1 <i<m.

(#53) If, in addition, [ is Lipschitz continuous, then there is a constant
C depending only on [ such that

for 1 <i¢<m—1, and that

C
! m
luijl(z', 2™) < do(@) o
for 1 <i,5 <m, where z’ = (z',... 2™ "),

(iv) If f; is continuous at x', then u; is also continuous at (z',0) for
1<i<m—1.

To prove the theorem, we only consider the case that £ = 1, so that
the boundary map f is smooth except at an embedded submanifold .
The general case can be proved similarly. Identify H™ (H" respectively)
with the upper half space in R™ (R" respectively) with the Poincaré
metrics. By choosing a point not in ¥ as the point at infinity of R™~!,
we may assume that ¥ is an embedded submanifold of R™"~! and f =
(f',..., f* 1) satisfies conditions in (b). Then we have the following:
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Lemma 2.3. There exist a neighborhood U of ¥ in R™™ and
a > 0 such that the map [ can be extended from U to a map v from
{{(/,2™)] ' € U, 0 < 2™ < a} into H" with the properties that v has
bounded energy density and the norm of its tension field satisfies

xm

7 ()[|(z', 2™) < C'W

for some constant C, where v is considered as a map from an open set
in H™ into H*. Moreover, v is C' up to the boundary except at 3.

Proof. By choosing a tubular neighborhood of ¥, we can find neigh-
borhoods U and V of X, with U cC V, such that d% is smooth in
V. Using cutoff functions, without changing the value of f in U we
may assume that f¢ is zero outside V. By the assumptions on f, for
1<a<m-—1,

f(@') = i (a')h* (')

in U with constants 5, > —1. We may assume that h® is zero outside
V. Moreover, the functions A satisfy the following:

(i) each h® is bounded and Lipschitz continuous;

(ii) each h® is smooth with uniformly bounded derivatives up to order
3 on R\ %

(iii) if By # 0, then h* = 0 on ¥ and |[Voh®2 > C > 0 in U \ X for
some constant C;

(iv) if there is B, = 0, then 37, 5 _([Voh*?* > C > 0in U\ ¥ for
some constant C.

Let (2, 2™) = (d%(2') + (xm)g)% and let u® be the harmonic extension
of h* in the upper half space for a =1,...,m — 1. Let

v = P (u® — z™ul).

If B4 # 0, then h* = 0 on Y. Hence near X,

RY(2') =< Voh®(a'), Vods;(z') > ds(z') + O(d%),
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and there is a constant C; > 0 such that if we choose U small enough,
then in U,
C1 > |Voh®|? + B2d52(h™)? + 2Badg' h® < Voh®, Vods, >
= |Voh®|? + (82 4 26a) (< Voh®, Vods: >)* + O(dx)
= |Voh®|? — (< Voh®, Vody, >)?
+ (Ba + 1)*(< Voh®, Vods, >)* + O(ds)

> Cr

where we have used (iii), and the fact that |Vods| = 1 and G, > —1.

Therefore, after choosing a smaller U, we can find a bounded nonnega-
tive function with support in V' which is equal to

1
2

(IVoh®|? 4 B2d52(h*)? + 2B4d5 B < Voh®, Vods, >)

in U. Let ¢* be the harmonic extension of this function in the upper
half space. Then, by choosing an even smaller U if necessary, we can
find ¢ > 0 such that

(2.1) Ot < (g2, 2™) <

for all (z/,2™) such that ' € U and 0 < 2™ < a. If 8, = 0, let g% be
the harmonic extension of |Vgh®|. By (iv), we see that by choosing a
smaller ¢ and a larger C'1, we have

(2.2) Crl< > (g2 2™ < Gy
o, 8070

for all (2’,2™) such that 2’ € U and 0 < 2™ < a. g% is well-defined.
Let u™ be such that

n—1
(m—1)(u")* = % (g"),
a=1

Define

v’ = ™",

In the following computations, we always assume that 2’ € U and
0 < a < ™. By Lemma 2.2(iii), there is a constant Co > 0 such
that

(2.3) u?|(a!, ™) < Cy
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forl<i<m—-landl<a<n-—1,

Cy
2.4 Voud|(z',2™) < ———
( ) ’ 0 Z’( )—g(x/7xm)
for1<i<m,1<a<n-—1and (by Lemma 2.2(i))

&
2.5 2y ™) < ——2
(25) Voo|(a',2") < gt
for ] <a<n-—1. By (2.1) and (2.2),
n—1 ) n—1
(2.6) Cyy &0 > (u'(a!,2™)" > Cyt Y ¢,
a=1 a=1

In particular, 4™ > 0. Note that if there is 8, = 0, then
(W™)? > C5t > 0.

For 1 <a <n-—1, by (2.4),

2Cox™
(27) [ = " | = 20 ] < =,
and by Lemma 2.2(ii),
(2.8) lim (u® — 2™u2) (2, 2™) = h*(zp)-

(@' 2™) = (20,0)
Hence for 3, # 0, by (2.7),
lu® (2, ™) — 2™ul (2, 2™) — h*(2')| < 2C2™.
So, by assumptions (ii) and (iii),
(2.9) [u® — 2™l (2!, 2™) < C5é(, 2™).
Since |Voé| = 1, by (2.1), (2.5) and (2.6),

n—1
u"|Vou”| < Cy Yy €20t
a=1
(u")?

< Cs g
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for some constants C; and C5. Thus
UTL

Similarly, by choosing a larger Cy, we can prove that

1

[Ao(u")’| < Co(7)
Then using (2.10), we conclude that
n un
(2.11) ‘A()U, ‘ S 065_2

for some constant Cy. Since (3, > —1, (2.6) implies

lim v™ =0.
™ —0

Combining this with (2.8) yields
v(z,2™) = (v, 0" (2, 2™) — (f(x)),0)

when (z/,2™) = (xg,0).
Now we are ready to estimate the norm of the tension field of v. The
components of the tension field of v is given by

-2 2
4(v) = (xm)Q (AO'Ua - mxm ’U% —on < Vov*, Voo >)

foril<a<n-—1,

-1
B > m—2 1 (¥ 5 )
Tn(v) = ((I,‘m) (Ao’l)n — o ’U% + ’U_” (O;_l ‘Vo’l)a’ - ’V()Un‘ ))

n

)2 = — S | @),

) 2=
To estimate (m:)onva for 1 <a<n-—1, we have

v

Agv® = =26%ufy 4 Ba7 72 (ED0E + (B — 1)) (u® — &™)

m—1
- 2/8045@1_1 (Z gl(uza - xmu?m) - gmxmugnm> 5

=1

569
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where we have used the fact that |Vo&| = 1. Suppose G, = 0. Then by
(2.4) and (2.6), we have

xm

§

(z™)?

/UTL

Ao’l)a S 202

m
X
- ‘—Agfuo‘
un

If B, # 0, by (2.3), (2.4), (2.6), (2.9) and the fact that £Ay¢ is bounded,
we conclude that in any case:

(xm)Q m
2.12 Agv?| < Cr—
(2.12) | <0
for some constant C;. To estimate
(z™)?2m -2 1,
on m Um = (m - 2) nvm’

note that, since
Vov® = ¢ha (Vou® — 2™Vouy, — uf‘nvoxm)+ﬁafﬁa_lvoé’ (u® —2™ul),
we have

qxm
vy = —é’ﬁaxmu%m + ﬁafﬁa = (u® — 2y .

If 5, = 0, then from (2.6) and (2.4), it follows that

m

m\2 -9
(@) m Scs%

ph ™

(2.13)

83
Um

for some constant Cg. If 8, # 0, then (2.4), (2.6) and (2.9) yield that
(2.13) is still true. To estimate

™2 1 1
( ) U_” < V()'Ua,V()'Un >=——= < V()'Ua,V()'Un >,

(w")?

/UTL

note that

Voo™ = 2" Vou" +u"Voz™,
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and that

1
’U_” < VOUQ,VOUTL >

= gﬁ:n_l [g (xm < Vou®, Vou™ > —(2™)? < Voul, Vou™ >
— zMu uy — xmu”uf‘nm>
+ Ba (:Jcm < V&, Vou" > +u" - %) (u® — xmuf‘n)]
gﬁa—l
[f (xm Z usuy — 2 < Voud, Vou" > —z™u"ul, )
+ Ba (:Jcm < V&, Vou™ > +u" - %) (u® — xmuf‘n)]
gﬁa—l

m—1
[ ( Z uu — ™ < Voup,, Vou™ > —u"uf‘nm>
n n 1 « m,
+ Ba (< Vo, Vou" > +u E) (u® — z um)]
Therefore

(a™)?

_n < VOUQ,VOUTL >

mé’ﬁa 1 m—1
< Z uiuy — ™ < Vougy,, Vou™ > —u”u%m)

Un

+ Ba (< V&, Vou" > +u” - %) (u® — 2" ud) ]

By (2.3), (2.4), (2.6), (2.9) and (2.10) we have

my2 m
1 T

B L G, Vo >‘ < Gy
I ¢

From (2.12)—(2.14) it follows that

m

(2.15) yvinT“(u)y < Cm‘%.
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To estimate g .
z
(=™) Agv"™ = o (2uy, + ™ Agu™)

/UTL
we use (2.10) and (2.11) to get
m)2 m

G < Cn?-

,UTL

(2.16)

A()Un

Finally, to estimate

.

3
Using the fact that V& = %(dzvodz + 2™Voz™), we have

(2.17)
= —(m—2)+O(

|Vov®|? =¢26a |Vou® — 2" Vouy, — uf‘nvoxm]2
+ B T (u — 2u,)?
260,70 (w0 — o)
- < Vou® — x"Voup, —ug, Voz™, Vo >

—¢2 (190 + PV + ()
— 2™ < Vou®, Voufén >
— 2(uf‘n)2 + 22" ug u
+ ﬁig—?(ua _ $mugn)2

+ Qﬁa£_2(u°‘ — z™uf))dy < Vou®, Vods, >

—¢ (Aot 4 010 )

where we have used (2.3), (2.4), (2.9) and the fact that

< Vods, V()(L‘m >=0.
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Here

m—1
AC = (uf)? + BT (u® — 2" up,)’
i=1
+ Qﬁag_g(ua - xmugn)dz < Vou®, Vods > .

Also, by (2.10)
‘Vo’l)n‘g — (un)2 + (xm)leounP + meunu;zn

— (w")? (1 + 0(§)> .

Thus

Zm 2 1 n—1
( vn) . U_n (Z ’VOUQ‘Q _ ‘Vo’l)n’2>
a=1

m

n—1
(Z g% A% — (m — 1)(“")2> +0(5).
a=1 f
Combining this with (2.17) yields
™2 | m—2 1 (&=
P |t (S oot )
a=1
m

n—1
- [ e - ) ) + 0
WP \& :

It remains to estimate A® — (g%)2. First from (2.1), (2.2), (2.3), (2.9),
it follows that A% and g% are bounded. At a point (z,2™) with 2™ >
1ds ('), we have

1
=(m—2)+ ()2

(2.18)

m

|A% — (g%)?] < 012%

for some constant Cio. On the other hand, if 2™ < 1dx(2'), then
ds(z') > 0 and 2’ is a point of continuity of Voh®. By the definition of
g% and Lemma 2.2,

A%(a',0) = (¢°)*(2',0).
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From (2.3), (2.4), (2.5), (2.7) and (2.9) it follows that

0A®  9(g¥)? 1
| A W)L | < Cus;
ox™ 0x ¢
for some constant C13. Thus we also have
m
|A% — (9°)°] < Clz%

by choosing a larger C15. Combining this with (2.16) and (2.18), we can
find a constant C74 such that

m

1 z
| (W)] < 014?,
which together with (2.15) implies that

xm

¢!, am)

for some constant C5. To estimate the energy density of the map v, by
(2.3), (2.4), (2.6) and (2.9), wehavefor ] <a<n—1land1 <i<m-—1,

|7 ()]|(z",2™) < Ch5

o8] = [Bug® st — amug) + €% g — a7,
_ ™
(219) S Clﬁfﬁa ! (é. +£ (1 + ?))
< 30685
< Ciru”

for some constants Cig, C17. For 1 < a < n — 1, from (2.6), (2.7) and
(2.9) it follows that
o] = |Ba™ " Em (u® — 2™ i) — P a™u,,)
(2.20) < COypBn
< Cigu”

for some constants Cig, C1g9. On the other hand, by (2.10) we have

|Vov"| = |2 Vou" + u"Voz™|
(2.21) < ™| Vou"| +u”
< Cyou”.
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The energy density of the map constructed above is given by

m)2

(‘/I" . |2 _ 1 < |2
o 25 Vo = G 2 Ve

Hence by (2.19)-(2.21), the map v has bounded energy density. It is
easy to see that v is C' up to the boundary except at . q.e.d.

Proof of Theorem 2.1. Near £ = 0 and away from 3, the map
v constructed in the previous lemma has the following properties. v is
smooth, vy — ffasz™ — 0,for1 <i<m—-landl1<a<n-1,
v¥ — 0 as z™ — 0, and u™ — /e(f)/(m —1) as 2™ — 0. By the
method as in the proof of Theorem 4.1 in [12], we can extend the map
f:S™ 1 = 8" ! {0 a map ¥ from H” into H” such that if we use the
geodesic polar coordinates at the origin, then we obtain

e—r(:t)

ds(n(z)) + @)

Ir(@)]|(z) < C

for some constant C. Moreover, ¥ has bounded energy density. Here
we have used the notation as in Lemma 1.1. By Theorem 1.3, there is
a harmonic map F from H™ into H"* such that

dyr (F(z),9(x)) < C

for some constant C for all + € H™. Hence F = v = f on ™!, and
F as well as © also has bounded energy density. Using Lemma 1.2 the

method in [12], one can show that F is C' up to the boundary portion
OH™ \ X, q.e.d.

By [21] and Theorem 2.1, we have the following:

Corollary 2.4. Suppose f : S' — S is a piecewise smooth map with
nowhere vanishing energy density. Then there is a proper harmonic map
F from H? to H? with boundary value f and bounded energy density. If,
in addition, f is a homeomorphism, then F is quasi-conformal.

We will also consider another kind of boundary maps. Let
f:S™ 1 = S"! be a smooth map such that the zero set of the energy
density e(f) of f is a disjoint union of finitely many embedded subman-
ifolds 3; for 1 < j < /. Suppose near each %;, e(f)(z') = dngj (2")g;(x")
for some positive integer 5; > 0 and some smooth function g; > 0.
Using similar method we can prove:

575
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Theorem 2.5. Let f : S™~1 — S*7! be a smooth map satisfying the
above conditions. Then there exists a proper harmonic map F from H™
to H" with bounded energy density such that F = f at S™ 1. Moreover,
F is C' up to the boundary except possibly at U§:1 X5,

Proof. The proof is similar to that of Theorem 2.1 and is more sim-
ple. We only sketch the ideas. For simplicity, we assume that £ = 1 and
Y is the zero set of e(f). Moreover, using the upper half space models
for H™ and H", we may assume that X is an embedded submanifold of
R, Near 3, e(f)(a') = d;ﬂ(m')g(w’) for some positive integer 5 > 0
and some smooth function g > 0. Write f = (f',..., f"!). Let ¢ be
the harmonic extension of g to the upper half space. Then ¢ > 0 near
Y. Let

u (2, 2™) = f¥2') for1<a<n-—1,

and let
un (2!, ™) = & (!, 5™ Pl ™).
Here as before, £(2/,0™) = (d&(2') + ((L‘m)2)% Using the fact that

|Vofel(z') < Cdg(x’) near 3, we may conclude that [Vf¢[(z') <

Cdg_l(:ﬁ’ ) near ¥ for some constant C'. We can then prove that the

tension field of u = (u',...,u") satisfies

xm

(al,am)’

and that v has bounded energy density. One can proceed as in the proof
of Theorem 2.1. q.e.d.

Im(w)]|(z",2™) < C

It was proved in [13] that if f is a nonconstant analytic map from
ST to itself, then f can be extended to a proper harmonic map from H?
to itself with bounded energy density. Using Theorem 2.1, or Theorem
2.5, one can show that similar result holds if f is a nonconstant analytic
map from S! to S*~1.

3. Results on uniqueness

In this section, we will discuss the problem of uniqueness for har-
monic maps constructed in the previous section. There are examples
of non-uniqueness of proper harmonic maps constructed in [11], [7]; see
also [12]. Tt was shown in [12] that given k points on S~ there is a
k-parameter family of distinct harmonic maps u from H™ to itself with
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ulgm-1 being the identity map. u is C! up to the boundary except at
those k£ points where u grows very fast. On the other hand, if u is a
harmonic diffeomorphism on H? with bounded energy density so that
ulg1 is identity, then w is quasi-conformal by [21] and v must be the
identity map by the uniqueness theorem in [12]. Hence one may guess
that uniqueness or non-uniqueness depends on the growth rates of the
maps to be considered. We will prove that in some cases this is correct.
Namely, we have the following:

Theorem 3.1. Let ¥ be a closed subset of S™ 1. Let u and v be two
harmonic maps from H™ to H" such that the function distmr (u(p), v(p))
satisfies:

(i) limy_,,, distgn (u(p),v(p)) = 0 for any boundary point x € S\,
and

(i) either (a) H™ 2(Z) < oo, where H™ 2 is the (m — 2)-dimensional
Hausdorff measure on S™1, and disty (u(p),v(p)) = o (exp(r(p))
as p — 0o, where r(p) is the distance function in H™ from o fized
point o, or (b) H™2(2) = 0 and distm- (u(p),v(p)) = O (exp(r(p))
as p — oo.

Then u = wv.

Corollary 3.2. Let X be a closed subset of S™ 1. Let f be a map
from ST\ S to S"L which is C* with nowhere vanishing energy den-
sity. Let u and v be two harmonic maps from H™ to H*, which are C!
up to the boundary portion S™ '\, such that ulgm-1y = vl|gm-ny = f.
Suppose either H™ 2(%) < oo and

distmr (u(p), v(p)) = olexp(r(p))

as p — oo, or H™2(X) =0 and

distrr (u(p), v(p)) = O(exp(r(p))
as p — 0o. Then u =wv.

Proof. By the proof of Theorem in [11] , for any z € S"~1\ %,

lim distm (u(p), v(p)) = 0.

pP—x

The corollary follows immediately from Theorem 3.1.  q.e.d.

577
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Remark 3.1. The condition distgn (u(p),v(p)) = o(exp(r(p)) will
be satisfied if e(u)(p)+e(v)(p) = O (r=27¢(p) exp(2r(p))) for some ¢ > 0.
In particular, if 4 and v both have bounded energy density, the above
condition on distye (u(p), v(p)) will be satisfied. Note that the examples
of non-uniqueness for harmonic maps constructed in [11]-[12] and [7]
mentioned above grow like exp((m — 1)r) near those k points, where r
is the distance function of a fixed point in H".

Let f:S™ ! — S”"! be an analytic map. Then either f =constant,
or the zero set of the energy density e(f) of f is an analytic set of
dimension m — 2. Note that if f is a constant map, then f cannot be
extended to a harmonic map from H"™ to H".

Corollary 3.3. Let f : S™!' — S"™ ! be an analytic map and let
u, v be harmonic extensions of f from H™ to H" such that u, v have
bounded energy densilty and are C* up to the S™ '\ X, where 3 is the
zero set of e(f). Then u =wv.

In order to prove the theorem we need several facts. Using the upper
half space model for H'”, for any t; € R™™!, the function

y m—1
)

is harmonic on H, where z € R™~! and yy > 0 are standard coordinates
on H™.

Lemma 3.4. Let tgp € R™ ! and r > 0 and let By (r) be the
Euclidean open ball of radius v with center to in R™~1. Let

m—1
Y m—2
z,y) = S HE—— dH t).
9(@,) /te@BtO(T) (\x — 2 +y2> ()

Then g is harmonic on H™. Moreover, there exists a positive constant
C'(m) depending only on m such that for any (xo,y0) € H™, if 0 < yo <
7 and dgm-1 (x9, 0By, (1)) < yo, then

9(z0,%0) > %

Proof. Tt is easy to see that g is harmonic on H”™. To obtain the
estimate in the lemma, we may assume that {y; = 0 is the origin. Let
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(zo,y0) € H™ be such that 0 < yo < 7 and dpm-1 (z9, 9By (7)) < yo.
Also let t1 € OBy(r) with

|20 — t1] = dgm-1 (20, 0Bo(r)) < yo.

Then for any point ¢ with |t — ¢;| < yg, we have |zg — | < 2yo. Hence

9(z0,yo) > / (L)m_l dH™2(t)

1€0Bo(r),li—t1|<yo \|Z0 — 1% + yg
> (5y0) " TYH™T2({t € OBy (r), |t —t1] < yo})-

(3.1)

If &, = t1/yo, then & € aBO(yLO) and

H 2 ({t € OBy(r), |t —t1] < yo})
— (o)™ *H™ 2 ({€ € DBo(—), |€ — &4| < 1})

Yo
> C(m)(yo)™ >

for some positive constant C(m) depending only on m. Here we have
used the fact that r > yo. By (3.1), the lemma follows.  q.e.d.

If 4 and v are harmonic, then distyn (u, v) is subharmonic. Theorem
3.1 will follow from the following lemma:

Lemma 3.5. Let 3 be a closed set in S™~!. Let f be a nonnegative
subharmonic function on H™ such that limy,_,, f(p) = 0 for any point
x € ST\ 3. Suppose either H™ 2(X) < oo and f(p) = o(exp(r(p))
as p — 00, or H™2(2) = 0 and f(p) = Olexp(r(p)) as p — oo. Then
f=0.

Proof. Let us assume that H"2(3) < oo and f(p) = o(exp(r(p))
as p — oo. Using the upper half space model for H", we may assume
that ¥ is a compact set in R”~! with ™ 2(X) < co. For any A > 0,
there exists a family of open balls By, (r;), © € Jy with |J,] < oo, such
that max;ec s, r; < A, UieJA By, (r;) D X and

(32) S0
=N

for some constant C; which is independent of A. Let

Oi,)\ = {((I;ay)’ T e Bti (Ti)a 0<y<mr, and dRm—l(maaBti (TZ)) > y}
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Also let Ay, = H™ \UieJA O; . Since Uz’eJA By (r;) D%, forany z € &
there is ¢ € Jy such that dpm-1(z, 0By, (r;)) > 0. So there exists ¢ > 0
such that if |z — Z| < e and 0 < § < ¢, then (Z,9) € O; ). By the
assumption of f, we see that f is bounded on A,. Moreover, if ¢ is
a point in the boundary of Ay in H" and if ¢ ¢ OH™, then ¢ ¢ X.
For ¢ ¢ OH™, we must have ¢ = (x,y) for some x € R™~! and y > 0,
which implies that ¢ € m N TC’)\ for some ¢ € Jy, where C’)ic)\ is the
complement of O; , in H™. Then, on the one hand, we have z € By, (ry),
0 <y <r; and dgm-1 (£,90B,(r;)) > y. On the other hand, we also have
x & By, (ry), y > 1 or dgm-1 (z,0By,(r;)) < y. Hence we can conclude
that 0 <y < r; and dgm-1 (z,90By,(r;)) = y, which are the assumptions
of the second statement of Lemma 3.4. Therefore, we can apply Lemma
3.4 to the function

m—1
A Y m—2
g lz,y) = / (—) dH t).
@D =2 oo TP ®

Firstly, we conclude that ¢* is a harmonic function on H™. Then,
together with the assumption that f(p) = o(exp(r(p))), we conclude
that for any € > 0, there is a Ag > 0 such that if 0 < A < Ag, then
eg® > f on boundary of Ay in H™. Since f is bounded on Ay, we have

(3.3) g (@, y) > f(z,y)

on Ay. Let (z9,y0) € H™ be fixed. Since yg > 0, we have (zg,40) € Ay
for all 0 < A < yo. By (3.3), we have,

(3.4) €9 (@0, 40) > f (20, y0)
if 0 < A < min{Xg,yo}. For any A, by (3.2), we have
C
A 9
(3.5) 9" (0, y0) < oy’

where C5 is a constant independent of A. Combining this with (3.4),
and letting € — 0, we conclude that f(zg,y0) = 0. If H™ 2(Z) = 0 and
f(p) = O(exp(r(p)) as p — oo, then (3.4) can be replaced by

(3.6) Cs9™ (w0, 90) > f(20,%0),

where ('3 is a constant independent of A. Moreover, the constant C; in
(3.2) can be chosen so that C; — 0 as A — 0. Hence the constant C5 in
(3.5) also satisfies Co — 0 as A — 0. Letting A — 0 in (3.6), the lemma
follows. q.e.d.
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4. An explicit solution

Consider the following boundary value problem on the infinite strip
{—o<z<ocand 0<y<7}
(4.1) Agf —2cotg < Vof,Vog > =0,
. Agg + cot g (IVof]* — [Vogl?) =0,

such that f(z,0) = az, f(z,n) = azx + 3, g(x,0) =0, g(z,7) = 7 and
0 < g(z,y) <wfor0 <y < m, where o > 0 and 3 are constants. We may
assume that g > 0. If the infinite strips {—oco < z < o0 and 0 < y < 7}
and {—oo < f < o0 and 0 < g < 7} are equipped with the metrics

(%) sin~2y (dm2 + dy2) and sin"2g (df2 + dg2)

respectively, then a solution of the above boundary value problem is a
harmonic map (z,y) = (f,g) from H? to H2. Moreover, if we use a
conformal map of the form z — €® and transform the infinite strips to
the upper half planes, then the boundary value of the map is given by

tje—1t ift >0,
oy =
Cltle='t  ift <0,

where C = €. By Corollary 2.4, we know that (4.1) has a quasi-
conformal solution with the given boundary data. For the case 3 =0,
the solution can be expressed explicitly as solutions of some ordinary
differential equations; see [5], [22]. In this section, we will show that for
£ > 0, we can obtain explicit solutions by solving a system of ordinary
differential equations. In fact, we will try to find a solution of (4.1)
which takes the form f(z,y) = ax + h(y) and g(z,y) = g(y). In this
case, (4.1) becomes:

K" —2cot g h'g' =0
(4.2) { cot g I'g :

o'+ cotg (a2 + ()2~ (¢)2) =0,
with conditions h(0) = 0, h(7) = 3, g(0) =0, g(7) = 7 and 0 < g(y) <
m for 0 < y < w. It is not hard to obtain the first integrals of the

systems. Since we would like to have solutions with A’ > 0, we have

(4.3) W =a’sin’g, and (¢)? = ®+ (b +a*—a?)sin? g—atsint g,

581
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where ¢ = h'(§), b = ¢'(5) are constants to be chosen to satisfy the
boundary conditions. Let z = cot g. Then

(Z) = a2t + 227 + 1,

where ¢2 = o + b + a*. Hence we let z(y) be the function defined by

“W) dz T
(44) / 5.1, 00,72 2 ¥
0 Va2zt +¢222 +b 2

Lemma 4.1. For any a > 0, there is a unique constant by > 0 such
that

/°° dz
0 a2zt +c222 + b2
where ¢2 = o + b2 + a*. Moreover, b, < max{2a, o'} and b, depends

continuously on a.

Proof. Let

™
9 )

o0 dz
ne = [ ,
0 \/0422'4—1—0222—1—()2
where ¢2 = o? 4+ b% +a*. Tt is easy to see that limy_,o I(b) = 0o. Suppose
b > max{2a, a~'}. Then

b dz
I (b) S/
0 \/0422'4+b222+b2

</°° dz
“Jo Va2z* 4+ 2abz? + b2

_/°° dz
Jo a4 b

4.7
_(ba) 2 5
I

3

Since I1(b) is decreasing and continuous in b, the lemma follows easily.
q.e.d.

Lemma 4.2. Let 0 < a < oo and let b, > 0 be the constants as in
Lemma 4.1, which depend continuously on a. Given o > 0 and 8 > 0,
there is a = a3 > 0 such that

o2 /°° dz _B
o (1+22)a22t+c222 +b2 2
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where c2 = o + b2 + a*.

Proof. Let

5 [ dz
I(a)=a / )
o (14 22)\/a22t + 222 + b2
Let y = y(2z) be such that

/ i dz o
0 Va2t +c22?2 402 2 v

Then, by the choice of b, z can be expressed as a function of y on
0 <y < 5 and we have

I(a :aQ/ Ay
2(a) o 1492

Hence lim,_,¢ I5(a) = 0. In particular, if 8 = 0, we simply pick a = 0.
Since b, < max{2a,a~'}, there is a constant C'(«) > 0 depending only
on « such that

dz

. a2 =
(a) /0 (z4+a422+1)% (1—1—22)
Cla) ! dz
> a /0 —(

on
&
v
Q

2 a4z2—|-2)%
_ Cla) (! dz
o /o<z2+a%>%
— 00,

as a — oo. Since b, depends continuously on a, I3(a) is a continuous
function of a. Hence the lemma follows.  q.e.d.

Let « > 0 and 8 > 0 be given. Let a = ang > 0 be the con-
stant obtained in Lemma 4.2, and b, be the constant in Lemma 4.1
corresponding to a. Let z be the function defined in (4.4), and define

y
(4.5) g=cot™lz and h(y) = ag/ sin? g(7)dr.
0

It is easy to see that g : [0,5] — [0,5], A : [0,5] — [0, §]7
g(0) =h(0) =0, g(5) =5 and h(F) = g Extend g and h to [0, 7] such
that

(4.6) h(t) =0—h(r—1t), g(t)=7—g(m —1).
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Let

(4.7) flz,y) =ax+h(y) and g(z,y) = g(y).

Theorem 4.3. Let u = (f,g), where [ and g are given by Lemma
4.1, 4.2, (4.4)-(4.7). Then u is a quasi-conformal harmonic diffeomor-
phism from H? onto itself. Here we identify the domain and the range
to be infinite strips with conformal metrics (*). u satisfies the boundary
conditions u(z,0) = (ax,0) and u(z,7) = (ax + 3,0). Moreover, the
Hopf differential of u is equal to (c1+ics)dz?, where ¢; = —1(b?+a*—a?)
and cg = —%aag, which are constants depending on « and (.

Proof. Tt is not hard to see that « is harmonic and a diffeomorphism.
Since ¢’ > 0 and ¢'(0) = «, ¢'(5) = b > 0 and ¢’ is bounded away from
zero. Hence
Uz a—g +ib
Uy a+g — ik

= <1-c¢

Uy

for some constant € > 0. We conclude that « is quasi-conformal. By
direct computations, using (4.3), the Hopf differential is given by (c; +
ico)dz? as claimed. q.e.d.

Let us compute the norm of the Hopf differential of the harmonic
map constructed in Theorem 4.3. Using w instead of z in the theorem,
the Hopf differential is ® = cdw?, where ¢ is a constant. Let w = log 2.
Then w is a conformal map from the upper half space into the strip
0 < Im(w) < 7. Hence ®(z) = cz~2dz?, and its norm with respect to
the hyperbolic metric is given by

]c]yQ
[0)) = —
H H(Z) 22 +y27

where z = z + 4y. For |z] > 1,
(4.5) 1@][(2) < lely?,

and for |z] <1,

2lely
(4.6) 12]](2) < :
|z +y
Let f : S' — S! be a homeomorphism satisfying the conditions in
Theorem 2.1. Namely, f is C* with nonvanishing energy density except
possibly for finitely many points p1,...,p;. Near each p;, if we consider
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f as a map from R to R such that p; corresponds to 0 and f(0) = 0,
then f(t) = [t|*" (k1 () + ha(t)), where ho(t) = O(t?) as t — 0, is C?
smooth away from 0 and is piecewise C® smooth at 0, and

¢ i >0,
hi(t) = o
Ct ift<0

for some constants « > 0 and C > 0.

Theorem 4.4. Let f be as above and let h be a quasi-symmetric
function from S* onto itself such that h has a quasi-conformal harmonic
extension on H2. Then ho [ also has a quasi-conformal harmonic ex-
tension.

Proof. Let us consider the special case that f is given by (*) at the
beginning of this section and let I’ be the quasi-conformal harmonic
diffeomorphism constructed in Theorem 4.3. Suppose b : ST — Sl is a
quasi-symmetric function such that s has a quasi-conformal harmonic
extension H on H2. Let &5 and ® 5 be the Hopf differentials of F and
H respectively. Then by Lemma 3.2 in [18], the norm of the tension
field of H o F' satisfies

@7 |Ir(Ho F)li(2) < Cill®xllon (1+ (|®xllon)® [|2#]|(2),

where C is an absolute constant, and ||Px||op = sup,em ||Pu||(2)
which is finite by [21]. Moreover, H o F' has bounded energy density.
By (4.5), (4.6) and Theorem 1.3, h o f can be extended to a harmonic
map on H? with bounded energy density. It is easy to see that the
harmonic map is a quasi-conformal diffeomorphism.

In general, suppose f satisfies the conditions in the theorem. We
remark that for each ¢ : R — R which is of the form as in (*), we can
modify ¢ to another map ¢ such that ¢ = ¢ outside a compact set,
1 is C*° on R with ¢(0) = 0 and ¢’ # 0 on R. Hence we can find
¢ St — S' and ¢ such that, for each j with 1 < j < k —1, ¢j is
a composition of a map of the form (*) with conformal maps in the
domain and the range, 9 is of the form (*) outside a compact set and
is C*° with 4(0) = 0 and ¢’ # 0 on R, and

f=Jfioppodro - ody_q,

where f; is C' with nonvanishing energy density. Let i : S' — S' be a
quasi-symmetric function such that s has a quasi-conformal harmonic

585
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extension on H2. By the result in [18], ko f; also has a quasi-conformal
harmonic extension on H?. Tt remains to show that if » : S — St is a
quasi-symmetric function such that A has a quasi-conformal harmonic
extension H on H?, so is hotp. By the construction of ¢, we can extend
Y to a map G from H? to H? such that near OH? and away from 0, G
is exactly the harmonic map constructed in Theorem 4.3. Near 0, G
is conformal at the boundary and is smooth. Then as in [12], one can
show that, as y — 0,

(4.8) I (G)]I(z) = O(y)
and
(4.9) |@cl|(2) = O(y),

where ®¢ is the dz?-part of the pull-back metric by G which is the
Hopf differential if G is harmonic. We will call @« the Hopf differential
of G even G may not be harmonic and the differential may not be
holomorphic. Similar calculation as in the proof of Lemma 3.2 in [18]
yields

(4.10)  |I7(H o G)[[(2) < C(l|®xllep) (|2cl|(2) + |IT(G)][(2)) ,

where C(||®x||gp) denotes a constant depending only on ||®x||gp. So
together with (4.5), (4.6), (4.8) and (4.9), we see that the map H o G
satisfies the conditions in Theorem 1.3. Hence H o G can be deformed
to a quasi-conformal harmonic diffeomorphism on H?.  q.e.d.

Corollary 4.5. Let G be the subspace of the universal Teichmiller
space T consisting of quasi-symmetric functions from S' onto S' satis-
fying the assumptions of Theorem 4.4. Then for all f in the closure of
G in T with respect to the Teichmuller metric, f can be extended to a
untque quasi-conformal harmonic diffeomorphism.

The closure of G contains the closure N of C! diffeomorphisms of st
as a proper subset. The characterization of the N in terms of the Hopf
differentials of the quasi-conformal harmonic extensions is given in [18].
It is interesting to understand what is G. Suppose that f € G. Then
there exists a sequence f, in G such that f, — f in Teichmiiller sense.
Let F' and F), be the corresponding quasiconformal harmonic extensions.
By the main result in [18], ||® g, — Pr|lgp — 0. Since ||®F,||(2) — 0 as
z — OHP except at finitely many points and || - ||op = sup,cm || - |[(2),
we see that, for any e > 0, {¢ € 9H? |limsup, ¢ ||®r||(2) > €} is finite.
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This implies that for any f € G, there is a quasiconformal extension
F of f such that for any € > 0, the set of boundary points & with
limsup,_,¢ |ur(2)| > € is finite, where pp is the complex dilatation of
F. We still do not know whether this condition is sufficient.

5. Group-invariant harmonic maps

In this section, we will find all the harmonic maps from a domain in
R? into hyperbolic 2-space which are explicitly solvable via systems of
ordinary differential equations. In other words, we will find all group-
invariant harmonic maps from a domain in R? into H? with respect to
Lie point symmetries. In terms of the standard coordinates (z,y) on
R? and (f,g), g > 0 on the upper half-plane model of H?, the harmonic
map equation can be written as

(5.1) {izg _

< V(]fa V()g >,
(IVogl?> = [Vof?) .

@—e

Therefore, the harmonic map equation can be considered as a sys-
tem of partial differential equations with space of independent and
dependent variables M = R? x H? which is considered as a subset
of R? x R?. Let G be a local group of transformations (i.e., a local
group of local diffeomorphisms of R? x R?) acting on M. Then a G-
invariant harmonic map is a solution (f(z,y), g(z,y)) of (5.1) whose
graph T's oy = {(=z,y, f(z,y), 9(z,y))} C M is a locally G-invariant sub-
set of M. There is a standard computational procedure to determine
group-invariant solutions of a given system of partial differential equa-
tions, and we will follow this procedure to find all the group-invariant
harmonic maps. For a detailed discussion of the procedure and the
theory behind, we refer the reader to the book [15].

First of all, we need to determine all the infinitesimal generators
of the Lie point symmetry group of the harmonic map system, i.e., all
vector fields along the solution space of harmonic map equation given
by orbits of particular solutions under one-parameter subgroups. This
involves a straightforward but tedious computation.

Theorem 5.1. The infinitesimal generators of the Lie point sym-
metry group of (5.1) are of the form

X =&(2,9)0, +n(z,y)0y + (a(f> — g°) + bf +¢) 0y + (2afg + bg) 0y,
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where a, b and ¢ are real constants, and (&, n) satisfies the Cauchy-
Riemann equations

f:v_ny:fy‘i'nmzo-

This can be written in complex form
X =2Re (F(2)0, + (au® + bu+¢)d,),

where z = x +1iy, u = [ +1ig, and F(z) is a holomorphic function in z.

Proof. Let X = &4(z7,u?)d; + ¢*(27,u”)Dye be an infinitesimal
generator of the Lie point symmetry group, where we write (z!, ?) for
(z,y), (u*,u?) for (f,g), and the repeated indices mean summation. X
induces a vector field on the 2-jet:

pr(X) = €0, + ¢*Ouo + ¢* Dus + §™ Dy

for some functions ¢ and ¢** determined by &', ¢%, u$, and Ugy-
Applying it to the harmonic map equation (5.1), we have

. 2 2 . .
(52) Y ¢l =— (ug)ggb? < Vou!, Vou® > +25 3 (9 uf + ul¢™),
7

i

Z¢2,ii — _(u§)2¢2(lvou2’2 o ’V0U1’2)
(53) +_Z 2,1 2 ¢11 1)
U2

According to the prolongation formula in [15], for any 4

(5.4) ¢ = ¢ + ¢u) — — &g uf
and
Z ¢a7ii = Z <¢zz + 2¢o¢ ﬁU + gbuﬂuruﬁuT + ¢u5ull
i 7
_ehya 9 — 28] uf
(5.5) guuk 5zuﬁu uk 5’ Uki

k k
- fuﬂukuu -2, 5“ Ug,

k
- guﬂu’“ uﬁuTUk)



HARMONIC MAPS WITH SINGULAR BOUNDARY VALUE 589

Using the harmonic map equation, we see that Agu® = > “Z can be
expressed in quadratic terms in u$*. So together with the observation
that there is no second order derivative terms of u on the right-hand
side of equations (5.2) and (5.3), we conclude by comparing the terms
involving uf, in equations (5.2), (5.3) and (5.5) that

(&1 + &) + &uoul + Epu = 0.
Hence
(5.6) &+ =0,
and for any /3
(5.7) Lo =

The last equation means that £ are independent of 4®. This simplifies
the computation a lot. In fact, the formulae (5.4) and (5.5) become

(5.8 # = 95+ o] — €l

and

Z P = Z <¢m + 26500, + Bip,e ) ] )

+¢%Aw—%AﬁW£—%Gﬁﬁf%%)

(5.9)

The remaining second order terms involve only uf; and u$,. Using
the harmonic map equation (5.1) again, we see that ufy = —u$, +
quadratic terms in uf . Therefore, by comparing the second order terms
again, we conclude that

(5.10) & =65

The system (5.6) and (5.10) is just the system of Cauchy-Riemann equa-
tions which implies that Agé* = 0. Hence, (5.9) further simplifies to

Z ¢a,ii = Z (¢zz + 2¢Zu5u + ¢uﬂu9a U’fu O‘)
(5.11) i

+ ¢u5A0U — 2£%A0uo‘.
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Now, we need to handle the first derivative terms. Using (5.8) and
the Cauchy-Riemann system (5.6) and (5.10), we have

R.H.S. (right-hand side) of (5.2)
2
= L5 o+ gt
%

(5.12) 2 2
+ Eﬁl\voul\g + Eqﬁizlvouglz

2 2 2 4¢1
+ (_ (u2)2 ¢ + ?%1 + Eﬁz - %) < Vou', Vou® > .

On the other hand, using (5.11) with o = 1, we have

L.H.S. (left-hand side) of (5.2)
=3 (¢ + 200007
%
(5.13) + (d)ilul — %d)iz) Vou' |
+ 20l + (8 — 26)] < Vou!, Vou? >
¥ (Phage + o0l Vol

Therefore, by comparing the corresponding terms in (5.12) and (5.13),
we have

(5.14) A =0,

2 409 2.1\ _ o 1 B
(5.15) E( Ju; + drup) = 2¢; 5uy

1 2
1 1 2
(5.16) Dyt — ?Qbuz = ?¢u17
1 1

1 2 2

(5.17) Dpiyz = —W¢ + E¢“2’

1
(5.18) ¢11ﬂu2 = ?@32,
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which implies that
(5.19) ot = A(zh, 22, uh) (w?)? + B(zh, 22, ut)

for some functions A and B of z!, 22 and u' only.
Similarly, we find that

R.H.S. of (5.3) = ( Ll
2 2
u ¢u1—¢ )<VOU V()u >
(5.20)
+( )2 2¢u1+2 )WOU‘
¢ 2 9
+ ( u2) uz - i) Vou?|?
and
LHS. of (5.3) = 3 (4% + 263,00 )
i
2
+ (2¢31u2 + ?¢21> < VOUI,V[)U2 >
(5.21)

1

+ (¢2 — (¢ — 25%)) Vou'
1

+ ( we + 5 (4 —25%)) Vou? [,

Then comparing the corresponding terms as before, we have

(5.22) Ag¢® =0,

(5.23) ¢?u5uf = % (¢7u? — gruy) .
_ ¥ 2,

(5.24) ¢u1u1 - 2%2 = wWe Eqﬁuh

1
(5.25) P12 + ?%2 =0,
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1 1
2 2 2
(5.26) ¢uzu2 - E¢u2 + (u2)2¢ =0,
which is an Euler equation and gives
(5.27) $* = C(z*, 22, uu® + D(zt, 22, uh)u? log u?,

where C' and D are functions of (z',z?) and u' only. Now substituting
(5.19) and (5.27) into (5.25) and comparing the coeflicients, we have

(5.28) Dy =0 and Cu+24=0.
Then substituting (5.28), (5.19) and (5.27) into (5.24) yields
(5.29) D=0 and B, =C.

Therefore (5.28) and (5.29) imply:

1
(530) ¢1 = _§Bu1u1 (x17x27u1)(u2)2 + B((I;laxgaul)a

(5.31) $* = By (zh, 2%, u)u?.
Substituting these into (5.17), we conclude that
By =0,
so that
(5.32) B = E(z',2%)(u')? + F(z*, 22! + G(z, 2%)

for some functions E, F and G of (z',2?) only. By (5.30), (5.31) and
(5.32), we see that (5.16) becomes identity and (5.15) implies that

VoE = VoF = VG =0,

and hence E, F and G are real constants, says £ = a, F = b and
G = c¢. The remaining equations (5.23), (5.14) and (5.22) are then
satisfied trivially. Therefore we arrive at our final answer

' =a ((ul)2 — (u2)2) +bu! +¢,

$* = 2autu® + b
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Together with (5.6) and (5.10), the proof of the theorem is completed.
q.e.d.

It is easy to see that the infinitesimal generators are combinations of
infinitesimal generators obtained by the local conformal transformations
on the domain and the isometries of the target. Therefore, we have

Theorem 5.2. The Lie point symmetry group of the system of
harmonic map equations from a domain in R? into H? is the product
of the local group of local conformal transformations of the domain and
the isometry group ofHQ.

From now on, we will use Theorem 5.1 to find all the group-invariant
harmonic maps up to conformal equivalence. The procedure is to inte-
grate the vector field given by Theorem 5.1 in order to obtain the orbit of
a particular solution under the corresponding one-parameter subgroup.
Then by eliminating the parameter, one get enough invariants to obtain
group-invariant solutions. The interested readers can consult Chapter
3 of the book [15].

Theorem 5.3. A group-invariant harmonic map from o domain
in R? into H? is equivalent, up to a conformal transformation of the
domain and an isometry on HZ, to one of the following forms:

1. Harmonic maps invariant under the group generated by a trans-
lation on R? and o translation on the upper-half plane model of

H2 :
{f(w,y) = 7+ h(y),
g9(@,y) = ha(y),
where hy, ho are functions of y only with he > 0.

2. Harmonic maps invariant under the group generated by o transla-
tion on R? and a dilation on the upper-half plane model of H? :

fley) = e"hly),
9(z,y) = € ha(y),
where hy, ho are functions of y only with he > 0.

3. Harmonic maps invariant under the group generated by o transla-
tion on R? and a rotation on the unit disc model of H?:

C(z,y) + V=In(z,y) = eV (hi(y) + V=Tha(y)) ,

where hy, hy are functions of y only and satisfy h? + h3 < 1.
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Proof. Using the complex form of the admissible vector field in The-
orem 5.1, the orbit of a harmonic map (z,u(z)) under a one-parameter
subgroup is given by the solution of the following initial value problem
of ordinary differential system

{z— = F(2), 5(0) =

Z,
4 = a2 + b+ ¢, u(0) = w.

(5.33)

If F =0, then 2 = z and & = y(e)u for some one-parameter subgroup
of the Mobius group. Hence there is no invariant harmonic map in this
case, and we may assume that F' does not vanish since we are only
interested in local solutions at this moment. We define a holomorphic,
hence locally conformal, change of the domain by

e
S+Zt—/m,

where the choice of the base point is not important. Then in terms of
this new variable,

2Re (F(2)0,) = 0.

Since we are interested in classifying the local group-invariant harmonic
maps up to conformal change of the domain and isometry on H?, we
may as well assume that F(z) = 1 and the system (5.33) becomes

=1 2(0) = =,
(5.34) % =y, §(0) =y,
4 = a3 + b+ ¢, (0) =,

where z = x + 1y. The first two equations of (5.34) give

(5.35) {

Hence, y is an invariant of the corresponding one-parameter subgroup
generated by X.

Let § = b> — 4ac. We consider the following cases. The first case is
6 = 0. Suppose also that a = 0. Then b = 0 and the third equation of
(5.34) gives

IS
Il

T+ €,
Y.

N}
Il

oW =u + ce.
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Therefore, in this case, the orbit of a harmonic map under the group
action is

r= x+ce¢,
=1,
w= u-+ ce.

By eliminating the ¢, we obtain three invariants of the one-parameter
group
Y, f —-cr, g.

Therefore, the group-invariant solution is of the form

f—cz =h(y),
g = ha(y),
for some functions k1 and hs of one variable. This is of course equivalent

to the first case.
Suppose ¢ = 0, but ¢ # 0. Then

Hence the invariants in this case are

—1 —1
¥, Re - —azr |, Im - —az .
U+% U—F%

Let U = W%?a)' Then U is harmonic and in fact equivalent to v in
our sense. Therefore, in this case, the group invariant harmonic map is

also equivalent to

Re U =az+ hi(y),
Im U = ha(y),

for some functions hq and ho of one variable. This is also equivalent to
the first case. Hence, we have proved that for § = 0, all group invariant
harmonic maps are equivalent to the first case.
Secondly, we assume that § > 0. Suppose also that ¢ = 0. Then
b # 0 and we get
. c be c
U+ 3 =e (u + 5) .
As before, we can find three invariants in this case

C
Y, e—bx <f + 5) 3 e—bmg.
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Therefore, the corresponding group-invariant harmonic map is of the

form
e—bm (f + %) = h'l (y)a
e g = ha(y),
for some functions A1 and hs of one variable. This is of course equivalent

to the second case.
If 6 > 0 and a # 0, then

u+A ut+ A G
= = €
U+ Ao u+ A

b

where A\; = (b—+/3)/(2a) and Ay = (b++/8)/(2a). Hence the invariants
are
e 2T A e_\/%, Im 221 A e Vor,

U+ Az U+ Ao
Therefore, by letting V' = (u+A1)/(u+M\2), the group invariant harmonic
map is also equivalent to

Y,

ReV = e‘/gmhl(y),
ImV = e‘/gmhg(y),

for some functions ki and hy of one variable. This is also equivalent
to the second case. Hence, we have proved that for § > 0, all group
invariant harmonic maps are equivalent to the second case.

Finally, if § < 0, then a # 0. Similarly, the group invariant solution
is equivalent to

ReV = e‘/gmhl(y),
ImV = e‘/gmhg(y).

However, V does not map into the upper-half space since A; are complex-
valued. In fact, V is a mapping into the unit disc. So we see that the
group invariant solution is equivalent to a harmonic map into the unit

disc model of H? of the form

¢ +in = VP (hy(y) + iha(y))

for some functions hy and ho of one variable. This is equivalent to the
third case. The proof of theorem is completed. q.e.d.

The remaining task for us now is to determine the functions h; and
hs in each case.
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Case 1. For the first case, using the harmonic map equation for the
upper-half space model, we see that hy and hs satisfy

hobl] = 21} R,
Bahf = (W) = (1) — 1.

It is easy to obtain the first integral of this system

{hﬁ = c1(hg)?,

(536) ()2 = ea(h)? — G(ho)! + 1

for some constants ¢; and co. Therefore, the general solution can be
expressed in terms of elliptic functions explicitly. Instead of giving the
general solution which is straightforward by consulting table of ellip-
tic integrals, we would like to point out that the second equation in
(5.36) implies that if ¢; # 0, then the corresponding harmonic map is
not surjective. So if one is interested in finding examples of harmonic
diffeomorphisms, one can assume ¢; = 0. Then

h1 = (3,
(h5)? = ca(ha)? +1
for some constant c¢3. The second equation has the general solution
1
ho = —=sinh(x+/coy + ¢4
o SV + )

for some constant ¢4, provided ¢o > 0. Therefore the harmonic map is
equivalent to

{f(xvy) =,
g(z,y) = e sinh(y/ec2y),

which is the example given earlier by Li-Tam [L-T 2]. If ¢ < 0, then
one can check that the harmonic maps are equivalent to the identity

{f(x,y) =,
g(w,y) =y

for ¢ = 0, and to
1

g(z,y) ZTsin( |caly),
21

597
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which is not surjective for ¢y < 0.

Case 2. The second case is in fact handled in Section 4 already by an
isometric change of the Poincaré upper-half plane to a horizontal infinite
strip with width equal to 7. The only difference is that we are interested
in finding the harmonic diffeomorphism with suitable boundary data in
Section 4. As a matter of fact, this is equivalent to showing that one
can obtain the harmonic diffeomorphisms with the required boundary
data by selecting the suitable integral constants. Moreover, one can also
check that all the other group-invariant solutions except those obtained
in Section 4 are not surjective as in the first case.

Case 3. Finally, for the third case, we use geodesic polar coordi-
nates (p,6) on the unit disc model of the hyperbolic 2-space. Then the
harmonic maps should have the form

p=nhiy), 0==x+hay)

for some functions i1 and hy of y only. Also the equations of hy and Ao
become

{h'{ — sinh Ay cosh by (14 (hh)?) =0,
hh

B+ 250 ~ 0

Similarly, the first integral can be found

(r)? = sinh® by — c? sinh™2 hy + ¢o,
R, = ¢y sinh™2 hy.

Again, general solutions can be expressed in terms of elliptic functions.
Also, one sees that ¢; = 0 and ¢ = A2 > 0 in order to have a surjective
solution. In this case,

(R))? = sinh?(h1) + A2 and  hy = cs.
Letting & = cosh h1, the equation for h; becomes
(€)2 = (€2~ 1)(€2 — 14 22).
Therefore, the solutions are equivalent to:
1. If A =0, then (z,y) € (—o0, +00) X (—00,0) and the map is

(z,y) — ey tie,
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2. If0 < A < 1, then (z,y) € (—o0, +00) x (0, K(k)) and the map is

1+ cen(y, k) — sn(y, k) 4z
1+cn(y, k) +sn(y, k) "~

(z,y) —

where k = v/1 — A2 and sn, cn and K (k) are Jacobi elliptic func-
tions and the complete elliptic integral corresponding to k respec-
tively [3, p.51].

3. If A =1, then (z,y) € (—o0,+0) x (0,27) and the map is

1 +siny —cosy ;,
e,
1+ siny + cosy

(z,y) —

4. Tt XA > 1, then (z,y) € (—o0,4+00) x (0, K(k')) and the map is

1+ 500 ) = e )
1 +sn(Ay, k') +cen(Ay, k')~ 7

(z,y) —

where k' = v/1—X=2 and sn, cn and K(k') are Jacobi elliptic
functions and the complete elliptic integral corresponding to &’
respectively [3, p.45].

One can then see that all the solutions are not diffeomorphic in this
case.

Corollary 5.4. The only quasi-conformal and group invariant har-
monic diffeomorphisms from H? onto itself are those obtained in Theo-
rem 4.5.
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