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RICCI FLOW WITH SURGERY ON FOUR-MANIFOLDS
WITH POSITIVE ISOTROPIC CURVATURE

Bing-Long Chen & Xi-Ping Zhu

Abstract

In this paper we study the Ricci flow on compact four-manifolds
with positive isotropic curvature and with no essential incompress-
ible space form. We establish a long-time existence result of the
Ricci flow with surgery on four-dimensional manifolds. As a con-
sequence, we obtain a complete proof to the main theorem of
Hamilton in [21]. During the proof we have actually provided,
up to slight modifications, all necessary details for the part from
Section 1 to Section 5 of Perelman’s second paper [32] on the Ricci
flow to approach the Poincaré conjecture.
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1. Introduction

Let Mn be a compact n-dimensional Riemannian manifold with met-
ric gij(x). The Ricci flow is the following evolution equation

(1.1)
∂

∂t
gij(x, t) = −2Rij(x, t), for x ∈ M and t > 0,
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with gij(x, 0) = gij(x), where Rij(x, t) is the Ricci curvature tensor of
the evolving metric gij(x, t). This evolution system was initially intro-
duced by Hamilton in [15]. Now it has been found to be a powerful tool
to understand the geometry, topology and complex structure of mani-
folds (see for example [15], [16], [17], [21], [22], [5], [24], [2] [10], [9],
[31], [32], [4], [3] etc.)

One of the main topics in modern mathematics is to understand the
topology of compact three dimensional and four dimensional manifolds.
The idea to approach this problem via the Ricci flow is to evolve the
initial metric by the evolution equation (1.1), and try to study the ge-
ometries under the evolution. The key point of this method is to get
the long-time behavior of the solutions of the Ricci flow. For a com-
pact three (or four) dimensional Riemannian manifold with positive
Ricci curvature (or a positive curvature operator, respectively) as ini-
tial data, Hamilton [15] (or [16] respectively) proved that the solution
to the Ricci flow keeps shrinking and tends to a compact manifold with
positive constant curvature before the solution vanishes. Consequently,
a compact three-manifold with positive Ricci curvature or a compact
four-manifold with positive curvature operator is diffeomorphic to the
round sphere or a quotient of it by a finite group of fixed point free iso-
metrics in the standard metric. In these classical cases, the singularities
are formed everywhere simultaneously and with the same rates.

Note that even though the Ricci flow may develop singularities ev-
erywhere at the same time, the singularities can still be formed with
different rates. The general case is that the Ricci flow may develop sin-
gularities in some parts while keeping smooth in other parts for general
initial metrics. This suggests that we have to consider the structures of
all the singularities (fast or slow forming). For the general case, natu-
rally one would like to cut off the singularities and to continue the Ricci
flow. If the Ricci flow still develops singularity after a while, one can do
the surgeries and run the Ricci flow again. By repeating this procedure,
one will get a kind of “weak” solution to the Ricci flow. Furthermore,
if the “weak” solution has only a finite number of surgeries at any fi-
nite time interval and one can remember what had been cut during
the surgeries, and the “weak” solution has a well-understood long-time
behavior, then one will also get the topology structure of the initial
manifold. This surgerically modified Ricci flow was initially developed
by Hamilton [21] for compact four-manifolds. More recently, the idea
of the Ricci flow with surgery was further developed by Perelman [32]
for compact three-manifolds.

Let us give a brief description of the arguments of Hamilton in [21].
Recall that a Riemannian four-manifold is said to have positive iso-
tropic curvature if for every orthonormal four-frame the curvature
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tensor satisfies

R1313 + R1414 + R2323 + R2424 > 2R1234.

An incompressible space form N3 in a four-manifold M4 is a three-
dimensional submanifold diffeomorphic to S3/Γ (the quotient of the
three-sphere by a group of isometries without fixed point) such that the
fundamental group π1(N

3) injects into π1(M
4). The space form is said

to be essential unless Γ = {1}, or Γ = Z2 and the normal bundle is non-
orientable. In [21], Hamilton considered a compact four-manifold M4

with no essential incompressible space-form and with a metric of posi-
tive isotropic curvature. He used this metric as initial data, and evolved
it by the Ricci flow. From the evolution equations of curvatures, one
can easily see that the curvature will become unbounded in finite time.
Under the positive isotropic curvature assumption, he proved that as
the time tends to the first singular time, either the solution has positive
curvature operator everywhere, or it contains a neck, a region where
the metric is very close to the product metric on S3 × I, where I is an
interval and S3 is a round three-sphere, or a quotient of this by a finite
group acting freely. When the solution has positive curvature operator
everywhere, it is diffeomorphic to S4 or RP4 by [16], so the topology
of the manifold is understood and one can throw it away. When there
is a neck in the solution, he used the no essential incompressible space
form assumption to conclude that the neck must be S3 × I or S3 × I/Z2

where Z2 acts antipodally on S3 and by reflection on I. For the first
case, one can replace S3 × I with two caps (i.e. two copies of the dif-
ferential four-ball B4) by cutting the neck and rounding off the neck.
For the second case, one can do the quotient surgery to eliminate an
RP4 summand. In [21], Hamilton performed these cutting and gluing
surgery arguments so carefully that the positive isotropic curvature as-
sumption and the improved pinching estimates are preserved under the
surgeries. It is not hard to show that, after surgery, the new manifold
still has no essential incompressible space form. Then by using this new
manifold as initial data, one can run the Ricci flow and do the surgeries
again. These arguments were given in Section A-D of [21]. In the last
section (Section E) of [21], Hamilton showed that after a finite number
of surgeries in finite time, and after discarding a finite number of pieces
which are diffeomorphic to S4, RP4, the solution becomes extinct. This
concludes that the four-manifold is diffeomorphic to S4, RP4, S3 × S1,
the twisted product S3×̃S1 ( i.e., S3×̃S1 = S3 × S1/Z2, where Z2 flips
S3 antipodally and rotates S1 by 1800), or a connected sum of them.

The celebrated paper [32] tells us how to recognize the formation
of singularities and how to perform the surgeries. One can see from
Section A to D of [21] that every statement is accurate and every proof is
complete, precise and detailed. Unfortunately, the last section (Section
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E) contains some unjustified statements, which have been known for
the experts in this field for several years. For example, one can see the
comment of Perelman in [32] (Page 1, the second paragraph) and one
can also check that the proof of Theorem E 3.3 of [21] is incomplete (in
Proposition 3.4 of the present paper, we will prove a stronger version
of Theorem E 3.3 of [21]). The key point is how to prevent the surgery
times from accumulating (furthermore, it requires to perform only a
finite number of surgeries in each finite time interval). By inspecting
the last section of [21], it seems that surgeries were taken on the parts
where the singularities are formed from the global maximum points
of curvature. Intuitively, the other parts, where the curvatures go to
infinity also but cannot be comparable to the global maximums, will
still develop singularities shortly after surgery if one only performs the
surgeries for the global maximum points of curvature. To prevent the
surgery times from accumulating, one needs to cut off those singularities
(not just the curvature maximum points) also. This means that one
needs to perform surgeries for all singularities. Another problem is
that, when one performs the surgeries with a given accuracy at each
surgery time, it is possible that the errors may add up to a certain
amount which causes the surgery times to accumulate. To prevent this
from happening, as time goes on, successive surgeries must be performed
with increasing accuracy.

Recently, Perelman [31], [32] presented the striking ideas of how to
understand the structures of all singularities of the three-dimensional
Ricci flow, how to find “fine” necks, how to glue “fine” caps, and how
to use rescaling to prove that the times of surgery are discrete. When
using rescaling arguments for surgically modified solutions of the Ricci
flow, one encounters the difficulty of how to apply Hamilton’s compact-
ness theorem, which works only for smooth solutions. To overcome the
difficulty, Perelman argued in [32] by choosing the cutoff radius in neck-
like regions small enough to push the surgical regions far away in space.
But we still have difficulty in taking a smooth limit since Shi’s interior
derivative estimate might not available, and so one cannot be certain
that Hamilton’s compactness result holds when only having the bound
on curvatures. This is discussed in [3] and this paper.

In this paper, inspired by Perelman’s works, we will study the Ricci
flow on compact four-manifolds with positive isotropic curvature and
with no essential incompressible space-form. We will give a complete
proof for the main theorem of Hamilton in [21]. One of our major con-
tributions in this paper is to establish several time-extension results for
the surgical solutions in the proof of the discreteness of surgery times,
so that the surgical solutions are smooth on some uniform (small) time
intervals (on compact subsets) and Hamilton’s compactness theorem is
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still applicable. In Perelman’s works [31, 32], the universal noncollaps-
ing property of singularity models is a crucial fact to prove the surviving
of noncollapsing property under surgery. Another feature of this paper
is our proof of this crucial fact. In dimension three, one obtains this
by using Perelman’s classification of three-dimensional shrinking Ricci
solitons with nonnegative curvature (see [3] for the details). But in the
present four dimension case, we are not able to obtain a complete classi-
fication for shrinking solitons. In the previous version, we presented an
argument to obtain the universal noncollapsing for shrinking solitons.
But, as pointed out to us by Joerg Enders, that argument contains a
gap. Fortunately in the present version, we find a new argument, with-
out appealing to a classification of shrinking Ricci solitons, to get the
universal noncollapsing for all possible singularity models.

During the proof we have actually provided, up to slight modifica-
tions, all necessary details for the part from Section 1 to Section 5 of
Perelman’s second paper [32] on Ricci flow to approach the Poincaré
conjecture. The complete details of the arguments to both Poincaré and
Thurston’s geometrization conjecture in three-dimension can be found
in the recent paper of H.-D. Cao and the second author in [3]. We
also refer the readers to the recent preprints of Kleiner-Lott [26] and
Morgan-Tian [30].

The main result of this paper is the following long-time existence
theorem.

Theorem 1.1. Let M4 be a compact four-manifold with no essential
incompressible space-form and with a metric gij of positive isotropic

curvature. Then we have a finite collection of smooth solutions g
(k)
ij (t),

k = 0, 1, . . . , m, to the Ricci flow, defined on M4
k × [tk, tk+1), (0 = t0 <

· · · < tm+1) with M4
0 = M4 and g

(0)
ij (t0) = gij, which go singular as

t → tk+1, such that the following properties hold:

(i) for each k = 0, 1, . . . , m − 1, the compact (possibly disconnected)
four-manifold M4

k contains an open set Ωk such that the solution

g
(k)
ij (t) can be smoothly extended to t = tk+1 over Ωk;

(ii) for each k = 0, 1, . . . , m − 1, (Ωk, g
(k)
ij (tk+1)) and (M4

k+1,

g
(k+1)
ij (tk+1)) contain compact (possible disconnected) four-dimen-

sional submanifolds with smooth boundary, which are isometric
and then can be denoted by N4

k ;
(iii) for each k = 0, 1, . . . , m−1, M4

k \N4
k consists of a finite number of

disjoint pieces diffeomorphic to S3×I, B4 or RP4\B4, while M4
k+1\

N4
k consists of a finite number of disjoint pieces diffeomophic to

B4;
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(iv) for k = m, M4
m is diffeomorphic to the disjoint union of a finite

number of S4, or RP4, or S3 × S1, or S3×̃S1, or RP4#RP4.

As a direct consequence we have the following classification result of
Hamilton [21].

Corollary 1.2 (Hamilton [21]). A compact four-manifold with no es-
sential incompressible space-form and with a metric of positive isotropic
curvature is diffeomorphic to S4, or RP4, or S3 × S1, or S3×̃S1,or a
connected sum of them.

In the recent preprint [25], Huisken and Sinestrari studied the mean
curvature flow with surgeries of two-convex n-dimensional hypersurfaces
of Euclidean space Rn+1 (with n ≥ 3). For four-dimensional hypersur-
faces, the condition of two convexity is implied by nonnegative isotropic
curvature. Thus the above corollary for the hypersurface case is also
obtained in [25].

This paper contains five sections and an appendix. In Section 2 we
recall the pinching estimates of Hamilton obtained in [21] and present
two useful geometric properties for complete noncompact Riemannian
manifolds with positive sectional curvature. The usual way to under-
stand the singularities of the Ricci flow is to take a rescaling limit and
to find the structure of the limiting models. In Section 3 we study
the limiting models, so called ancient κ-solutions. We will establish
the uniform κ-noncollapsing, compactness and canonical neighborhood
structures for ancient κ-solutions. These generalize the analogs results
of Perelman [31] from three-dimension to four-dimension. Section 4
extends the canonical neighborhood characterization to any solution of
the Ricci flow with positive isotropic curvature, and describes the struc-
ture of the solution at the singular time. In Section 5, as Perelman in
[32], we will define the Ricci flow with surgery, and by a long inductive
argument, we will obtain a long-time existence result for the surgically
modified Ricci flow so that the solution becomes extinct in finite time
and takes only a finite number of surgeries. This will give the proof of
the main theorem. In the appendix we will prove the curvature esti-
mates for the standard solutions and give the canonical neighborhood
description of the standard solution in dimension four, which are used
in Section 5 for the surgery arguments.
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agement. We also thank Joerg Enders for telling us of an error in the
previous version. The first author is partially supported by FANEDD
200216 and NSFC 10401042 and the second author is partially sup-
ported by NSFC 10428102 and the IMS of The Chinese University of
Hong Kong.
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2. Preliminaries

Consider a four-dimensional compact Riemannian manifold M4. The
curvature tensor of M4 may be regarded as a symmetric bilinear form
Mαβ on the space of real forms Λ2. It is well known that one can
decompose Λ2 into Λ2

+ ⊕Λ2
− as eigen-spaces of the Hodge star operator

with eigenvalues ±1. This gives a block decomposition of the curvature
operator (Mαβ) as

(Mαβ) =

(
A B
tB C

)
.

It was shown in Lemma A2.1 of [21] that a four-manifold has positive
isotropic curvature if and only if

a1 + a2 > 0 and c1 + c2 > 0

where a3 ≥ a2 ≥ a1, c3 ≥ c2 ≥ c1 are eigenvalues of the matrices A and
C respectively.

Let {X1, X2, X3, X4} be a positive oriented orthonormal basis of one-
forms. Then ϕ1 = X1 ∧ X2 + X3 ∧ X4, ϕ2 = X1 ∧ X3 + X4 ∧ X2,
ϕ3 = X1 ∧X4 + X2 ∧X3 is a basis of Λ2

+ and ψ1 = X1 ∧X2 −X3 ∧X4,
ψ2 = X1 ∧ X3 − X4 ∧ X2, ψ3 = X1 ∧ X4 − X2 ∧ X3 is a basis of Λ2

−. It

is easy to check trA = trC = 1
2R by using this orthonormal basis and

the Bianchi identity.
Since B may not be symmetric, its eigenvalues need to be explained

as follows. For an appropriate choice of orthonormal bases y+
1 , y+

2 , y+
3

of Λ2
+ and y−1 , y−2 , y−3 of Λ2

− the matrix

B =




b1 0 0
0 b2 0
0 0 b3




with 0 ≤ b1 ≤ b2 ≤ b3. They are actually the eigenvalues of the sym-
metric matrices

√
BtB or

√
tBB.

In [21] Hamilton proved that the Ricci flow on a compact four-
manifold preserves positive isotropic curvature, and obtained the fol-
lowing improving pinching estimate.

Lemma 2.1 (Theorem B1.1 and Theorem B2.3 of [21]). Given an
initial metric on a compact four-manifold with positive isotropic curva-
ture, there exist positive constants ρ, Λ, P < +∞ depending only on the
initial metric, such that the solution to the Ricci flow satisfies

(2.1) a1 + ρ > 0 and c1 + ρ > 0,

(2.2) max{a3, b3, c3} ≤ Λ(a1 + ρ) and max{a3, b3, c3} ≤ Λ(c1 + ρ),

and

(2.3)
b3√

(a1 + ρ)(c1 + ρ)
≤ 1 +

ΛePt

max{log
√

(a1 + ρ)(c1 + ρ), 2}
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at all points and all times.

This lemma tells us that as we consider the Ricci flow for a com-
pact four-manifold with positive isotropic curvature, any rescaling limit
along a sequence of points where the curvatures become unbounded
must still have positive isotropic curvature and satisfy the following
restricted isotropic curvature pinching condition

(2.4) a3 ≤ Λa1, c3 ≤ Λc1, b2
3 ≤ a1c1.

In the rest of this section, we will give two useful geometric properties
for Riemannian manifolds with nonnegative sectional curvature.

Let (Mn, gij) be an n-dimensional complete Riemannian manifold
and let ε be a positive constant. We call an open subset N ⊂ Mn to be

an ε-neck of radius r if (N, r−2gij) is ε-close, in C [ε−1] topology, to a
standard neck Sn−1 × I with I of the length 2ε−1 and Sn−1 of the scalar
curvature 1.

Proposition 2.2. There exists a constant ε0 = ε0(n) > 0 such that
every complete noncompact Riemannian manifold (Mn, gij) of nonneg-
ative sectional curvature has a positive constant r0 such that any ε-neck
of radius r on (Mn, gij) with ε ≤ ε0 must have r ≥ r0.

Proof. We argue by contradiction. Suppose there exists a sequence
of positive constants εα → 0 and a sequence of n-dimensional complete
noncompact Riemannian manifolds (Mα, gα

ij) with nonnegative sectional
curvature such that for each fixed α, there exists a sequence of εα-necks
Nk of radius at most 1/k on Mα with centers Pk divergent to infinity.

Fix a point P on the manifold Mα and connect each Pk to P by
a minimizing geodesic γk. By passing to subsequence we may assume
the angle θkl between geodesic γk and γl at P is very small and tends
to zero as k, l → +∞, and the length of γk+1 is much bigger than the
length of γk. Let us connect Pk to Pl by a minimizing geodesic ηkl. For
each fixed l > k, let P̃k be a point on the geodesic γl such that the
geodesic segment from P to P̃k has the same length as γk and consider
the triangle ∆PPkP̃k in Mα with vertices P , Pk and P̃k. By comparing
with the corresponding triangle in the Euclidean plane R2 whose sides
have the same corresponding lengths, Toponogov comparison theorem
implies

d(Pk, P̃k) ≤ 2 sin

(
1

2
θkl

)
· d(Pk, P ).

Since θkl is very small, the distance from Pk to the geodesic γl can
be realized by a geodesic ζkl which connects Pk to a point P ′

k on the

interior of the geodesic γl and has length at most 2 sin(1
2θkl) · d(Pk, P ).

Clearly the angle between ζkl and γl at the intersection point P ′
k is π

2 .
Consider α to be fixed and sufficiently large. We claim that as k gets
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large enough, each minimizing geodesic γl with l > k, connecting P to
Pl, goes through the neck Nk.

Suppose not; then the angle between γk and ζkl at Pk is close to either
zero or π, since Pk is in the center of an εα-neck and α is sufficiently
large. If the angle between γk and ζkl at Pk is close to zero, we consider
the triangle ∆PPkP

′
k in Mα with vertices P , Pk, and P ′

k. By applying
Toponogov comparison theorem to compare the angles of this triangle
with those of the corresponding triangle in the Euclidean plane with
the same corresponding lengths, we find that it is impossible. Thus
the angle between γk and ζkl at Pk is close to π. We now consider the
triangle ∆PkP

′
kPl in Mα with the three sides ζkl, ηkl and the geodesic

segment from P ′
k to Pl on γl. We have seen that the angle of ∆PkP

′
kPl

at Pk is close to zero and the angle at P ′
k is π

2 . By comparing with

corresponding triangle ∆̄P̄kP̄
′
kP̄l in the Euclidean plane R2 whose sides

have the same corresponding lengths, Toponogov comparison theorem
implies

∠P̄lP̄kP̄
′
k + ∠P̄lP̄

′
kP̄k ≤ ∠PlPkP

′
k + ∠PlP

′
kPk <

3

4
π.

This is impossible, since the length between P̄k and P̄ ′
k is much smaller

than the length from P̄l to either P̄k or P̄ ′
k. So we have proved each γl

with l > k passes through the neck Nk.
Hence by taking a limit, we get a geodesic ray γ emanating from

P which passes through all the necks Nk, k = 1, 2, . . . , except a finite
number of them. Throwing this finite number of necks, we may assume
γ passes through all necks Nk, k = 1, 2, . . . . Denote the center sphere
of Nk by Sk, and their intersection points with γ by pk ∈ Sk ∩ γ, for
k = 1, 2, . . . .

Take sequence points γ(m) with m = 1, 2, . . . . For each fixed neck
Nk, arbitrarily choose a point qk ∈ Nk near the center sphere Sk, and
draw a geodesic segment γkm from qk to γ(m). Now we claim that for
any fixed neck Nl with l > k, γkm will pass through Nl for all sufficiently
large m.

We argue by contradiction. Let us place all necks Ni horizontally so
that the geodesic γ passes through each Ni from the left to the right. We
observe that the geodesic segment γkm must pass through the right half
of Nk; otherwise γkm can not be minimal. Then as m is large enough,
the distance from pl to the geodesic segment γkm must be achieved by
the distance from pl to some interior point pk

′ of γkm. Let us draw a
minimal geodesic η from pl to the interior point pk

′ with the angle at
the intersection point pk

′ ∈ η ∩ γkm is π
2 . Suppose the claim is false.

Then the angle between η and γ at pl is close to 0 or π since εα is small.
If the angle between η and γ at pl is close to 0, we consider the

triangle ∆plpk
′γ(m) and construct a comparison triangle ∆̄p̄lp̄k

′γ̄(m)
in the plane with the same corresponding length. Then by Toponogov
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comparison, we see that the sum of the inner angles of the comparison
triangle ∆̄p̄lp̄k

′γ̄(m) is less than 3π/4, which is impossible.
If the angle between η and γ at pl is close to π, by drawing a minimal

geodesic from ξ from qk to pl, we see that ξ must pass through the
right half of Nk and the left half of Nl; otherwise ξ can not be minimal.
Thus the three inner angles of the triangle ∆plpk

′qk are almost 0, π/2, 0
respectively. This is also impossible by Toponogov comparison theorem.

Hence we have proved that the geodesic segment γkm passes through
Nl as m large enough.

Consider the triangle ∆pkqkγ(m) with two long sides pkγ(m)(⊂ γ)

and qkγ(m)(= γkm). For any s > 0, choose two points p̃k on pkγ(m) and

q̃k on qkγ(m) with d(pk, p̃k) = d(qk, q̃k) = s. By Toponogov comparison
theorem, we have

„

d(p̃k, q̃k)

d(pk, qk)

«2

=
d(p̃k, γ(m))2 + d(q̃k, γ(m))2 − 2d(p̃k, γ(m))d(q̃k, γ(m)) cos ∡̄(p̃kγ(m)q̃k)

d(pk, γ(m))2 + d(qk, γ(m))2 − 2d(pk, γ(m))d(qk, γ(m)) cos ∡̄(pkγ(m)qk)

≥
d(p̃k, γ(m))2 + d(q̃k, γ(m))2 − 2d(p̃k, γ(m))d(q̃k, γ(m)) cos ∡̄(p̃kγ(m)q̃k)

d(pk, γ(m))2 + d(qk, γ(m))2 − 2d(pk, γ(m))d(qk, γ(m)) cos ∡̄(p̃kγ(m)q̃k)

=
(d(p̃k, γ(m)) − d(q̃k, γ(m)))2 + 2d(p̃k, γ(m))d(q̃k, γ(m))(1 − cos ∡̄(p̃kγ(m)q̃k))

(d(p̃k, γ(m)) − d(q̃k, γ(m)))2 + 2d(pk, γ(m))d(qk, γ(m))(1 − cos ∡̄(p̃kγ(m)q̃k))

≥
d(p̃k, γ(m))d(q̃k, γ(m))

d(pk, γ(m))d(qk, γ(m))

→ 1

as m → ∞, where ∡̄(pkγ(m)qk) and ∡̄(p̃kγ(m)q̃k) are the the corre-
sponding angles in the corresponding comparison triangles.

Letting m → ∞, we see that γkm has a convergent subsequence whose
limit γk is a geodesic ray passing through all Nl with l > k. Denote by
pj = γ(tj), j = 1, 2, . . .. From the above computation, we deduce that

d(pk, qk) ≤ d(γ(tk + s), γk(s))

for all s > 0.
Let ϕ(x) = limt→+∞(t − d(x, γ(t))) be the Busemann function con-

structed from the ray γ. Note that the level set ϕ−1(ϕ(pj))∩Nj is close
to the center sphere Sj for any j = 1, 2, . . .. Now let qk be any fixed
point in ϕ−1(ϕ(pk)) ∩ Nk. By the definition of Busemann function ϕ
associated to the ray γ, we see that ϕ(γk(s1))−ϕ(γk(s2)) = s1 − s2 for
any s1, s2 ≥ 0. Consequently, for each l > k, by choosing s = tl − tk,
we see γk(tl − tk) ∈ ϕ−1(ϕ(pl))∩Nl. Since γ(tk + tl − tk) = pl, it follows
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that

d(pk, qk) ≤ d(pl, γ
k(s))

with s = tl − tk > 0. This implies that the diameter of ϕ−1(ϕ(pk))∩Nk

is not greater than the diameter of ϕ−1(ϕ(pl))∩Nl for any l > k, which
is a contradiction as l is much larger than k.

Therefore we have proved the proposition. q.e.d.

In [20], Hamilton discovered an interesting result, called the finite
bump theorem, about the influence of a bump of strictly positive curva-
ture in a complete noncompact Riemannian manifold with nonnegative
sectional curvature. Namely, minimal geodesic paths that go past the
bump have to avoid it. The following result is in the same spirit as
Hamilton’s finite bump theorem.

Proposition 2.3. Suppose (Mn, g) is a complete n-dimensional Rie-
manian manifold with nonnegative sectional curvature. Let P ∈ Mn be
fixed, and Pj ∈ Mn a sequence of points and Rj a sequence of pos-
itive numbers with d(P, Pj) → +∞ and Rjd(P, Pj)

2 → +∞. If the
sequence of marked manifolds (Mn, Rjg, Pj) converges in C∞

loc topology

(in Cheeger sense) to a smooth manifold (M̃n, g̃), then the limit (M̃n, g̃)
splits as the metric product of the form R × N , where N is a nonnega-
tively curved manifold of dimension n − 1.

Proof. Let us denote by |OQ| = d(O, Q) for the distance of two points
O, Q ∈ Mn. Without loss of generality, we may assume that for each j,

(2.5) 1 + 2|PPj | ≤ |PPj+1|.

Draw a minimal geodesic γj from P to Pj and a minimal geodesic σj

from Pj to Pj+1, both parameterized by the arclength. By the compact-
ness of unit sphere of the tangent space at P , {γ′

j(0)} has a convergent
subsequence. We may further assume

(2.6) θj = |∡(γ′
j(0), γ′

j+1(0))| <
1

j
.

Since (Mn, Rjg, Pj) converges in C∞
loc topology (in Cheeger sense) to a

smooth marked manifold (M̃n, g̃, P̃ ), by further choices of subsequences,
we may also assume γj and σj converge to two geodesic rays γ̃ and σ̃

starting at P̃ . We claim that γ̃ ∪ σ̃ forms a line in M̃n. Since the
sectional curvature of M̃n is nonnegative, then by Toponogov splitting
theorem [7] the limit M̃n must split as R × N isometrically.

To prove the claim, we argue by contradiction. Suppose γ̃ ∪ σ̃ is not
a line; then for each j, there exist two points Aj ∈ γj and Bj ∈ σj such
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that as j → +∞,

(2.7)





Rjd(Pj , Aj) → A > 0,
Rjd(Pj , Bj) → B > 0,
Rjd(Aj , Bj) → C > 0,
but A + B > C.

(((((((((((((((((((((((((((((((((
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©

©
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©
©

©
©

©
©

©©
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δj

Bj

σj
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Now draw a minimal geodesic δj from Aj to Bj . Consider comparison
triangle △̄P̄jP̄ P̄j+1 and △̄P̄jĀjB̄j in R2 with

|P̄jP̄ | = |PjP |, |P̄jP̄j+1| = |PjPj+1|, |P̄ P̄j+1| = |PPj+1|,
and |P̄jĀj | = |PjAj |, |P̄jB̄j | = |PjBj |, |ĀjB̄j | = |AjBj |.

By Toponogov comparison theorem [7], we have

(2.8) ∡ĀjP̄jB̄j ≥ ∡P̄ P̄jP̄j+1.

On the other hand, by (2.6) and using the Toponogov comparison the-
orem again, we have

(2.9) ∡P̄jP̄ P̄j+1 ≤ ∡PjPPj+1 <
1

j
,

and since |P̄jP̄j+1| > |P̄ P̄j | by (2.5), we further have

(2.10) ∡P̄jP̄j+1P̄ ≤ ∡P̄jP̄ P̄j+1 <
1

j
.

Thus the above inequalities (2.8)-(2.10) imply that

∡ĀjP̄jB̄j > π − 2

j
.

Hence

(2.11) |ĀjB̄j |2 ≥ |ĀjP̄j |2 + |P̄jB̄j |2 − 2|ĀjP̄j | · |P̄jB̄j | cos

(
π − 2

j

)
.

Multiplying the above inequality by Rj and letting j → +∞, we get

C ≥ A + B

which contradicts with (2.7). Therefore we have proved the proposition.
q.e.d.
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Although the following result is not used in this paper, we think that
it is still worthy of being included here.

Corollary 2.4. Suppose (X, d) is a complete n-dimensional Alexan-
drov space with nonnegative curvature. Let P ∈ X be fixed, Pj ∈ X a se-
quence of points, and Rj a sequence of positive numbers with d(P, Pj) →
+∞ and Rjd

2(P, Pj) → +∞. Then the marked spaces (X, R
1
2
j d, Pj) have

a (Gromov-Hausdorff ) convergent subsequence such that the limit splits
as the metric product of the form R × N , where N is a nonnegatively
curved Alexandrov space.

Proof. By the compactness theorem of Alexandrov spaces (see [1]),

there is a subsequence of (X, R
1
2
j d, Pj) which converges (in the sense of

Gromov-Hausdorff) to a nonnegatively curved Alexandrov space (X̃, d̃,

P̃ ) of dimension ≤ n. By Toponogov splitting theorem [28] for Alexan-

drov spaces, we only need to show that the limit X̃ contains a line. Note
that the same inequality (2.6) now follows from the compactness of the
space of directions at a fixed point [1]. Since the Toponogov triangle
comparison theorem still holds on Alexsandrov spaces (in fact, the no-
tion of the curvature of general metric spaces is defined by Toponogov
triangle comparison), the same argument of Proposition 2.3 proves the
corollary. q.e.d.

3. Ancient Solutions

A solution to the Ricci flow on a compact four-manifold with positive
isotropic curvature develops singularities in finite time. The usual way
to understand the formations of the singularities is to rescale the solu-
tion along the singularities and to try to take a limit for the rescaled
sequences. According to Lemma 2.1, a rescaled limit will be a complete
non-flat solution to the Ricci flow

∂

∂t
gij = −2Rij

on an ancient time interval −∞ < t ≤ 0, called an ancient solu-
tion, which has positive isotropic curvature and satisfies the restricted
isotropic curvature pinching condition (2.4). We remark that as we con-
sider the general singularities (not necessarily those points coming from
the maximum of the curvature), we don’t know whether at a priori, the
rescaled limit exists, and even assuming the existence, whether the limit
has bounded curvature for each t. Nevertheless, in this section we will
take the attention to those rescaled limits with bounded curvature.

According to Perelman [31], a solution to the Ricci flow is κ-
noncollapsed for scale r0 > 0 if we have the following statement:
whenever we have

|Rm|(x, t) ≤ r−2
0 ,
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for all t ∈ [t0 − r2
0, t0], x ∈ Bt(x0, r0), for some (x0, t0), there holds

Volt0(Bt0(x0, r0)) ≥ κr4
0.

Here we denote by Bt(x0, r0) and Volt0 the geodesic ball centered at
x0 of radius r0 with respect to the metric gij(t) and the volume with
respect to the metric gij(t0) respectively. It was shown by Perelman
[31] that any rescaled limit obtained by blowing up a smooth solution
to the Ricci flow on a compact manifold in finite time is κ-noncollapsed
on all scales for some κ > 0.

We say a solution to the Ricci flow on a four-manifold is an ancient κ
-solution with restricted isotropic curvature pinching (for some
κ > 0) if it is a smooth solution to the Ricci flow on the ancient time
interval t ∈ (−∞, 0] which is complete, has positive isotropic curvature
and bounded curvature, and satisfies the restricted isotropic curvature
pinching condition (2.4), as well as is κ-noncollapsed on all scales.

3.1. Splitting lemmas. To understand the structures of the solutions
to the Ricci flow on a compact four-manifold with positive isotropic cur-
vature, we are naturally led to investigate the ancient solutions which
have positive isotropic curvature, satisfy the restricted isotropic curva-
ture pinching condition (2.4) and are κ-noncollapsed for all scales. Note
that the restricted isotropic curvature pinching condition (2.4) implies
the curvature operator is nonnegative. In this subsection we will derive
two useful splitting results without assuming the bounded curvature
condition.

Lemma 3.1. Let (M4, gij) be a complete noncompact Riemannian
manifold which satisfies the restricted isotropic curvature pinching con-
dition (2.4) and has positive curvature operator. And let P be a fixed
point in M4, {Pl}1≤l<+∞ a sequence of points in M4 and {Rl}1≤l<+∞
a sequence of positive numbers with d(P, Pl) → +∞ and Rld

2(P, Pl) →
+∞ as l → +∞ , where d(P, Pl) is the distance between P and Pl.
Suppose (M4, Rlgij , Pl) converges in C∞

loc topology to a smooth nonflat
limit Y . Then Y must be isometric to R × S3 with the standard metric
(up to a constant factor).

Proof. By Proposition 2.3, we see that Y = R × X for some smooth
three-dimensional manifold X. Thus the block decomposition of the
curvature operator has the form

(Mαβ) =

(
A A
A A

)
.

The assumption that b2
3 ≤ a1c1 in (2.4) implies that the matrix A(=

B = C) is a multiple of the identity. Since this is true at every point,
it follows from the contracted second Bianchi identity that X has (pos-
itive) constant curvature, i.e., X = S3/Γ for some group Γ of isometries
without fixed points. It remains to show X = S3 (i.e., Γ = {1}).
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Note that the original manifold M4 is diffeomorphic to R4 by the
positive curvature operator assumption. To show X = S3 (i.e., Γ = {1})
we only need to prove that X = S3/Γ is incompressible in M4. In the
following we adapt Hamilton’s argument in Theorem C 4.1 of [21] to
noncompact manifolds.

Suppose X = S3/Γ is not incompressible in M4; then for j large,
there exists a simply closed curve γ ⊂ S3/Γ (the center space form pass-
ing through Pj) which is homotopically nontrivial in S3/Γ but bounds
a disk D2 in M4. By Lemma C4.2 in [21], we may assume the disk
D2 meets the center space form S3/Γ only at γ, where it is transversal.

Now construct a new manifold M̂4 in the following way. As in [21] we
can deform the metric in the neck around Pj a little so it is standard
in a smaller neck but still has positive isotropic curvature everywhere.
Since M4 is simply connected, the connected and closed submanifold
S3/Γ of codimension 1 separates M4 (see for example [23]). Cut M4

open along the center space form S3/Γ to get a (maybe disconnected)
manifold with two boundary components S3/Γ, and double across the

boundary to get M̂4. The new manifold M̂4 also has a metric of positive
isotropic curvature since the boundary is flat extrinsically and we can

double the metric. If M̂4 contains a compact connected component and
the above disk D2 also lies in the compact connected component, then
the same argument as in the proof of Theorem C4.1 of [21] derives a
contradiction. Thus we may assume that the unique noncompact con-

nected component of M̂4, denoted by M̂4
1 , contains the disk D2. Since

M4 has positive curvature operator, we know from [8] that there is a
strictly convex exhausting function ϕ on M4. We can define a function

ϕ̂ on M̂4 so that ϕ̂ = ϕ on each copy of M4. Then as c > 0 is suffi-
ciently large, the level set ϕ̂−1(c) is contained in the unique noncompact

connected component M̂4
1 and is strictly convex (in the sense that its

second fundamental is strictly positive). Take our disk D2 bounding the
curve γ and perpendicular to the boundary in a neighborhood of the
boundary, and double it across the boundary to get a sphere S2 which
is Z2 invariant and intersects the boundary component transversally in
γ. The homotopy class [γ] is nontrivial in S3/Γ. Clearly the above

two-sphere S2 is contained in the set {x ∈ M̂ |ϕ̂(x) ≤ c} as c > 0 large
enough, since ϕ is an exhausting on M4. Now fix such a large positive
constant c. Among all spheres which are Z2 invariant, contained in the

manifold {x ∈ M̂4|ϕ̂(x) ≤ c}, and intersect the S3/Γ in the homotopy
class [γ] 6= 0, there will be one of least area since the boundary of the

manifold {x ∈ M̂4|ϕ̂(x) ≤ c} is strictly convex. This sphere must even
have least area among all nearby spheres. For if a nearby sphere of less
area divides in two parts bounding [γ] in S3/Γ, one side or the other
has less than half the area of the original sphere. We could then double
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this half to get a sphere of less area which is Z2 invariant, contradict-
ing the assumption that ours was of least area among this class. But
the hypothesis of positive isotropic curvature implies there are no stable
minimal two-spheres as was shown in [27]. Hence we get a contradiction
unless X = S3/Γ is incompressible in M4.

Therefore we have proved the lemma. q.e.d.

Lemma 3.2. Let (M4, gij(t)) be an ancient solution which has pos-
itive isotropic curvature and satisfies the restricted isotropic curvature
pinching condition (2.4). If its curvature operator has a nontrivial null
eigenvector somewhere at some time, then the solution is, up to a scal-
ing, the evolving round cylinder R×S3 or a metric quotient of the round
cylinder R × S3.

Proof. Recall that the solution gij(t) has nonnegative curvature op-
erator everywhere and every time. Because the curvature operator of
the ancient solution gij(t) has a nontivial null eigenvector somewhere
at some time, it follows from [16] (by using Hamilton’s strong max-
imum principle) that at any earlier time the solution has null eigen-
vector everywhere and the Lie algebra of the holonomy group is re-
stricted a proper subalgebra of so(4). Since the ancient solution is non-
flat and has positive isotropic curvature, we rule out the subalgebras
{1}, u(2), so(2) × so(2), so(2) × {1} as on R4, CP2, S2 × S2, S2 × R2 or
a metric quotient of them. The only remaining possibility for the Lie
subalgebra of the holonomy is so(3).

Now the only way we get holonomy so(3) is when in some basis we
have A = B = C in the curvature operator matrix, so that

(Mαβ) =

(
A A
A A

)
,

which corresponds to the fact that the metric gij(t) is locally a product
of R×X for some smooth three-dimensional manifold X with curvature
operator A. Then the inequality b2

3 ≤ a1c1 in the restricted isotropic
curvature pinching condition (2.4) implies that A is a multiple of the
identity. Moreover, if this is true at every point, it follows from the
contracted second Bianchi identity that the factor X has (positive) con-
stant curvature. Consequently, X is compact and so for each t, the
metric gij(t) is isometric (up to a scaling) to the evolving metric of the
round cylinder R × S3 or a metric quotient of it. q.e.d.

3.2. Elliptic type estimate, canonical neighborhood
decomposition for noncompact κ-solutions. The following elliptic
type Harnack property for four-dimensional ancient κ-solutions with
restricted isotropic curvature pinching will be crucial for the analysis
of the structure of singularities of the Ricci flow on four-manifold with
positive isotropic curvature. The analogous result for three-dimensional
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ancient κ-solutions was implicitely given by Perelman in Section 11.7 of
[31] and Section 1.5 of [32].

Proposition 3.3. For any κ > 0, there exist a positive constant
η and a positive function ω : [0, +∞) → (0, +∞) with the follow-
ing properties. Suppose we have a four-dimensional ancient κ-solution
(M4, gij(t)),−∞ < t ≤ 0, with restricted isotropic curvature pinching.
Then

(i) for every x, y ∈ M4 and t ∈ (−∞, 0], there holds

R(x, t) ≤ R(y, t) · ω(R(y, t)d2
t (x, y));

(ii) for all x ∈ M4 and t ∈ (−∞, 0], there hold

|∇R|(x, t) ≤ ηR
3
2 (x, t) and

∣∣∣∣
∂R

∂t

∣∣∣∣ (x, t) ≤ ηR2(x, t).

Proof. Obviously we may assume the ancient κ-solution is not a met-
ric quotient of the round neck R × S3.

(i) We only need to establish the estimate at t = 0. Let y be fixed in
M4. By rescaling, we can assume R(y, 0) = 1.

Let us first consider the case that sup{R(x, 0)d2
0(x, y)|x ∈ M4} >

1. Define z to be the closest point to y (at time t = 0) satisfying
R(z, 0)d2

0(z, y) = 1. We want to bound R(x, 0)/R(z, 0) from above for

x ∈ B0(z, 2R(z, 0)−
1
2 ).

Connect y to z by a shortest geodesic and choose a point z̃ lying on

the geodesic satisfying d0(z̃, z) = 1
4R(z, 0)−

1
2 . Denote by B the ball

centered at z̃ and with radius 1
4R(z, 0)−

1
2 (with respect to the metric

at t = 0). Clearly the ball B lies in B0(y, R(z, 0)−
1
2 ) and lies outside

B0(y, 1
2R(z, 0)−

1
2 ). Thus as x ∈ B, we have

R(x, 0)d2
0(x, y) ≤ 1 and d0(x, y) ≥ 1

2
R(z, 0)−

1
2 ,

which imply

R(x, 0) ≤ 1

(1
2R(z, 0)−

1
2 )2

, on B.

Then by Li-Yau-Hamilton inequality [18] and the κ-noncollapsing, we
have

Vol0(B) ≥ κ(
1

4
R(z, 0)−

1
2 )4

and then

Vol0(B0(z, 8R(z, 0)−
1
2 ) ≥ κ

220
(8R(z, 0)−

1
2 )4.

So by Corollary 11.6 of [31], there exists a positive constant A1 depend-
ing only on κ such that

(3.1) R(x, 0) ≤ A1R(z, 0), for x ∈ B0(z, 2R(z, 0)−
1
2 ).
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We now consider the remaining case: R(x, 0)d2
0(x, y) ≤ 1 for all x ∈

M4. We choose a point z ∈ M4 satisfying R(z, 0) ≥ 1
2 sup{R(x, 0)|x ∈

M4}. Obviously we also have the estimate (3.1) in the remaining case.
After having the estimate (3.1), we next want to bound R(z, 0) for

the chosen z ∈ M4. By combining with Li-Yau-Hamilton inequality
[18], we have

R(x, t) ≤ A1R(z, 0),

for all x ∈ B0(z, 2R(z, 0)−
1
2 ) and all t ≤ 0. It then follows from Shi’s

local derivative estimate [36] that

∂

∂t
R(z, t) ≤ A2R(z, 0)2, for all − R−1(z, 0) ≤ t ≤ 0,

where A2 is some constant depending only on κ. This implies

R(z,−cR−1(z, 0)) ≥ cR(z, 0)

for some small positive constant c depending only on κ. On the other
hand, by using the Harnack estimate [18] (as a consequence of Li-Yau-
Hamilton inequality), we have

1 = R(y, 0) ≥ c̃R(z,−cR−1(z, 0))

for some small positive constant c̃ depending only on κ. Thus we obtain

(3.2) R(z, 0) ≤ A3

for some positive constant A3 depending only on κ.
The combination of (3.1) and (3.2) gives

R(x, 0) ≤ A1A3, on B0

(
y, A

− 1
2

3

)
.

Thus by the κ-noncollapsing there exists a positive constant r0 depend-
ing only on κ such that

Vol0(B0(y, r0)) ≥ κr4
0.

For any fixed R0 ≥ r0, we have

Vol0(B0(y, R0)) ≥ κ

(
r0

R0

)4

· R4
0.

By applying Corollary 11.6 of [31] again, there exists a positive constant
ω(R2

0) depending only on R0 and κ such that

R(x, 0) ≤ ω(R2
0), on B0

(
y,

1

4
R0

)
.

This gives the desired estimate.

(ii) It immediately follows from the above assertion (i), the Li-Yau-
Hamilton inequality [18] and Shi’s local derivative estimates [36]. q.e.d.
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Remark. The argument in the last paragraph of the above proof for
(i) implies the following assertion:

For any ζ > 0, there is a positive function ω depending only on ζ
such that if there holds

Volt0(Bt0(y, R(y, t0)
− 1

2 ))

R(y, t0)
− 4

2

≥ ζ,

for some fixed point y and some t0 ∈ (−∞, 0], then we have the follow-
ing the elliptic type estimate

R(x, t0) ≤ R(y, t0) · ω(R(y, t0)d
2
t0(x, y))

for all x ∈ M.

This estimate will play a key role in deriving the universal noncol-
lapsing property in the next subsection.

Let gij(t), −∞ < t ≤ 0, be a nonflat solution to the Ricci flow on a
four-manifold M4. Fix a small ε > 0. We say that a point x0 ∈ M4 is the
center of an evolving ε-neck, if the solution gij(t) in the set {(x, t)|−
ε−2Q−1 < t ≤ 0, d2

0(x, x0) < ε−2Q−1}(with Q = R(x0, 0)) is, after

scaling with factor Q, ε-close (in C [ε−1] topology) to the corresponding
subset of the evolving round cylinder R × S3, having scalar curvature
one at t = 0.

The following result generalizes Corollary 11.8 of Perelman [31] to
four-dimension and verifies Theorem E 3.3 of Hamilton [21]. The cru-
cial information in the following Proposition is that the constant C =
C(ε) > 0 depends only on ε.

Proposition 3.4. For any ε > 0, there exists C = C(ε) > 0 such that
if gij(t) is a nonflat ancient κ-solution with restricted isotropic curvature
pinching on a noncompact four-manifold M4 for some κ > 0, and
M4

ε denotes the set of points of M4, which are not centers of evolving
ε-necks, then either the whole M4 is a metric quotient of the round
cylinder R × S3 or M4

ε satisfies the following properties:

(i) M4
ε is compact, and

(ii) diam (M4
ε ) ≤ CQ− 1

2 and C−1Q ≤ R(x, 0) ≤ CQ, whenever x ∈
M4

ε , where Q = R(x0, 0) for some x0 ∈ ∂M4
ε and diam (M4

ε ) is
the diameter of the set M4

ε with respect to the metric gij(0).

Proof. Note that the curvature operator of the ancient κ-solution is
nonnegative. We first consider the easy case that the curvature operator
has a nontrivial null vector somewhere at some time. By Lemma 3.2,
we know that the ancient κ-solution is a metric quotient of the round
cylinder R × S3.

We then assume the curvature operator of the ancient κ-solution is
positive everywhere. Firstly we want to show that M4

ε is compact.
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Argue by contradiction. Suppose there exists a sequence of points
zk, k = 1, 2, . . ., going to infinity (with respect to the metric gij(0))
such that each zk is not the center of any evolving ε-neck. For arbitrar-
ily fixed point z0 ∈ M4, it follows from Proposition 3.3 (i) that

0 < R(z0, 0) ≤ R(zk, 0) · ω(R(zk, 0)d2
0(zk, z0)),

which implies that

lim
k→∞

R(zk, 0)d2
0(zk, z0) = +∞.

By Lemma 3.1 and Proposition 3.3 and Hamilton’s compactness theo-
rem, we conclude that zk is the center of an evolving ε-neck as k suf-
ficiently large. This is a contradiction, so we have proved that M4

ε is
compact.

Note that M4 is diffeomorphic to R4 since the curvature operator is
positive. We may assume ε > 0 so small that Hamilton’s replacement
for Schoenflies conjecture and its proof (Theorem G1.1 and Lemma
G1.3 of [21]) are available. Since every point outside the compact set
M4

ε is the center of an evolving ε-neck, it follows that the approximate
round three-sphere cross-section through the center divides M4 into
two connected components such that one of them is diffeomorphic to
the four-ball B4. Let ϕ be a Busemann function on M4(constructed
from all geodesic rays emanating from a given point); it is a standard
fact that ϕ is convex and proper. Since M4

ε is compact, M4
ε is contained

in a compact set K = ϕ−1((−∞, A]) for some large A. We note that
each point x ∈ M4 \Mε is the center of an ε-neck. It is clear that there
is an ε-neck N lying entirely outside K. Consider a point x on one of its
boundary components of the ε-neck N . Since x ∈ M4 \M4

ε , there is an
ε-neck adjacent to the initial ε-neck, producing a longer neck. We then
take a point on the boundary of the second ε-neck and continue. This
procedure can either terminate when we get into Mε or go on infinitely
to produce a semi-infinite (topological) cylinder. The same procedure
can be repeated for the other boundary component of the initial ε-neck.
This procedure will give a maximal extended neck Ñ . If Ñ never touches
M4

ε , the manifold will be diffeomorphic to the standard infinite cylinder,

which is a contradiction. If both of the two ends of Ñ touch M4
ε , then

there is a geodesic connecting two points of M4
ε and passing through

N . This is impossible since the function ϕ is convex. So we conclude
that one end of Ñ will touch M4

ε and the other end will tend to infinity
to produce a semi-infinite (topological) cylinder. Then one can find an
approximate round three-sphere cross-section which encloses the whole
set M4

ε and touches some point x0 ∈ ∂M4
ε . We now want to show that

R(x0, 0)
1
2 ·diam (M4

ε ) is bounded from above by some positive constant
C = C(ε) depending only on ε.
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Suppose not; there exists a sequence of nonflat noncompact ancient
κj-solutions with restricted isotropic curvature pinching and with posi-
tive curvature operator, for some sequence of positive constants κj , such
that for the above chosen points x0 ∈ M4

ε there would hold

(3.3) R(x0, 0)
1
2 · diam (M4

ε ) → +∞.

Since the point x0 lies in some 2ε-neck, clearly, there is a universal
positive lower bound for Vol0(B0(x0,

1√
R(x0,0)

))/( 1√
R(x0,0)

)4. By the re-

mark after the proof of the previous Proposition 3.3, we see that there
is a universal positive function ω : [0, +∞) → [0, +∞) such that the
elliptic type estimate

(3.4) R(x, 0) ≤ R(x0, 0) · ω(R(x0, 0)d2
0(x, x0))

holds for all x ∈ M.
Let us scale the ancient solutions around the points x0 with the factors

R(x0, 0). By (3.4), Hamilton’s compactness theorem (Theorem 16.1 of
[20]) and the universal noncollapsing property at x0, we can extract a
convergent subsequence. From the choice of the points x0 and (3.3), the
limit contains a line. Actually we may draw a geodesic ray from some
point x1 ∈ M4

ε which is far from x0 (in the normalized distance). This
geodesic ray must cross some vertical three-sphere containing x0. The
limit of these rays gives us a line. Then by Toponogov splitting theorem
the limit is isometric to R × X3 for some smooth three-manifold X3.
As before, by using the restricted isotropic curvature pinching condition
(2.4) and the contracted second Bianchi identity, we see that X3 = S3/Γ
for some group Γ of isometrics without fixed points. Then we apply the
same argument as in the proof of Lemma 3.1 to conclude that Γ = {1}.
This says that the limit must be the evolving round cylinder R × S3.
This contradicts with the fact that each chosen point x0 is not the center
of any evolving ε-neck. Therefore we have proved

diam (M4
ε ) ≤ CQ− 1

2

for some positive constant C = C(ε) depending only on ε, where Q =
R(x0, 0).

Finally, by combining this diameter estimate and the remark after
Proposition 3.3, we directly deduce

C̃−1Q ≤ R(x, 0) ≤ C̃Q, whenever x ∈ M4
ε ,

for some positive constant C̃ depending only on ε. q.e.d.

Consequently, by applying the standard volume comparison to Propo-
sition 3.4, we conclude that all complete noncompact four-dimensional
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ancient κ-solutions with restricted isotropic curvature pinching and pos-
itive curvature operator are κ0-noncollapsing on all scales for some uni-
versal constant κ0 > 0. In the next subsection, we will prove this uni-
versal noncollapsing property for both compact and noncompact cases.

3.3. Universal noncollapsing of ancient κ-solutions. First we note
that the universal noncollapsing is not true for all metric quotients of
round R × S3. The main result of this section is to establish the uni-
versal noncollapsing property for all ancient κ-solutions with restricted
isotropic curvature pinching which are not metric quotients of round
R × S3. The analogous result for three-dimensional ancient κ-solutions
was claimed by Perelman in Remark 11.9 of [31] and Section 1.5 of [32].

Theorem 3.5. There exists a positive constant κ0 with the following
property. Suppose we have a four-dimensional (compact or noncompact)
ancient κ-solution with restricted isotropic curvature pinching for some
κ > 0. Then either the solution is κ0-noncollapsed for all scales, or it
is a metric quotient of the round cylinder R × S3.

Proof. Let gij(x, t), x ∈ M4 and t ∈ (−∞, 0], be an ancient κ-solution
with restricted isotropic curvature pinching for some κ > 0. We had
known that the curvature operator of the solution gij(x, t) is nonnegative
everywhere and every time. If the curvature operator of the solution
gij(x, t) has a nontrivial null eigenvector somewhere at some time, then
we know from Lemma 3.2 that the solution is a metric quotient of the
round neck R × S3.

We now assume the solution gij(x, t) has positive curvature operator
everywhere and every time. We want to apply the backward limit ar-
gument of Perelman to take a sequence of points qk and a sequence of
times tk → −∞ such that the scalings of gij(·, t) around qk with factors
|tk|−1 (and shifting the times tk to zero) converge in C∞

loc topology to a
non-flat gradient shrinking soliton.

Clearly, we may assume the nonflat ancient κ-solution is not a gradi-
ent shrinking Ricci soliton. For arbitrary point (p, t0) ∈ M4 × (−∞, 0],
we define as in [31] that

τ = t0 − t, for t < t0,

l(q, τ) =
1

2
√

τ
inf

{ ∫ τ

0

√
s(R(γ(s), t0 − s) + |γ̇(s)|2gij(t0−s))ds|

γ : [0, τ ] → M4 with γ(0) = p, γ(τ) = q

}
,

and Ṽ (τ) =

∫

M4

(4πτ)−2 exp(−l(q, τ))dVt0−τ (q),

where | · |gij(t0−s) is the norm with respect to the metric gij(t0 − s) and

dVt0−τ is the volume element with respect to the metric gij(t0 − τ).
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According to [31], l is called the reduced distance and Ṽ (τ) is called
the reduced volume. Since the manifold M4 may be noncompact,
one would ask whether the reduced volume is finite. Since the scalar
curvature is nonnegative and the curvature is bounded, it is not hard
to see that the reduced distance is quadratically grown and that the
reduced volume is always finite. (Actually, by using Perelman’s Jaco-
bian comparison theorem [31] one can show that the reduced volume
is always finite for any complete solution of the Ricci flow (see [3] for

the details)). In [31], Perelman proved that the reduced volume Ṽ (τ)
is nonincreasing in τ , and the monotonicity is strict unless the solution
is a gradient shrinking Ricci soliton.

From [31] (Section 7 of [31]), the function L(q, τ) = 4τ l(q, τ) satisfies

∂

∂τ
L + △L ≤ 8.

It is clear that L(·, τ) achieves its minimum on M4 for each τ > 0 since
the scalar curvature is nonnegative. Then the minimum of L(·, τ)−8τ is
nonincreasing, so in particular, the minimum of l(·, τ) does not exceed
2 for each τ > 0. Thus for each τ > 0 we can find q = q(τ) such that
l(q(τ), τ) ≤ 2. We can apply Perelman’s Proposition 11.2 from [31] to
conclude that the scalings of gij(·, t0 − τ) around q(τ) with factors τ−1

converge in C∞
loc topology along a subsequence τ → +∞ to a non-flat

gradient shrinking soliton. Because the proof of this proposition in [31]
is just a sketch, we would like to give its detail in the following for
completeness.

We first claim that for any A ≥ 1, one can find B = B(A) < +∞
such that for every τ > 1 there holds

(3.5) l(q, τ) < B and τR(q, t0 − τ) ≤ B

whenever 1
2τ ≤ τ ≤ Aτ and d2

t0− τ
2

(q, q( τ
2 )) ≤ Aτ .

Indeed, by Section 7 of [31], the reduced distance l satisfies the fol-
lowing

(3.6)

(3.7)

(3.8)





∂
∂τ l = − l

τ + R + K
2τ3/2 ,

|∇l|2 = −R + l
τ − K

τ3/2 ,

△l ≤ −R + 2
τ − K

2τ3/2 ,

in the sense of distributions, and the equality holds everywhere if and
only if we are on a gradient shrinking soliton, where K =

∫ τ
0 s3/2Q(X)ds

and Q(X) is the trace Li-Yau-Hamilton quadratic given by

Q(X) = − ∂

∂τ
R − R

τ
− 2〈∇R, X〉 + 2Ric(X, X),

and X is the tangential (velocity) vector of a L-shortest curve γ :
[0, τ ] → M4 connecting p to q.
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By applying the trace Li-Yau-Hamilton inequality [18] to the ancient
κ-solution, we have

Q(X) ≥ −R

τ

and then

K ≥ −
∫ τ

0

√
sRds ≥ −2

√
τ l.

Thus by (3.7) we get

(3.9) |∇l|2 + R ≤ 3l

τ
.

At τ = τ̄
2 , we have

√
l

(
q,

τ

2

)
≤

√
2 + sup{|∇

√
l|} · dt0− τ

2

(
q, q

(
τ

2

))

≤
√

2 +

√
3A

2
,

(3.10)

and

(3.11) R

(
q, t0 −

τ

2

)
≤ 6

τ

(
√

2 +

√
3A

2

)2

,

for q ∈ Bt0− τ
2
(q( τ

2 ),
√

Aτ). Since the scalar curvature of an ancient solu-

tion with nonnegative curvature operator is pointwisely nondecreasing
in time (by the trace Li-Yau-Hamilton inequality [18]), we further have

(3.12) τR(q, t0 − τ) ≤ 6A

(
√

2 +

√
3A

2

)2

whenever 1
2τ ≤ τ ≤ Aτ and d2

t0− τ
2

(q, q( τ
2 )) ≤ Aτ .

By (3.6), (3.7) and (3.12), we have

∂

∂τ
l ≤ − l

2τ
+

3A

τ

(
√

2 +

√
3A

2

)2

,

and by integrating this inequality and using the estimate (3.10), we
obtain

(3.13) l(q, τ) ≤ 7A

(
√

2 +

√
3A

2

)2

whenever 1
2τ ≤ τ ≤ Aτ and d2

t0− τ
2

(q, q( τ
2 )) ≤ Aτ . So we have proved

the assertion (3.5).
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The scaling of the ancient κ-solution around q( τ
2 ) with factor ( τ

2 )−1

is

g̃ij(s) =
2

τ
gij

(
·, t0 − s

τ

2

)

for s ∈ [0, +∞). The assertion (3.5) implies that for all s ∈ [1, 2A]

and all q with dist2
egij(1)

(q, q( τ
2 )) ≤ A, we have R̃(q, s) ≤ B where R̃

is the scalar curvature of the rescaled metric g̃ij . Then we can use
Hamilton’s compactness theorem ([19] or more precisely Theorem 16.1
of [20]) and the κ-noncollapsing assumption to obtain a sequence τk →
+∞ such that the marked evolving manifolds (M4, g̃

(k)
ij (s), q( τk

2 )), with

g̃
(k)
ij (s) = 2

τk
gij(·, t0 − s τk

2 ) and s ∈ [1, +∞), converge in C∞
loc topology

to an evolving manifold (M
4
, gij(s), q) with s ∈ [1, +∞), where gij(s)

satisfies ∂
∂sgij = 2Rij on M × [1, +∞).

Denote by l̃k the corresponding reduced distance of g̃
(k)
ij (s). It is easy

to see that l̃k(q, s) = l(q, τk
2 s) for s ∈ [1, +∞). After rescaling we still

have

|∇l̃k|2
eg
(k)
ij

+ R̃(k) ≤ 6l̃k

and by (3.5), l̃k are uniformly bounded at finite distances. Thus the

above gradient estimate implies that the functions l̃k tend (up to a
subsequence) to a function l which is a locally Lipschitz function on M .

From (3.6)-(3.8), we have

∂

∂s
(l̃k) −△l̃k + |∇l̃k|2 − R̃(k) +

2

s
≥ 0,

2△l̃k − |∇l̃k|2 + R̃(k) +
l̃k − 4

s
≤ 0,

which can be rewritten as

(3.14)

(
∂

∂s
−△ + R̃(k)

)
((4πs)−2 exp(−l̃k)) ≤ 0,

(3.15) −(4△− R̃(k))e−
elk
2 +

l̃k − 4

s
e−

elk
2 ≤ 0,

in the sense of distribution. Clearly, these two inequalities imply that
the limit l satisfies

(3.16)

(
∂

∂s
−△ + R

)
((4πs)−2 exp(−l)) ≤ 0,

(3.17) −(4△− R)e−
l
2 +

l̄ − 4

s
e−

l
2 ≤ 0,

in the sense of distribution.
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Denote by Ṽ (k)(s) the reduced volume of the rescaled metric g̃
(k)
ij (s).

Since l̃k(q, s) = l(q, τk
2 s), we see that Ṽ (k)(s) = Ṽ ( τk

2 s). The mono-

tonicity of the reduced volume Ṽ (τ) (see [31]) then implies that

lim
k→+∞

Ṽ (k)(s) = V , for s ∈ [1, 2]

for some positive constant V . But we are not sure whether the lim-
iting V is exactly Perelman’s reduced volume of the limiting manifold

(M
4
, gij(s)), because the points q( τk

2 ) may diverge to infinity. Never-

theless, we can insure that V is not less than Perelman’s reduced volume
of the limit. Note that

Ṽ (k)(2) − Ṽ (k)(1)

=

∫ 2

1

d

ds
(Ṽ (k)(s))ds

=

∫ 2

1
ds

∫

M4

(
∂

∂s
−△ + R̃(k)

)
((4πs)−2 exp(−l̃k))dV

eg
(k)
ij (s)

.

Thus we deduce that in the sense of distributions,

(3.18)

(
∂

∂s
−△ + R

)
((4πs)−2 exp(−l)) = 0,

(3.19) −(4△− R)e−
l
2 +

l̄ − 4

s
e−

l
2 = 0,

and then the standard parabolic equation theory implies that l is ac-
tually smooth. Here we used (3.6)-(3.8) to show that the equality in
(3.16) implies the equality in (3.17).

Set

υ = [s(2△l − |∇l̄|2 + R) + l − 4] · (4πs)−2e−l.

A direct computation gives

(3.20)

(
∂

∂s
−△ + R

)
υ = −2s|Rij + ∇i∇jl −

1

2s
gij |2 · (4πs)−2e−ℓ.

Since the equation (3.18) implies υ ≡ 0, the limit metric gij satisfies

(3.21) Rij + ∇i∇jl −
1

2s
gij = 0.

Thus the limit is a gradient shrinking Ricci soliton.
To show the limiting gradient shrinking Ricci soliton to be nonflat,

we first show that constant V is strictly less than 1. Indeed, by consid-

ering the reduced volume Ṽ (τ) of the ancient κ-solution, we get from
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Perelman’s Jacobian comparison theorem [31] that

Ṽ (τ) =

∫

M4

(4πτ)−2e−ldVt0−τ

≤
∫

TpM4

(4π)−2e−|X|2dX

= 1.

Recall that we assumed the nonflat ancient κ-solution is not a gradient
shrinking Ricci soliton. Thus by the monotonicity of the reduced volume

[31], we have Ṽ (τ) < 1 for τ > 0. This implies that V < 1.
We now argue by contradiction. Suppose the limit gij(s) is flat. Then

by (3.21) we have

∇i∇jl =
1

2s
gij and △l =

2

s
.

And then by (3.19), we get

|∇l|2 =
l

s
.

Since the function l is strictly convex, it follows that
√

4sl is a distance
function (from some point) on the complete flat manifold M . From the
smoothness of the function l, we conclude that the flat manifold M must
be R4. In this case we would have its reduced distance to be l̄ and its
reduced volume to be 1. Since V is not less than the reduced volume
of the limit, this is a contradiction. Therefore the limiting gradient
shrinking soliton gij is nonflat.

Now we consider the nonflat gradient shrinking Ricci soliton (M
4
, gij).

Of course it is still κ-noncollapsed for all scales and satisfies the re-
stricted isotropic curvature pinching condition (2.4). We first show that

(M
4
, gij(s)) has bounded curvature at each s > 0. Clearly it suffices to

consider s = 1. By Lemma 3.2, we may assume the soliton (M
4
, gij(1))

has positive curvature operator everywhere. Let us argue by contradic-
tion. Suppose not; then we claim that for each positive integer k, there
exists a point xk such that





R̄(xk, 1) ≥ k,

R̄(x, 1) ≤ 4R̄(xk, 1), for x ∈ Bḡ(·,1)

(
xk,

k√
R̄(xk,1)

)
.

Indeed, xk can be constructed as a limit of a finite sequence {yi}, defined
as follows. Let y0 be any fixed point with R̄(y0, 1) ≥ k. Inductively, if
yi cannot be taken as xk, then there is a yi+1 such that

{
R̄(yi+1, 1) > 4R̄(yi, 1),

dḡ(·,1)(yi, yi+1) ≤ k√
R̄(yi,1)

.
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Thus we have

R̄(yi, 1) > 4iR̄(y0, 1) ≥ 4ik,

dḡ(·,1)(yi, y0) ≤ k
i∑

j=1

1√
4j−1k

< 2
√

k.

Since the soliton is smooth, the sequence {yi} must be finite. The last
element fits.

Note that the limiting soliton still satisfies the Li-Yau-Hamilton in-
equality. Then we have

R̄(x, s) ≤ R̄(x, 1) ≤ 4R̄(xk, 1)

for x ∈ Bḡ (·,1) (xk,
k√

R̄ (xk, 1)
) and 1 ≤ s ≤ 1 + 1

R̄(xk,1)
. By the κ-

noncollapsing and the Hamilton’s compactness theorem [19], a sequence

of (M̄4, R̄(xk, 1)ḡ(·, 1 + (·)
R̄(xk,1)

, xk) will converge to a complete smooth

solution ( ¯̄M4, ¯̄g) at least on the interval [0, 1). Since dḡ(·,1)(xk, x0) → ∞
and R̄(xk, 1) → ∞, it follows from Lemma 3.1 that ¯̄M4 = R × S3. This

contradicts Proposition 2.2. So we have proved that (M
4
, gij(s)) has

bounded curvature at each s > 0.
We next show that the soliton (M

4
, gij) is κ′

0-noncollapsed on all

scales for some universal positive constant κ′
0. If the soliton (M

4
, gij)

has positive curvature operator, we know from Hamilton’s result [16]

and Proposition 3.4 that either the soliton (M
4
, gij) is the round S4

or RP4 when it is compact, or it is κ′
0-noncollapsed for all scales for

some universal positive constant κ′
0 when it is noncompact. (Further-

more, when the soliton (M
4
, gij) is the round S4 or RP4, it follows

from Hamilton’s pinching estimates in [16] that the original ancient κ-
solution (M4, gij(t)) is also the round S4 or RP4). While if the soliton

(M
4
, gij) has a nontrivial null eigenvector somewhere at some time, we

know from Lemma 3.2 that the soliton (M
4
, gij) is R × S3/Γ, a metric

quotient of the round neck R×S3. For each σ ∈ Γ, (s, x) ∈ R×S3, write
σ(s, x) = (σ1(s, x), σ2(s, x)) ∈ R×S3. Since σ sends lines to lines, and σ
sends cross spheres to cross spheres, we have σ1(s, x) = σ1(s, y),∀ x, y ∈
S3. This says that σ1 reduces to a function of s alone on R. Moreover, for
any (s, x), (s′, x′) ∈ R×S3, since σ preserves the distances between cross
spheres {s} × S3 and {s′} × S3, we have |σ1(s, x)− σ1(s

′, x′)| = |s− s′|.
So the projection Γ1 of Γ to the factor R is an isometric subgroup of R.
We know that if (M̄4, ḡij) = R × S3/Γ was compact, it, as an ancient
solution, could not be κ-noncollapsed on all scales as t → −∞. Thus
(M̄4, ḡij) = R × S3/Γ is noncompact. It follows that Γ1 = {1} or Z2.
We conclude that, in both cases, there is a Γ-invariant cross sphere S3

in R × S3. Denote it by {0} × S3. Γ acts on {0} × S3 without fixed
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points. Recall that we have assumed that the ancient solution (M4, gij)
has positive curvature operator. Then we apply Hamilton’s argument in
Theorem C4.1 of [21] when M4 is compact and apply the modified ar-
gument in the proof of Lemma 3.1 when M4 is noncompact to conclude
that ({0}×S3)/Γ is incompressible in M4 (i.e., π1(({0}×S3)/Γ) injects
into π1(M

4)). By Synge theorem and the Soul theorem [7], the funda-
mental group π1(M

4) is either {1} or Z2. This implies that Γ is either

{1} or Z2. Thus the limiting soliton (M
4
, gij) is also κ′

0-noncollapsed
on all scales for some universal positive constant κ′

0.
We next use the κ′

0-noncollapsing of the limiting soliton to derive a
κ0-noncollapsing for the original ancient κ-solution. By rescaling, we
may assume that R(x, t) ≤ 1 for all (x, t) satisfying dt0(x, p) ≤ 2 and
t0−1 ≤ t ≤ t0. We only need to bound the volume Volt0(Bt0(p, 1)) from
below by a universal positive constant.

Denote by ǫ = Volt0(Bt0(p, 1))
1
4 . For any υ ∈ TpM

4, it is known
from [31] that one can find a L-geodesic γ(τ), starting at p, with
limτ→0+

√
τ γ̇(τ) = υ, which satisfies the following L-geodesic equation

(3.22)
d

dτ
(
√

τ γ̇) − 1

2

√
τ∇R + 2Ric(

√
τ γ̇, ·) = 0.

Note from Shi’s local derivative estimate (see [36]) that |∇R| is also
uniformly bounded. By integrating the L-geodesic equation we see that
as τ ≤ ǫ with the property that γ(σ) ∈ Bt0(p, 1) for σ ∈ (0, τ ], there
holds

(3.23) |
√

τ γ̇(τ) − υ| ≤ Cǫ(|υ| + 1)

for some universal positive constant C. Here we implicitly used the fact
that the metrics gij(t) are equivalent to each other on Bt0(p, 1) × [t0 −
1, t0], which is an easy consequence of the boundedness of the curvature
there. Without loss of generality, we may assume Cǫ ≤ 1

4 and ǫ ≤ 1
100 .

Then for υ ∈ TpM
4 with |υ| ≤ 1

4ǫ−
1
2 and for τ ≤ ǫ with the property

that γ(σ) ∈ Bt0(p, 1) for σ ∈ (0, τ ], we have

dt0(p, γ(τ)) ≤
∫ τ

0
|γ̇(σ)|dσ

<
1

2
ǫ−

1
2

∫ τ

0

dσ√
σ

= 1.

This shows

(3.24) L exp

{
|υ| ≤ 1

4
ǫ−

1
2

}
(ǫ) ⊂ Bt0(p, 1)

where L exp(·)(ǫ) denotes the exponential map of the L distance with
parameter ǫ (see [31] or [3] for details). We decompose the reduced
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volume Ṽ (ǫ) as

Ṽ (ǫ) =

∫

M4

(4πǫ)−2 exp(−l)dVt0−ǫ

≤
∫

L exp{|υ|≤ 1
4
ǫ−

1
2 }(ǫ)

+

∫

M4\L exp{|υ|≤ 1
4
ǫ−

1
2 }(ǫ)

(4πǫ)−2 exp(−l)dVt0−ǫ.

(3.25)

The first term on RHS of (3.25) can be estimated by
∫

L exp{|υ|≤ 1
4
ǫ−

1
2 }(ǫ)

(4πǫ)−2 exp(−l)dVt0−ǫ(3.26)

≤ e4ǫ

∫

Bt0 (p,1)
(4πǫ)−2 exp(−l)dVt0

≤ e4ǫ(4π)−2ǫ−2Volt0(Bt0(p, 1))

= e4ǫ(4π)−2ǫ2,

where we used (3.24) and the equivalence of the evolving metric over
Bt0(p, 1). Meanwhile the second term on the RHS of (3.25) can be
estimated as follows∫

M4\L exp{|υ|≤ 1
4
ǫ−

1
2 }(ǫ)

(4πǫ)−2 exp(−l)dVt0−ǫ(3.27)

≤
∫

{|υ|> 1
4
ǫ−

1
2 }

(4πτ)−2 exp(−l)J(τ)|τ=0dυ

by Perelman’s Jacobian comparison theorem [31], where J(τ) is the
Jacobian of the L-exponential map.

For any υ ∈ TpM , we consider a L-geodesic γ(τ) starting at p with
limτ→0+

√
τ γ̇(τ) = υ. To evaluate the Jacobian of the L exponential

map at τ = 0 we choose linear independent vectors υ1, . . . , υ4 in TpM
and let

Vi(τ) = (L expυ(τ))∗(υi) =
d

ds
|s=0L exp(υ+sυi)(τ), i = 1, . . . , 4.

The L-Jacobian J(τ) is given by

J(τ) = |V1(τ) ∧ · · · ∧ V4(τ)|gij(τ)/|v1 ∧ · · · ∧ v4|.
By the L-geodesic equation (3.22) and the deriving of (3.23), we see
that as τ > 0 small enough,

∣∣∣∣
√

τ
d

dτ
L exp(υ+sυi)(τ) − (υ + sυi)

∣∣∣∣ ≤ o(1)

for s ∈ (−ǫ, ǫ) and i = 1, . . . , 4, where o(1) tends to zero as τ → 0+

uniformly in s. This implies that

lim
τ→0+

√
τ V̇i(τ) = υi, i = 1, . . . , 4,
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so we get

(3.28) lim
τ→0+

τ−2J(τ) = 1.

To evaluate l(·, τ) at τ = 0, we use (3.23) again to get

l(·, τ) =
1

2
√

τ

∫ τ

0

√
s(R + |γ̇(s)|2)ds

→ |υ|2, as τ → 0+,

thus

(3.29) l(·, 0) = |υ|2.
Hence by combining (3.27)-(3.29) we have

∫

M4\L exp{|υ|≤ 1
4
ǫ−

1
2 }(ǫ)

(4πǫ)−2 exp(−l)dVt0−ǫ(3.30)

≤ (4π)−2

∫

{|υ|> 1
4
ǫ−

1
2 }

exp(−|υ|2)dυ

< ǫ2.

By summing up (3.25), (3.26) and (3.30), we obtain

(3.31) Ṽ (ǫ) < 2ǫ2.

On the other hand we recall that there are sequences τk → +∞ and
q(τk) ∈ M4 with l(q(τk), τk) ≤ 2 so that the rescalings of the ancient
κ-solution around q(τk) with factor τ−1

k converge to a gradient shrinking
Ricci soliton which is κ′

0-noncollapsing on all scales for some universal
positive constant κ′

0. For sufficiently large k, we construct a path γ :
[0, 2τk] → M4, connecting p to any given point q ∈ M4, as follows: the
first half path γ|[0,τk] connects p to q(τk) such that

l(q(τk), τk) =
1

2
√

τk

∫ τk

0

√
τ(R + |γ̇(τ)|2)dτ ≤ 3,

and the second half path γ|[τk,2τk] is a shortest geodesic connecting q(τk)
to q with respect to the metric gij(t0−τk). Note that the rescaled metric

τ−1
k gij(t0 − τ) over the domain Bt0−τk

(q(τk),
√

τk)× [t0 − 2τk, t0 − τk] is
sufficiently close to the gradient shrinking Ricci soliton. Then by the
estimates (3.5) and the κ′

0-noncollapsing of the shrinking soliton, we get

Ṽ (2τk) =

∫

M
(4π(2τk))

−2 exp(−l(q, 2τk))dVt0−2τk
(q)

≥
∫

Bt0−τk
(q(τk),

√
τk)

(4π(2τk))
−2 exp(−l(q, 2τk))dVt0−2τk

(q)

≥ β
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for some universal positive constant β. By applying the monotonicity
of the reduced volume [31] and (3.31), we deduce that

β ≤ Ṽ (2τk) ≤ Ṽ (ǫ) < 2ǫ2.

This proves

Volt0(Bt0(p, 1)) ≥ κ0 > 0

for some universal positive constant κ0. Therefore we have proved the
theorem. q.e.d.

Once the universal noncollapsing of ancient κ-solution with restricted
isotropic curvature pinching is established, we can also strengthen the
elliptic type estimates in Proposition 3.3 to the following form.

Proposition 3.6. There exist a positive constant η and a positive
function ω : [0, +∞) → (0, +∞) with the following properties. Suppose
we have a four-dimensional ancient κ-solution (M4, gij(t)),−∞ < t ≤
0, with restricted isotropic curvature pinching for some κ > 0. Then

(i) for every x, y ∈ M4 and t ∈ (−∞, 0], there holds

R(x, t) ≤ R(y, t) · ω(R(y, t)d2
t (x, y));

(ii) for all x ∈ M4 and t ∈ (−∞, 0], there hold

|∇R|(x, t) ≤ ηR
3
2 (x, t) and

∣∣∣∣
∂R

∂t

∣∣∣∣ (x, t) ≤ ηR2(x, t).

The following result generalizes Theorem 11.7 of Perelman [31] to
four-dimension.

Corollary 3.7. The set of four-dimensional ancient κ-solutions with
restricted isotropic curvature pinching and positive curvature operator
is precompact modulo scaling in the sense that for any sequence of such
solutions and marked points (xk, 0) with R(xk, 0) = 1, we can extract a
C∞

loc converging subsequence, and the limit is also an ancient κ0-solution
with restricted isotropic curvature pinching.

Proof. Consider any sequence of four-dimensional ancient κ-solutions
with restricted isotropic curvature pinching and positive curvature op-
erator and marked points (xk, 0) with R(xk, 0) = 1. By Proposition
3.6 (i), Li-Yau-Hamilton inequality [18] and Hamilton’s compactness
theorem (Theorem 16.1 of [20]), we can extract a C∞

loc converging sub-

sequence such that the limit (M
4
, gij(t)) is an ancient solution to the

Ricci flow and satisfies the restricted isotropic curvature pinching con-
dition (2.4), and is κ-noncollapsed for all scales. Moreover, the limit
still satisfies the Li-Yau-Hamilton inequality and assertions (i) and (ii)
of Proposition 3.6. To show the limit is an ancient κ-solution, it remains
to show the limit has bounded curvature at the time t = 0.
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By the virtue of Lemma 3.2, we may assume the limit has positive
curvature operator everywhere. We now argue by contradiction. Sup-
pose the curvature of the limit (at t = 0) (M̄4, ḡij(0)) is unbounded, then
there is a sequence of points Pl divergent to infinity at the time t = 0
with the scalar curvature R(Pl, 0) → +∞. By Hamilton’s compact-
ness theorem (Theorem 16.1 of [20]) and the estimates in assertions (i)
and (ii) of Proposition 3.6, we know that a subsequence of the rescaled

solutions (M
4
, R̄(Pl, 0)gij(·, t

R̄(Pl,0)
), Pl) converges in C∞

loc to a smooth

nonflat limit. And by Lemma 3.1, the limit must be the round neck
R × S3. This contradicts Proposition 2.2.

Therefore we have proved the corollary. q.e.d.

3.4. Canonical neighborhood structures. We now examine the
structures of four-dimensional nonflat ancient κ-solutions with restricted
isotropic curvature pinching. As before by Lemma 3.2, we have seen that
a four-dimensional nonflat ancient κ-solution with restricted isotropic
curvature pinching, whose curvature operator has a nontrivial null vec-
tor somewhere at some time, must be a metric quotient of the round
cylinder R × S3. So we only need to consider the ancient κ-solutions
with positive curvature operator. The following theorem gives their
canonical neighborhood structures. The analogous result in the three-
dimensional case was given by Perelman in Section 1.5 of [32].

Theorem 3.8. For every ε > 0 one can find positive constants
C1 = C1(ε), C2 = C2(ε) such that for each point (x, t) in every four-
dimensional ancient κ-solution (for some κ > 0) with restricted isotropic
curvature pinching and with positive curvature operator, there is a

radius r, 0 < r < C1(R(x, t))−
1
2 , so that some open neighborhood

Bt(x, r) ⊂ B ⊂ Bt(x, 2r) falls into one of the following three categories:

(a) B is an evolving ε-neck (in the sense that it is the time
slice at time t of the parabolic region {(x′, t′)|x′ ∈ B, t′ ∈
[t−ε−2R(x, t)−1, t]} which is, after scaling with factor R(x, t) and

shifting the time t to 0, ε-close (in C [ε−1] topology) to the subset
(I × S3) × [−ε−2, 0] of the evolving round cylinder R × S3, having
scalar curvature one and length 2ε−1 to I at time zero), or

(b) B is an evolving ε-cap (in the sense that it is the time slice at

the time t of an evolving metric on open B4 or RP4 \B4 such that

the region outside some suitable compact subset of B4 or RP4 \B4

is an evolving ε-neck), or
(c) B is a compact manifold (without boundary) with positive curva-

ture operator (thus it is diffeomorphic to S4 or RP4);
furthermore, the scalar curvature of the ancient κ-solution in B
at time t is between C−1

2 R(x, t) and C2R(x, t), and the volume of
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B in case (a) and case (b) satisfies

(C2R(x, t))−2 ≤ Volt(B).

Proof. If the nonflat ancient κ-solution is noncompact, the conclu-
sions follow immediately from (the proof of) Proposition 3.4. We thus
assume the nonflat ancient κ-solution is compact. By Theorem 3.5 we
see that such an ancient κ-solution is κ0-noncollapsed for all scales for
some universal positive constant κ0.

We argue by contradiction. Suppose for some ε > 0, there exists
a sequence of compact ancient κ0-solutions (M4

k , gk) with restricted
isotropic curvature pinching and with positive curvature operator, a
sequence of points xk ∈ M4

k , and sequences of positive constants C1k

with C1k → +∞ as k → +∞ and C2k = ω(4C2
1k) with the func-

tion ω given in Proposition 3.6 such that at time t, for every radius

r, 0 < r < C1kR(xk, t)
− 1

2 , any open neighborhood B with Bt(xk, r) ⊂
B ⊂ Bt(xk, 2r) can not fall into any one of the three categories (a),
(b) and (c). Clearly, the diameter of each M4

k at time t is at least

C1kR(xk, t)
− 1

2 ; otherwise one can choose suitable r ∈ (0, C1kR(xk, t)
− 1

2 )
and B = M4

k , which falls into category (c), so that the scalar curvature

in B at t is between C−1
2k R(xk, t) and C2kR(xk, t) by using Proposi-

tion 3.6 (i). Now by scaling the ancient κ0-solutions along the points
(xk, t) with factors R(xk, t) and shifting the time t to 0, it follows from
Corollary 3.7 that a subsequence of these rescaled ancient κ0-solutions
converges in C∞

loc topology to a noncompact nonflat ancient κ0-solution
with restricted isotropic curvature pinching.

If the noncompact limit has a nontrivial null curvature eigenvector
somewhere, then by Lemma 3.2 we conclude that the limit is round
cylinder R × S3 or a metric quotient R × S3/Γ. By the same reason as
in the proof of Theorem 3.5, the projection Γ1 of Γ to the factor R is
an isometric subgroup of R. Since the limit R × S3/Γ is noncompact,
Γ1 must be {1} or Z2. Thus we have a Γ-invariant cross-sphere S3 in
R×S3/Γ, and Γ acts on it without fixed points. Denote this cross sphere
by {0}× S3. Since each (M4

k , gk) is compact and has positive curvature
operator, we know from [16] that each M4

k is diffeomorphic to S4 or

RP4. Then by the proof of Theorem 3.5 and applying theorem C 4.1 of
[21], we conclude that the limit is R × S3 or R × S3/Γ with Γ = Z2. If
Γ = Z2, we claim that Γ must act on R × S3/Γ by flipping both R and
S3.

Indeed, as shown before, Γ1 = {1} or Z2. If Γ1 = {1}, then R×S3/Γ =
R × RP3. Let Γ+ be the normal subgroup of Γ preserving the orienta-
tion of the cylinder, and π1(M

4
k )+ be the normal subgroup of π1(M

4
k )

preserving the orientation of the universal cover of M4
k . Since the man-

ifold M4
k is diffeomorphic to RP4, this induces an absurd commutative

diagram:
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Z2 Z2 0
‖ ‖ ‖

0 −→ Γ+ −→ Γ −→ Γ/Γ+ −→ 0
↓ ↓ ≀ ↓

0 −→ π1(M
4
k )+ −→ π1(M

4
k ) −→ π1(M

4
k )/π1(M

4
k )+ −→ 0

‖ ‖ ‖
0 Z2 Z2

where the vertical morphisms are induced by the inclusion R × S3/Γ ⊂
M . Therefore Γ1 = Z2. Denote by σ1 the isometry of R × S3 acting by
flipping both R and S3 around {0} × S3. Clearly, for any σ ∈ Γ with
σ 6= 1, σ ◦ σ1 is an isometry of R × S3 whose projection on the factor R

is the identity map. Then σ ◦ σ1 is only a rotation of the factor S3 in
R×S3. Note that σ ◦σ1 |{0}×S3 is an identity. We conclude that σ = σ1

and the claim holds.

When the limit is the round cylinder R×S3, a suitable neighborhood
B (for suitable r) of xk would fall into category (a) for sufficiently large
k; while when the limit is the Z2 quotient of the round cylinder R × S3

with the antipodal map flipping both S3 and R, a suitable neighborhood
B (for suitable r) of xk would fall into category (b) (over RP4 \ B4) or
into category (a) for sufficiently large k. This is a contradiction.

If the noncompact limit has positive curvature operator everywhere,
then by Proposition 3.4, a suitable neighborhood B (for suitable r) of
xk would fall into category (b) (over B4) for sufficiently large k. We also
get a contradiction.

Finally, the statements on the curvature estimate and volume esti-
mate for the neighborhood B follow directly from Theorem 3.6 and
Proposition 3.4. Therefore we have proved the theorem. q.e.d.

4. The Structure of Solutions at the Singular Time

Let (M4, gij(x)) be a four-dimensional compact Riemannian manifold
with positive isotropic curvature and let gij(x, t), x ∈ M4 and t ∈ [0, T ),
be a maximal solution to the Ricci flow (1.1) with gij(x, 0) = gij(x) on
M4. Since the initial metric gij(x) has positive scalar curvature, it is
easy to see that the maximal time T must be finite and the curva-
ture tensor becomes unbounded as t → T . According to Perelman’s
noncollapsing theorem I (Theorem 4.1 of [31]), the solution gij(x, t)

is κ-noncollapsed on the scale
√

T for all t ∈ [0, T ) for some κ > 0.
Now let us take a sequence of times tk → T , and a sequence of points
pk ∈ M4 such that for some positive constant C, |Rm|(x, t) ≤ CQk with
Qk = |Rm(pk, tk)| whenever x ∈ M4 and t ∈ [0, tk], called a sequence of
(almost) maximal points. Then by Hamilton’s compactness theorem
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[19], a sequence of the scalings of the solution gij(x, t) along the points
pk with factors Qk converges to a complete ancient κ-solution with re-
stricted isotropic curvature pinching. This says that, for any ε > 0, there
exists a positive number k0 such that as k ≥ k0, the solution in the par-
abolic region {(x, t) ∈ M4 × [0, T ) | d2

tk
(x, xk) < ε−2Q−1

k , tk − ε−2Q−1
k <

t ≤ tk} is, after scaling with the factor Qk, ε-close (in C [ε−1]-topology)
to the corresponding subset of the ancient κ-solution with restricted
isotropic curvature pinching.

Let us describe the structure of any ancient κ-solution (with restricted
isotropic curvature pinching). If the curvature operator is positive ev-
erywhere, then each point of the ancient κ-solution has a canonical
neighborhood described in Theorem 3.8. Meanwhile if the curvature
operator has a nontrivial null eigenvector somewhere, then by Hamil-
ton’s strong maximum principle and the pinching condition (2.4) the
ancient κ-solution is isometric to R × S3/Γ, a metric quotient of the
round cylinder R × S3. Since it is κ-noncollapsed for all scales, the
metric quotient R×S3/Γ can not be compact. Suppose we make an ad-
ditional assumption that the compact four manifold M4 has no essential
incompressible space form. Then by the proofs of Theorems 3.5 and 3.8
and applying Theorem C 4.1 of [21], we have Γ = {1}, or Γ = Z2 acting
antipodally on S3 and by reflection on R. Thus in both cases, each point
of the ancient κ solution has also a canonical neighborhood described
in Theorem 3.8.

Hence we see that each such (almost) maximal point (xk, tk) has a
canonical neighborhood which is either an evolving ε-neck or an evolving
ε-cap, or a compact manifold (without boundary) with positive curva-
ture operator. This gives the structure of the singularities coming from
a sequence of (almost) maximal points (xk, tk). However, this argument
does not work for the singularities coming from a sequence of points
(yk, τk) with τk → T and |Rm(yk, τk)| → +∞ when |Rm(yk, τk)| is not
comparable with the maximum of the curvature at the time τk, since
we can not take a limit directly.

We now follow a refined rescaling argument of Perelman (Theorem
12.1 of [31], see also Theorem 51.3 in [26] and Theorem 7.1.1 in [3]
for the details) to obtain a uniform canonical neighborhood structure
theorem for four-dimensional solutions at any point where its curvature
is suitably large.

Theorem 4.1. Given ε > 0, κ > 0, 0 < θ, ρ, Λ, P < +∞, one can
find r0 > 0 with the following property. If gij(x, t), t ∈ [0, T ) with
T > 1, is a solution to the Ricci flow on a four-dimensional compact
manifold M4 with no essential incompressible space form, which has
positive isotropic curvature, is κ-noncollapsed on the scales ≤ θ and
satisfies (2.1), (2.2) and (2.3) in Lemma 2.1, then for any point (x0, t0)
with t0 ≥ 1 and Q = R(x0, t0) ≥ r−2

0 , the solution in the parabolic
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region {(x, t) ∈ M4 × [0, T )|d2
t0(x, x0) < ε−2Q−1, t0 − ε−2Q−1 < t ≤

t0} is, after scaling by the factor Q, ε-close (in C [ε−1]-topology) to the
corresponding subset of some ancient κ-solution with restricted isotropic
curvature pinching.

Consequently each point (x0, t0), with t0 ≥ 1 and Q = R(x0, t0) ≥
r−2
0 , satisfies the gradient estimates

(4.1) |∇R(x0, t0)| < 2ηR
3
2 (x0, t0) and

∣∣∣∣
∂

∂t
R(x0, t0)

∣∣∣∣ < 2ηR2(x0, t0),

and has a canonical neighborhood B with Bt0(x0, r) ⊂ B ⊂ Bt0(x0, 2r)

for some 0 < r < C1(ε)(R(x0, t0))
− 1

2 , which is either an evolving ε-neck,
or an evolving ε-cap, or a compact four-manifold with positive curvature
operator. Here η is the universal constant in Proposition 3.6 and C1(ε)
is the positive constant in Theorem 3.8.

Proof. The detail exposition of Perelman’s refined rescaling argument
have been given in Theorem 51.3 of [26] and Theorem 7.1.1 of [3] for
three-manifolds. We now adapt that to the four-dimensional Ricci flow.

Let C(ε) be a positive constant depending only on ε such that C(ε) →
+∞ as ε → 0+. It suffices to prove that there exists r0 > 0 such
that for any point (x0, t0) with t0 ≥ 1 and Q = R(x0, t0) ≥ r−2

0 , the
solution in the parabolic region {(x, t) ∈ M4 × [0, T ) | d2

t0(x, x0) <

C(ε)Q−1, t0−C(ε)Q−1 < t ≤ t0} is, after scaling by the factor Q, ε-close
to the corresponding subset of some ancient κ-solution with restricted
isotropic curvature pinching. The constant C(ε) will be determined
later.

We argue by contradiction. Suppose for some ε > 0, κ > 0, 0 <

θ, ρ, Λ, P < +∞, there exists a sequence of solutions (M4
k , g

(k)
ij (·, t))

to the Ricci flow on compact four-manifolds with no essential incom-
pressible space form, having positive isotropic curvature and satisfy-
ing (2.1), (2.2) and (2.3), defined on the time interval [0, Tk) with
Tk > 1, and a sequence of positive numbers rk → 0 such that each

solution (M4
k , g

(k)
ij (·, t)) is κ-noncollapsed on the scales ≤ θ; but there

exists a sequence of points xk ∈ M4
k and times tk ≥ 1 with Qk =

Rk(xk, tk) ≥ r−2
k such that the solution in the parabolic region {(x, t) ∈

M4
k × [0, Tk) | d2

tk
(x, xk) < C(ε)Q−1

k , tk − C(ε)Q−1
k < t ≤ tk} is not, af-

ter scaling by the factor Qk, ε-close to the corresponding subset of any
ancient κ-solution with restricted isotropic curvature pinching, where

Rk denotes the scalar curvature of (M4
k , g

(k)
ij (·, t)). For each solution

(M4
k , g

(k)
ij (·, t)), we may adjust the point (xk, tk) with tk ≥ 1

2 and with

Qk = Rk(xk, tk) as large as possible so that the conclusion of the the-
orem fails at (xk, tk), but holds for any (x, t) ∈ M4

k × [tk − HkQ
−1
k , tk]
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satisfying R(x, t) ≥ 2Qk, where Hk = 1
4r−2

k → +∞ as k → +∞. In-

deed, suppose not; by setting (x
(1)
k , t

(1)
k ) = (xk, tk), we can inductively

choose (x
(ℓ)
k , t

(ℓ)
k ) ∈ M4

k×[t
(ℓ−1)
k −Hk(Rk(x

(ℓ−1)
k , t

(ℓ−1)
k ))−1, t

(ℓ−1)
k ] satisfy-

ing Rk(x
(ℓ)
k , t

(ℓ)
k ) ≥ 2Rk(x

(ℓ−1)
k , t

(ℓ−1)
k ), but the conclusion of the theorem

fails at (x
(ℓ)
k , t

(ℓ)
k ) for each ℓ = 2, 3, . . .. Since the solution is smooth and

Rk(x
(ℓ)
k , t

(ℓ)
k ) ≥ 2Rk(x

(ℓ−1)
k , t

(ℓ−1)
k )

≥ 2ℓ−1Rk(xk, tk),

t
(ℓ)
k ≥ t

(ℓ−1)
k − Hk(Rk(x

(ℓ−1)
k , t

(ℓ−1)
k ))−1

≥ tk − Hk

ℓ−1∑

i=1

(2i−1Rk(xk, tk))
−1

≥ tk − 2Hk(R(xk, tk))
−1

≥ 1

2
,

the above choosing process must terminate in finite step and the last
element fits.

Let (M4
k , g̃

(k)
ij (·, t), xk) be the rescaled solutions obtained by rescaling

the manifolds (M4
k , g

(k)
ij (·, t)) with factors Qk = Rk(xk, tk) and shift-

ing the time tk to 0. Denote by R̃k the rescaled scalar curvature. We

will show that a subsequence of the rescaled solutions (M4
k , g̃

(k)
ij (·, t), xk)

converges to an ancient κ-solution with restricted isotropic curvature
pinching, which is a contradiction. In the following we divide the argu-
ment into four steps.

Step 1. We want to prove a local curvature estimate in the follow-
ing assertion. This is the four-dimensional version of the claim 1 of
Perelman in the proof of Theorem 12.1 of [31].

Claim. For each (x, t) with tk − Hk
2 Q−1

k < t ≤ tk, we have Rk(x, t) ≤
4Qk whenever t − cQ

−1
k ≤ t ≤ t and d2

t
(x, x) ≤ cQ

−1
k , where Qk =

Qk + Rk(x, t) and c > 0 is a small universal constant.

To prove this, we consider any point (x, t) ∈ Bt(x, (cQ
−1
k )

1
2 ) × [t −

cQ
−1
k , t] with c > 0 to be determined. Clearly, we may assume Rk(x, t) >

2Qk. Let us draw a space time curve γ that goes from (x, t) to (x, t)

along a minimizing geodesic (with respect to the metric g
(k)
ij (·, t)) and

goes straight from (x, t) to (x, t). If there exists a point on γ with the
scalar curvature 2Qk, we choose p to be the nearest such point to (x, t);
otherwise, we choose p = (x, t). On the segment of γ from (x, t) to
p, the scalar curvature is not less than 2Qk. According to the choice
of the point (xk, tk), the solution along the segment is ε-close to that
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of some ancient κ-solutions with restricted isotropic curvature pinching.
Of course we may assume ε > 0 is very small. It follows from Proposition
3.6 (ii) that ∣∣∣∣∇(R

− 1
2

k )

∣∣∣∣ ≤ 2η and

∣∣∣∣
∂

∂t
(R−1

k )

∣∣∣∣ ≤ 2η

on the segment for some universal constant η > 0. Then by choosing
c > 0 (depending only on η) small enough we get the desired curvature
bound by integrating the above derivative estimate along the segment.
This proves the assertion.

Step 2. We next want to show that the curvatures of the rescaled

solutions g̃
(k)
ij (·, t) at the new time t = 0 (i.e., the original time tk) stay

uniformly bounded at bounded distances from xk. This is a weaker
and four-dimensional version of the claim 2 of Perelman in the proof of
Theorem 12.1 of [31]. We remark that the first detail exposition of this
part for three-dimension appeared (in June 2003) in the first version of
Kleiner-Lott [26].

For all σ ≥ 0, set

M(σ) = sup{R̃k(x, 0) | k ≥ 1, x ∈ M4
k with d0(x, xk) ≤ σ}

and

σ0 = sup{σ ≥ 0 | M(σ) < +∞}.
Note that σ0 > 0 by Step 1. By assumptions (2.1) and (2.2), it suf-
fices to show σ0 = +∞. We now argue by contradiction to show
σ0 = +∞. Suppose not; then after passing to a subsequence, we can
find a sequence of points yk ∈ M4

k so that d0(yk, xk) → σ0 < +∞
and R̃k(yk, 0) → +∞ as k → +∞. Let γk(⊂ M4

k ) be a minimizing
geodesic segment from xk to yk, and choose zk ∈ γk to be the point

on γk closest to yk at which R̃k(zk, 0) = 4. Denote by βk the subseg-
ment of γk running from yk to zk. It follows from the claim in Step 1
that the length of βk is uniformly bounded away from zero for all k.
By assumptions (2.1) and (2.2), we have a uniform curvature bound

on the open balls B0(xk, σ) ⊂ (M4
k , g̃

(k)
ij (·, 0)) for each fixed σ < σ0.

Note that the κ-noncollapsing assumption implies the uniform injectiv-

ity radius bound for (M4
k , g̃

(k)
ij (·, 0)) at the marked points xk. Then by

the virtue of Hamilton’s compactness theorem 16.1 in [20] (see [3] for
details on generalizing Hamilton’s compactness theorem to finite balls)
and the claim in Step 1, we can extract a subsequence of the marked

(B0(xk, σ0), g̃
(k)
ij (·, 0), xk) which converges in C∞

loc topology to a marked

(noncomplete) manifold (B∞, g̃∞ij , x∞), so that the segments γk converge

to a geodesic segment (missing an endpoint) γ∞ ⊂ B∞ emanating from
x∞, and βk converge to a subsegment β∞ of γ∞. Let B∞ denote the

completion of (B∞, g̃
(∞)
ij ), and y∞ ∈ B∞ the limit point of γ∞.
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Denote by R̃∞ the scalar curvature of (B∞, g̃
(∞)
ij ). Since the rescaled

scalar curvatures of R̃k along βk are at least 3, it follows from the choice

of the points (xk, tk) that for any q0 ∈ β∞, the manifold (B∞, g̃
(∞)
ij ) in

{q ∈ B∞|dist2
eg
(∞)
ij

(q, q0) < C(ε)(R̃∞(q0))
−1} is 2ε-close to the corre-

sponding subset of (a time slice of) some ancient κ-solution with re-
stricted isotropic curvature pinching. From the argument in the sec-
ond paragraph of this section, we know that such an ancient κ-solution
with restricted isotropic curvature pinching at each point (x, t) has a

radius r, 0 < r < C1(2ε)R(x, t)−
1
2 , such that its canonical neigh-

borhood B with Bt(x, r) ⊂ B ⊂ Bt(x, 2r), is either an evolving 2ε-
neck, or an evolving 2ε-cap, or a compact manifold (without bound-
ary) with positive curvature operator; moreover the scalar curvature
on the ball is between C2(2ε)−1R(x, t) and C2(2ε)R(x, t), where C1(2ε)
and C2(2ε) are the positive constants in Theorem 3.8. We now choose
C(ε) = max{2C1(2ε)2, ε−2}. By the local curvature estimate in Step 1,

we see that the scalar curvature R̃∞ becomes unbounded along γ∞ go-
ing to y∞. This implies that the canonical neighborhood around q0 can
not be a compact manifold (without boundary) with positive curvature
operator. Note that γ∞ is shortest since it is the limit of a sequence
of shortest geodesics. Without loss of generality, we may assume ε is
suitably small. This implies that as q0 is sufficiently close to y∞, the
canonical neighborhood around q0 can not be a 2ε-cap. Thus we con-
clude that each q0 ∈ γ∞, which is sufficiently close to y∞, is the center
of a 2ε-neck.

Denote by

U =
⋃

q0∈γ∞

B(q0, 24π(R̃∞(q0))
− 1

2 ) (⊂ (B∞, g̃
(∞)
ij ))

where B(q0, 24π (R̃∞ (q0))
− 1

2 ) is the ball centered at q0 of radius

24π(R̃∞(q0))
− 1

2 .

Clearly, it follows from assumptions (2.1), (2.2) and (2.3) that U has

nonnegative curvature operator. Since the metric g̃
(∞)
ij is cylindrical at

any point q0 ∈ γ∞ which is sufficiently close to y∞, we see that the
metric space U = U ∪{y∞} by adding the point y∞, is locally complete
and strictly intrinsic near y∞. Here strictly intrinsic means that the
distance between any two points can be realized by shortest geodesics.
Furthermore y∞ cannot be an interior point of any geodesic segment
in U . This implies that the curvature of U at y∞ is nonnegative in
Alexandrov sense. Note that for any very small radius σ, the geodesic
sphere ∂B(y∞, σ) is an almost round sphere of radius ≤ 3εσπ. By [1] or
[6] we have a four-dimensional tangent cone at y∞ with aperture ≤ 20ε.
Moreover, by [1] or [6], any four-dimensional tangent cone Cy∞U at
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y∞ must be a metric cone. For each tangent cone, pick z ∈ Cy∞U
such that the distance between the vertex y∞ and z is one. Then the
ball B(z, 1

2) ⊂ Cy∞U is the Gromov-Hausdorff limit of the scalings of a

sequence of balls B0(zk, sk) ⊂ (M4
k , g̃

(k)
ij (·, 0)) by some factors ak, where

sk → 0+. Since the tangent cone is four-dimensional and has aperture
≤ 20ε, the factors ak must be comparable with R̃k(zk, 0). By using the
local curvature estimate in Step 1, we actually have the convergence in

the C∞
loc topology for the solutions g̃

(k)
ij (·, t) over the balls B0(zk, sk) and

over some time interval t ∈ [−δ, 0] for some sufficiently small δ > 0. The
limiting B(z, 1

2) ⊂ Cy∞U is a piece of the nonnegative (operator) curved
and nonflat metric cone. On the other hand, since the radial direction
of the cone is flat, by Hamilton’s strong maximum principle [16] and
the pinching condition (2.4) as in the proof of Lemma 3.2, the limiting
B(z, 1

2) would be a piece of R × S3 or R × S3/Γ (a metric quotient).
This is a contradiction. So we have proved that the curvatures of the

rescaled metrics g̃
(k)
ij (·, 0) stay uniformly bounded at bounded distances

from xk.

By the local curvature estimate in Step 1, we can locally extend
the above curvature control backward in time a little. Then by the
κ-noncollapsing assumption and Shi’s derivative estimates [36], we can
take a C∞

loc limit from the sequence of marked rescaled solutions

(M4
k , g̃

(k)
ij (·, t), xk). The limit, denoted by (M4

∞, g̃
(∞)
ij (·, t), x∞), is κ-

noncollapsing on all scales, is defined on a space-time open subset of
M4

∞ × (−∞, 0] containing the time slice M4
∞ ×{0}, and satisfies the re-

stricted isotropic curvature pinching condition (2.4) by the assumptions
(2.1), (2.2) and (2.3).

Step 3. We further claim that the limit (M4
∞, g̃

(∞)
ij (·, t)) at the time

slice t = 0 has bounded curvature.

We have known that the curvature operator of the limit (M4
∞,

g̃
(∞)
ij (·, t)) is nonnegative everywhere. If the curvature operator has a

nontrivial null eigenvector somewhere, we can argue as in the proof of
Lemma 3.2 by using Hamilton’s strong maximum principle [16] and the
restricted isotropic curvature pinching condition (2.4) to deduce that
the universal cover of the limit is isometric to the standard R × S3.
Thus the curvature of the limit is bounded in this case.

Assume that the curvature operator of the limit (M4
∞, g̃

(∞)
ij (·, t)) at

the time slice t = 0 is positive everywhere. Suppose there exists a se-

quence of points pj ∈ M4
∞ such that their scalar curvatures R̃∞(pj , 0) →

+∞ as j → +∞. By the local curvature estimate in Step 1 and the
assertion of the above Step 2 (for the marked points pj) as well as the
κ-noncollapsed assumption, a subsequence of the rescaled and marked
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manifolds (M4
∞, R̃∞(pj , 0)g̃

(∞)
ij (·), pj) converges in C∞

loc topology to a
smooth nonflat limit Y . Then by Lemma 3.1 we conclude that Y is iso-
metric to R×S3 with the standard metric. This contradicts Proposition

2.2. So the curvature of the limit (M4
∞, g̃

(∞)
ij (·, t)) at the time slice t = 0

must be bounded.

Step 4. Finally we want to extend the limit backward in time to
−∞.

By the local curvature estimate in Step 1, we now know that the limit

(M4
∞, g̃

(∞)
ij (·, t)) is defined on [−a, 0] for some a > 0.

Denote by

t′ = inf{t̃ | we can take a smooth limit on (t̃, 0]

(with bounded curvature at each time slice)

from a subsequence of the rescaled solutions g̃k}.
We first claim that there is a subsequence of the rescaled solutions g̃k

which converges in C∞
loc topology to a smooth limit (M∞, g̃∞(·, t)) on

the maximal time interval (t′, 0].
Indeed, let tk be a sequence of negative numbers such that tk → t′

and there exist smooth limits (M∞, g̃k
∞(·, t)) defined on (tk, 0]. For each

k, the limit has nonnegative and bounded curvature operator at each
time slice. Moreover, by the claim in Step 1, the limit has bounded
curvature on each subinterval [−b, 0] ⊂ (tk, 0]. Denote by Q̃ the scalar

curvature upper bound of the limit at time zero (where Q̃ is the same
for all k). Then we can apply Li-Yau-Hamilton inequality [18] to get

R̃k
∞(x, t) ≤ Q̃

( −tk
t − tk

)
,

where R̃k
∞(x, t) are the scalar curvatures of the limits (M∞, g̃k

∞(·, t)).
Hence by the definition of convergence and the above curvature esti-
mates, we can find a subsequence of the rescaled solutions g̃k which
converges in C∞

loc topology to a smooth limit (M∞, g̃∞(·, t)) on the max-
imal time interval (t′, 0].

We next claim that t′ = −∞.
Suppose not; then the curvature of the limit (M4

∞, g̃
(∞)
ij (·, t)) becomes

unbounded as t → t′ > −∞. Since the minimum of the scalar curvature
is nondecreasing in time and R̃∞(x∞, 0) = 1, we see that there is a
y∞ ∈ M4

∞ such that

0 < R̃∞
(
y∞, t′ +

c

3

)
<

3

2

where c > 0 is the universal constant in the assertion of Step 1. By

using Step 1 again we see that the limit (M4
∞, g̃

(∞)
ij (·, t)) in a small

neighborhood of the point y∞ at the time slice t = t′+ c
3 can be extended
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backward to the time interval [t′− c
3 , t′+ c

3 ]. We remark that the distances
at the time t and the time 0 are roughly equivalent in the following sense:

(4.2) dt(x, y) ≥ d0(x, y) ≥ dt(x, y) − const.

for any x, y ∈ M4
∞ and t ∈ (t′, 0]. Indeed, from the Li-Yau-Hamilton

inequality [18] we have the estimate

∂

∂t
R̃∞(x, t) ≥ −R̃∞(x, t) · (t − t′)−1, for (x, t) ∈ M4

∞ × (t′, 0].

If Q̃ denotes the supermum of the scalar curvature R̃∞ at t = 0, then

R̃∞(x, t) ≤ Q̃

( −t′

t − t′

)
, on M4

∞ × (t′, 0].

By applying Lemma 8.3 (b) of [31], we have

dt(x, y) ≤ d0(x, y) + 30(−t′)
√

Q̃

for any x, y ∈ M4
∞ and t ∈ (t′, 0]. On the other hand, since the curvature

operator of the limit g̃∞ij (·, t) is nonnegative, we have

dt(x, y) ≥ d0(x, y)

for any x, y ∈ M4
∞ and t ∈ (t′, 0]. Thus we obtain the estimate (4.2).

The estimate (4.2) insures that the limit around the point y∞ at any
time t ∈ (t′, 0] is exactly the original limit around x∞ at the time t = 0.

Consider the rescaled sequence of (M4
k , g̃

(k)
ij (·, t)) with the marked points

replaced by the associated sequence yk → y∞. By applying the same
arguments as the above Step 2 and Step 3 to the new marked sequence

(M4
k , g̃

(k)
ij (·, t), yk), we conclude the original limit (M4

∞, g̃
(∞)
ij (·, t)) is ac-

tually well defined on the time slice M4
∞ × {t′} and also has uniformly

bounded curvature for all t ∈ [t′, 0]. By taking a subsequence from the
original subsequence and combining Step 1, we can extend the limit
backward to a larger interval [t

′′
, 0] ) (t′, 0]. This is a contradiction

with the definition of t′.
Therefore we have proved that a subsequence of the rescaled solutions

(M4
k , g̃

(k)
ij (·, t), xk) converges to an ancient κ-solution with restricted

isotropic curvature pinching. This is a contradiction. We finish the
proof of the theorem. q.e.d.

From now on, we always assume that the initial datum is a compact
four-manifold M4 with no essential incompressible space form and with
positive isotropic curvature. Let gij(x, t), x ∈ M4 and t ∈ [0, T ), be
a maximal solution to the Ricci flow with T < +∞. Without loss of
generality, after a scaling on the initial metric, we may assume T >
1. It was shown in [21] that the solution gij(x, t) remains positive
isotropic curvature. By Lemma 2.1, there hold (2.1), (2.2) and (2.3)
for some positive constants 0 < ρ,Λ, P < +∞ (depending only on the
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initial datum). And by Perelman’s no local collapsed theorem I [31] the

solution is κ-noncollapsed on the scale
√

T for some κ > 0 (depending
only on the initial datum). Then for any sufficiently small ε > 0, we
can find r0 > 0 with the property described in Theorem 4.1.

Let Ω denote the set of all points in M4, where curvature stays
bounded as t → T . The estimates (4.1) imply that Ω is open and
R(x, t) → +∞ as t → T for each x ∈ M4\Ω. If Ω is empty, then the
solution becomes extinct at time T and the manifold is either diffeomor-
phic to S4 or RP4, or entirely covered by evolving ε-necks or evolving
ε-caps shortly before the maximal time T , so M4 is diffeomorphic to S4,
or RP4, or RP4#RP4 or S3 × S1, or S3×̃S1. The reason is as follows.
We only need to consider the situation that the manifold M4 is entirely
covered by evolving ε-necks and evolving ε-caps shortly before the max-
imal time T . If M4 contains a cap C, then there is a cap or a neck
adjacent to the neck-like end of C. The former case implies that M4 is
diffeomorphic to S4, RP4, or RP4#RP4. In the latter case, we get a new,
longer cap and continue the procedure. Finally, we must end up with
a cap, producing a S4, RP4, or RP4#RP4. If M4 contains no caps, we
start with a neck N , consider the other necks adjacent to the boundary
of N , this gives a longer neck and we continue the procedure. After a
finite number of steps, the neck must repeat itself. By considering the
orientation of M4, we conclude that M4 is diffeomorphic to S3 × S1 or
S3×̃S1.

We can now assume that Ω is not empty. By using the local derivative
estimates of Shi [36] (or see [20]), we see that as t → T , the solution
gij(·, t) has a smooth limit gij(·) on Ω. Let R(x) denote the scalar
curvature of gij . By the positive isotropic curvature assumption on the
initial metric, we know that the metric gij(·) also has positive isotropic

curvature; in particular, R(x) is positive. For any σ < r0, let us consider
the set

Ωσ = {x ∈ Ω | R(x) ≤ σ−2}.
Note that for any fixed x ∈ ∂Ω, as xj ∈ Ω and xj → x with respect

to the initial metric gij(·, 0), we have R(xj) → +∞. In fact, if there

was a subsequence xjk
so that the limit limk→∞ R(xjk

) exists and is

finite, then it would follow from the gradient estimates (4.1) that R
is uniformly bounded in some small neighborhood of x ∈ ∂Ω (with
respect to the induced topology of the initial metric gij(·, 0)); this is a
contradiction. From this observation and the compactness of the initial
manifold, we see that Ωσ is compact (with respect to the metric gij(·)).

For the further discussion, we follow [32] to introduce the following
terminologies. Denote by I a (finite or infinite) interval.

Recall that an ε-neck (of radius r) is an open set with a Riemannian
metric, which is, after scaling the metric with factor r−2, ε-close (in
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C [ε−1] topology) to the standard neck S3 × I with the product metric,
where S3 has constant scalar curvature one and I has length 2ε−1. A
metric on S3 × I, such that each point is contained in some ε-neck,
is called an ε-tube, or an ε-horn, or a double ε-horn, if the scalar
curvature stays bounded on both ends, or stays bounded on one end
and tends to infinity on the other, or tends to infinity on both ends,
respectively. A metric on B4 or RP4\B4, such that each point outside
some compact subset is contained in an ε-neck, is called an ε-cap or
a capped ε-horn, if the scalar curvature stays bounded or tends to
infinity on the end, respectively.

Now take any ε-neck in (Ω, gij) and consider a point x on one of
its boundary components. If x ∈ Ω\Ωσ, then there is either an ε-cap
or an ε-neck, adjacent to the initial ε-neck. In the latter case we can
take a point on the boundary of the second ε-neck and continue. This
procedure can either terminate when we get into Ωσ or an ε-cap, or go
on infinitely, producing an ε-horn. The same procedure can be repeated
for the other boundary component of the initial ε-neck. Therefore, we
conclude that each ε-neck of (Ω, gij) is contained in a subset of Ω of one
of the following types:

(4.3)

(a) an ε-tube with boundary components in Ωσ, or
(b) an ε-cap with boundary in Ωσ, or
(c) an ε-horn with boundary in Ωσ, or
(d) a capped ε-horn, or
(e) a double ε-horn.

Similarly, each ε-cap of (Ω, gij) is contained in a subset of Ω of either
type (b) or type (d).

It is clear that there is a definite lower bound (depending on σ) for
the volume of subsets of types (a), (b), (c), so there can be only a
finite number of them. Thus we conclude that there is only a finite
number of components of Ω, containing points of Ωσ, and every such
component has a finite number of ends, each being an ε-horn. By taking
into account that Ω has no compact components, every component of Ω,
containing no points of Ωσ, is either a capped ε-horn, or a double ε-horn.
Nevertheless, if we look at the solution for a slightly earlier time t, each
ε-neck or ε-cap of (M, gij(·, t)) is contained in a subset of types (a) and
(b); while the ε-horns, capped ε-horns and double ε-horns, observed at
the maximal time T , are connected together to form ε-tubes and ε-caps
at the slightly earlier time t.

Hence, by looking at the solution for times just before T , we see that
the topology of M4 can be reconstructed as follows: take all components
Ωj , 1 ≤ j ≤ k, of Ω which contain points of Ωσ, truncate their ε-horns,

and glue a finite collection of tubes S3 × I and caps B4 or RP4\B4 to
the boundary components of truncated Ωj . Thus M4 is diffeomorphic
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to a connected sum of Ωj , 1 ≤ j ≤ k, with a finite number of S3 × S1 or

S3×̃S1 (which correspond to gluing a tube to two boundary components
of the same Ωj), and a finite number of RP4. Here Ωj denotes Ωj with
each ε-horn one point compactified. (One might wonder why we do not
also cut other ε-tubes or ε-caps so that we can remove more volumes;
we will explain it a bit later.)

More geometrically, one can get Ωj in the following way: in every ε-
horn of Ωj one can find an ε-neck, cut it along the middle three-sphere,
remove the horn-shaped end, and glue back a cap (i.e., a differentiable
four-ball). Thus to understand the topology of M4, one need only to
understand the topologies of the compact four-manifolds Ωj , 1 ≤ j ≤ k.

Recall that the four-manifold M4 has no essential incompressible
space form; we now claim that each Ωj still has no essential incom-
pressible space form. Clearly, we only need to check the assertion that
if N is an essential incompressible space form in Ωj , then N will be
also incompressible in M4. After moving N slightly, we can choose N
such that N ⊂ Ωj . Then N can be regarded as a submanifold in M4

(unaffected by the surgery). We now argue by contradiction. Suppose
γ ⊂ N is a homotopically nontrivial curve which bounds a disk D in
M4. We want to modify the map of disk D so that γ bound a new disk
in Ωj , which will give the desired contradiction. Let E1, E2, . . . , Em be
all the ε-horn ends of Ωj , S1, S2, . . . , Sm ⊂ Ωj be the corresponding
cross spheres lying inside the ε-horn ends Ej respectively. Let us per-
turb the spheres S1, S2, . . . , Sm slightly so that they meet D transversely
in a finite number of simple closed curves (we only consider those Sj

with Sj ∩ D 6= φ). After removing those curves which are contained
in larger ones in D, we are left with a finite number of disjoint simple
closed curves, denoted by C1, C2, . . . , Cl. We denote the enclosed disks
of C1, C2, . . . , Cl in D by D1, D2, . . . , Dl. Since S3 is simply-connected,
each intersection curves in S1, S2, . . . , Sm can be shrunk to a point. So
by filling the holes D1, D2, . . . , Dl, we obtain a new continuous map
from D to M4 such that the image of D1 ∪ D2 · · · ∪ Dl is contained in
S1 ∪ S2 · · · ∪ Sm ⊂ Ωj . On the other hand, since D\(D1 ∪ D2 · · · ∪ Dl)
is connected, γ(the image of ∂D) ⊂ N , we know that the image of
D\(D1 ∪ D2 · · · ∪ Dl) must be contained in Ωj . Therefore, γ bounds a

new disk in Ωj . This proves that after the surgery, each Ωj still has no
essential incompressible space form.

As shown by Hamilton in Section D of [21], provided ε > 0 small
enough, one can perform the above surgery procedure carefully so that
the compact four-manifolds Ωj , 1 ≤ j ≤ k, also have positive isotropic

curvature. Naturally, one can evolve each Ωj by the Ricci flow again
and carry out the same surgery procedure to produce a finite collection
of new compact four-manifolds with no essential incompressible space
form and with positive isotropic curvature. By repeating this procedure
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indefinitely, it will be likely to give us the long time existence of a kind
of “weak” solution to Ricci flow.

5. Ricci Flow with Surgery for Four-manifolds

We begin with an abstract definition of the solution to the Ricci flow
with surgery which is adapted from [32].

Definition 5.1. Suppose we have a collection of compact four-dimen-

sional smooth solutions g
(k)
ij (t) to the Ricci flow on M4

k ×[t−k , t+k ) with no
essential incompressible space form and with positive isotropic curva-
ture, which go singular as t → t+k and where each manifold M4

k may be
disconnected with only a finite number of connected components. Let

(Ωk, g
(k)
ij ) be the limits of the corresponding solutions g

(k)
ij (t) as t → t+k .

Suppose also that for each k we have t−k = t+k−1, and (Ωk−1, g
(k−1)
ij )

and (M4
k , g

(k)
ij (t−k )) contain compact (possibly disconnected) four-dimen-

sional submanifolds with smooth boundary which are isometric. Then
by identifying these isometric submanifolds, we say it is a solution to
the Ricci flow with surgery on the time interval which is the union
of all [t−k , t+k ), and say the times t+k are surgery times.

The procedure described in the last paragraph of the previous section
gives us a solution to the Ricci flow with surgery. However, in order to
understand the topology of the initial manifold from the solution to the
Ricci flow with surgery, one encounters the following two difficulties:

(i) How to prevent the surgery times from accumulation?
(ii) How to get the long time behavior of the solution to the Ricci flow

with surgery?

In view of this, it is natural to consider those solutions having “good”
properties. Let ε be a fixed small positive number. We will only consider
those solutions to the Ricci flow with surgery which satisfy the following
a priori assumptions (with accuracy ε):

Pinching assumption: There exist positive constants ρ, Λ, P <
+∞ such that there hold

(5.1) a1 + ρ > 0 and c1 + ρ > 0,

(5.2) max{a3, b3, c3} ≤ Λ(a1 + ρ) and max{a3, b3, c3} ≤ Λ(c1 + ρ),

and

(5.3)
b3√

(a1 + ρ)(c1 + ρ)
≤ 1 +

ΛePt

max{log
√

(a1 + ρ)(c1 + ρ), 2}
,

everywhere.
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Canonical neighborhood assumption (with accuracy ε): For
the given ε > 0, there exist two constants C1(ε), C2(ε) and a non-
increasing positive function r on [0, +∞) such that for every point (x, t)
where the scalar curvature R(x, t) is at least r−2(t), there is an open

neighborhood B, Bt(x, σ) ⊂ B ⊂ Bt(x, 2σ) with 0 < σ < C1(ε)R(x, t)−
1
2 ,

which falls into one of the following three categories:

(a) B is a strong ε-neck (in the sense that B is an ε-neck and it
is the slice at time t of the parabolic neighborhood {(x′, t′) | x′ ∈
B, t′ ∈ [t − R(x, t)−1, t]}, where the solution is well defined on
the whole parabolic neighborhood and is, after scaling with factor

R(x, t) and shifting the time to zero, ε-close (in C [ε−1] topology) to
the corresponding subset of the evolving standard round cylinder
S3 × R with scalar curvature 1 at the time zero), or

(b) B is an ε-cap, or
(c) B is a compact four-manifold with positive curvature operator; fur-

thermore, the scalar curvature in B at time t is between C−1
2 R(x, t)

and C2R(x, t), and satisfies the gradient estimate

(5.4) |∇R| < ηR
3
2 and

∣∣∣∣
∂R

∂t

∣∣∣∣ < ηR2,

and the volume of B in case (a) and case (b) satisfies

(C2R(x, t))−2 ≤ Volt(B).

Here C1 and C2 are some positive constants depending only on ε, and
η is a universal positive constant.

Clearly, we may always assume the above C1 and C2 are twice bigger
than the corresponding constants C1(

ε
2) and C2(

ε
2) in Theorem 3.8 with

the accuracy ε
2 .

The main purpose of this section is to construct a long-time solution
to the Ricci flow with surgery which starts with an arbitrarily given
compact four-manifold with no essential incompressible space form and
with positive isotropic curvature, so that the a priori assumptions are
satisfied and there are only a finite number of surgery times at each
finite time interval. The construction will be given by an induction
argument.

Firstly, for an arbitrarily given compact four-manifold (M4, gij(x))
with no essential incompressible space form and with positive isotropic
curvature, the Ricci flow with it as initial data has a maximal solution
gij(x, t) on [0, T0) with T0 < +∞. Without loss of generality, after a
scaling on the initial metric, we may assume T0 > 1. It follows from
Lemma 2.1 and Theorem 4.1 that the a priori assumptions above hold
for the smooth solution on [0, T0).

Suppose that we have a solution to the Ricci flow with surgery, with
the given compact four-manifold (M4, gij(x)) as initial datum, which is
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defined on [0, T ) with T < +∞, going singular at the time T , satisfies
the a priori assumptions and has only a finite number of surgery times
on [0, T ). Let Ω denote the set of all points where the curvature stays
bounded as t → T . As shown before, the gradient estimate (5.4) in
the canonical neighborhood assumption implies that Ω is open and that
R(x, t) → +∞ as t → T for x lying outside Ω. Moreover, as t → T , the
solution gij(x, t) has a smooth limit gij(x) on Ω.

For δ > 0 to be chosen much smaller than ε, we let σ = δr(T )
where r(t) is the positive nonincreasing function in the definition of the
canonical neighborhood assumption. We consider the corresponding
compact set

Ωσ = {x ∈ Ω | R(x) ≤ σ−2}

where R(x) is the scalar curvature of gij . If Ωσ is empty, the mani-
fold (near the maximal time T ) is entirely covered by ε-tubes, ε-caps
and compact components with positive curvature operator. Clearly, the
number of compact components is finite. Then in this case the mani-
fold (near the maximal time T ) is diffeomorphic to the union of a finite
number of S4, or RP4, or S3×S1, or S3×̃S1, or a connected sum of them.
Thus when Ωσ is empty, the procedure stops here, and we say that the
solution becomes extinct. We now assume Ωσ is not empty. Every
point x ∈ Ω\Ωσ lies in one of the subsets of listing in (4.3), or in a
compact component with positive curvature operator or in a compact
component which is contained in Ω\Ωσ and is diffeomorphic to S4, or
RP4, or S3 × S1, or S3×̃S1. Note again that the number of compact
components is finite. Let us throw away all the compact components
lying Ω\Ωσ or with positive curvature operator, and then consider all
the components Ωj , 1 ≤ j ≤ k, of Ω which contain points of Ωσ. (We
will consider the components of Ω\Ωσ consisting of capped ε-horns and
double ε-horns later). We could perform Hamilton’s surgical procedure
in Section D of [21] at every horn of Ωj , 1 ≤ j ≤ k, so that the positive
isotropic curvature condition and the pinching assumption is preserved.

Note that if we perform the surgeries at the necks with certain fixed
accuracy ε on the high curvature region at each surgery time, then it is
possible that the errors of surgeries may accumulate to a certain amount
so that for some later time we can not recognize the structure of the very
high curvature region. This prevents us from carrying out the process
in finite time with finite steps. Hence in order to maintain the a priori
assumptions with the same accuracy after surgery, we need to find
sufficient “fine” necks in the ε-horns and to glue sufficient “fine” caps in
the procedure of surgery. Note that δ > 0 will be chosen much smaller
than ε > 0. The following lemma gives us the “fine” necks in the ε-
horns. (The corresponding result in three-dimension is Lemma 4.3 in
[32].)



226 B.-L. CHEN & X.-P. ZHU

Now we explain why we only perform the surgeries in the horns with
boundary in Ωσ. At first sight, we should also cut off all those ε-tubes
and ε-caps in the surgery procedure. But in general, we are not able
to find a “finer” neck in an ε-tube or in ε-cap, and such surgeries at
“rough” ε-necks will certainly loss some accuracy. This is the reason
why we will only perform the surgeries in the ε-horns with boundary in
Ωσ.

Lemma 5.2. Given 0 < ε < 1
100 , 0 < δ < ε and 0 < T < +∞, there

exists a radius 0 < h < δσ, depending only on δ, r(T ) and the pinch-
ing assumption, such that if we have a solution to the Ricci flow with
surgery, with a compact four-manifold (M4, gij(x)) with no essential in-
compressible space form and with positive isotropic curvature as initial
data, defined on [0, T ), going singular at the time T , and satisfying the
a priori assumptions and having only a finite number of surgery times

on [0, T ), then for each point x with h(x) = R
− 1

2 (x) ≤ h in an ε-horn
of (Ω, gij) with boundary in Ωσ, the neighborhood BT (x, δ−1h(x)) =

{y ∈ Ω|distgij
(y, x) ≤ δ−1h(x)} is a strong δ-neck (i.e., {(y, t) | y ∈

BT (x, δ−1h(x)), t ∈ [T − h2(x), T ]} is, after scaling with factor h−2(x),

δ-close (in C [δ−1] topology) to the corresponding subset of the evolving
standard round cylinder S3×R over the time interval [−1, 0] with scalar
curvature 1 at time zero).

Proof. We argue as in [32] by contradiction. Suppose that there

exists a sequence of solutions g
(k)
ij (·, t), k = 1, 2, . . ., to the Ricci flow

with surgery, satisfying the a priori assumptions, defined on [0, T ) with

limits (Ωk, g
(k)
ij ), k = 1, 2, . . ., as t → T , and there exist points xk, lying

inside an ε-horn of Ωk, which contains the points of Ωk
σ, and having

h(xk) → 0 as k → +∞ such that the neighborhood BT (xk, δ
−1h(xk))

are not strong δ-necks.

Let g̃
(k)
ij (·, t) be the rescaled solutions by the factor R(xk) = h−2(xk)

around (xk, T ). We will show that a sequence of g̃
(k)
ij (·, t) converges to

the evolving round R × S3, which gives the desired contradiction.

Note that g̃
(k)
ij (·, t), k = 1, 2, . . . , are modified by surgery. We can not

apply Hamilton’s compactness theorem directly since it states only for

smooth solutions. For each (unrescaled) surgical solution g̃
(k)
ij (·, t), we

pick a point zk, with R̄(zk) = 2C2
2 (ε)σ−2, in the ε-horn of (Ωk, ḡ

(k)
ij )

with boundary in Ωk
σ, where C2(ε) is the positive constant in the canon-

ical neighborhood assumption. From the definition of ε-horn and the
canonical neighborhood assumption, we know that each point x lying

inside the ε-horn of (Ωk, ḡ
(k)
ij ) with d

ḡ
(k)
ij

(x,Ωk
σ) ≥ d

ḡ
(k)
ij

(zk, Ω
k
σ) has a

strong ε-neck as its canonical neighborhood. Since h(xk) → 0, each
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xk lies deeply inside the ε-horn. Thus for each positive A < +∞, the

rescaled (surgical) solutions g̃
(k)
ij (·, t) with the marked origins xk over the

geodesic balls B
eg
(k)
ij (·,0)(xk, A), centered at xk of radii A (with respect

to the metrics g̃
(k)
ij (·, 0)), will be smooth on some uniform (size) small

time intervals for all sufficiently large k, if the curvatures of the rescaled

solutions g̃
(k)
ij at t = 0 in B

eg
(k)
ij (·,0)(xk, A) are uniformly bounded. In

such situation, the Hamilton’s compactness theorem is applicable. We
can now apply the same argument as in Step 2 of the proof of Theorem

4.1 to conclude that the curvatures of the rescaled solutions g̃
(k)
ij (·, t)

at the time T stay uniformly bounded at bounded distances from xk;
otherwise we get a piece of a non-flat nonnegative curved metric cone as
a blow-up limit, which would contradict the Hamilton strong maximum

principle [16]. Hence as before we can get a C∞
loc limit g̃

(∞)
ij (·, t), de-

fined on a space-time set which is relatively open in the half space-time
{t ≤ T} and contains the time slice {t = T}, from the rescaled solutions

g̃
(k)
ij (·, t).
By the pinching assumption, the limit is a complete manifold with

the restricted pinching condition (2.4) and with nonnegative curvature
operator. Since xk was contained in an ε-horn with boundary in Ωk

σ, and
h(xk)/σ → 0, the limiting manifold has two ends. Thus by Toponogov
splitting theorem, it admits a (maybe not round at this moment) metric
splitting R × S3 because xk was the center of a strong ε-neck. We
further apply the restricted isotropic curvature pinching condition (2.4)
and contracted second Bianchi identity as before to conclude that the
factor S3 must be round at time 0. By combining with the canonical
neighborhood assumption, we see that the limit is defined on the time
interval [−1, 0]. By Toponogov splitting theorem, the splitting R × S3

is at each time t ∈ [−1, 0]; so the limiting solution is just the standard
evolving round cylinder. This is a contradiction. We finish the proof of
Lemma 5.2. q.e.d.

The property in the above lemma that the radius h depends only on
δ, the time T and the pinching assumption, independent of the surgical
solution, is crucial; otherwise we will not be able to cut off enough
volume at each surgery to guarantee the number of surgeries being finite
in each finite time interval.

Remark. The proof of Lemma 5.2 actually proves a more stronger
result, which will be used in the proof of Proposition 5.4.

For any δ > 0, there exists a radius 0 < h < δσ, depending only
on δ, r(T ) and the pinching assumption, such that for each point x with

h(x) = R
− 1

2 (x) ≤ h in an ε-horn of (Ω, gij) with boundary in Ωσ,
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{(y, t) | y ∈ BT (x, δ−1h(x)), t ∈ [T − δ−2h2(x), T ]} is, after scaling with

factor h−2(x), δ-close (in C [δ−1] topology) to the corresponding subset
of the evolving standard round cylinder S3 × R over the time interval
[−δ−2, 0] with scalar curvature 1 at the time zero.

The reason is as follows. Let us use the notation in the proof the
Lemma 5.2 and argue by contradiction. Note that the scalar curvature
of the limit at time t = −1 is 1

1− 2
3
(−1)

. Since h(xk)/ρ → 0, each point

in the limiting manifold at time t = −1 also has a strong ε-neck as its
canonical neighborhood. Thus the limit is defined at least on the time
interval [−2, 0]. Inductively, suppose the limit is defined on the time
interval [−m, 0] with bounded curvature for some positive integer −m;
then by the isotropic pinching condition, Toponogov splitting theorem
and the evolution equation of the scalar curvature on the round R×S3,
we see that R = 1

1+ 2
3
m

at time −m. Since h(xk)/ρ → 0, each point in

the limiting manifold at time t = −m has also a strong ε-neck as its
canonical neighborhood, we see that the limit is defined at least on the
time interval [−(m + 1), 0] with bounded curvature. So by induction
we prove that the limit exists on the ancient time interval (−∞, 0].
Therefore the limit is the evolving round cylinder S3 × R over the time
interval (−∞, 0], which gives the desired contradiction.

To specialize our surgery, we now fix a standard capped infinite cylin-
der for n = 4 as follows. Consider the semi-infinite standard round
cylinder N0 = S3 × (−∞, 4) with the metric g0 of scalar curvature 1.
Denote by z the coordinate of the second factor (−∞, 4). Let f be a
smooth nondecreasing convex function on (−∞, 4) defined by





f(z) = 0, z ≤ 0,

f(z) = ce−
D
z , z ∈ (0, 3],

f(z) is strictly convex on z ∈ [3, 3.9],

f(z) = −1
2 log(16 − z2), z ∈ [3.9, 4),

where the small (positive) constant c and big (positive) constant D
will be determined later. Let us replace the standard metric g0 on the
portion S3 × [0, 4) of the semi-infinite cylinder by ĝ = e−2fg0. Then
the resulting metric ĝ will be smooth on R4 obtained by adding a point
to S3 × (−∞, 4) at z = 4. We denote by C(c, D) = (R4, ĝ). Clearly,
C(c, D) is a standard capped infinite cylinder.

We next use a compact portion of the standard capped infinite cylin-
der C(c, D) and the δ-neck obtained in Lemma 5.2 to perform the fol-
lowing surgery due to Hamilton [21].

Consider the solution metric ḡ at the maximal time T < +∞. Take
an ε-horn with boundary in Ωρ. By Lemma 5.2, there exists a δ-neck N
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of radius 0 < h < δρ in the ε-horn. By definition, (N, h−2ḡ) is δ-close

(in C [δ−1] topology) to the standard round neck S3×I of scalar curvature
1 with I = (−δ−1, δ−1). The parameter z ∈ I induces a function on the
δ-neck N .

Let us cut the δ-neck N along the middle (topological) three-sphere
N

⋂{z = 0}. Without loss of generality, we may assume that the right
hand half portion N

⋂{z ≥ 0} is contained in the horn-shaped end. Let
ϕ be a smooth bump function with ϕ = 1 for z ≤ 2, and ϕ = 0 for z ≥ 3.
Construct a new metric g̃ on a (topological) four-ball B4 as follows:

g̃ =





ḡ, z = 0,

e−2f ḡ, z ∈ [0, 2],

ϕe−2f ḡ + (1 − ϕ)e−2fh2g0, z ∈ [2, 3],

h2e−2fg0, z ∈ [3, 4].

The surgery is to replace the horn-shaped end by the cap (B4, g̃). The
following lemma, due to Hamilton [21], determines the constants c and
D in the δ-cutoff surgery so that the pinching assumption is preserved
under the surgery.

Lemma 5.3 (Hamilton [21] D3.1. Justification of the pinching as-
sumption). There are universal positive constants δ0, c0 and D0 such

that for any T̃ there is a constant h0 > 0 depending on the initial metric
and T̃ such that if we take a δ-cutoff surgery at a δ-neck of radius h at
time T ≤ T̃ with δ < δ0 and h−2 ≥ h−2

0 , then we can choose c = c0 and
D = D0 in the definition of f(z) such that after the surgery, there still
holds the pinching condition (2.1) (2.2) (2.3) :

a1 + ρ > 0 and c1 + ρ > 0,

max{a3, b3, c3} ≤ Λ(a1 + ρ) and max{a3, b3, c3} ≤ Λ(c1 + ρ),

and

b3√
(a1 + ρ)(c1 + ρ)

≤ 1 +
ΛePt

max{log
√

(a1 + ρ)(c1 + ρ), 2}
at all points at time T . Moreover, after the surgery, any metric ball

of radius δ−
1
2 h with center near the tip (i.e., the origin of the attached

cap) is, after scaling with factor h−2, δ
1
2 -close the corresponding ball of

the standard capped infinite cylinder C(c0, D0).

We call the above procedure as a δ-cutoff surgery. Since there are
only a finite number of horns with their other ends connected to Ωσ,
we only need to perform a finite number of such δ-cutoff surgeries at
the time T . Besides those horns, there could be capped horns, double
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horns and compact components lying in Ω \ Ωσ or with positive cur-
vature operator. As explained before, capped horns and double horns
are connected with horns to form tubes or capped tubes at any time
slightly before T . Thus when we truncated the horns at the δ-cutoff
surgeries, we actually had removed these together with the horn-shaped
ends away. So we can regard the capped horns and double horns (of
Ω \ Ωσ) as extinct and throw them away at the time T . Remember
that we have thrown away all the compact components lying in Ω \ Ωσ

or with positive curvature operator. Each such compact component is
diffeomorphic to S4, or RP4, or S3 × S1, or S3×̃S1, and the number of
compact components is finite. Thus we actually throw a finite number
of S4, RP4, S3 × S1 or S3×̃S1 at the time T also. (Note that we allow
that the manifold may be disconnected before and after the surgeries.)
Let us agree to declare extinct every compact component with

positive curvature operator or lying in Ω \ Ωσ; in particular, that
allows to exclude the components with positive curvature operator from
the list of canonical neighborhoods.

Summarily, our surgery at the time T consists of the following four
procedures:

(1) perform δ-cutoff surgeries for all ε-horns which have the other ends
connected to Ωσ,

(2) declare extinct every compact component which has positive cur-
vature operator,

(3) throw away all capped horns and double horns lying in Ω \ Ωσ,
(4) declare extinct every compact component lying in Ω \ Ωσ.

After the surgery at the time T , the pinching assumption still holds
for the surgically modified manifolds. With this (maybe disconnected)
surgically modified manifold as initial data, we now continue our so-
lution until it becomes singular for the next time T ′(> T ). Therefore
we have extended the solution to the Ricci flow with surgery, originally
defined on [0, T ), to the new time interval [0, T ′) (with T ′ > T ). More-
over, as long as 0 < δ ≤ δ0, the solution with δ-cutoff surgeries on the
new time interval [0, T ′) still has positive isotropic curvature and no
essential incompressible space form, and from [21] and Lemma 5.3 it
still satisfies the pinching assumption.

Denote the minimum of the scalar curvature at time t by Rmin(t) > 0.
Since the δ-cutoff surgeries occur at the points lying deeply in the ε-
horns, the minimum of the scalar curvature Rmin(t) of the solution at
each time-slice is achieved in the region unaffected by the surgeries.
Thus we know from the evolution equation of the scalar curvature that

d

dt
Rmin(t) ≥

1

2
R2

min(t).
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By integrating this inequality, we conclude that the maximal time T of
any solution to the Ricci flow with δ-cutoff surgeries must be bounded
by 2/Rmin(0) < +∞. Let T̃ = 2/Rmin(0) in Lemma 5.3, then there is

a constant h0 determined by T̃ . Set δ̄ = 1
2Rmin(0)

1
2 h0. We know that if

we perform the δ-cutoff surgery with δ < min{δ̄, δ0}, then the pinching
assumptions (5.1), (5.2), (5.3) are satisfied for the solution to the Ricci
flow with δ-cutoff surgery. Next we make further restrictions on δ to
justify the canonical neighborhood assumption. Clearly, we only need
to check the following assertion, which extends the crucial Proposition
5.1 of Perelman [32] to four-dimension.

Proposition 5.4 (Justification of the canonical neighborhood as-
sumption). Given a compact four-manifold with positive isotropic cur-
vature and no essential incompressible space form and given ε > 0, there

exist decreasing sequences ε > r̃j > 0, κj > 0, min{ε2, δ0, δ̄} > δ̃j > 0,

j = 1, 2, . . ., with the following property. Define a positive function δ̃(t)

on [0, +∞) by δ̃(t) = δ̃j when t ∈ [(j − 1)ε2, jε2). Suppose we have a
solution to the Ricci flow with surgery, with the given four-manifold as
initial datum defined on the time interval [0, T ) and with a finite number
of δ-cutoff surgeries such that any δ-cutoff surgery at a time t ∈ (0, T )

with δ = δ(t) satisfies 0 < δ(t) ≤ δ̃(t). Then on each time interval
[(j − 1)ε2, jε2]

⋂
[0, T ), the solution satisfies the κj-noncollapsing condi-

tion on all scales less than ε and the canonical neighborhood assumption
(with accuracy ε) with r = r̃j.

Here and in the following, we call a (four-dimensional) solution gij(t),
0 ≤ t < T , to the Ricci flow with surgery is κ-noncollapsed at a point
(x0, t0) on the scales less than ρ (for some κ > 0, ρ > 0) if it satisfies
the following property: whenever r < ρ and

|Rm(x, t)| ≤ r−2

for all those (x, t) ∈ P (x0, t0, r,−r2) = {(x′, t′) | x′ ∈ Bt′(x0, r), t
′ ∈

[t0 − r2, t0]}, for which the solution is defined, we have

Volt0(Bt0(x0, r)) ≥ κr4.

Before we give the proof of the proposition, we need to check the κ-non-
collapsing condition which extends the Lemma 5.2 of Perelman [32] to
four-dimension.

Lemma 5.5. For a given compact four-manifold with positive iso-
tropic curvature and no essential incompressible space form, and given
ε > 0, suppose we have constructed the sequences, satisfying the above
proposition for 1 ≤ j ≤ ℓ. Then there exists κ > 0, such that for any

r, 0 < r < ε, one can find δ̃ with 0 < δ̃ < min{ε2, δ0, δ̄}, which depends
on r, ε and may also depend on the already constructed sequences, with



232 B.-L. CHEN & X.-P. ZHU

the following property. Suppose we have a solution, with the given four-
manifold as initial data, to the Ricci flow with surgery defined on a
time interval [0, T ] with ℓε2 ≤ T < (ℓ + 1)ε2 such that the assumptions
and conclusions of Proposition 5.4 hold on [0, ℓε2), the canonical neigh-
borhood assumption (with accuracy ε) with r holds on [ℓε2, T ], and each

δ(t)-cutoff surgery in the time interval t ∈ [(ℓ−1)ε2, T ] has 0 < δ(t) < δ̃.
Then the solution is κ-noncollapsed on [0, T ] for all scales less than ε.

Proof. Consider a parabolic neighborhood P (x0, t0, r0, −r2
0) =

{(x, t)|x ∈ Bt(x0, r0), t ∈ [t0 − r2
0, t0]}, with ℓε2 ≤ t0 ≤ T , and 0 < r0 ≤

ε, where the solution satisfies |Rm| ≤ r−2
0 whenever it is defined. We

will prove that Volt0(Bt0(x0, r0)) ≥ κr4
0.

Let η be the universal positive constant in the definition of the canon-
ical neighborhood assumption. Without loss of generality, we always as-
sume η ≥ 10. Firstly, we want to show that one may assume r0 ≥ 1

2η r.

Obviously, the curvature satisfies the estimate

|Rm(x, t)| ≤ 20r−2
0 ,

for those (x, t) ∈ P (x0, t0,
1
2η r0,− 1

8η r2
0) = {(x, t) | x ∈ Bt(x0,

1
2η r0), t ∈

[t0− 1
8η r2

0, t0]} for which the solution is defined. When r0 < 1
2η r, we can

enlarge r0 to some r′0 ∈ [r0, r] so that

|Rm| ≤ 20r′−2
0

on P (x0, t0,
1
2η r′0,− 1

8η r′20 ) (whenever it is defined), and either the equal-

ity holds somewhere or r′0 = r.
In the case that the equality holds somewhere, it follows from the

pinching assumption that we have

R > 10r′−2
0

somewhere in P (x0, t0,
1
2η r′0,− 1

8η r′20 ). Here, without loss of generality,

we have assumed r is suitably small. Then by the gradient estimates in
the definition of the canonical neighborhood assumption, we know

R(x0, t0) > r′−2
0 ≥ r−2.

Hence the desired noncollapsing estimate in this case follows directly
from the canonical neighborhood assumption. (Recall that we have
excluded every component which has positive sectional curvature in the
surgery procedure and then excluded them from the list of canonical
neighborhoods. Here we also used the standard volume comparison
when the canonical neighborhood is an ε-cap.)

While in the case that r′0 = r, we have the curvature bound

|Rm(x, t)| ≤
(

1

2η
r

)−2

,
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for those (x, t) ∈ P (x0, t0,
1
2η r,−( 1

2η r)2) = {(x, t) | x ∈ Bt(x0,
1
2η r), t ∈

[t0 − ( 1
2η r)2, t0]} for which the solution is defined. It follows from the

standard volume comparison that we only need to verify the noncollaps-
ing estimate for r0 = 1

2η r. Thus we have reduced the proof to the case

r0 ≥ 1
2η r.

The reduced distance from (x0, t0) is

l(q, τ) =
1

2
√

τ
inf

{ ∫ τ

0

√
s(R(γ(s), t0 − s) + |γ̇(s)|2gij(t0−s))ds |

γ(0) = x0, γ(τ) = q

}

where τ = t0 − t with t < t0. Firstly, we need to check that the
minimum of the reduced distance is achieved by curves unaffected by
surgery. According to Perelman [32], we call a space-time curve in
the solution track admissible if it stays in the space-time region unaf-
fected by surgery, and we call a space-time curve in the solution track
a barely admissible curve if it is on the boundary of the set of ad-
missible curves. The following assertion gives a big lower bound for the
reduced lengths of barely admissible curves.

Claim 1. For any L < +∞ one can find δ̃ = δ̃(L, r, r̃ℓ, ε) > 0 with
the following property. Suppose that we have a curve γ, parametrized
by t ∈ [T0, t0], (ℓ − 1)ε2 ≤ T0 < t0, such that γ(t0) = x0, T0 is a surgery
time and γ(T0) lies in a 4h-collar of the middle three-sphere of a δ-neck
with the radius h obtained in Lemma 5.2, where the δ-cutoff surgery was
taken. Suppose also that each δ(t)-cutoff surgery in the time interval

t ∈ [(ℓ − 1)ε2, T ] has 0 < δ(t) < δ̃. Then we have an estimate

(5.5)

∫ t0−T0

0

√
τ(R(γ(t0 − τ), t0 − τ) + |γ̇(t0 − τ)|2gij(t0−τ))dτ ≥ L,

where τ = t0 − t ∈ [0, t0 − T0].

Before we can verify this assertion, we need to do some premilary
work.

Let O be the point near γ(T0) which corresponds to the center of the
(rotationally symmetric) capped infinite round cylinder. Recall from

Lemma 5.3 that a metric ball of radius δ−
1
2 h at time T0 centered at O

is, after scaling with factor h−2, δ
1
2 -close (in C [δ−

1
2 ] topology) to the

corresponding ball in the capped infinite round cylinder. We need to
consider the solutions to the Ricci flow with the capped infinite round
cylinder (with scalar curvature 1 outsider some compact set) as initial
data and we require that the solutions also have bounded curvature; we
call such a solution a standard solution as in [32]. From Shi [36],
we know such a solution exists. The uniqueness of the Ricci flow for
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compact manifolds is well-known (see for example, Section 6 of [20]).
In [11], we prove a uniqueness theorem which states that if the initial
data is a complete noncompact Riemannian manifold with bounded
curvature, then the solution to the Ricci flow in the class of complete
solutions with bounded curvature is unique. Thus the standard solution
with a capped infinite round cylinder as initial data is unique. In the
appendix, we will show that the standard solution exists on the time
interval [0, 3

2) and has nonnegative curvature operator, and its scalar
curvature satisfies

(5.6) R(x, t) ≥ C−1

3
2 − t

,

everywhere for some positive constant C.
For any 0 < θ < 3

2 , let Q be the maximum of the scalar curvature
of the standard solution in the time interval [0, θ] and let △t = (T1 −
T0)/N < εη−1Q−1h2 with T1 = min{t0, T0 + θh2} and η given in the
canonical neighborhood assumption. Set tk = T0 + k△t, k = 1, . . . , N .

Note that the ball BT0(O, A0h) at time T0 with A0 = δ−
1
2 is, after

scaling with factor h−2, δ
1
2 -close to the corresponding ball in the capped

infinite round cylinder. Assume first that for each point in BT0(O, A0h),
the solution is defined on [T0, t1]. By the gradient estimate (5.4) in the
canonical neighborhood assumption and the choice of △t we have a
uniform curvature bound on this set for h−2-scaled metric. Then by

the uniqueness theorem in [11], if δ
1
2 → 0 (i.e., A0 = δ−

1
2 → +∞), the

solution with h−2-scaled metric will converge to the standard solution
in C∞

loc topology. Therefore we can find A1, depending only on A0 and
tending to infinity with A0, such that the solution in the parabolic region
P (O, T0, A1h, t1 − T0) = {(x, t)|x ∈ Bt(O, A1h), t ∈ [T0, T0 + (t1 − T0)]}
is, after scaling with factor h−2 and shifting time T0 to zero, A−1

1 -close
to the corresponding subset in the standard solution. In particular,
the scalar curvature on this subset does not exceed 2Qh−2. Now if for
each point in BT0(O, A1h) the solution is defined on [T0, t2], then we
can repeat the procedure, defining A2, such that the solution in the
parabolic region P (O, T0, A2h, t2 − T0) = {(x, t)|x ∈ Bt(p, A2h), t ∈
[T0, T0 +(t2−T0)]} is, after scaling with factor h−2 and shifting time T0

to zero, A−1
2 -close to the corresponding subset in the standard solution.

Again, the scalar curvature on this subset still does not exceed 2Qh−2.
Continuing this way, we eventually define AN . Note that N depends
only on θ. Thus for arbitrarily given A > 0 (to be determined), we can

choose δ̃(A, θ, ε) > 0 such that as δ < δ̃(A, θ, ε), and assuming that for
each point in BT0(O, A(N−1)h) the solution is defined on [T0, T1], we have
A0 > A1 > · · · > AN > A, and the solution in P (O, T0, Ah, T1 − T0) =
{(x, t)|x ∈ Bt(O, Ah), t ∈ [T0, T1]} is, after scaling with factor h−2 and
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shifting time T0 to zero, A−1-close to the corresponding subset in the
standard solution.

Now assume that there exist some k (1 ≤ k ≤ N − 1) and a surgery
time t+ ∈ (tk, tk+1](or t+ ∈ (T0, t1]) such that on BT0(O, Akh) the solu-
tion is defined on [T0, t

+), but for some point of this ball it is not defined
past t+. Clearly the above argument also shows that the parabolic re-
gion P (O, T0, Ak+1h, t+ − T0) = {(x, t)|x ∈ Bt(x, Ak+1h), t ∈ [T0, t

+)}
is, after scaling with factor h−2 and shifting time T0 to zero, A−1

k+1-close
to the corresponding subset in the standard solution. In particular, as
the time tends to t+, the ball BT0(O, Ak+1h) keeps on looking like a
cap. Since the scalar curvature on the set BT0(O, Akh) × [T0, tk] does
not exceed 2Qh−2, it follows from the pinching assumption, the gradient
estimates in the canonical neighborhood assumption and the evolution
equation of the metric that the diameter of the set BT0(O, Akh) at any

time t ∈ [T0, t
+) is bounded from above by 4δ−

1
2 h. These imply that

no point of the ball BT0(O, Akh) at any time near t+ can be the center

of a δ-neck for any 0 < δ < δ̃(A, θ, ε) with δ̃(A, θ, ε) > 0 small enough,

since 4δ−
1
2 h << δ−1h. However, the solution disappears somewhere in

the ball BT0(O, Akh) at the time t+ because of a δ-cutoff surgery and
the surgery is always done along the middle three-sphere of a δ-neck. So
the set BT0(O, Akh) at the time t+ is a part of a capped horn. (Recall
that we have declared extinct every compact component with positive
curvature operator or lying in Ω \ Ωσ). And then for each point of
BT0(O, Akh) the solution terminates at t+.

The above observations will give us the following consequence.

Claim 2. For any L̃ < +∞, one can find A = A(L̃) < +∞ and

θ = θ(L̃), 0 < θ < 3
2 , with the following property. Suppose γ is a smooth

curve in the set BT0(O, Ah), parametrized by t ∈ [T0, Tγ ], such that
γ(T0) ∈ BT0(O, 1

2Ah) and either Tγ = T1 and the solution on BT0(O, Ah)

exists up to the time interval [T0, T1] with T1 = min{t0, T0 + θh2} < t0,

or Tγ < T1 and γ(Tγ) ∈ ∂BT0(O, Ah). Then as δ < δ̃(A, θ, ε) chosen
before, there holds

(5.7)

∫ Tγ

T0

(R(γ(t), t) + |γ̇(t)|2gij(t)
)dt > L̃.

Indeed, we know from the estimate (5.6) that on the standard solu-
tion,

∫ θ

0
Rdt ≥ const.

∫ θ

0

(
3

2
− t

)−1

dt

= −const. log

(
1 − 2θ

3

)
.
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By choosing θ = θ(L̃) sufficiently close to 3
2 , we have the desired estimate

on the standard solution.
If Tγ = T1 < t0 and the solution on BT0(O, Ah) exists up to the time

interval [T0, T1], the solution in the parabolic region P (O, T0, Ah, T1 −
T0) = {(x, t)|x ∈ Bt(O, Ah), t ∈ [T0, T1]} is, after scaling with factor
h−2 and shifting time T0 to zero, A−1-close to the corresponding subset
in the standard solution. Then we have

∫ Tγ

T0

(R(γ(t), t) + |γ̇(t)|2gij(t)
)dt ≥ const.

∫ θ

0

(
3

2
− t

)−1

dt

= −const. log

(
1 − 2θ

3

)
,

which gives the desired estimate in this case.
Meanwhile if Tγ < T1 and γ(Tγ) ∈ ∂BT0(O, Ah), we see that the

solution on BT0(O, A0h) exists up to the time interval [T0, Tγ ] and is,
after scaling, A−1-close to corresponding set in the standard solution.

Let θ = θ(L̃) be chosen as above and set Q = Q(L̃) to be the maximum
of the scalar curvature of the standard solution in the time interval
[0, θ]. On the standard solution, we can choose A = A(L̃) so large that
for each t ∈ [0, θ],

dt(O, ∂B0(O, A)) ≥ d0(O, ∂B0(O, A)) − 4(Q + 1)t

≥ A − 4(Q + 1)θ

≥ 4

5
A,

and

dt

(
O, ∂B0

(
O,

A

2

))
≤ A

2
,

where we used Lemma 8.3 of [31] in the first inequality. Now our solu-
tion in the subset BT0(O, Ah) up to the time interval [T0, Tγ ] is (after
scaling) A−1-close to the corresponding subset in the standard solution.
This implies

1

5
Ah ≤

∫ Tγ

T0

|γ̇(t)|gij(t) ≤
(∫ Tγ

T0

|γ̇(t)|2gij(t)
dt

) 1
2

(Tγ − T0)
1
2

and then ∫ Tγ

T0

(
R(γ(t), t) + |γ̇(t)|2gij(t)

)
dt ≥ A2

25θ
> L̃,

by choosing A = A(L̃) large enough. This proves Claim 2.
We now use the above Claim 2 to verify Claim 1. Since r0 ≥ 1

2η r and

|Rm| ≤ r−2
0 on P (x0, t0, r0,−r2

0) = {(x, t)|x ∈ Bt(x0, r0), t ∈ [t0−r2
0, t0]}

(whenever it is defined), we can require δ̃ > 0, depending on r and r̃ℓ,
so that γ(T0) does not lie in the region P (x0, t0, r0,−r2

0). Let △t be
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maximal such that γ|[t0−△t,t0] ⊂ P (x0, t0, r0,−△t) (i.e., t = t0 − △t

is the first time for γ escaping the parabolic region P (x0, t0, r0,−r2
0)).

Obviously we may assume that
∫ △t

0

√
τ(R(γ(t0 − τ), t0 − τ) + |γ̇(t0 − τ)|2gij(t0−τ))dτ < L.

If △t < r2
0, it follows from the curvature bound |Rm| ≤ r−2

0 on P (x0, t0,
r0,−r2

0) and the Ricci flow equation that
∫ △t

0
|γ̇(t0 − τ)|dτ ≥ cr0

for some universal positive constant c. On the other hand, by Cauchy-
Schwartz inequality, we have

∫ △t

0
|γ̇(t0 − τ)|dτ ≤

(∫ △t

0

√
τ(R + |γ̇|2)dτ

) 1
2

·
(∫ △t

0

1√
τ
dτ

) 1
2

≤ 2L
1
2 (△t)

1
4

which yields

(△t)
1
2 ≥ c2r2

0

4L
.

Thus we always have

(△t)
1
2 ≥ min

{
r0,

c2r2
0

4L

}
.

Then
∫ t0−T0

0

√
τ(R + |γ̇|2)dτ ≥ (△t)

1
2

∫ t0−T0

△t
(R + |γ̇|2)dτ

≥ min

{
r0,

c2r2
0

4L

} ∫ t0−T0

△t
(R + |γ̇|2)dτ.

By applying Claim 2, we can require the above δ̃ further to find δ̃ =

δ̃(L, r, r̃ℓ) > 0 so small that as 0 < δ < δ̃, there holds
∫ t0−T0

△t
(R + |γ̇|2)dτ ≥ L

(
min

{
r0,

c2r2
0

4L

})−1

.

Hence we have verified the desired assertion (5.5).
Now choose L = 100 in (5.5); then it follows from Claim 1 that there

exists δ̃ > 0, depending on r and r̃ℓ, such that as each δ-cutoff surgery

at the time interval t ∈ [(ℓ− 1)ε2, T ] has δ < δ̃, every barely admissible
curve γ with endpoints (x0, t0) and (x, t), where t ∈ [(ℓ − 1)ε2, t0), has

L(γ) =

∫ t0−t

0

√
τ(R(γ(τ), t0 − τ) + |γ̇(τ)|2gij(t0−τ))dτ ≥ 100,
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which implies that the reduced distance from (x0, t0) to (x, t) satisfies

(5.8) l ≥ 25ε−1.

We also observe that the absolute value of l(x0, τ) is very small as τ
closes to zero. We can then apply a maximum principle argument as in
Section 7.1 of [31] to conclude

lmin(τ)

= min{l(x, τ)| x lies on the solution manifold at time t0 − τ}
≤ 2,

for τ ∈ (0, t0 − (ℓ− 1)ε2], because barely admissible curves do not carry
a minimum. In particular, there exists a minimizing curve γ of lmin(t0−
(ℓ − 1)ε2), defined on τ ∈ [0, t0 − (ℓ − 1)ε2] with γ(0) = x0, such that

(5.9) L(γ) ≤ 2 · (2
√

2ε) < 10ε.

Consequently, there exists a point (x, t) on the minimizing curve γ with
t ∈ [(ℓ − 1)ε2 + 1

4ε2, (ℓ − 1)ε2 + 3
4ε2] such that

(5.10) R(x, t) ≤ 50r̃−2
ℓ .

Otherwise, we would have

L(γ) ≥
∫ t0−(ℓ−1)ε2− 1

4
ε2

t0−(ℓ−1)ε2− 3
4
ε2

√
τR(γ(τ), t0 − τ)dτ

≥ 50r̃−2
ℓ · 2

3

(
1

2
ε2

) 3
2

> 10ε

since 0 < r̃ℓ < ε; this contradicts (5.9).
Next we want to get a lower bound for the reduced volume of a ball

around x of radius about r̃ℓ at some time-slice slightly before t. Since
the solution satisfies the canonical neighborhood assumption on the time
interval [(ℓ − 1)ε2, ℓε2), it follows from the gradient estimate (5.4) that

(5.11) R(x, t) ≤ 400r̃−2
ℓ

for those (x, t) ∈ P (x, t, 1
16η−1r̃ℓ,− 1

64η−1r̃2
ℓ ) for which the solution

is defined. And since the points where occur the δ-cutoff surg-
eries in the time interval [(ℓ−1)ε2, ℓε2) have their scalar curvature
at least δ−2r̃−2

ℓ , the solution is defined on the whole parabolic region

P (x, t, 1
16η−1r̃ℓ,− 1

64η−1r̃2
ℓ ) (this says, this parabolic region is unaffected

by surgery). Thus by combining (5.9) and (5.11), the reduced distance
from (x0, t0) to each point of the ball Bt− 1

64
η−1er2

ℓ
(x, 1

16η−1r̃ℓ) is uniformly
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bounded by some universal constant. Let us define the reduced volume
of the ball Bt− 1

64
η−1er2

ℓ
(x, 1

16η−1r̃ℓ) by

Ṽt0−t+ 1
64

η−1er2
ℓ

(
Bt− 1

64
η−1er2

ℓ

(
x,

1

16
η−1r̃ℓ

))

=

∫

B
t− 1

64 η−1er2
ℓ
(x, 1

16
η−1erℓ)

(
4π

(
t0 − t +

1

64
η−1r̃2

ℓ

))−2

· exp

(
−l

(
q, t0 − t +

1

64
η−1r̃2

ℓ

))
dVt− 1

64
η−1er2

ℓ
(q).

Hence by the κℓ-noncollapsing assumption on the time interval
[(ℓ − 1)ε2, ℓε2), we conclude that the reduced volume of the ball
Bt− 1

64
η−1er2

ℓ
(x, 1

16η−1r̃ℓ) is bounded from below by a positive constant

depending only on κℓ and r̃ℓ.

Finally we want to get a lower bound estimate for the volume of the
ball Bt0(x0, r0). We have seen that the reduced distance from (x0, t0)
to each point of the ball Bt− 1

64
η−1er2

ℓ
(x, 1

16η−1r̃ℓ) is uniformly bounded

by some universal constant. Without loss of generality, we may as-
sume ε > 0 is very small. Then it follows from (5.8) that the points
in the ball Bt− 1

64
η−1er2

ℓ
(x, 1

16η−1r̃ℓ) can be connected to (x0, t0) by short-

est L-geodesics, and all of these L-geodesics are admissible (i.e., they
stay in the region unaffected by surgery). The union of all shortest
L-geodesics from (x0, t0) to the ball Bt− 1

64
η−1er2

ℓ
(x, 1

16η−1r̃ℓ), denoted

by C Bt− 1
64

η−1 er2
ℓ
(x, 1

16 η−1 r̃ℓ), forms a cone-like subset in space-

time with the vertex (x0, t0). Denote B(t) by the intersection of
CBt− 1

64
η−1er2

ℓ
(x, 1

16η−1r̃ℓ) with the time-slice at t. The reduced volume

of the subset B(t) is defined by

Ṽt0−t(B(t)) =

∫

B(t)
(4π(t0 − t))−2 exp(−l(q, t0 − t))dVt(q).

Since the cone-like subset CBt− 1
64

η−1er2
ℓ
(x, 1

16η−1r̃ℓ) lies entirely in the

region unaffected by surgery, we can apply Perelman’s Jacobian com-
parison [31] to conclude that

Ṽt0−t(B(t)) ≥ Ṽt0−t+ 1
64

η−1er2
ℓ

(
Bt− 1

64
η−1er2

ℓ

(
x,

1

16
η−1r̃ℓ

))
(5.12)

≥ c(κℓ, r̃ℓ)

for all t ∈ [t − 1
64η−1r̃2

ℓ , t0], where c(κℓ, r̃ℓ) is some positive constant
depending only on κℓ and r̃ℓ.

Denote by ξ = r−1
0 V0ℓt0(Bt0(x0, r0))

1
4 . Our purpose is to give a pos-

itive lower bound for ξ. Without loss of generality, we may assume
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ξ < 1
4 , thus 0 < ξr2

0 < t0 − t̄ + 1
64η−1r̃2

ℓ . And denote by B̃(t0 − ξr2
0)

the subset of the points at the time-slice {t = t0 − ξr2
0} where every

point can be connected to (x0, t0) by an admissible shortest L-geodesic.

Clearly B(t0 − ξr2
0) ⊂ B̃(t0 − ξr2

0).

Since r0 ≥ 1
2η r and δ̃ = δ̃(r, r̃ℓ, ε) sufficiently small, the region P (x0,

t0, r0,−r2
0) is unaffected by surgery. Then by the exact same argument

as used in deriving (3.24) in the proof of Theorem 3.5, we see that there
exists a universal positive constant ξ0 such that as 0 < ξ ≤ ξ0, there
holds

(5.13) L exp
{|v|≤ 1

4
ξ−

1
2 }

(ξr2
0) ⊂ Bt0(x0, r0).

The reduced volume B̃(t0 − ξr2
0) is given by

Ṽξr2
0
(B̃(t0 − ξr2

0))

=

∫

eB(t0−ξr2
0)

(4πξr2
0)

−2 exp(−l(q, ξr2
0))dVt0−ξr2

0
(q)

=

∫

eB(t0−ξr2
0)∩L exp

{|v|≤ 1
4 ξ

− 1
2 }

(ξr2
0)

(4πξr2
0)

−2 exp(−l(q, ξr2
0))dVt0−ξr2

0
(q)

+

∫

eB(t0−ξr2
0)\L exp

{|v|≤ 1
4 ξ

− 1
2 }

(ξr2
0)

(4πξr2
0)

−2 exp(−l(q, ξr2
0))dVt0−ξr2

0
(q).

(5.14)

By (5.13), the first term on the RHS of (5.14) can be estimated by

∫

eB(t0−ξr2
0)∩L exp

{|v|≤ 1
4 ξ

− 1
2 }

(ξr2
0)

(4πξr2
0)

−2 exp(−l(q, ξr2
0))dVt0−ξr2

0
(q)

≤ e4ξ

∫

Bt0 (x0,r0)
(4πξr2

0)
−2 exp(−l)dVt0(q)

≤ e4ξ(4π)−2ξ2.

(5.15)

And the second term on the RHS of (5.14) can be estimated by

∫

eB(t0−ξr2
0)\L exp

{|v|≤ 1
4 ξ

− 1
2 }

(ξr2
0)

(4πξr2
0)

−2 exp(−l(q, ξr2
0))dVt0−ξr2

0
(q)

≤
∫

{|v|> 1
4
ξ−

1
2 }

(4πτ)−2 exp(−l)J(τ)|τ=0dv

= (4π)−2

∫

{|v|> 1
4
ξ−

1
2 }

exp(−|v|2)dv,

(5.16)
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by using Perelman’s Jacobian comparison theorem [31] (as deriving
(3.30) in the proof of Theorem 3.5). Hence the combination of (5.12),
(5.14), (5.15) and (5.16) bounds ξ from below by a positive constant
depending only on κℓ and r̃ℓ.

Therefore we have completed the proof of the lemma. q.e.d.

Now we can prove the proposition.

Proof of Proposition 5.4. The proof of the proposition is by induction:
having constructed our sequences for 1 ≤ j ≤ ℓ, we make one more

step, defining r̃ℓ+1, κℓ+1, δ̃ℓ+1, and redefining δ̃ℓ = δ̃ℓ+1. In view of the

previous lemma, we only need to define r̃ℓ+1 and δ̃ℓ+1.
In Theorem 4.1 we have obtained the canonical neighborhood struc-

ture for smooth solutions. When adapting the arguments in the proof
of Theorem 4.1 to the present surgical solutions, we will encounter the
difficulty of how to take a limit for the surgically modified solutions.
The idea to overcome the difficulty consists of two parts. The first part,

due to Perelman [32], is to choose δ̃ℓ and δ̃ℓ+1 small enough to push the
surgical regions to infinity in space. (This is the reason why we need

to redefine δ̃ℓ = δ̃ℓ+1.) The second part is to show that solutions are
smooth on some uniform small time intervals (on compact subsets) so
that we can apply Hamilton’s compactness theorem, since we only have
curvature bounds; otherwise Shi’s interior derivative estimate may not
be applicable. That is just concerned with the question of whether the
surgery times accumulate or not.

We now start to prove the proposition by contradiction. Suppose for

sequence of positive numbers rα and δ̃αβ , satisfying rα → 0 as α → ∞
and δ̃αβ ≤ 1

αβ (→ 0), there exist sequences of solutions gαβ
ij to the Ricci

flow with surgery, where each of them has only a finite number of cutoff
surgeries and has the given compact four-manifold as initial datum, so
that the following two assertions hold:

(i) each δ-cutoff at a time t ∈ [(ℓ − 1)ε2, (ℓ + 1)ε2] satisfies δ ≤ δ̃αβ;
and

(ii) the solutions satisfy the statement of the proposition on [0, ℓε2],
but violate the canonical neighborhood assumption (with accuracy
ε) with r = rα on [ℓε2, (ℓ + 1)ε2].

For each solution gαβ
ij , we choose t̄ (depending on α, β) to be the nearly

first time for which the canonical neighborhood assumption (with accu-
racy ε) is violated. More precisely, we choose t̄ ∈ [ℓε2, (ℓ + 1)ε2] so that
the canonical neighborhood assumption with r = rα and with accuracy
parameter ε is violated at some (x̄, t̄); however the canonical neighbor-
hood assumption with accuracy parameter 2ε holds on t ∈ [ℓε2, t̄]. After

passing to subsequences, we may assume each δ̃αβ is less than the δ̃ in
Lemma 5.5 with r = rα when α is fixed. Then by Lemma 5.5 we have
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uniform κ-noncollapsing for all scales less than ε on [0, t̄] with some
κ > 0 independent of α, β.

Slightly abusing notation, we will often drop the indices α, β.

Let g̃αβ
ij be the rescaled solutions along (x̄, t̄) with factors R(x̄, t̄)(≥

r−2 → +∞) and shift the times t̄ to zero. We hope to take a limit of
the rescaled solutions for subsequences of α, β → ∞ and show the limit
is an ancient κ-solution, which will give the desired contradiction. We
divide the following arguments into six steps.

Step 1. Let (y, t̂) be a point on the rescaled solution g̃αβ
ij with

R̃(y, t̂) ≤ A (A ≥ 1) and t̂ ∈ [−(t̄ − (ℓ − 1)ε2)R(x̄, t̄), 0], then we have
estimate

(5.17) R̃(x, t) ≤ 10A

for those (x, t) in the parabolic neighborhood P (y, t̂, 1
2 η−1 A− 1

2 ,

−1
8η−1A−1) , {(x′, t′) | x′ ∈ B̃t′(y, 1

2η−1A− 1
2 ), t′ ∈ [t̂− 1

8η−1A−1, t̂]}, for
which the rescaled solution is defined.

Indeed, as in the first step of the proof of Theorem 4.1, this follows
directly from the gradient estimates (5.4) in the canonical neighborhood
assumption with parameter 2ε.

Step 2. In this step, we will prove three time extending results.

Assertion 1. For arbitrarily fixed α, 0 < A < +∞, 1 ≤ C < +∞
and 0 ≤ B < 1

2ε2(rα)−2 − 1
8η−1C−1, there is a β0 = β0(ε, A, B, C)

(independent of α) such that if β ≥ β0 and the rescaled solution g̃αβ
ij on

the ball B̃0(x̄, A) is defined on a time interval [−b, 0] with 0 ≤ b ≤ B
and the scalar curvature satisfies

R̃(x, t) ≤ C, on B̃0(x̄, A) × [−b, 0],

then the rescaled solution g̃αβ
ij on the ball B̃0(x̄, A) is also defined on

the extended time interval [−b − 1
8η−1C−1, 0].

Before the proof, we need a simple observation: once a space point
in the Ricci flow with surgery is removed by surgery at some time, then
it never appears later time; if a space point at some time t can not be
defined before the time t , then either the point lies in a gluing cap of
the surgery at time t or the time t is the initial time of the Ricci flow.

Proof of Assertion 1. Firstly we claim that there exists β0 = β0(ε, A,

B, C) such that as β ≥ β0, the rescaled solution g̃αβ
ij on the ball B̃0(x̄, A)

can be defined before the time −b (i.e., there are no surgeries interfering

in B̃0(x̄, A) × [−b − ǫ′,−b] for some ǫ′ > 0).
We argue by contradiction. Suppose not, then there is some point

x̃ ∈ B̃0(x̄, A) such that the rescaled solution g̃αβ
ij at x̃ can not be defined
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before the time −b. By the above observation, there is a surgery at the
time −b such that the point x̃ lies in the instant gluing cap.

Let h̃ (= R(x̄, t̄)
1
2 h) be the cut-off radius at the time −b for the

rescaled solution. Clearly, there is a universal constant D such that

D−1h̃ ≤ R̃(x̃,−b)−
1
2 ≤ Dh̃.

By Lemma 5.3 and looking at the rescaled solution at the time −b,

the gluing cap and the adjacent δ-neck, of radius h̃, constitute a (δ̃αβ)
1
2 -

cap K. For any fixed small positive constant δ′ (much smaller than ε),
we see

B̃(−b)(x̃, (δ′)−1
R̃(x̃,−b)−

1
2 ) ⊂ K

as β large enough. We first verify the following

Claim 1. For any small constants 0 < θ̃ < 3
2 , δ′ > 0, there exists a

β(δ′, ε, θ̃) > 0 such that as β ≥ β(δ′, ε, θ̃), we have

(i) the rescaled solution g̃αβ
ij over B̃(−b)(x̃, (δ′)−1h̃) is defined on the

time interval [−b, 0] ∩ [−b,−b + (3
2 − θ̃)h̃2];

(ii) the ball B̃(−b)(x̃, (δ′)−1h̃) in the (δ̃αβ)
1
2 -cap K evolved by the Ricci

flow on the time interval [−b, 0]∩[−b,−b+(3
2−θ̃)h̃2] is, after scaling

with factor h̃−2, δ′-close ( in C [δ′−1] topology) to the corresponding
subset of the standard solution.

This claim is somewhat known in the first claim in the proof of Lemma

5.5. Indeed, suppose there is a surgery at some time ˜̃t ∈ [−b, 0] ∩
(−b,−b + (3

2 − θ̃)h̃2] which removes some point ˜̃x ∈ B̃(−b)(x̃, (δ′)−1h̃).

We assume ˜̃t ∈ (−b, 0] to be the first time with that property.
Then by the proof of the first claim in Lemma 5.5, there is a δ̄ =

δ̄(δ′, ε, θ̃) such that if δ̃αβ < δ̄, then the ball B̃(−b)(x̃, (δ′)−1h̃) in the

(δ̃αβ)
1
2 -cap K evolved by the Ricci flow on the time interval [−b, ˜̃t)

is, after scaling with factor h̃−2, δ′-close to the corresponding subset

of the standard solution. Note that the metrics for times in [−b, ˜̃t)

on B̃(−b)(x̃, (δ′)−1h̃) are equivalent. By the proof of the first claim

in Lemma 5.5, the solution on B̃(−b)(x̃, (δ′)−1h̃) keeps looking like a

cap for t ∈ [−b, ˜̃t). On the other hand, by definition, the surgery
is always performed along the middle three-sphere of a δ-neck with

δ < δ̃αβ. Then as β large, all the points in B̃(−b)(x̃, (δ′)−1h̃) are re-

moved (as a part of a capped horn) at the time ˜̃t. But x̃ (near the

tip of the cap) exists past the time ˜̃t. This is a contradiction. Hence

we have proved that B̃(−b)(x̃, (δ′)−1h̃) is defined on the time interval

[−b, 0] ∩ [−b,−b + (3
2 − θ̃)h̃2].
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The δ′-closeness of the solution on B̃(−b)(x̃, (δ′)−1h)×([−b, 0]∩[−b,−b

+(3
2 − θ̃)h̃2]) with the corresponding subset of the standard solution

follows by the uniqueness theorem and the canonical neighborhood as-
sumption with parameter 2ε as in the proof of the first claim in Lemma
5.5. Then we have proved Claim 1.

We next verify the following

Claim 2. There is θ̃ = θ̃(CB), 0 < θ̃ < 3
2 , such that b ≤ (3

2 − θ̃)h̃2

as β large.

Note from Theorem A.1 in Appendix, that there is a universal con-
stant D′ > 0 such that the standard solution (of dimension four) satisfies
the following curvature estimate

R(y, s) ≥ 2D′

3
2 − s

.

We choose θ̃ = 3D′/2(2D′ + 2CB). Then as β large enough, the rescaled
solution satisfies

(5.18) R̃(x, t) ≥ D′

3
2 − (t + b)h̃−2

h̃−2

on B̃(−b)(x̃, (δ′)−1h̃) × ([−b, 0] ∩ [−b,−b + (3
2 − θ̃)h̃2]).

Suppose b ≥ (3
2 − θ̃)h̃2. Then by combining with the assumption

R̃(x̃, t) ≤ C for t = (3
2 − θ̃)h̃2 − b, we have

C ≥ D′

3
2 − (t + b)h̃−2

h̃−2,

and then

θ̃ ≥
3D′

2CB

1 + D′

CB

.

This is a contradiction. Hence we have proved Claim 2.

The combination of the above two claims shows that there is a positive
constant 0 < θ̃ = θ̃(CB) < 3

2 such that for any δ′ > 0, there is a positive

β(δ′, ε, θ̃) such that as β ≥ β(δ′, ε, θ̃), we have b ≤ (3
2 − θ̃)h̃2 and the

rescaled solution in the ball B̃(−b)(x̃, (δ′)−1h̃) on the time interval [−b, 0]

is, after scaling with factor h̃−2, δ′-close ( in C [(δ′)−1] topology) to the
corresponding subset of the standard solution.

By (5.18) and the assumption R̃ ≤ C on B̃0(x̄, A)× [−b, 0], we know

that the cut-off radius h̃ at the time −b for the rescaled solution satisfies

h̃ ≥
√

2D′

3C
.

Let δ′ > 0 be much smaller than ε and min{A−1, A}. Since d̃0(x̃, x̄) ≤
A, it follows that there is constant C(θ̃) depending only on θ̃ such that
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d̃(−b)(x̃, x̄) ≤ C(θ̃)A ≪ (δ′)−1h̃. We now apply Corollary A.2 in Ap-
pendix with the accuracy parameter ε/2. Let C(ε/2) be the positive
constant in Corollary A.2. Without loss of generality, we may assume
the positive constant C1(ε) in the canonical neighborhood assumption is
larger than 4C(ε/2). As δ′ > 0 is much smaller than ε and min{A−1, A},
the point x̄ at the time t̄ has a neighborhood which is either a 3

4ε-cap

or a 3
4ε-neck.

Since the canonical neighborhood assumption with accuracy param-
eter ε is violated at (x̄, t̄), the neighborhood of the point x̄ at the new
time zero for the rescaled solution must be a 3

4ε-neck. By Corollary
A.2 (b), we know the neighborhood is the slice at the time zero of the
parabolic neighborhood

P

(
x̄, 0,

4

3
ε−1R̃(x̄, 0)−

1
2 ,−min{R̃(x̄, 0)−1, b}

)

(with R̃(x̄, 0) = 1) which is 3
4ε-close (in C [ 4

3
ε−1] topology) to the cor-

responding subset of the evolving standard cylinder S3 × R over the
time interval [−min{b, 1}, 0] with scalar curvature 1 at the time zero.
If b ≥ 1, the 3

4ε-neck is strong, which is a contradiction. While if b < 1,

the 3
4ε-neck at time −b is contained in the union of the gluing cap and

the adjacent δ-neck where the δ-cutoff surgery was taken. Since ε is
small (say ε < 1/100), it is clear that the point x̄ at time −b is the
center of an ε-neck which is entirely contained in the adjacent δ-neck.
By the remark after Lemma 5.2, the adjacent δ-neck approximates an
ancient κ-solution. This implies the point x̄ at the time t̄ has a strong
ε-neck, which is also a contradiction.

Hence we have proved that there exists β0 = β0(ε, A, B, C) such that

as β ≥ β0, the rescaled solution on the ball B̃0(x̄, A) can be defined
before the time −b.

Let [tαβ
A , 0] ⊃ [−b, 0] be the largest time interval so that the rescaled

solution g̃αβ
ij can be defined on B̃0(x̄, A)× [tαβ

A , 0]. We finally claim that

tαβ
A ≤ −b − 1

8η−1C−1 as β large enough.
Indeed, suppose not; by the gradient estimates as in Step 1, we have

the curvature estimate

R̃(x, t) ≤ 10C

on B̃0(x̄, A) × [tαβ
A ,−b]. Hence we have the curvature estimate

R̃(x, t) ≤ 10C

on B̃0(x̄, A)×[tαβ
A , 0]. By the above argument there is a β0 = β0(ε, A, B+

1
8η−1C−1, 10C) such that as β ≥ β0, the solution in the ball B̃0(x̄, A)

can be defined before the time tαβ
A . This is a contradiction.

Therefore we have proved Assertion 1.
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Assertion 2. For arbitrarily fixed α, 0 < A < +∞, 1 ≤ C < +∞ and
0 < B < 1

2ε2(rα)−2− 1
50η−1, there is a β0 = β0(ε, A, B, C) (independent

of α) such that if β ≥ β0 and the rescaled solution g̃αβ
ij on the ball

B̃0(x̄, A) is defined on a time interval [−b + ǫ′, 0] with 0 < b ≤ B and
0 < ǫ′ < 1

50η−1 and the scalar curvature satisfies

R̃(x, t) ≤ C on B̃0(x̄, A) × [−b + ǫ′, 0],

and there is a point y ∈ B̃0(x̄, A) such that R̃(y,−b + ǫ′) ≤ 3
2 , then the

rescaled solution g̃αβ
ij at y is also defined on the extended time interval

[−b − 1
50η−1, 0] and satisfies the estimate

R̃(y, t) ≤ 15

for t ∈ [−b − 1
50η−1,−b + ǫ′].

Proof of Assertion 2. We imitate the proof of Assertion 1. If the re-

scaled solution g̃αβ
ij at y can not be defined for some time in [−b −

1
50η−1,−b+ǫ′), then there is a surgery at some time ˜̃t ∈ [−b− 1

50η−1,−b+

ǫ′] such that y lies in the instant gluing cap. Let h̃ (= R(x̄, t̄)
1
2 h) be the

cutoff radius at the time ˜̃t for the rescaled solution. Clearly, there is a

universal constant D > 1 such that D−1h̃ ≤ R̃(y, ˜̃t)−
1
2 ≤ Dh̃. By the

gradient estimates as in Step 1, the cutoff radius satisfies

h̃ ≥ D−115−
1
2 .

As in Claim 1 (i) in the proof of Assertion 1, for any small constants

0 < θ̃ < 3
2 , δ′ > 0, there exists a β(δ′, ε, θ̃) > 0 such that as β ≥

β(δ′, ε, θ̃), there is no surgery interfering in B̃˜̃t
(y, (δ′)−1h̃) × ([˜̃t, (3

2 −
θ̃)h̃2 + ˜̃t] ∩ (˜̃t, 0]). Without loss of generality, we may assume that the

universal constant η is much larger than D. Then we have (3
2−θ̃)h̃2+˜̃t >

−b+ 1
50η−1. As in Claim 2, we can use the curvature bound assumption

to choose θ̃ = θ̃(B, C) such that (3
2 − θ̃)h̃2 + ˜̃t ≥ 0; otherwise

C ≥ D′

θ̃h̃2

for some universal constant D′, and

|˜̃t + b| ≤ 1

50
η−1,

which implies

θ̃ ≥
3D′

2C(B+ 1
50

η−1)

1 + D′

C(B+ 1
50

η−1)

.

This is a contradiction if we choose θ̃ = 3D′/2(2D′ + 2C(B + 1
50η−1)).
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So there is a positive constant 0 < θ̃ = θ̃(B, C) < 3
2 such that for

any δ′ > 0, there is a positive β(δ′, ε, θ̃) such that as β ≥ β(δ′, ε, θ̃), we

have −˜̃t ≤ (3
2 − θ̃)h̃2 and the solution in the ball B̃˜̃t

(x̃, (δ′)−1h̃) on the

time interval [˜̃t, 0] is, after scaling with factor h̃−2, δ′-close (in C [δ′−1]

topology) to the corresponding subset of the standard solution.
Then exactly as in the proof of Assertion 1, by using the canoni-

cal neighborhood structure of the standard solution in Corollary A.2,
this gives the desired contradiction with the hypothesis that the canon-
ical neighborhood assumption with accuracy parameter ε is violated at
(x̄, t̄), as β sufficiently large.

The curvature estimate at the point y follows from Step 1. Therefore
we complete the proof of Assertion 2. q.e.d.

Note that the standard solution satisfies R(x1, t) ≤ D′′R(x2, t) for
any t ∈ [0, 1

2 ] and any two points x1, x2, where D′′ ≥ 1 is a universal
constant.

Assertion 3. For arbitrarily fixed α, 0 < A < +∞, 1 ≤ C < +∞ ,

there is a β0 = β0(ε, AC
1
2 ) such that if any point (y0, t0) with 0 ≤ −t0 <

1
2ε2(rα)−2 − 1

8η−1C−1 of the rescaled solution g̃αβ
ij for β ≥ β0 satisfies

R̃(y0, t0) ≤ C , then either the rescaled solution at y0 can be defined at
least on [t0 − 1

16η−1C−1, t0] and the rescaled scalar curvature satisfies

R̃(y0, t) ≤ 10C for t ∈
[
t0 −

1

16
η−1C−1, t0

]
,

or we have

R̃(x1, t0) ≤ 2D′′R̃(x2, t0)

for any two points x1, x2 ∈ B̃t0(y0, A), where D′′ is the above universal
constant.

Proof of Assertion 3. Suppose the rescaled solution g̃αβ
ij at y0 can not

be defined for some t ∈ [t0 − 1
16η−1C−1, t0); then there is a surgery at

some time t̃ ∈ [t0 − 1
16η−1C−1, t0] such that y0 lies in the instant gluing

cap. Let h̃ (= R(x̄, t̄)
1
2 h) be the cutoff radius at the time t̃ for the

rescaled solution g̃αβ
ij . By the gradient estimates as in Step 1, the cutoff

radius satisfies

h̃ ≥ D−110−
1
2 C− 1

2 ,

where D is the universal constant in the proof of Assertion 1. Since we
assume η is suitably larger than D as before, we have 1

2 h̃2+ t̃ > t0. As in
Claim 1 (ii) in Assertion 1, for arbitrarily small δ′ > 0, we know that as

β large enough the rescaled solution on the ball B̃t̃(y0, (δ
′)−1h̃) on the

time interval [t̃, t0] is, after scaling with factor h̃−2, δ′-close (in C [(δ′)−1]

topology) to the corresponding subset of the standard solution. Since
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(δ′)−1h̃ ≫ A as β large enough, Assertion 3 follows from the curvature
estimate of standard solution in the time interval [0, 1

2 ]. q.e.d.

Step 3. For any subsequence (αm, βm) of (α, β) with rαm → 0 and
δαmβm → 0 as m → ∞, we next argue as in the second step of the proof
of Theorem 4.1 to show that the curvatures of the rescaled solutions
g̃αmβm at new times zero (after shifting) stay uniformly bounded at
bounded distances from x̄ for all sufficiently large m. More precisely,
we will prove the following assertion:

Assertion 4. Given any subsequence of the rescaled solutions g̃αmβm

ij

with rαm → 0 and δαmβm → 0 as m → ∞, for any L > 0, there are

constants C(L) > 0 and m(L) such that the rescaled solutions g̃αmβm

ij

satisfy

(i) R̃(x, 0) ≤ C(L) for all points x with d̃0(x, x̄) ≤ L and all m ≥ 1;

(ii) the rescaled solutions over the ball B̃0(x̄, L) are defined at least
on the time interval [− 1

16η−1C(L)−1, 0] for all m ≥ m(L).

Proof of Assertion 4. For all ρ > 0, set

M(ρ) = sup
{

R̃(x, 0) | m ≥ 1 and d̃0(x, x̄) ≤ ρ

in the rescaled solutions g̃αmβm

ij

}

and
ρ0 = sup{ρ > 0 | M(ρ) < +∞}.

Note that the estimate (5.17) implies that ρ0 > 0. For (i), it suffices to
prove ρ0 = +∞.

We argue by contradiction. Suppose ρ0 < +∞. Then there are a

sequence of points y in the rescaled solutions g̃αmβm

ij with d̃0(x̄, y) →
ρ0 < +∞ and R̃(y, 0) → +∞. Denote by γ a minimizing geodesic

segment from x̄ to y and denote by B̃0(x̄, ρ0) the geodesic open ball

centered at x̄ of radius ρ0 on the rescaled solution g̃αmβm

ij .
First, we claim that for any 0 < ρ < ρ0 with ρ near ρ0, the

rescaled solutions on the balls B̃0(x̄, ρ) are defined on the time interval
[− 1

16η−1M(ρ)−1, 0] for all large m. Indeed, this follows from Assertion
3 or Assertion 1. For the later purpose in Step 6, we now present an
argument by using Assertion 3. If the claim is not true, then there is
a surgery at some time t̃ ∈ [− 1

16η−1M(ρ)−1, 0] such that some point

ỹ ∈ B̃0(x̄, ρ) lies in the instant gluing cap. We can choose sufficiently

small δ′ > 0 such that 2ρ0 < (δ′)−
1
2 h̃, where h̃ ≥ D−120−

1
2 M(ρ)−

1
2 are

the cutoff radius of the rescaled solutions at t̃. By applying Assertion 3
with (ỹ, 0) = (y0, t0), we see that there is a m(ρ0, M(ρ)) > 0 such that
as m ≥ m(ρ0, M(ρ)),

R̃(x, 0) ≤ 2D′′
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for all x ∈ B̃0(x̄, ρ). This is a contradiction as ρ → ρ0.
Since for each fixed 0 < ρ < ρ0 with ρ near ρ0, the rescaled solutions

on the ball B̃0(x̄, ρ) are defined on the time interval [− 1
16η−1M(ρ)−1, 0]

for all large m, by Step 1 and Shi’s derivative estimate, we know that
the covariant derivatives and higher order derivatives of the curvatures

on B̃0(x̄, ρ − (ρ0−ρ)
2 ) × [− 1

32η−1M(ρ)−1, 0] are also uniformly bounded.
By the uniform κ-noncollapsing and the virtue of Hamilton’s com-

pactness theorem 16.1 in [20] (see [3] for the details on generalizing
Hamilton’s compactness theorem to finite balls), after passing to a sub-

sequence, we can assume that the marked sequence (B̃0(x̄, ρ0), g̃
αmβm

ij , x̄)

converges in C∞
loc topology to a marked (noncomplete) manifold

(B∞, g̃∞ij , x̄) and the geodesic segments γ converge to a geodesic seg-

ment (missing an endpoint) γ∞ ⊂ B∞ emanating from x̄.
Clearly, the limit has restricted isotropic curvature pinching (2.4) by

the pinching assumption. Consider a tubular neighborhood along γ∞
defined by

V =
⋃

q0∈γ∞

B∞(q0, 4π(R̃∞(q0))
− 1

2 ),

where R̃∞ denotes the scalar curvature of the limit and B∞(q0,

4 π (R̃∞ (q0) )−
1
2 ) is the ball centered at q0 ∈ B∞ with the radius

4π(R̃∞(q0))
− 1

2 . Let B̄∞ denote the completion of (B∞, g̃∞ij ), and y∞ ∈
B̄∞ the limit point of γ∞. Exactly as in the second step of the proof
of Theorem 4.1, it follows from the canonical neighborhood assumption
with accuracy parameter 2ε that the limiting metric g̃∞ij is cylindrical at
any point q0 ∈ γ∞ which is sufficiently close to y∞ and then the metric
space V̄ = V ∪{y∞} by adding the point y∞ has nonnegative curvature
in Alexandrov sense. Consequently we have a four-dimensional non-flat
tangent cone Cy∞ V̄ at y∞ which is a metric cone with aperture ≤ 20ε.

On the other hand, note that by the canonical neighborhood assump-
tion, the canonical 2ε-neck neighborhoods are strong. Thus at each
point q ∈ V near y∞, the limiting metric g̃∞ij actually exists on the
whole parabolic neighborhood

V
⋂

P

(
q, 0,

1

3
η−1(R̃∞(q))−

1
2 ,− 1

10
η−1(R̃∞(q))−1

)
,

and is a smooth solution of the Ricci flow there. Pick z ∈ Cy∞ V̄ with
distance one from the vertex y∞ and nonflat around z. By definition
the ball B(z, 1

2) ⊂ Cy∞ V̄ is the Gromov-Hausdorff convergent limit of
the scalings of a sequence of balls B∞(zk, σk)(⊂ (V, g̃∞ij )) where σk → 0.

Since the estimate (5.17) survives on (V, g̃∞ij ) for all A < +∞, and the
tangent cone is four-dimensional and nonflat around z, we see that this
convergence is actually in C∞

loc topology and over some ancient time
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interval. Since the limiting B∞(z, 1
2)(⊂ Cy∞ V̄ ) is a piece of nonneg-

atively (operator) curved nonflat metric cone, we get a contradiction
with Hamilton’s strong maximum principle [16] as before. So we have
proved ρ0 = ∞. This proves (i).

By the same proof of Assertion 1 in Step 2, we can further show that
for any L, the rescaled solutions on the balls B̃0(x̄, L) are defined at
least on the time interval [− 1

16η−1C(L)−1, 0] for all sufficiently large m.
This proves (ii). q.e.d.

Step 4. For any subsequence (αm, βm) of (α, β) with rαm → 0 and

δ̃αmβm → 0 as m → ∞, by Step 3, the κ-noncollapsing and Hamilton’s
compactness theorem, we can extract a C∞

loc convergent subsequence of

g̃αmβm

ij over some space time open subsets containing t = 0. We now
want to show any such limit has bounded curvature at t = 0. We prove
by contradiction. Suppose not: then there is a sequence of points zk

divergent to infinity in the limiting metric at time zero with curvature
divergent to infinity. Since the curvature at zk is large (comparable to
one), zk has a canonical neighborhood which is a 2ε-cap or strong 2ε-
neck. Note that the boundary of 2ε-cap lies in some 2ε-neck. So we get a
sequence of 2ε-necks with radius going to zero. Note also that the limit
has nonnegative sectional curvature. Without loss of the generality, we
may assume 2ε < ε0, where ε0 is the positive constant in Proposition
2.2. Thus arrives a contradiction with Proposition 2.2.

Step 5. In this step, we will choose some subsequence (αm, βm) of
(α, β) so that we can extract a complete smooth limit on a time interval

[−a, 0] for some a > 0 from the rescaled solutions g̃αmβm

ij of the Ricci
flow with surgery.

Choose αm, βm → ∞ so that rαm → 0, δ̃αmβm → 0, and Assertions 1,
2, 3 hold with α = αm, β = βm for all A ∈ {p/q | p, q = 1, 2 . . . , m}, and
B, C ∈ {1, 2, . . . , m}. By Step 3, we may assume the rescaled solutions

g̃αmβm

ij converge in C∞
loc topology at the time t = 0. Since the curvature

of the limit at t = 0 is bounded by Step 4, it follows from Assertion 1
in Step 2 and the choice of the subsequence (αm, βm) that the limiting
(M∞, g̃∞ij (·, t)) is defined at least on a backward time interval [−a, 0]
for some positive constant a and is a smooth solution to the Ricci flow
there.

Step 6. We further want to extend the limit of Step 5 backward in

time to infinity to get an ancient κ-solution. Let g̃αmβm

ij be the conver-
gent sequence obtained in the above Step 5.
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Denote by

tmax = sup
{

t′| we can take a smooth limit on (−t′, 0] (with bounded

curvature at each time slice) from a subsequence of

the rescaled solutions g̃αmβm

ij

}
.

We first claim that there is a subsequence of the rescaled solutions g̃αmβm

ij

which converges in C∞
loc topology to a smooth limit (M∞, g̃∞ij (·, t)) on

the maximal time interval (−tmax, 0].
Indeed, let tk be a sequence of positive numbers such that tk → tmax

and there exist smooth limits (M∞, g̃∞k (·, t)) defined on (−tk, 0]. For
each k, the limit has nonnegative curvature operator and has bounded
curvature at each time slice. Moreover, by the gradient estimate in
canonical neighborhood assumption with accuracy parameter 2ε, the
limit has bounded curvature on each subinterval [−b, 0] ⊂ (−tk, 0]. De-

note by Q̃ the scalar curvature upper bound of the limit at time zero

(Q̃ independent of k). Then we can apply Li-Yau-Hamilton inequality
[18] to get

R̃∞
k (x, t) ≤ tk

t + tk
Q̃,

where R̃∞
k (x, t) are the scalar curvatures of the limits (M∞, g̃∞k (·, t)).

Hence by the definition of convergence and the above curvature esti-

mates, we can find a subsequence of the rescaled solutions g̃αmβm

ij which

converges in C∞
loc topology to a smooth limit (M∞, g̃∞ij (·, t)) on the max-

imal time interval (−tmax, 0].
We need to show −tmax = −∞. Suppose −tmax > −∞, then there

are only the following two possibilities: either

(1) The curvature of the limiting solution (M∞, g̃∞ij (·, t)) becomes un-
bounded as t ց −tmax; or

(2) For each small constant θ > 0 and each large integer m0 > 0,

there is some m ≥ m0 such that the rescaled solution g̃αmβm

ij has a

surgery time Tm ∈ [−tmax−θ, 0] and a surgery point xm lying in a
gluing cap at the times Tm so that d2

Tm
(x, x̄) is uniformly bounded

from above by a constant independent of θ and m0.

We next claim that the possibility (1) always occurs. Suppose not,
then the curvature of the limiting solution (M∞, g̃∞ij (·, t)) is uniformly

bounded by (some positive constant) Ĉ on (−tmax, 0]. In particular, for
any A > 0, there is a sufficiently large integer m1 > 0 such that any

rescaled solution g̃αmβm

ij with m ≥ m1 on the geodesic ball B̃0(x̄, A) is

defined on the time interval [−tmax + 1
50η−1Ĉ−1, 0] and its scalar curva-

ture is bounded by 2Ĉ there. (Here, without loss of generality, we may

assume that the upper bound Ĉ is so large that −tmax + 1
50η−1Ĉ−1 <
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0.) By Assertion 1 in Step 2, as m large enough, the rescaled solu-

tion g̃αmβm

ij over B̃0(x̄, A) can be defined on the extended time inter-

val [−tmax − 1
50η−1Ĉ−1, 0] and have the scalar curvature R̃ ≤ 10Ĉ on

B̃0(x̄, A)×[−tmax− 1
50η−1Ĉ−1, 0]. So we can extract a smooth limit from

the sequence to get the limiting solution which is defined on a larger
time interval [−tmax − 1

50η−1Ĉ−1, 0]. This contradicts the definition of
the maximal time −tmax.

It now remains to exclude possibility (1).
By using Li-Yau-Hamilton inequality [18] again, we have

R̃∞(x, t) ≤ tmax

t + tmax
Q̃.

So we only need to control the curvature near −tmax. Exactly as in
Step 4 of the proof of Theorem 4.1, it follows from Li-Yau-Hamilton
inequality that

(5.19) d0(x, y) ≤ dt(x, y) ≤ d0(x, y) + 30tmax

√
Q̃

for any x, y ∈ M∞ and t ∈ (−tmax, 0].
Since the infimum of the scalar curvature is nondecreasing in time, we

have some point y∞ ∈ M∞ and some time −tmax < t∞ < −tmax+ 1
50η−1

such that R̃∞(y∞, t∞) < 5/4. By (5.19), there is a constant Ã > 0 such

that dt(x̄, y∞) ≤ Ã/2 for all t ∈ (−tmax, 0].

Now we return back to the rescaled solution g̃αmβm

ij . Clearly, for

arbitrarily given small ǫ′ > 0, as m large enough, there is a point ym

in the underlying manifold of g̃αmβm

ij at time 0 satisfying the following
properties

(5.20) R̃(ym, t∞) <
3

2
, d̃t(x̄, ym) ≤ Ã

for t ∈ [−tmax + ǫ′, 0]. By the definition of convergence, we know that

for any fixed A ≥ 2Ã, as m large enough, the rescaled solution over

B̃0(x̄, A) is defined on the time interval [t∞, 0] and satisfies

R̃(x, t) ≤ 2tmax

t + tmax
Q̃

on B̃0(x̄, A) × [t∞, 0]. Then by Assertion 2 of Step 2, we have proved
there is a sufficiently large m̄0 such that as m ≥ m̄0, the rescaled solu-

tions g̃αmβm

ij at ym can be defined on [−tmax − 1
50η−1, 0], and satisfy

R̃(ym, t) ≤ 15

for t ∈ [−tmax − 1
50η−1, t∞].

We now prove a statement analogous to Assertion 4 (i) of Step 3.
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Assertion 5. For the above rescaled solutions g̃αmβm

ij and m̄0, we

have that for any L > 0, there is a positive constant ω(L) such that the

rescaled solutions g̃αmβm

ij satisfy

R̃(x, t) ≤ ω(L)

for all (x, t) with d̃t(x, ym) ≤ L and t ∈ [−tmax − 1
50η−1, t∞] and for all

m ≥ m̄0.

Proof of Assertion 5. We slightly modify the argument in the proof of
Assertion 4 (i). Let

M(ρ) = sup{R̃(x, t) | d̃t(x, ym) ≤ ρ and t ∈ [−tmax −
1

50
η−1, t∞]

in the rescaled solutions g̃αmβm

ij , m ≥ m̄0}
and

ρ0 = sup{ρ > 0 | M(ρ) < +∞}.
Note that the estimate (5.17) implies that ρ0 > 0. We only need to
show ρ0 = +∞.

We argue by contradiction. Suppose ρ0 < +∞. Then, after passing
to subsequence, there are a sequence of (ỹm, tm) in the rescaled solu-

tions g̃αmβm

ij with tm ∈ [−tmax− 1
50η−1, t∞] and d̃tm(ym, ỹm) → ρ0 < +∞

such that R̃(ỹm, tm) → +∞. Denote by γm a minimizing geodesic seg-

ment from ym to ỹm at the time tm and denote by B̃tm(ym, ρ0) the
geodesic open ball centered at ym of radius ρ0 on the rescaled solution

g̃αmβm

ij (·, tm).
For any 0 < ρ < ρ0 with ρ near ρ0, by applying Assertion 3 as

before, we get that the rescaled solutions on the balls B̃tm(ym, ρ) are
defined on the time interval [tm − 1

16η−1M(ρ)−1, tm] for all large m.
And by Step 1 and Shi’s derivative estimate, we further know that

the covariant derivatives of the curvatures of all order on B̃tm(ym, ρ −
(ρ0−ρ)

2 )× [tm − 1
32η−1M(ρ)−1, tm] are also uniformly bounded. Then by

the uniform κ-noncollapsing and Hamilton’s compactness theorem, af-
ter passing to a subsequence, we can assume that the marked sequence

(B̃tm(ym, ρ0), g̃
αmβm

ij (·, tm), ym) converges in C∞
loc topology to a marked

(noncomplete) manifold (B∞, g̃∞ij , y∞) and the geodesic segments γm

converge to a geodesic segment (missing an endpoint) γ∞ ⊂ B∞ ema-
nating from y∞.

Clearly, the limit also has restrictive isotropic curvature pinching
(2.4). Then by repeating the same argument as in the proof of Asser-
tion 4 (i) in the rest, we derive a contradiction with Hamilton’s strong
maximum principle. This proves Assertion 5. q.e.d.

We then apply the second estimate of (5.20) and Assertion 5 to con-
clude that for any large constant 0 < A < +∞, there is a positive
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constant C(A) such that for any small ǫ′ > 0, the rescaled solutions

g̃αmβm

ij satisfy

(5.21) R̃(x, t) ≤ C(A),

for all x ∈ B̃0(x̄, A) and t ∈ [−tmax+ǫ′, 0], and for all sufficiently large m.
Then by applying Assertion 1 in Step 2, we conclude that the rescaled

solutions g̃αmβm

ij on the geodesic balls B̃0(x̄, A) are also defined on the

extended time interval [−tmax + ǫ′ − 1
8η−1C(A)−1, 0] for all sufficiently

large m. Furthermore, by the gradient estimates as in Step 1, we have

R̃(x, t) ≤ 10C(A),

for x ∈ B̃0(x̄, A) and t ∈ [−tmax + ǫ′ − 1
8η−1C(A)−1, 0]. Since ǫ′ > 0 is

arbitrarily small, the rescaled solutions g̃αmβm

ij on B̃0(x̄, A) are defined

on the extended time interval [−tmax − 1
16η−1C(A)−1, 0] and satisfy

(5.22) R̃(x, t) ≤ 10C(A),

for x ∈ B̃0(x̄, A) and t ∈ [−tmax − 1
16η−1C(A)−1, 0], and for all suffi-

ciently large m.
Now, by taking convergent subsequences from the rescaled solutions

g̃αmβm

ij , we see that the limit solution is defined smoothly on a space-

time open subset of M∞ × (−∞, 0] containing M∞ × [−tmax, 0]. By
Step 4, we see that the limiting metric g̃∞ij (·,−tmax) at time −tmax has
bounded curvature. Then by combining with the 2ε-canonical neighbor-
hood assumption we conclude that the curvature of the limit is uniformly
bounded on the time interval [−tmax, 0]. So we have excluded possibility
(1).

Hence we have proved a subsequence of the rescaled solutions con-
verges to an ancient κ-solution.

Finally, by combining with the canonical neighborhood theorem of
ancient κ-solutions with restricted isotropic curvature pinching condi-
tion (Theorem 3.8) and the same argument in the second paragraph of
Section 4, we see that (x̄, t̄) has a canonical neighborhood with param-
eter ε, which is a contradiction. Therefore we have completed the proof
of the proposition. q.e.d.

Summing up, we have proved that for an arbitrarily given compact
four-manifold with positive isotropic curvature and with no essential
incompressible space form, there exist non-increasing positive (contin-

uous) functions δ̃(t) and r̃(t), defined on [0, +∞), such that for an ar-

bitrarily given positive (continuous) function δ(t) with δ(t) < δ̃(t) on
[0, +∞), the Ricci flow with surgery, with the given four-manifold as
initial datum, has a solution on a maximal time interval [0, T ), with
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T ≤ 2/Rmin(0) < +∞, obtained by evolving the Ricci flow and by per-
forming δ-cutoff surgeries at a sequence of times 0 < t1 < t2 < · · · <

ti < · · · < T with δ(ti) ≤ δ ≤ δ̃(ti) at each time ti, so that the pinching
assumption and the canonical neighborhood assumption with r = r̃(t)
are satisfied. (At this moment we still do not know whether the surgery
times ti are discrete).

Clearly, the upper derivative of the volume in time satisfies

d

dt
V (t) ≤ 0

since the scalar curvature is nonnegative. Thus

V (t) ≤ V (0)

for all t ∈ [0, T ). Also note that at each time ti, the volume which is
cut down by δ(ti)-cutoff surgery is at least an amount of h4(ti) with
h(ti) depending only on δ(ti) and r̃(ti) (by Lemma 5.2). Thus the set of
the surgery times {ti} must be finite. So we have proved the following
long-time existence result.

Theorem 5.6. Given a compact four-dimensional Riemannian man-
ifold with positive isotropic curvature and with no essential incompress-
ible space form, and given any fixed small constant ε > 0, there ex-

ist non-increasing positive (continuous) functions δ̃(t) and r̃(t), defined
on [0, +∞), such that for arbitrarily given positive (continuous) func-

tion δ(t) with δ(t) ≤ δ̃(t) on [0, +∞), the Ricci flow with surgery, with
the given four-manifold as initial datum, has a solution satisfying the
the pinching assumption and the canonical neighborhood assumption
(with accuracy ε) with r = r̃(t) on a maximal time interval [0, T ) with
T < +∞ and becoming extinct at T , which is obtained by evolving the
Ricci flow and by performing a finite number of cutoff surgeries with
each δ-cutoff at time t ∈ (0, T ) having δ = δ(t). Consequently, the ini-
tial manifold is diffeomorphic to a connected sum of a finite copies of
S4, RP4, S3 × S1, and S3×̃S1.

Finally, the main theorem (Theorem 1.1) stated in Section 1 is a
direct consequence of the above theorem. q.e.d.

Appendix A. Standard Solutions

In this appendix, we will prove the curvature estimates for the stan-
dard solutions, and give a canonical neighborhood description for the
standard solution in dimension four. We have used these estimates and
the description in Section 5 for the surgery arguments. The curvature
estimate for the special case that the dimension is three and the initial
metric is rotationally symmetric, was earlier claimed by Perelman in
[32].
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Theorem A.1. Let gij be a complete Riemannian metric on Rn

(n > 2) with nonnegative curvature operator and with positive scalar
curvature which is asymptotic to a round cylinder of scalar curvature 1
at infinity. Then there is a complete solution gij(·, t) to the Ricci flow,
with gij as initial metric, which exists on the time interval [0, n−1

2 ),

has bounded curvature in each closed time interval [0, t] ⊂ [0, n−1
2 ), and

satisfies the estimate

R(x, t) ≥ C−1

n−1
2 − t

for some C depending only on the initial metric gij.

Proof. Since the initial metric has bounded curvature operator and
has a positive lower bound on its scalar curvature, by [36] and the
maximum principle, the Ricci flow has a solution g(·, t) on a maximal
time interval [0, T ) with T < ∞. By Hamilton’s maximum principle, the
solution g(x, t) has nonnegative curvature operator for t > 0. Note that
the injectivity radius of the initial metric has a positive lower bound,
so by the same proof of Perelman’s no local collapsing theorem I (in
Section 7.3 of [31], or see the proof of Theorem 3.5 of this paper), there
is a κ = κ(T, gij) > 0 such that gij(·, t) is κ-noncollapsed on the scale√

T .
We will firstly prove the following assertion.

Claim 1. There is a positive function ω : [0,∞) −→ [0,∞) depending
only on the initial metric and κ such that

R(x, t) ≤ R(y, t)ω(R(y, t)d2
t (x, y))

for all x, y ∈ Mn = Rn, t ∈ [0, T ).

The proof is similar to that of Proposition 3.3. Notice that the initial
metric has nonnegative curvature operator and its scalar caurvature
satisfies

(A.1) C−1 ≤ R(x) ≤ C

for some positive constant C > 1. By maximum principle, we know
T ≥ 1

2nC and R(x, t) ≤ 2C for t ∈ [0, 1
4nC ]. The assertion is clearly true

for t ∈ [0, 1
4nC ].

Now fix (y, t0) ∈ Mn × [0, T ) with t0 ≥ 1
4nC . Let z be the closest

point to y with the property R(z, t0)d
2
t0(z, y) = 1 (at time t0). Draw

a shortest geodesic from y to z and choose a point z̃ on the geodesic

satisfying dt0(z, z̃) = 1
4R(z, t0)

− 1
2 ; then we have

R(x, t0) ≤
1

(1
2R(z, t0)

− 1
2 )2

, on Bt0

(
z̃,

1

4
R(z, t0)

− 1
2

)
.



RICCI FLOW WITH SURGERY ON FOUR-MANIFOLDS ... 257

Note that R(x, t) ≥ C−1 everywhere by the evolution equation of
the scalar curvature. Then by Li-Yau-Hamilton inequality [18], for all

(x, t) ∈ Bt0(z̃, 1
8nC R(z, t0)

− 1
2 ) × [t0 − ( 1

8nC R(z, t0)
− 1

2 )2, t0], we have

R(x, t) ≤
(

t0

t0 − ( 1
8n

√
C

)2

)
1

(1
2R(z, t0)

− 1
2 )2

,

≤
[

1

8nC
R(z, t0)

− 1
2

]−2

Combining this with the κ-noncollapsing, we have

Vol

(
Bt0

(
z̃,

1

8nC
R(z, t0)

− 1
2

))
≥ κ

(
1

8nC
R(z, t0)

− 1
2

)n

and then

Vol(Bt0(z, 8R(z, t0)
− 1

2 )) ≥ κ

(
1

64nC

)n

(8R(z, t0)
− 1

2 )n.

So by Corollary 11.6 (b) of [31], there hold

R(x, t0) ≤ C(κ)R(z, t0), for all x ∈ Bt0(z, 2R(z, t0)
− 1

2 ).

Here in the following we denote by C(κ) various positive constants de-
pending only on κ, n and the initial metric.

Now by Li-Yau-Hamilton inequality [18] and local gradient estimate
of Shi [36], we obtain

R(x, t) ≤ C(κ)R(z, t0), and

∣∣∣∣
∂

∂t
R

∣∣∣∣ (x, t) ≤ C(κ)(R(z, t0))
2

for all (x, t) ∈ Bt0(z, 2R(z, t0)
− 1

2 )) × [t0 − ( 1
8nC R(z, t0)

− 1
2 )2, t0]. There-

fore by combining with the Harnack estimate [18], we obtain

R(y, t0) ≥ C(κ)−1R(z, t0 − C(κ)−1R(z, t0)
−1)

≥ C(κ)−2R(z, t0).

Consequently, we have showed that there is a constant C(κ) such that

Vol(Bt0(y, R(y, t0)
− 1

2 )) ≥ C(κ)−1(R(y, t0)
− 1

2 )n

and

R(x, t0) ≤ C(κ)R(y, t0) for all x ∈ Bt0(y, R(y, t0)
− 1

2 ).

In general, for any r ≥ R(y, t0)
− 1

2 , we have

Vol(Bt0(y, r)) ≥ C(κ)−1(r2R(y, t0))
−n

2 rn.

By applying Corollary 11.6 of [31] again, there exists a positive constant
ω(r2R(y, t0)) depending only on the constant r2R(y, t0) and κ such that

R(x, t0) ≤ R(y, t0)ω(r2R(y, t0)), for all x ∈ Bt0

(
y,

1

4
r

)
.
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This proves the desired Claim 1.

Now we study the asymptotic behavior of the solution at infinity.
For any 0 < t0 < T , we know that the metrics gij(x, t) with t ∈ [0, t0]
have uniformly bounded curvature by the definition of T . Let xk be a
sequence of points with d0(x0, xk) 7→ ∞. By Hamilton’s compactness
theorem [19], after taking a subsequence, gij(x, t) around xk will con-
verge to a solution to the Ricci flow on R × Sn−1 with round cylinder
metric of scalar curvature 1 as initial data. Denote the limit by g̃ij .
Then by the uniqueness theorem in [11], we have

R̃(x, t) =
n−1

2
n−1

2 − t
, for all t ∈ [0, t0].

It follows that T ≤ n−1
2 . In order to show T = n−1

2 , it suffices to prove
the following assertion:

Claim 2. Suppose T < n−1
2 . Fix a point x0 ∈ Mn, then there is a

δ > 0, such that for any x ∈ M with d0(x, x0) ≥ δ−1, we have

R(x, t) ≤ 2C +
n − 1

n−1
2 − t

for all t ∈ [0, T )

where C is the constant in (A.1).

In view of Claim 1, if Claim 2 holds, then

sup
Mn×[0,T )

R(y, t) ≤ ω

(
δ−2

(
2C +

n − 1
n−1

2 − T

))(
2C +

n − 1
n−1

2 − T

)

< ∞,

which will contradict with the definition of T .
To show Claim 2, we argue by contradiction. Suppose for each δ > 0,

there is a (xδ, tδ) with 0 < tδ < T such that

R(xδ, tδ) > 2C +
n − 1

n−1
2 − tδ

and d0(xδ, x0) ≥ δ−1.

Let

t̄δ = sup

{
t

∣∣∣ sup
Mn\B0(x0,δ−1)

R(y, t) < 2C +
n − 1

n−1
2 − t

}
.

Since lim
d0(y,x0)→∞

R(y, t) = n−1
2 /(n−1

2 − t) and supM×[0, 1
4nC

] R(y, t) ≤ 2C,

we know 1
4nC ≤ t̄δ ≤ tδ and there is a x̄δ such that d0(x0, x̄δ) ≥ δ−1

and R(x̄δ, t̄δ) = 2C + n − 1/(n−1
2 − t̄δ). By Claim 1 and Hamilton’s

compactness theorem [19], as δ → 0 and after taking subsequence, the

metrics gij(x, t) on B0(x̄δ,
δ−1

2 ) over the time interval [0, t̄δ] will converge

to a solution g̃ on M̃ = R×Sn−1 with standard metric of scalar curvature
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1 as initial datum over the time interval [0, t̄∞], and its scalar curvature
satisfies

R̃(x̄∞, t̄∞) = 2C +
n − 1

n−1
2 − t̄∞

,

R̃(x, t) ≤ 2C +
n − 1

n−1
2 − t̄∞

, for all t ∈ [0, t̄∞],

where (x̄∞, t̄∞) is the limit of (x̄δ, t̄δ). On the other hand, by the unique-
ness theorem in [11] again, we know

R̃(x̄∞, t̄∞) =
n−1

2
n−1

2 − t̄∞
,

which is a contradiction. Hence we have proved Claim 2 and then have
verified T = n−1

2 .

Now we are ready to show

(A.2) R(x, t) ≥ C̃−1

n−1
2 − t

, for all (x, t) ∈ Mn × [0,
n − 1

2
),

for some positive constant C̃ depending only on the initial metric.
For any (x, t) ∈ Mn× [0, n−1

2 ), by Claim 1 and κ-noncollapsing, there
is a constant C(κ) > 0 such that

Volt(Bt(x, R(x, t)−
1
2 )) ≥ C(κ)−1(R(x, t)−

1
2 )n.

Then by the volume estimate of Calabi-Yau [34] on manifolds with
nonnegative Ricci curvature, for any a ≥ 1, we have

Volt(Bt(x, aR(x, t)−
1
2 )) ≥ C(κ)−1 a

8n
(R(x, t)−

1
2 )n.

On the other hand, since (Mn, gij(·, t)) is asymptotic to a cylinder of
scalar curvature n−1

2 /(n−1
2 − t) , for sufficiently large a > 0, we have

Volt

(
Bt

(
x, a

√
n − 1

2
− t

))
≤ C(n)a

(
n − 1

2
− t

)n
2

.

Combining these two inequalities, we have for all sufficiently large a:

C(n)a

(
n − 1

2
− t

)n
2

≥ Volt


Bt


x, a




√
n−1

2 − t

R(x, t)−
1
2


R(x, t)−

1
2







≥ C(κ)−1 a

8n




√
n−1

2 − t

R(x, t)−
1
2


 (R(x, t)−

1
2 )n,

which gives the desired estimate (A.2). Therefore we complete the proof
of the theorem. q.e.d.
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We now fix a standard capped infinite cylinder metric on R4 as fol-
lows. Consider the semi-infinite standard round cylinder N0 = S3 ×
(−∞, 4) with the metric g0 of scalar curvature 1. Denote by z the coor-
dinate of the second factor (−∞, 4). Let f be a smooth nondecreasing
convex function on (−∞, 4) defined by





f(z) = 0, z ≤ 0,

f(z) = ce−
D
z , z ∈ (0, 3],

f(z) is strictly convex on z ∈ [3, 3.9],

f(z) = −1
2 log(16 − z2), z ∈ [3.9, 4),

where the small (positive) constant c = c0 and big (positive) constant
D = D0 are fixed as in Lemma 5.3. Let us replace the standard metric
g0 on the portion S3 × [0, 4) of the semi-infinite cylinder by ĝ = e−2fg0.
Then the resulting metric ĝ will be smooth on R4 obtained by adding a
point to S3 × (−∞, 4) at z = 4. We denote the manifold by (R4, ĝ).

Next we will consider the “canonical neighborhood” decomposition
of the fixed standard solution with (R4, ĝ) as initial metric.

Corollary A.2. Let gij(x, t) be the above fixed standard solution to
the Ricci flow on R4×[0, 3

2). Then for any ε > 0, there is a positive con-

stant C(ε) such that each point (x, t) ∈ R4× [0, 3
2) has an open neighbor-

hood B, with Bt(x, r) ⊂ B ⊂ Bt(x, 2r) for some 0 < r < C(ε)R(x, t)−
1
2 ,

which falls into one of the following two categories: either

(a) B is an ε-cap, or
(b) B is an ε-neck and it is the slice at the time t of the parabolic

neighborhood P (x, t, ε−1R(x, t)−
1
2 ,−min{R(x, t)−1, t}), on which

the standard solution is, after scaling with the factor R(x, t) and

shifting the time t to zero, ε-close (in C [ε−1] topology) to the cor-
responding subset of the evolving standard cylinder S3×R over the
time interval [−min{tR(x, t), 1}, 0] with scalar curvature 1 at the
time zero.

Proof. First, we discuss the curvature pinching of this fixed standard
solution. Because the initial metric is asymptotic to a cylinder, we have
a uniform isotropic curvature pinching at initial, that is to say, there is
a universal constant Λ′ > 0 such that

max{a3, b3, c3} ≤ Λ′a1 and max{a3, b3, c3} ≤ Λ′c1.

Moreover since the initial metric has nonnegative curvature operator,
we have b2

3 ≤ a1c1. By the pinching estimates of Hamilton [16] [21],
b2
3 ≤ a1c1 is preserved, and the following two estimates are also preserved

max{a3, b3, c3} ≤ max{Λ′, 5}a1 and max{a3, b3, c3} ≤ max{Λ′, 5}c1,
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under the Ricci flow.
The proof of the lemma is reduced to two assertions. We now state

and prove the first assertion, which takes care of those points with times
close to 3

2 .

Assertion 1. For any ε > 0, there is a positive number θ = θ(ε)
with 0 < θ < 3

2 such that for any (x0, t0) ∈ R4 × [θ, 3
2), the standard

solution on the parabolic neighborhood

P (x0, t0, ε
−1R(x0, t0)

− 1
2 ,−ε−2R(x0, t0)

−1)

is well-defined and is, after scaling with the factor R(x0, t0), ε-close (in

C [ε−1] topology) to the corresponding subset of some oriented ancient-κ
solution with restricted isotropic curvature pinching (2.4).

We argue by contradiction. Suppose Assertion 1 is not true, then
there exists ε0 > 0 and a sequence of points (xk, tk) with tk → 3

2 , such
that the standard solution on the parabolic neighborhoods

P (xk, tk, ε
−1
0 R(xk, tk)

− 1
2 ,−ε−2

0 R(xk, tk)
−1)

is not, after scaling by the factor R(xk, tk), ε0-close to the corresponding
subset of any ancient κ-solution. Note that by Theorem A.1, there is
a constant C > 0 (depending only on the initial metric, hence it is
universal) such that R(x, t) ≥ C−1/(3

2 − t). This implies

ε−2
0 R(xk, tk)

−1 ≤ Cε−2
0

(
3

2
− tk

)
< tk,

and then the standard solution on the parabolic neighborhoods

P (xk, tk, ε
−1
0 R(xk, tk)

− 1
2 ,−ε−2

0 R(xk, tk)
−1)

is well-defined as k large. By Claim 1 in Theorem A.1, there is a positive
function ω : [0,∞) → [0,∞) such that

R(x, tk) ≤ R(xk, tk)ω(R(xk, tk)d
2
tk

(x, xk))

for all x ∈ R4. Now by scaling the standard solution gij(·, t) around
(xk, tk) with the factor R(xk, tk) and shifting the time tk to zero, we
get a sequence of the rescaled solutions to the Ricci flow g̃k

ij(x, t̃) =

R(xk, tk)gij(x, tk + t̃/R(xk, tk)) defined on R4 with t̃ ∈ [−R(xk, tk)tk, 0].
We denote the scalar curvature and the distance of the rescaled metric
g̃k
ij by R̃k and d̃. By combining with Claim 1 in Theorem A.1 and the

Li-Yau-Hamilton inequality, we get

R̃k(x, 0) ≤ ω(d̃2
0(x, xk))

R̃k(x, t̃) ≤ R(xk, tk)tk

t̃ + R(xk, tk)tk
ω(d̃2

0(x, xk))

for any x ∈ R4 and t̃ ∈ (−R(xk, tk)tk, 0]. Note that R(xk, tk)tk → ∞
by Theorem A.1. We have shown in the proof of Theorem A.1 that the
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standard solution is κ-noncollapsed on all scales less than 1 for some
κ > 0. Then from the κ-noncollapsing, the above curvature estimates,
and Hamilton’s compactness theorem (Theorem 16.1 of [20]), we know
g̃k
ij(x, t̃) has a convergent subsequence (as k → ∞) whose limit is an

ancient, κ-noncollapsed, complete and oriented solution with nonneg-
ative curvature operator. This limit must have bounded curvature by
the same proof of Step 3 in Theorem 4.1. It also satisfies the restricted
isotropic pinching condition (2.4). This gives a contradiction. Assertion
1 is proved.

We now fix the constant θ(ε) obtained in Assertion 1. Let O be the
tip of the manifold R4 (it is rotationally symmetric about O at time 0;
it remains so as t > 0 by the uniqueness Theorem [11]).

Assertion 2. There are constants B1(ε), B2(ε) depending only on ε,
such that if (x0, t0) ∈ M × [0, θ) with dt0(x0, O) ≤ B1(ε), then there is
a 0 < r < B2(ε) such that Bt0(x0, r) is an ε-cap; if (x0, t0) ∈ M × [0, θ)
with dt0(x0, O) ≥ B1(ε), then the parabolic neighborhood

P
(
x0, t0, ε

−1R(x0, t0)
− 1

2 ,−min{R(x0, t0)
−1, t0}

)

is, after scaling with the factor R(x0, t0) and shifting the time t0 to zero,

ε-close (in C [ε−1] topology) to the corresponding subset of the evolving
standard cylinder S3×R over the time interval [−min{t0R(x0, t0), 1}, 0]
with scalar curvature 1 at the time zero.

Since the standard solution exists on the time interval [0, 3
2), there

is a constant B0(ε) such that the curvatures on [0, θ(ε)] are uniformly
bounded by B0(ε). This implies that the metrics in [0, θ(ε)] are equiva-
lent. Note that the initial metric is asymptotic to a standard cylinder.
For any sequence of points xk with d0(O, xk) → ∞, after taking a sub-
sequence, gij(x, t) around xk will converge to a solution to the Ricci
flow on R × S3 with round cylinder metric of scalar curvature 1 as
initial data. By the uniqueness theorem [11], the limit solution must
be the standard evolving round cylinder. This implies that there is
a constant B1(ε) > 0 depending on ε such that for any (x0, t0) with
t0 ≤ θ(ε) and dt0(x, O) ≥ B1(ε), the standard solution on the parabolic

neighborhood P (x0, t0, ε
−1R(x0, t0)

− 1
2 ,−min{R(x0, t0)

−1, t0}) is, after
scaling with the factor R(x0, t0), ε-close to the corresponding subset of
the evolving round cylinder. Since the solution is rotationally symmet-
ric around O, the cap neighborhood structures of those points x0 with
dt0(x0, O) ≤ B1(ε) follows directly. Assertion 2 is proved.

Therefore we finish the proof of Corollary A.2. q.e.d.
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