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EINSTEIN METRICS ON CONNECTED SUMS OF

S
2

× S
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Abstract

In this paper we construct infinitely many families of Einstein
metrics on the connected sums of arbitrary number of copies of
S2 × S3. We realize these 5-manifolds as total spaces of Seifert
bundles over Del Pezzo orbifolds. A Kähler–Einstein metric on
the Del Pezzo orbifold is then lifted to an Einstein metric using
the Kobayashi–Boyer–Galicki method.

It is still very poorly understood which 5-manifolds carry an Einstein
metric with positive constant. By Myers’ theorem, the fundamental
group of such a manifold is finite, therefore it is reasonable to concen-
trate on the simply connected case. The most familiar examples are
connected sums of k copies of S2 × S3.

For k ≤ 9, Einstein metrics on these were constructed by Boyer,
Galicki and Nakamaye [BGN02, BGN03b, BG03]. In this paper we
extend their result to any k.

Theorem 1. For every k ≥ 6, there are infinitely many (2k − 2)-
dimensional families of Einstein metrics on the connected sum of k
copies of S2 × S3.

It was known earlier that these spaces carry metrics of positive Ricci
curvature; this is a special case of the results of [SY91]. Sasakian
metrics of positive Ricci curvature on k#(S2 × S3) are constructed in
[BGN03a].

The constructions in [BGN02, BGN03b, BG03] exhibit suitable
links of singular hypersurfaces 0 ∈ Y ⊂ Cm with C∗-action. These links
are Seifert bundles over the corresponding weighted projective hyper-
surfaces (Y \ {0})/C∗. The Einstein metrics are then constructed from
Kähler–Einstein metrics on these weighted projective hypersurfaces.

Here we look at this construction from the other end. Starting with a
projective variety X, we study Seifert bundles Y → X. For X smooth,
these are described in [OW75]. When X is a surface, the topology of
Y can be understood well enough. The freedom we gain is that one can
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start with an arbitrary algebraic surface, not just with a hypersurface
in a weighted projective space.

The conditions for the method to work are somewhat delicate, but
there are probably many more examples obtained similarly.

The natural setting of this approach is to start with an orbifold X.
The main ideas are similar, but this requires a somewhat lengthy study
of Seifert bundles over orbifolds (see [KOL05]).

Acknowledgments. I thank Ch. Boyer, K. Galicki and J. McKernan
for many useful conversations and e-mails. Research was partially sup-
ported by the NSF under grant number DMS-0200883.

1. Seifert bundles over complex manifolds

Seifert bundles over complex manifolds were introduced and studied
in [OW75]. The quickest approach is to define them first locally by ex-
plicit formulas and then to patch the local forms together. (See [OW75]
for a conceptually better, though equivalent, definition.)

Definition 2. Let Dn
z ⊂ Cn be the unit polydisc with coordinates

z1, . . . , zn. Let Gt be either C∗ or the unit circle S1 ⊂ C, both with
coordinate t. Pick pairwise relatively prime natural numbers a1, . . . , an

and for every i pick 0 < bi ≤ ai such that bi is relatively prime to ai.
Set a =

∏

ai.
Let ǫi be a primitive aith root of unity and consider the Z/a action

on Dn
z given by

φ : (z1, . . . , zn) 7→ (ǫ1z1, . . . , ǫnzn),

and its lifting to Gt × Dn
z

Φ : (t, z1, . . . , zn) 7→
((

∏

ǫbi

i

)

t, ǫ1z1, . . . , ǫnzn

)

.

It is easy to see that

Dn
z/〈φ〉 ∼= Dn

x, where xi = zai

i .

The quotient map Dn
z → Dn

x ramifies along (zi = 0) with multiplicity ai.

Furthermore,
∏

ǫbi

i is a primitive ath root of unity, which implies that
Gt × Dn

z/〈Φ〉 is a smooth manifold. The second projection of Gt × Dn
z

descends to a map

f : Gt × Dn
z/〈Φ〉 → Dn

z/〈φ〉 ∼= Dn
x.

This is called a standard Seifert G-bundle over Dn
x with orbit invariants

(ai, bi) along (xi = 0). ((αi, βi) in the notation of [OW75].)
Notice that the bounded and Z/a-invariant holomorphic sections of

Ct × Dn
z → Dn

z are of the form

t =
(

∏

zbi

i

)

· h(za1

1 , . . . , zan
n ), where h is holomorphic.
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Thus the bounded holomorphic sections of Ct × Dn
z/〈Φ〉 → Dn

x form a

locally free sheaf whose generator can be thought of as
∏

x
bi/ai

i .

Definition 3. Let X be a complex manifold and Di ⊂ X smooth
divisors intersecting transversally. For every i pick natural numbers
0 < bi ≤ ai such that ai and bi are relatively prime for every i. Assume
that ai and aj are relatively prime whenever Di ∩ Dj 6= ∅.

Every x ∈ X has a neighborhood x ∈ U ⊂ X and a biholomorphism
τ : U ∼= Dn such that every Di∩U is mapped to a coordinate hyperplane
in Dn by τ (or the intersection is empty). This assigns numbers (ai, bi)
to every coordinate on Dn. (We set aj = bj = 1 for those coordinates
that do not correspond to a Di.)

A Seifert G-bundle over X with orbit invariants (ai, bi) along Di is
a real manifold L with a differentiable G-action and a differentiable
map f : L → X such that for every neighborhood U as above, τ ◦ f :
f−1(U) → U ∼= Dn is fiber preserving equivariantly diffeomorphic to
the corresponding standard Seifert model.

For any P ∈ X, the number
∏

P∈Di
ai is called the multiplicity of the

Seifert fiber over P .
A Seifert S1-bundle is also called a Seifert bundle,
There is a one–to–one correspondence between Seifert S1-bundles and

Seifert C∗-bundles over X.

Definition 4. Analogously, a holomorphic Seifert C∗-bundle over X
with orbit invariants (ai, bi) along Di is a complex manifold Y with a
holomorphic C∗-action and a holomorphic map f : Y → X such that
for every neighborhood U as above, τ ◦ f : f−1(U) → U ∼= Dn is fiber
preserving equivariantly biholomorphic to the corresponding standard
Seifert model.

From (2) we see that

X ⊃ V 7→ {bounded holomorphic sections of f over V \ ∪Di}
defines a locally free sheaf, denoted by BY .

5 (Construction of Seifert bundles, [OW75, 3.9]). Let X be a com-
plex manifold such that H1(X, Z) = 0. Assume that we are given

1) smooth divisors Di ⊂ X intersecting transversally,
2) natural numbers 0 < bi ≤ ai such that

a) ai and bi are relatively prime for every i, and
b) ai and aj are relatively prime whenever Di ∩ Dj 6= ∅, and

3) a class B ∈ H2(X, Z).

There is a unique Seifert C∗-bundle f : Y → X such that

4) f : Y → X has orbit invariants (ai, bi) along Di, and

5) f factors as f : Y
π→ MY

q→ X, where
a) q : MY → X is the unique C∗-bundle with Chern class aB +

∑

bi
a
ai

[Di] where a = lcm{ai}, and
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b) π : Y → MY is an a-sheeted branched cover, branching along
q−1(Di) with multiplicity ai.

Every Seifert C∗-bundle f : Y → X has a unique such representation.
This representation defines the Chern class of a Seifert bundle

c1(Y/X) := B +
∑

bi

ai
[Di] ∈ H2(X, Q),

where, for a divisor D ⊂ X, [D] ∈ H2(X, Z) denotes the corresponding
cohomology class. This notation extends to Q-linear combinations of
divisors by linearity.

If X is projective and H2(X,OX) = 0 then every Seifert C∗-bundle
has a unique holomorphic Seifert C∗-bundle structure. It satisfies c1(BY )
= B.

2. The topology of 5-dimensional Seifert bundles

Notation 6. In this section, X denotes a smooth, projective, sim-
ply connected algebraic variety and D1, . . . , Dn ⊂ X are smooth di-
visors intersecting transversally. f : L → X denotes a Seifert bun-
dle with orbit invariants (a1, b1), . . . , (an, bn) along D1, . . . , Dn. Set
a = lcm(a1, . . . , an).

The main result, (10) is for surfaces only, but two of the intermediate
steps hold in all dimensions.

Proposition 7. Notation as in (6). Assume that

1) the [Di] form part of a basis of H2(X, Z),
2) a · c1(L) ∈ H2(X, Z) is not divisible.

Then H1(L, Z) = 0.
If, in addition,

3) π1(X \ (D1 ∪ · · · ∪ Dn)) is abelian,

then L is simply connected.

Proposition 8. Notation as in (6). Assume that dimX = 2 and

every Di is a rational curve. Then H3(L, Z) is torsion free.

Proposition 9. Notation as in (6). Assume that

1) the ai are odd, and

2) w2(X) ≡ a · c1(L) modulo 2.

Then w2(L), the second Stiefel–Whitney class of L (cf. [MS74, Sec.4]),
is zero.

Corollary 10. Notation as in (6). Assume that dimX = 2 and the

conditions of (7), (8) and (9) are all satisfied. Then L is diffeomorphic

to (k − 1)#(S2 × S3) for k = dimH2(X, Q).
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Proof. By [Sma62], a simply connected compact 5–manifold L with
vanishing second Stiefel–Whitney class is uniquely determined by
H3(L, Z). q.e.d.

The computation of H1(L, Z) relies on the following.

Proposition 11 ([OW75, 4.6]). Let X be a complex manifold such

that H1(X, Z) = 0 and let D1, . . . , Dn ⊂ X be smooth divisors inter-

secting transversally. Let f : L → X be a Seifert bundle with invariants

(a1, b1, . . . , an, bn, B). Then H1(L, Z) is given by generators k, g1, . . . , gn

and relations

1) aigi + bik = 0 for i = 1, . . . , n, and

2) k(B ∩ η) − ∑

gi([Di] ∩ η) = 0 for every η ∈ H2(X, Z).

12 (Proof of (7)). It is enough to prove that the equations (11.1–2)
have only trivial solution modulo p for every p.

If p|ai then p 6 |bi so aigi +bik = 0 gives k = 0. Since the Di form part
of a basis of H2(X, Z), for every j there is an ηj such that [Di]∩ηj = δij .
This implies that gj = 0 for every j.

If p 6 |ai for every i then gi = −(bi/ai)k makes sense and the second
equation, multiplied through by a, becomes

k ·
(

aB +
∑

bi
a
ai

[Di]
)

∩ η = 0 for every η ∈ H2(X, Z).

By (7.2), aB +
∑

bi
a
ai

[Di] = ac1(L) is not zero modulo p, so for suitable
η we get k = 0.

As in [OW75, p. 153], the assumption (7.3) implies that π1(L) is
abelian. Thus L is simply connected once H1(L, Z) = 0.

13 (Proof of (8)). In order to compute the rest of the cohomol-
ogy of L, we consider the Leray spectral sequence H i(X, Rjf∗ZL) ⇒
H i+j(L, Z). First we get some information about the sheaf R1f∗ZL and
then about the groups H i(X, R1f∗ZL).

Proposition 14. Let f : L → X be a Seifert bundle.

1) There is a natural isomorphism τ : R1f∗QL
∼= QX .

2) There is a natural injection τ : R1f∗ZL →֒ ZX which is an iso-

morphism over the smooth locus.

3) If U ⊂ X is connected then

τ(H0(U, R1f∗ZL)) = m(U) · H0(U, Z) ∼= m(U) · Z,

where m(U) is the lcm of the multiplicities of all fibers over U .

Proof. Pick x ∈ X and a contractible neighborhood x ∈ V ⊂ X.
Then f−1(V ) retracts to f−1(x) ∼ S1 and (together with the orien-
tation) this gives a distinguished generator ρ ∈ H1(f−1(V ), Z). This
in turn determines a cohomology class 1

m(x)ρ ∈ H1(f−1(V ), Q). These

normalized cohomology classes are compatible with each other and give
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a global section of R1f∗QL. Thus R1f∗QL = QX and we also obtain
the injection τ : R1f∗ZL →֒ ZX as in (2).

If U ⊂ X is connected, a section b ∈ Z ∼= H0(U, ZU ) is in τ(R1f∗ZL)
iff m(x) divides b for every x ∈ U . This is exactly (3). q.e.d.

Corollary 15. Let f : L → X be a Seifert bundle with orbit invari-

ants (ai, bi) along Di. Then there is an exact sequence

0 → R1f∗ZL
τ→ ZX →

∑

i

ZDi
/ai → 0.

Proof. Note that ai and aj are relatively prime if Di ∩ Dj 6= ∅. It is
now clear that the kernel of ZX → ∑

i ZDi
/ai has the same sections as

described in (14.3). q.e.d.

The groups H i(X, R1f∗ZL) sit in the long exact cohomology sequence
of the short exact sequence of (15). The crucial piece is

∑

i

H1(Di, Z/ai) → H2(X, R1f∗ZL) → H2(X, Z).

Thus H2(X, R1f∗ZL) is torsion free if H1(Di, Z) = 0 for every i.
Therefore, the E2 term of the Leray spectral sequence H i(X, Rjf∗ZL)

⇒ H i+j(L, Z) is

Z ∗ Zk ∗ Z

Z 0 Zk 0 Z.

The spectral sequence degenerates at E3 and we have only two nontrivial
differentials

δ0 : E0,1
2 → E2,0

2 and δ2 : E2,1
2 → E4,0

2 .

In any case, H3(L, Z) ∼= ker δ2 and so it is torsion free.
Note also that if H1(L, Q) = 0 then δ0 is nonzero, hence rankH3(L, Q)

= rankH2(L, Q) = rankH2(X, Q) − 1.

16 (Proof of (9)). Let Y ⊃ L denote the corresponding Seifert C∗-
bundle. L is an orientable hypersurface, hence its normal bundle is
trivial. This implies that wi(L) = wi(Y )|L. Since w2(Y ) ≡ c1(Y )
mod 2 (cf. [MS74, 14-B]), it is enough to prove that KY = −c1(Y ) is
divisible by 2.

Let E → X be the unique holomorphic line bundle with c1(E) =
ac1(L) with zero section X ⊂ E. Let M := E \ (zero section) be the
corresponding C∗-bundle. By (5.5.b), there is a branched covering π :
Y → M with branching multiplicities ai. These are all odd, hence by
the Hurwitz formula, KY ≡ π∗KM mod 2.

By the adjunction formula KX = KE |X + c1(E). Thus, working in
H2(X, Z/2), we get that

KE |X = KX − c1(E) = KX −ac1(L) ≡ w2(X)−ac1(L) ≡ 0 modulo 2,
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the last equality by (9.2). The injection X →֒ E is a homotopy equiva-
lence, thus KE and hence also KM are both divisible by 2.

3. Einstein metrics on Seifert bundles

A method of Kobayashi [Kob63] (see also [Bes87, 9.76]) constructs
Einstein metrics on circle bundles M → X from a Kähler–Einstein
metric on X. This was generalized to Seifert bundles f : L → X in
[BG00], but in this case one needs an orbifold Kähler–Einstein metric
on X and a Hermitian metric on Y .

Definition 17. Let f : Y → X be a Seifert C∗ bundle. A Hermitian

metric on Y is a C∞ family of Hermitian metrics on the fibers.
We can also think of this as a degenerate Hermitian metric h on the

line bundle BY . On X \ ∪Di we get a Hermitian metric. On a local
chart described in (2), let s(x1, . . . , xn) be a generating section of BY .
Then we have the requirement

h(s, s) = (C∞-function) ·
∏

(xix̄i)
bi/ai .

The equivalence is clear since by (2) we can think of s as (C∞-function)·
∏

x
bi/ai

i .

This again leads to the Chern class equality c1(B)+
∑ bi

ai
[Di] = c1(L).

Definition 18. Let X be a complex manifold and Di ⊂ X smooth
divisors intersecting transversally. For every i pick a natural number ai.
Assume that ai and aj are relatively prime whenever Di ∩ Dj 6= ∅.

As in (2) and (4), for every P ∈ X choose a neighborhood P ∈ UP ⊂
X biholomorphic to Dn

x which can be written as a quotient

πP : Dn
z → Dn

z/〈φP 〉 ∼= Dn
x
∼= UP ,

where 〈φP 〉 is the cyclic group of order aP =
∏

P∈Di
ai and πP branches

exactly along the divisors Di ∩ UP with multiplicity ai.
Thus the action is

φP : (z1, . . . , zn) 7→ (ǫ1z1, . . . , ǫnzn),

where ǫj is a primitive aij th root of unity for Dij ∩ UP 6= ∅ and we set
ǫj = 1 for those coodinates that do not correspond to any Di.

An orbifold Hermitian metric on (X,
∑

(1 − 1
ai

)Di) is a Hermitian

metric h on X \ ∪Di such that π∗

P h extends to a Hermitian metric on
Dn

z for every P ∈ X.
On a local chart described in (2) this means a metric

∑

hijdxi ⊗ dx̄j

defined on Dn
x \ (

∏

xi = 0) such that
∑

aiajhijz
(ai−1)
i z̄

(aj−1)
j dzi ⊗ dz̄j is

a metric on Dn
z . Thus the orbifold canonical class is KX +

∑

(1− 1
ai

)Di.
An orbifold Kähler–Einstein metric is now defined as usual.
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Theorem 19 ([Kob63, BG00]). Let f : L → X be a Seifert bundle

with orbit invariants (a1, b1), . . . , (an, bn). L admits an S1-invariant

Einstein metric with positive constant if the following hold.

1) The orbifold canonical class KX +
∑

(1− 1
ai

)Di is anti ample and

there is a Kähler–Einstein metric on (X,
∑

(1 − 1
ai

)Di).

2) The Chern class of L is a negative multiple of KX +
∑

(1− 1
ai

)Di.

The main impediment to apply (19) is the current shortage of ex-
istence results for Kähler–Einstein metrics on orbifolds. We use the
following sufficient algebro–geometric condition. There is every reason
to expect that it is very far from being optimal, but it does provide a
large selection of examples.

In this paper we use (20) only for surfaces. The concept klt is defined
in (21).

Theorem 20 ([Nad90, DK01]). Let X be an n-dimensional com-

pact complex manifold and Di ⊂ X smooth divisors intersecting trans-

versally.

Assume that −(KX +
∑

(1 − 1
ai

)Di) is ample and there is an ǫ > 0
such that

(20.1)
(

X, n+ǫ
n+1F +

∑

(1 − 1
ai

)Di

)

is klt

for every positive Q-linear combination of divisors F =
∑

fiFi such

that [F ] = −[KX +
∑

(1 − 1
ai

)Di] ∈ H2(X, Q).

Then there is orbifold Kähler–Einstein metric on (X,
∑

(1 − 1
ai

)Di).

If
∑

aiDi is invariant under a compact group G of biholomorphisms

of X, then it is sufficient to check (20.1) for G-equivariant divisors F .

Definition 21 (cf. [KM98, 2.34]). Let X be a complex manifold
and D an effective Q-divisor on X. Let g : Y → X be any proper
bimeromorphic morphism, Y smooth. Then there is a unique Q-divisor
DY =

∑

eiEi on Y such that

KY + DY ≡ g∗(KX + D) and g∗DY = D.

We say that (X, D) is klt (short for Kawamata log terminal) if ei < 1
for every g and for every i.

It is quite hard to check using the above definition if a pair (X, D) is
klt or not. For surfaces, there are reasonably sharp multiplicity condi-
tions which ensure that a given pair (X, D) is klt. These conditions are
not necessary, but they seem to apply in most cases of interest to us.

Lemma 22 (cf. [KM98, 4.5 and 5.50]). Let S be a smooth sur-

face and D an effective Q-divisor. Then (S, D) is klt if the following

conditions are satisfied.

1) D does not contain an irreducible component with coefficient ≥ 1.
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2) For every point P ∈ S, either

a) multP D ≤ 1, or

b) we can write D = cC + D′ where C is a curve through P ,

smooth at P , D′ is effective not containing C, and the local

intersection number (C ·P D′) < 1.

4. Log Del Pezzo surfaces with large H2

In this section we construct smooth log Del Pezzo surfaces with
a Kähler–Einstein metric and rankH2 arbitrarily large. Methods to
construct log Del Pezzo surfaces with large H2 are given in [KM99,
McK03]. For ordinary smooth Del Pezzo surfaces the rank of H2 is at
most 9.

Example 23. Start with P1 ×P1 with coordinate projections π1, π2.
Let C1 ⊂ P1×P1 be a fiber of π2 and C2 ⊂ P1×P1 the graph of a degree
2 morphism P1 → P1. Thus π1 : C2 → P1 has degree 1 and π2 : C2 → P1

has degree 2. Pick k points P1, . . . , Pk ∈ C2 \ C1 and blow them up to
obtain a surface h : Sk → P1 × P1. Let C ′

i ⊂ Sk denote the birational
transform of Ci. Note that (C ′

1)
2 = 0, (C ′

1 · C ′

2) = 2 and (C ′

2)
2 = 4 − k.

C1 + C2 ∈ | − KP1×P1 |, thus C ′

1 + C ′

2 ∈ | − KSk
|.

Lemma 24. Let ai be rational numbers with a1 > k−4
2 a2 > 0. Then

a large multiple of a1C
′

1 +a2C
′

2 determines a birational morphism Sk →
S̄k. The positive dimensional fibers are exactly the birational transforms

of those fibers of π2 which intersect C2 in two points of the set P1, . . . , Pk.

Proof. The conditions ensure that (a1C
′

1+a2C
′

2)·C ′

2 > 0, thus a1C
′

1+
a2C

′

2 is nef and big.
For c > a1, a2 we can write

a1C
′

1 + a2C
′

2 ≡ −c
(

KSk
+ (1 − a1/c)C ′

1 + (1 − a2/c)C ′

2

)

.

The Base point free theorem (cf. [KM98, 3.3]) applies and so a large
multiple of a1C

′

1 + a2C
′

2 determines a birational morphism.
The positive dimensional fibers are exactly those curves which have

zero intersection number with a1C
′

1 + a2C
′

2. The projection of such a
curve to P1 × P1 is thus a curve B which intersects C1 + C2 only at the
points P1, . . . , Pk. Since B is disjoint from C1, it is the union of fibers
of π2. q.e.d.

Lemma 25. Notation as above. Assume that k ≥ 5 and choose

natural numbers m1, m2 ≥ 2 satisfying m2 > k−4
2 m1. Assume that no

two of the Pi are on the same fiber of π2. Then

1) Sk is smooth, its Picard number is k + 2.
2) C ′

1 and C ′

2 are smooth rational curves intersecting transversally

and they form part of a basis of H2(S∗

k , Z).

3) −(KSk
+ (1 − 1

m1
)C ′

1 + (1 − 1
m2

)C ′

2) is ample.
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4) π1(Sk \ (C ′

1 + C ′

2)) = 1.

Proof. The canonical class of Sk is −C ′

1 − C ′

2, thus

−(KSk
+ (1 − 1

m1
)C ′

1 + (1 − 1
m2

)C ′

2) = 1
m1

C ′

1 + 1
m2

C ′

2,

and this is ample by (24).
By looking at the first projection π1 we see that P1 × P1 \ (C1 + C2)

contains an open subset C∗ × C∗. Thus π1(Sk \ (C ′

1 + C ′

2)) is abelian
and is generated by small loops around the C ′

i.
Any of the exceptional curves of Sk → P1×P1 intersects C ′

2 transver-
sally in one point and is disjoint from C ′

1. Similarly, the birational
transform of P1 × {Pi} (for any i) intersects C ′

1 transversally in one
point and is disjoint from C ′

2. These show that C ′

1 and C ′

2 form part
of a basis of H2(Sk, Z) and that the small loops around the C ′

i are
contractible in Sk \ (C ′

1 + C ′

2), thus π1(Sk \ (C ′

1 + C ′

2)) = 1. q.e.d.

The next result gives information about klt divisors on Sk.

Lemma 26. Notation as above and assume that k ≥ 5. Let D ⊂ Sk

be an effective Q-divisor such that [D] = [b1C
′

1 + b2C
′

2] for some 0 ≤
bi < 1/2. Then (Sk,

1
2C ′

1 + 1
2C ′

2 + D) is klt, except possibly at one, but

not both, of the two intersection points C ′

1 ∩ C ′

2.

Proof. Assume that 1
2C ′

1 + 1
2C ′

2 +D is not klt at a point Q ∈ Sk. If Q

is not on any of the exceptional curves of h then h∗(
1
2C ′

1 + 1
2C ′

2 + D) is

also not klt at h(Q) ∈ P1 × P1. By assumption [h∗D] is cohomologous
to the sum of the two lines on P1×P1 with coefficients less than 1; these
are always klt. Thus 1

2C ′

1 + 1
2C ′

2 + D is klt outside h−1(C1 + C2).
Write

1
2C ′

1 + 1
2C ′

2 + D = (1
2 + d1)C

′

1 + (1
2 + d2)C

′

2 + D′,

where D′ does not contain the C ′

i. Then D′ ≡ (b1 − d1)C
′

1 +(b2 − d2)C
′

2

and di ≤ bi since otherwise we would obtain that

[D′] = ±[αC ′

1 − βC ′

2] with α, β > 0.

Both are impossible as they lead to a negative intersection number with
one of the C ′

i. In particular, 1
2+di < 1, so the C ′

i appear in 1
2C ′

1+
1
2C ′

2+D

with coefficient less than 1. Thus 1
2C ′

1 + 1
2C ′

2 +D satisfies the condition
(22.1) for C ′

1 and C ′

2.
In order to check (22.2.b) along C ′

1 (resp. C ′

2), we study when the
restriction (1

2 + d2)C
′

2 + D′|C′

1
(resp. (1

2 + d1)C
′

1 + D′|C′

2
) is klt. We

compute the intersection numbers

deg D′|C′

1
= (D′ · C ′

1) = 2(b2 − d2) < 1, and

deg D′|C′

2
= (D′ · C ′

2) = 2(b1 − d1) − (k − 4)(b2 − d2) < 1.

In both cases, the remainder of the restrictions consists of the 2 inter-
section points Q1 + Q2 = C ′

1 ∩ C ′

2, each with coefficient 1
2 + d2 (resp.
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1
2 +d1). Therefore deg

(

(1
2 + d3−i)C

′

3−i + D′|C′

i

)

< 2 and the restriction

contains both Q1 and Q2 with coefficient bigger than 1
2 .

Thus every point occurs with coefficient less than 1, except possi-
bly for Q1 and Q2. Moreover, only one of these two points can have
coefficient at least 1.

We are left to understand what happens along the exceptional curves
of h. Let E be such a curve and write D′ = eE + D′′ where D′′ does
not contain E. Then

e ≤ (D′ · C ′

2) ≤ 2(b1 − d1) − (k − 4)(b2 − d2) < 1, and so
(D′′ · E) = (D′ · E) + e ≤ 2(b1 − d1) − (k − 5)(b2 − d2) < 1.

The first inequality shows (22.1) for E and the second shows that
(22.2.b) holds at every point of E. q.e.d.

Remark 27. In the above proof we could have used the Connected-
ness theorem (cf. [KM98, 5.48]), which implies that the set of points
where (Sk,

1
2C ′

1 + 1
2C ′

2 + D) is not klt is connected.

This is, however, not enough to obtain a Kähler–Einstein metric on
Sk. To achieve this, we make a special choice of the points Pi. It is
easiest to write down everything by equations.

Definition 28. Choose homogeneous coordinates P1
(s:t) × P1

(u:v) and

pick C1 = (u = v) and C2 = (s2u = t2v). The two intersection points
Qi are (±1 : 1, 1 : 1). The involution τ : (s : t, u : v) 7→ (−t : s, v : u)
fixes that Ci and interchanges the two points Qi.

If k = 2m is even, pick 0 < c1 < · · · < cm < 1 and for the Pi choose
the 2m points

(ci : 1, c2
i : 1) and (−1 : ci, 1 : c2

i ),

to obtain a surface S∗

k of Picard number k + 2.
If k = 2m + 1 is odd, pick 0 < c1 < · · · < cm < 1 and for the Pi

choose the 2m + 1 points

(ci : 1, c2
i : 1), (−1 : ci, 1 : c2

i ) and (
√
−1 : 1,−1, 1),

to obtain a surface S∗

k of Picard number k + 2.
In both cases, the involution τ lifts to an involution on S∗

k , again
denoted by τ .

Lemma 29. Notation as above and assume that k ≥ 5. Let D ⊂ S∗

k
be an effective τ -invariant Q-divisor such that [D] = [b1C

′

1 + b2C
′

2] for

some 0 ≤ bi < 1/2. Then (S∗

k , 1
2C ′

1 + 1
2C ′

2 + D) is klt.

Proof. We already know that 1
2C ′

1+ 1
2C ′

2+D is klt, except possibly at
the two intersection points C ′

1 ∩ C ′

2. These are interchanged by τ , so if
1
2C ′

1 + 1
2C ′

2 +D is not klt, then it is not klt at exactly these 2 points. We
have seen in (26) that it can not fail to be klt at both of these points.
q.e.d.
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Corollary 30. Notation as above. Assume that k ≥ 5 and choose

natural numbers m1, m2 ≥ 2 satisfying m2 > k−4
2 m1. Then (S∗

k , (1 −
1

m1
)C ′

1 + (1 − 1
m2

)C ′

2) has an orbifold Kähler–Einstein metric.

Proof. Set ∆ = (1 − 1
m1

)C ′

1 + (1 − 1
m2

)C ′

2. Then −(KS∗

k
+ ∆) =

1
m1

C ′

1 + 1
m2

C ′

2 is ample by (24). For the existence of a Kähler–Einstein

metric, we use the criterion (20) with 2
3 + ǫ = 3

4 . Let D be any effective
τ -invariant divisor numerically equivalent to −(KS∗

k
+ ∆). Then

∆ + 3
4D ≡ 1

2C ′

1 + 1
2C ′

2 + (1
2 − 1

m1
)C ′

1 + (1
2 − 1

m2
)C ′

2 + 3
4D.

Note that

(1
2 − 1

m1
)C ′

1 + (1
2 − 1

m2
)C ′

2 + 3
4D ≡ (1

2 − 1
4m1

)C ′

1 + (1
2 − 1

4m2
)C ′

2.

The assumptions of (29) are satisfied and so (S∗

k , ∆ + 3
4D) is klt. Thus

(S, ∆) has an orbifold Kähler–Einstein metric. q.e.d.

5. Einstein metrics on k#(S2 × S3)

Let C1, C2 ⊂ P1×P1 be as in (28). For k ≥ 6 let Mk−1 be the moduli
space of k− 1 distinct points in C2 \C1. Its dimension is k− 1. We can
also think of Mk−1 as parametrizing surfaces of type Sk−1 obtained by
blowing up these points.

Fix k ≥ 6 and relatively prime odd numbers m1, m2 > 2 satisfy-
ing m2 > k−5

2 m1. We can then further view Mk−1 as parametrizing
orbifolds

(Sk−1, (1 − 1
m1

)C ′

1 + (1 − 1
m2

)C ′

2).

Let f : L → Sk−1 be the Seifert bundle with orbit invariants (m1, 1)
along C ′

1, (m2, 1) along C ′

2 and with the trivial line bundle as BL.
The number a in (5.6) is m1m2. The Chern class of L is

c1(L) = 1
m1

[C ′

1] + 1
m2

[C ′

2] = −
(

KSk−1
+ (1 − 1

m1
)C ′

1 + (1 − 1
m2

)C ′

2)
)

.

Furthermore, ac1(L) = m2[C
′

1] + m1[C
′

2] is not divisible since m1, m2

are relatively prime and computing modulo 2

ac1(L) ≡ −[C ′

2] − [C ′

1] = [KSk−1
] ≡ w2(S)

since the mi are odd.
Using (25) as well, we see that the conditions of (10) are all satisfied,

thus any such L is diffeomorphic to k#(S2 × S3).
The surfaces of type S∗

k−1 considered in (30) form a subset of Mk−1,
and for these surfaces we have proved the existence of an orbifold Kähler-
Einstein metric. The existence of an orbifold Kähler–Einstein metric is
an open condition (in the Euclidean topology), thus we obtain:
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Claim 31. For k ≥ 6 and odd m1, m2 > 2 satisfying m2 > k−5
2 m1

there is an open subset U(k− 1, m1, m2) ⊂ Mk−1 such that all orbifolds
(Sk−1, (1 − 1

m1
)C ′

1 + (1 − 1
m2

)C ′

2) corresponding to a point in U(k −
1, m1, m2) have an orbifold Kähler–Einstein metric.

By (19), for any surface corresponding to a point in U(k− 1, m1, m2)
we obtain an Einstein metric on L. The space U(k − 1, m1, m2) has
complex dimension k − 1 hence real dimension 2k − 2.

Complement 32. As explained in [BG00] (see also [BGK05]), the
Einstein metrics constructed this way have additional good properties.

1) The connected component of the isometry group of the metric is
S1.

2) All these metrics are Sasaki–Einstein.
3) Two metrics constructed from the data (mi

1, m
i
2, P

i
1, . . . , P

i
k−1) for

i = 1, 2 are isometric iff m1
1 = m2

1, m
1
2 = m2

2 and the point set
{P 1

1 , . . . , P 1
k−1} can be mapped to either {P 2

1 , . . . , P 2
k−1} or to its

conjugate by an automorphism of P1×P1 fixing C1 and C2. (Such
automorphisms form a group of order 4.)
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