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ON THE ASYMPTOTIC EXPANSION OF BERGMAN
KERNEL

X1ANzZHE Dar, KEFENG LU & X1AONAN MaA

Abstract

We study the asymptotic of the Bergman kernel of the spin®
Dirac operator on high tensor powers of a line bundle.

1. Introduction

The Bergman kernel in the context of several complex variables (i.e.,
for pseudoconvex domains) has long been an important subject (cf, for
example, [2]). Its analogue for complex projective manifolds is stud-
ied in [32], [29], [34], [14], [26], establishing the diagonal asymptotic
expansion for high powers of an ample line bundle. Moreover, the co-
efficients in the asymptotic expansion encode geometric information of
the underlying complex projective manifolds. This asymptotic expan-
sion plays a crucial role in the recent work of [22] where the existence
of Kéhler metrics with constant scalar curvature is shown to be closely
related to Chow—Mumford stability.

Borthwick and Uribe [10], Shiffman and Zelditch [30] were the first
ones to study the corresponding symplectic versions. Note that they
use the almost holomorphic sections based on a construction of Boutet
de Monvel-Guillemin [12] of a first order pseudodifferential operator D
associated to the line bundle L on a compact symplectic manifold, which
mimic the 9 operator on the circle bundle in the holomorphic case. The
Szego kernels are well defined modulo smooth operators on the associ-
ated circle bundle, even though Dj is neither canonically defined nor
unique. (Indeed, Boutet de Monvel-Guillemin define the Szego kernels
first, and construct the operator Dj from the Szegd kernels.) More-
over, in the holomorphic case, the Szegd kernels are exactly (modulo
smooth operators) the Szego kernel associated to the holomorphic sec-
tions by Boutet de Monvel-Sjostrand [13]. In the very important paper
[30], Shiffman and Zelditch also gave a simple way to construct first the
Szego kernels, then the operator Dy from the construction of Boutet de
Monvel-Guillemin [12], and in [30, Theorem 1], they studied the near
diagonal asymptotic expansion and small ball Gaussian estimate (for
d(z,y) < C/\/p where p is the power of the line bundle L). On the
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other hand, in the holomorphic setting, in [19], Christ (and Lindholm
in [25]) proved an Agmon type estimate for the Szegd kernel on C!, but
they did not treat the asymptotic expansions.

In this paper, we establish the full off-diagonal asymptotic expansion
and Agmon estimate for the Bergman kernel of the spin® Dirac oper-
ator associated to high powers of an ample line bundle in the general
context of symplectic manifolds and orbifolds (Cf. Theorem 4.18; note
the important factors on the right-hand side of the estimate (4.119)
which make our estimate uniform for Z and Z’). Our motivations are
to extend Donaldson’s work [22] to orbifolds and to understand the re-
lationship between heat kernel, index formula and stability. Moreover,
the spin® Dirac operator is a natural geometric operator associated to
the symplectic structure. As a result, the coefficients in the asymp-
totic expansion are naturally polynomials of the curvatures and their
derivatives.

Let (X,w) be a compact symplectic manifold of real dimension 2n.
Assume that there exists a Hermitian line bundle L over X endowed with
a Hermitian connection V¥ with the property that gRL = w, where
RE = (V)2 is the curvature of (L, V%). Let (E,h”) be a Hermitian
vector bundle on X with Hermitian connection V¥ and its curvature
RE.

Let g7 be a Riemannian metric on X. Let J : TX — TX be the
skew—adjoint linear map which satisfies the relation

(1.1) w(u,v) = gt (Ju,v)

for u,v € TX. Let J be an almost complex structure which is sep-
arately compatible with ¢’ and w, and w(-,J-) defines a metric on
TX. Then J commutes with J and —JJ € End(T'X) is positive, thus
—JJ = (—=J3*)1/2. Let VTX be the Levi-Civita connection on (T'X, g7X)
with curvature R7X, and VT¥ induces a natural connection V9t on
det(T(9 X)) with curvature R (cf. Section 3). The spin® Dirac op-
erator D, acts on (X, [P © E) = @;_, Q"(X, L’ @ E), the direct
sum of spaces of (0, ¢)—forms with values in LP ® E.

Let {S? };ii 1 (d, = dimKer D)) be any orthonormal basis of Ker D,
with respect to the inner product (3.2). We define the diagonal of the
Bergman kernel of D,, (the distortion function) by

dy
(12)  Byl)=)_ SP(z)® (SP(z))* € End(A(T*OVX) @ E),.
=1

Clearly, B,(z) does not depend on the choice of {S’}. We denote by
Icep the projection from A(T*D X)® E onto C® E under the decom-
position A(T*OD X) = CeA>O(T*OD X). Let det J be the determinant
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function of J, € End(T,X), and |J| = (=J?)'/2 € End(T,,X). A simple
corollary of Theorem 4.18 is:

Theorem 1.1. There exist smooth coefficients
b (z) € End(A(T**VX) @ E),

which are polynomials in RTX, Rt RF (and R ) and their derivatives
with order < 2r — 1 (resp. 2r) and reciprocals of linear combinations
of eigenvalues of J at z, and by = (det J)/?Icgp, such that for any
k,l € N, there exists Cy; > 0 such that for any x € X, p € N,

(1.3) By(z) = > bp(z)p" 7| < Crp" Tt

r=0 [
Moreover, the expansion is uniform in that for any k,l € N, there is an
integer s such that if all data (g7X, hY, VL, h¥, VF) run over a set
which are bounded in €° and with g7X bounded below, there exists the
constant Cy,; independent of g™X, and the €'-norm in (1.3) includes
also the derivatives on the parameters.

We also study the asymptotic expansion of the corresponding heat
kernel and relates it to that of the Bergman kernel. Let exp(— %DZ) (x,2)

be the smooth kernel of exp(—%Dﬁ) with respect to the Riemannian

volume form dvx (z"). We introduce in (3.4), wg(x) € End(A(T;(O’l)X)).

Theorem 1.2. There exist smooth sections by, of End(A(T*"N) X)®
E) on X which are polynomials in RTX, R RE (and RY) and their
derivatives with order < 2r—1 (resp. 2r) and functions on the eigenval-

1/2
ues of J at x, and by, = (det(%)) e2Wd - such that for each

—e—4mulJ]
u > 0 fized, we have the asymptotic expansion in the sense of (1.3) as
P — o0,

k
(14)  exp (_ng> (@,2) =Y brau(x)p" "+ 0@ ).
r=0

Moreover, there exists ¢ > 0 such that as u — +00,
(1.5) bru(x) = bp(x) + O(e” ).

Note that the coefficient b ,, in Theorem 1.2 was first obtained in [4,
(f)]. Theorems 1.1, 1.2 give us a way to compute the coefficient b, (x),
as it is relatively easy to compute b, ,(x) (cf. (4.107), (4.125)). As an
example, we compute b; which plays an important role in Donaldson’s
recent work [22]. Note if (X,w) is Kéhler and J = J, then B,(z) €
¢>°(X,End(E)) for p large enough, thus b,(z) € End(E),.
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Theorem 1.3. If (X,w) is Kdhler and J = J, then there exist smooth
functions by(z) € End(E), such that we have (1.3), and b, are poly-
nomials in RTX, RF and their derivatives with order < 2r — 1 at x.
Moreover,

_ N e E(y Jo\ o L.X
(1.6) bo =Idp, b= Vv 1;}2 (ei Jeq) + 5 1dg

Here, X is the scalar curvature of (X, g*™), and {e;} is an orthonormal
basis of (X, g"x).

Theorem 1.3 was essentially obtained in [26], [33] by applying the
peak section trick, and in [14], [34] and [16] by applying the Boutet de
Monvel-Sjostrand parametrix for the Szego kernel [13]. We refer the
reader to [22], [33] for its interesting applications.

Our proof of Theorems 1.1, and 1.2 is inspired by local Index Theory,
especially by [7, Section 11], and we derive Theorem 1.1 from Theo-
rem 1.2. In particular, with the help of the heat kernel, we get the full
off-diagonal asymptotic expansion for the Bergman kernel and the Ag-
mon estimate for the remainder term of the asymptotic expansion (Cf.
Theorem 4.18). And when (X,w) is a Kéhler manifold, J = J on X
and E = C, we recover [30, Theorem 1] if we restrict Theorem 4.18" to
121,12 < O/ b,

One of the advantages of our method is that it can be easily gener-
alized to the orbifold situation, and indeed, in (5.25), we deduce the
explicit asymptotic expansion near the singular set of the orbifold.

Theorem 1.4. If (X,w) is a symplectic orbifold with the singu-
lar set X', and L, E are corresponding proper orbifold vector bundles
on X as in Theorem 1.1, then there exist smooth coefficients b,(xz) €
End(A(T*OVX) @ E), with by = (det J)Y?Icgp, and b,(z) are poly-
nomials in RTX, R RF (and RY) and their derivatives with order
< 2r—1 (resp. 2r) and reciprocals of linear combinations of eigenvalues
of J at x, such that for any k,l € N, there exist Ci; > 0, N € N such
that for any x € X, p € N,

(1.7)

1 k
I;Bp(w) = b(@)p"
r=0

(gl
< Chy <p—k—1 +pl/2(1 n \/Z—Qd(m’X/))Ne—c\/ﬁd(m,X/))

Moreover, if the orbifold (X,w) is Kdhler, J = J and the proper orbifold
vector bundles E, L are holomorphic on X, then b,(x) € End(F), with
bo, b1 still given by (1.6) and b.(x) are polynomials in R™X, RF and
their derivatives with order < 2r — 1 at x.

This paper is organized as follows. In Section 3, we recall a result
on the spectral gap of the spin® Dirac operator [28]. In Section 4, we
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localize the problem by finite propagation speed and use the rescaling
in local index theorem to prove Theorems 1.1, and 1.2. In Section 5, we
compute the coefficients of the asymptotic expansion and explain how
to generalize our method to the orbifold situation.

The results of this paper have been announced in [20].
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3. The spectral gap of the spin® Dirac operator

The almost complex structure J induces a splitting Tg X ®r C =
TOOX ¢ TOD X, where TEDX and TV X are the eigenbundles of
J corresponding to the eigenvalues /—1 and —+/—1 respectively. Let
710 X and T*OD X be the corresponding dual bundles. For any v €
TX with decomposition v = v19 + vo1 € TOOX @ TOD X let Ui €
T*ODX be the metric dual of v1g. Then c(v) = \/5(5’{,0 A ~lyg,)
defines the Clifford action of v on A(T*(®VX), where A and i denote
the exterior and interior product respectively. Set
(3.1) Lo = inf RE(u,@)/|ul?rx > 0.

weTHO X, ze X g

Let VX be the Levi-Civita connection of the metric g?X. By [24,
pp. 397-398], VX induces canonically a Clifford connection VECEff on
AT*ODX) (cf. also [28, Section 2]). Let VF» be the connection on
E, = ANT*OVX)® [P ® E induced by Vi, VL and VZ.

Let ( )p, be the metric on E, induced by g”*, h* and h¥. Let dvx
be the Riemannian volume form of (T'X, g?*). The L% scalar product
on Q%*(X, P ® E), the space of smooth sections of E,, is given by

(3.2) (51, 85) = /X (51(2), 52(2)) 5, dvx (x)

We denote the corresponding norm with ||-|| 2. Let {e; }; be an orthonor-
mal basis of T'X.

Definition 3.1. The spin® Dirac operator D, is defined by

2n
(33)  Dp= cle)Ver : Q% (X, [P ® E) — Q*(X,LF @ E).
j=1
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D, is a formally self-adjoint, first order elliptic differential oper-
ator on Q%*(X, [P @ E), which interchanges Q%¢V*"(X, L ® E) and
QUodd(X [P @ E).

We denote by pPTHOX the projection from T X ®r C to THO X,
Let VI"OX = prOX gTX pr9X 1,6 the Hermitian connection on
TAOX induced by VIX with curvature RT""X. Let wdet(T™9X)
be the connection on det(7™M% X) induced by VTHX with curvature
Rit = TY[RT"”X]. Let {w;} be an orthonormal frame of (710X,
gT%). Set

(34) wa=-> RMw,Wn)W" A iw,  7(x)= ZRL(wj,wj).

l,m

Let 7% be the scalar curvature of (T'X, ¢g7X), and

c(R) = Z <RE + 1Ty [RT(M))X]) (e1,em) c(er) c(em).
<m
Then, the Lichnerowicz formula [3, Theorem 3.52] (cf. [28, Theorem
2.2]) for D2 is

(3.5) Dg = (VEP)* VE — 2pwy — pr + %TX + ¢(R),

If A is any operator, we denote by Spec(A) the spectrum of A.

The following simple result was obtained in [28, Theorems 1.1, 2.5]
by applying the Lichnerowicz formula (cf. also [8, Theorem 1] in the
holomorphic case).

Theorem 3.2. There exists C'r, > 0 such that for any p € N and any
sEPYUXIPQE) = @@1 QX LP® E),

(3.6) 1Dpsl7 > (2puo — Cr)lsll 72 -
Moreover, SpecD2 C {0} U [2pp — Cr, +00].

4. Bergman kernel

In this Section, we will study the uniform estimate with its derivatives
on t = -1 of the heat kernel and the Bergman kernel of D227 as p — oQ.

VP
The first difficulty is that the space Q%*(X,LP ® E) depends on p.
To overcome this, we will localize the problem to a problem on R?".
Now, after rescaling, another substantial difficulty appears, which is
the lack of the usual elliptic estimate on R?" for the rescaled Dirac
operator. Thus, we introduce a family of Sobolev norms defined by the
rescaled connection on LP, then we can extend the functional analysis
technique developed in [7, Section 11], and in this way, we can even get

the estimate on its derivatives on ¢ = ip.

This section is organized as follows. In Section 4.1, we establish the
fact that the asymptotic expansion of By(z) is local on X. In Section
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4.2, we derive an asymptotic expansion of D, in normal coordinate. In
Section 4.3, we study the uniform estimate with its derivatives on t of the
heat kernel and the Bergman kernel associated to the rescaled operator
L} from Dz27' In Theorem 4.16, we estimate uniformly the remainder

term of the Taylor expansion of e~vLs for u > ug > 0,t € [0,1]. In
Section 4.4, we identify J,, the coefficient of the Taylor expansion of
e“L> with the Volterra expansion of the heat kernel, thus giving us a
way to compute the coefficient b; in Theorem 1.1. In Section 4.4, we
prove Theorems 1.1, and 1.2.
4.1. Localization of the problem. Let aX be the injectivity radius
of (X,g"X), and € € (0,a*/4). We denote by BX(x,¢) and BT=X(0, )
the open balls in X and T,X with center z and radius ¢, respectively.
Then, the map T, X > Z — expa (Z) € X is a diffeomorphism from
BT=X(0,¢) on BX(x,€) for e < a®. From now on, we identify B7=X (0, ¢)
with BX(z,€) for € < aX.

Let f: R — [0, 1] be a smooth even function such that:
(4.1) Fv) = { 1 for |v] <e/2,

0 for |v|>e.
Set

(4.2) F(a) = </+OO f(v)dv) B /+OO e f(v)dv.

—00 —00
Then F(a) lies in Schwartz space S(R) and F'(0) = 1.

Let P, be the orthogonal projection from Q%*(X, LP ® E) on Ker D,,
and let Py(z,2’), F(Dp)(x,2') (z,2" € X), be the smooth kernels of P,
F(D,) with respect to the volume form dvx (). The kernel P,(z,z') is
called the Bergman kernel of D,. By (1.2),

(4.3) By(z) = Py(z, ).

Proposition 4.1. For any I,m € N, € > 0, there exists Cj o > 0
such that forp > 1, z,2' € X,

(4.4) |F(Dy)(x,2") — Py(,2)
1Py, 2)|gm(xxx) < Ciymep™" ifd(z,2)) > e.
Here, the €™ norm is induced by VE VE and \VASL
Proof. For a € R, set

1
gm(xxX) < Clmep

(4.5) Pp(a) = 1| s, +ool(|a]) F ().
Then by Theorem 3.2, for p > Cr,/ o,
(4.6) F(Dp) — By = ¢p(Dp).

By (4.2), for any m € N, there exists Cy, > 0 such that
(4.7) sup |a|™|F(a)| < Cp,.
a€R
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As X is compact, there exist {z;}I_, such that {U; = BX(z;,¢)}/_,
is a covering of X. We identify BT=:%X(0,¢) with BX(z;,¢) by geodesic
as above. We identify (TX)z, (E,)z for Z € BT=:%X(0,¢) to Ty, X, (Ep)a,
by parallel transport with respect to the connections VX, VEr along
the curve vz : [0,1] 3 u — expy (uZ). Let {e;}; be an orthonormal
basis of T, X. Let €;(Z) be the parallel transport of e; with respect

o VTX along the above curve. Let TP, Tl IOl he the corresponding
connection forms of VZ, VX and VO with respect to any fixed frame
for E,L, A(T*®)X) which is parallel along the curve v, under the
trivialization on Uj;.

Denote by Vi the ordinary differentiation operator on 73, X in the
direction U. Then,

(48) Dy=3"c(&)(Vs, +pIL(F) + TU(E) + TE(E))).

J
Let {¢;} be a partition of unity subordinate to {U;}. For [ € N, we
define a Sobolev norm on the I-th Sobolev space H'(X, E,) by

(49) sl = ZZ S 9+ Ve (oi5)

i k=041 ”Lk 1
Then by (4.8), there exists C' > 0 such that for p > 1, s € H (X, E,),
(4.10) sl < C([Dpsll2 + plislL2)-

Let @ be a differential operator of order m € N with scalar principal
symbol and with compact support in U;, then

(4.11) [Dp, Q] = Zp c(e;)r ej , Q]

+Z[ (V +T9(E) + TP (@ )),Q}

which are differential operators of order m—1, m respectively. By (4.10),
(4.11),

(4.12) 1Qs]lmy < CUIDpQs]| 2 + pll@s| 22)
< C(l1QDys| 2 + plisllay)-
From (4.12), for m € N, there exists C/, > 0 such that for p > 1,

(4.13) 15| s < Co(IDps | e + pllsllam).
P
This means
m+1 . .
(4.14) ||8||H17)n+1 <y, Z pm+1_]||Dg];5||L2‘

J=0
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Moreover, from ( DI ¢, (D,) Qs, s') = (s, Q*¢,(D,)DI"'s'), (4.5), (4.7)
and (4.14), we know that for ,m’ € N, there exists C,,,» > 0 such that
forp>1,

(4.15) 1D} 6p(Dp) Qs 2 < Crymp™ ™ Is]] 2.

We deduce from (4.14) and (4.15) that if P, @ are differential operators
of order m, m’ with compact support in U;, U; respectively, then for any
[ > 0, there exists C; > 0 such that for p > 1,

(4.16) 1Péy(Dy) Qs 2 < Cip™" 5] 2.

On U; x Uj, by using Sobolev inequality and (4.6), we get the first
inequality of (4.4).

By the finite propagation speed of solutions of hyperbolic equations
[17], [18], [15, Section 7.8], [31, Section 4.4], F(D,)(z, ") only depends
on the restriction of D, to BX(x,¢), and is zero if d(x,2’) > e. Thus,
we get the second inequality of (4.4). The proof of Proposition 4.1 is
complete. q.e.d.

From Proposition 4.1 and the finite propagation speed as above, we
know that the asymptotic of P,(z,z’) as p — oo is localized on a neigh-
borhood of zx.

To compare the coefficients of the expansion of Py, (z, ') with the heat
kernel expansion of exp(—%Dg) in Theorem 1.2, we will use again the
finite propagation speed to localize the problem.

Definition 4.2. For u > 0,a € C, set
+oo 1)2 dv

4.17 Gula) = e exp [ —— uv ,

(a.17 @= [ e () svin S

= [ eren (—%) (1 7)o

The functions Gy (a), Hy(a) are even holomorphic functions. The
restrictions of G, H, to R lie in the Schwartz space S(R). Clearly,

(418) G (\/gDp> + Hx (D) = exp (%Di) .

Let G%(\/%Dp)(a;,x’), H%(Dp)(x,x’) (z,2' € X) be the smooth ker-

nels associated to Gu(,/%D,), Hu(D,) calculated with respect to the
P pP p P

volume form dvx (z').

Proposition 4.3. For any m € N, ug > 0, > 0, there exists C > 0
such that for any x,2’ € X, p € N, u > uy,

2
(4.19) H% (Dp)(z,2") o < Cp*™ 22 exp <5_p) .

10w
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Proof. By (4.17), for any m € N, there exists Cy;, > 0 (which depends
on ¢) such that

2
(4.20) sup |a|™|Hy(a)| < Cy, exp (—6—> .
a€R 10u

As (4.16), we deduce from (4.14) and (4.20) that if P, @ are differential
operators of order m, m’ with compact support in U;, U; respectively,
then there exists C' > 0 such that for p > 1,u > uyg,

mm/ 52]7
(420) IPH(D)Qsl12 < Oy exp (52 ) sle

On U; x Uj, by using Sobolev inequality, we get our Proposition 4.3.
q.e.d.

Using (4.17) and finite propagation speed [15, Section 7.8], [31, Sec-
tion 4.4], it is clear that for z,2' € X, Ga(\/%Dp)(x, 2’) only depends
P
on the restriction of D, to BX(xz,¢), and is zero if d(x,2) > ¢.

4.2. Rescaling and a Taylor expansion of the operator D,. Now
we fix 29 € X. We identify Lz, Ez and (E,)z for Z € BT=%(0,¢) to
Ly, By, and (Ep),, by parallel transport with respect to the connections
VE VE and VEr along the curve vz : [0,1] 2 u — expy (uZ). Let {e;};
be an oriented orthonormal basis of T, X. We also denote by {e’}; the
dual basis of {e;}. Let €;(Z) be the parallel transport of e; with respect
to VI along the above curve.

Now, for € > 0 small enough, we will extend the geometric objects
on BT=X(0,¢) to R?® ~ T, X (here we identify (Z1, ..., Z2,) € R®" to
> Ziei € Ty X) such that D, is the restriction of a spin® Dirac operator
on R?" associated to a Hermitian line bundle with positive curvature.
In this way, we can replace X by R?".

First of all, we denote Lo, Ey the trivial bundles L,,, E;, on Xy =
R?".  And we still denote by VZ VE, hl etc. the connections and
metrics on Lo, Eg on BT20%X(0, 4¢) induced by the above identification.
Then A%, ¥ is identified with the constant metrics h0 = hl=o, hFo =
hFz0. Let R = > ; Zie; = Z be the radial vector field on R2n,

Let p: R — [0,1] be a smooth even function such that

(4.22) p(v) =1 if |v|<2; p(v)=0 if |v| > 4.

Let ¢, : R?® — R?" is the map defined by ¢.(Z) = p(|Z|/e)Z. Let
g7 X0(2) = gTX(pe(2)), Jo(Z) = J(9-(Z)) be the metric and almost
complex structure on Xy. Let VFo = goiVE , then V%0 is the extension
of V¥ on BT20X (0, ). Let VL0 be the Hermitian connection on (Lg, h')
defined by

(123)  VPly=prVE 4 (- 121/ RE (R, )
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Then, we calculate easily that its curvature RF0 = (V10)?2 is
N 1
(4.24) RM(2) = giR" 4 3d((1 - p*(1Z]/2) BE,(R.-))

= (1= p2(21/2) ) RE, + p*(121/2)RE, (1)
~ o1Z1/e) 3 25 A [RE () = RE (R0

7

Thus, R™ is positive in the sense of (3.1) for ¢ small enough, and the
corresponding constant ug for R0 is bigger than %uo. From now on,
we fix € as above.

Let T*O1 X be the anti-holomorphic cotangent bundle of (X, Jp).
Since Jo (Z) = J (¢ (2)), T3%" Xo is naturally identified with

T;i?’zli X0 (obviously, here the second subscript indicates the almost
complex structure with respect to which the splitting is done). Let
VCliflo e the Clifford connection on A(T*(%V) Xy) induced by the Levi-
Civita connection V7% on (Xg, g7*°). Let RFo, RT¥Xo RClflo he the
corresponding curvatures on Ey, T Xy and A(T*(O’I)Xo).

We identify A (T*O1D Xg)z with A (T;éo’ 2 X) by identifying

first A(T*(OY X0) 7 with A(T:)i(()g)),JXO), which in turn is identified with

A(T;éo’l)X) by using parallel transport along u — up.(Z) with respect
to Vo We also trivialize A(T*(*Y) Xy) in this way. Let Sy, be an unit
vector of Ly,. Using S7, and the above discussion, we get an isometry
Eop = ANT*OVX0) ® By ® LY ~ (A(T* VX)) ® E),y = Eyy.

Let Dfo (resp. Vo) be the Dirac operator on X (resp. the connec-
tion on Ej ;) associated to the above data by the construction in Section
3. By the argument in [28, pp. 656—657], we know that Theorem 3.2
still holds for Dg(o. In particular, there exists C' > 0 such that

8
(4.25) Spec(Difo)2 c {0} U =PHo — C,+oo|.

Let P) be the orthogonal projection from Q% (Xo, L ® Ey) ~
4 (Xo, Eg,) on Ker DX, and let B)(z, 2’) be the smooth kernel of P)
with respect to the volume form dvx,(z').

Proposition 4.4. For any l,m € N, there exists C;,,, > 0 such that
for z, 2’ € BT=0X(0,¢),

(4.26) (P} — Py)(z,2) o < Crmp ™.

Proof. Using (4.2) and (4.25), we know that B) — F(D,) verifies also
(4.4) for z,2" € BT20%X(0,¢), thus we get (4.26). q.e.d.

To be complete, we prove the following result in [3, Proposition 1.28].
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Lemma 4.5. The Taylor expansion of €;(Z) with respect to the basis
{ei} to order r is a polynomial of the Taylor expansion of the coefficients

of RTX to order r — 2. Moreover, we have
(4.27) &@(Z) = ei— = > (REX(R,e)R,ej) e+ (ﬁei) O

6 —
J |a|>3

Proof. Let T'TX be the connection form of VI¥ with respect to the
frame {¢;} of TX. Let 9; = V., be the partial derivatives along e;. By
the definition of our fixed frame, we have irI'7* = 0. As in [3, (1.12)],

(4.28)  LRTTX = [ig, dITT¥ = ig(dUT¥ + TTX ATTX) = i RTX.

Let ©(Z) = (93(Z))12?:1 be the 2n x 2n-matrix such that

(429) e =D 0(2)%(2), (2) = (©(2) e

Set 07(Z) =3, Hg(Z)ei and
(4.30) 0=> ed@e;=) 0¢; e T"XTX.
J J
As VTX is torsion free, VIX@ = 0, thus the R?"-valued one-form
0 = (67(Z)) satisfies the structure equation,

(4.31) do+TTX Ao =0.

Observe first that (cf. [3, Proposition 1.27])

(4.32) R = Z ngj(Z), ZR9 = Z Zjej =TR.
J J

Substituting (4.32) and (Lx — 1)R = 0, into the identity ig(df +
I'TX A 6) = 0, we obtain via (4.28)
(4.33)
(Lr —1)LRrO = (Lr —1)(dR+TTER) = (LRTT)R = (ir RT*)R.
Where we consider the curvature RTX as a matrix of two forms and 6 is
a R?"-valued one form. The i-th component of RTXR, 6 is <RTX R, 'éi>,

¢, from (4.33), we get

(4.34) ie,(Lr — 1)LRO'(Z) = (R™™(R,€e;)R, &) (Z).

By (4.32), Lre’ = e/. Thus from the Taylor expansion of 9;(2), we get
i z ~

(4.35) > (al? +lal)(@ 07)(0)— = (R (R, )R, &) (2).

la>1
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Now, by (4.29) and 9§($0) = 0y, (4.35) determines the Taylor expan-
sion of 6’;(2 ) to order m in terms of the Taylor expansion of RT¥ to
order m — 2. And

1y 1
(4.36) (071 =dij — ¢ (Rz (Ryei) R ;) + O(|Z]°).
By (4.29), (4.36), we get (4.27). q.e.d.

For s € € (R?*" E,,) and Z € R*" for t = %7 set
(4.37) (Sis)(2) = s(Z[t), V=5, tvFors,
D, = St_ltD;(OSt, L= St_lt2D;);(O’25t-
Denote by Vi the ordinary differentiation operator on 7, X in the
direction U. Set

1
(4.38) Oo =) clej) (vej + §Rgﬁo(z, ej)> .
J

Theorem 4.6. There exist B;, (resp. Ai,, resp. Ci,) (r € N,i €
{1,...,2n}) homogeneous polynomials in Z of degree r with coefficients
polynomials in RTX, Rt RE (resp. RTX, resp. R*, RTX) and their
derivatives at xo to order r — 1 (resp. v — 2, resp. r — 1, r — 2) such
that if we denote by

2n
(4.39) O, = Z c(ei) (A@-,Nei + Bipo1+ C@-,m),
i=1
then
(4.40) D;=0p+ Y "0, + O(t™).
r=1

Moreover, there exists m’ € N such that for any k € N, t <1, |tZ]| < ¢,
the derivatives of order < k of the coefficients of the operator O(t™+1)
are dominated by Ct™ (1 + |Z|)™ .

Proof. By the definition of VOt &, for Z € R?", |Z| <,

(4.41) [V, ¢(€;)(2)] = «(V5¥€)(Z) = 0.
Thus, we know that under our trivialization, for Z € R?", |Z| < ¢,
(4.42) C(gj)(Z) = c(ej).

We identify (det(T(M9 X)), for Z € BT0X(0,¢) to (det(TMY) X))y,
by parallel transport with respect to the connection ydet(THOX) along
the curve vz. Let T'F, ' and I'" be the connection forms of V¥,
vdetT9X) and VL with respect to any fixed frames for E, det(T(10) X)
and L which are parallel along the curve vz under our trivialization

on BT#X(0,¢). Then I'F is End(CY™ F)-valued one form on R?" and
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'L, 79t are one forms on R?". The corresponding connection form of

AT*ODX) is
a1 SR
(4.43) pOift — i (TTXE,, &) c(Er)e(@) + 5Fd t

Now, for I'* = I'E, 'L or T and R®* = R¥, RY or R respectively,
by the definition of our fixed frame, we have as in (4.28)

(4.44) igrI* =0, LgI°*=[ig,dI'* =ig(dl"*+T*AT*) =igxR".
Using Lre! = e’ and expanding the Taylor’s series of both sides of
(4.44) at Z = 0, we obtain

aTe Za (6% [ ) Za
(445) > (la[+1)(2°T Jaolej) 7 = Y (0"R*)uy(Roej) =

al’
o (e}

By equating coefficients of Z% on both sides, we see from this formula

(4.46) Z (8aro)w0(€j)§ — . j— T Z (aaR°)xo(R, @')%.

la|=r |a|=r—1

Especially,
[ ] 1 L ]
(447) 82'1_‘3:0 (6]') == §R$0 (67;,(:’]').

Furthermore, it follows that the Taylor coefficients of I'*(e;)(Z) at
to order r are determined by those of R® to order r — 1.
By (4.38), (4.42), for t = 1/,/p, for |Z| < |/pe, then

- 1
(4.48) Viz=V+ (tFChff + 1P + grL) (tZ),
2n
D; = Z C(ej)vt,zj(tz)‘z-
j=1
By Lemma 4.5, (4.46) and (4.48), we get our Theorem. q.e.d.

4.3. Uniform estimate on the heat kernel and the Bergman
kernel. Recall that the operators L}, V; were defined in (4.37). We
also denote by (, )o z2 and || [l 2 the scalar product and the L? norm
on € (Xg, Ey,) induced by g7*0 h*o as in (3.2).

Let dvrx be the Riemannian volume form on (7j,X,g=0%X). Let
k(Z) be the smooth positive function defined by the equation

(4.49) dvx,(Z) = w(Z)dvrx (Z),



ON THE ASYMPTOTIC EXPANSION OF BERGMAN KERNEL 15
with k£(0) = 1. For s € €°°(T, X, Ey,), set

(@50) Islo = [, 2B rmm oy 0o(t2) = €2 Si5]R 1

m 2n
IslZm =D D Viey - Vie,sl7o-
=0 i1,...,5;=1

We denote by (s', s), ; the inner product on ¢>°(Xo, E4,) corresponding
to || ||,?70. Let H™ be the Sobolev space of order m with norm || ||¢m.
Let H, ' be the Sobolev space of order —1 and let | |,_1 be the
norm on H; ' defined by |s|ls_1 = suPgryert | (5,8 )0/l 1. I
A€ LH™ H™) (m,m' € Z), we denote by ||A|™™ the norm of A
with respect to the norms || ||¢m and || |[¢n-

Then L is a formally self adjoint elliptic operator with respect to
| 1I79, and is a smooth family of operators with parameter 2o € X.

Theorem 4.7. There exist constants C1,Co,C3 > 0 such that for
t €]0,1] and any s,s" € €5°(R?*", E,,),

(4.51) (Lys,s), 0 = Cillslliy — CollsllZo,
| <L§s,s'>t70\ < Csls

e llslle.1-
Proof. Now, from (3.5),
Xo0,2
(4.52)  (Dy*%s,8); 12
= HVEO”’SH(Q),L? + <(—2pwd —p7 + %LTX + C(R)) s, 8>07L2 .

Thus, from (4.37), (4.50), and (4.52),

(4.53)
(L3s, S>t,0

— ||Vt8”?’0 + <(—2St_1wd — St_lT + %St_lrx + t2St_1c(R)) s, s>t0.
From (4.53), we get (4.51). q.e.d.

Let 0 be the counterclockwise oriented circle in C of center 0 and
radius po/4, and let A be the oriented path in C which goes parallel to
the real axis from 400 + i to & + i then parallel to the imaginary axis
to £ — i and the parallel to the real axis to +o00 —i. By (4.25), (4.37),
for ¢ small enough,

(4.54) Spec LS € {0} U [uo, +oo[.
Thus, (A — L)1 exists for A € 6 U A.



16 X. DAI, K. LIU & X. MA

Theorem 4.8. There exists C > 0 such that for t €]0,1], A € U A,
and g € X,
(4.55) I = L5 < ©,
I =L)< o+ AP).
Proof. The first inequality of (4.55) is from (4.54). Now, by (4.51), for

Ao € R, A\g < —2C5, (A\g—Lb) ! exists, and we have H()\O—Lg)*lHt_l’l <
1

oL 1\IOW7

(4.56) (A= L5)™ = (Ao = La) " = (A= o)A = Lo) " (Ao = L3) .
Thus, for A € § U A, from (4.56), we get

1 4
4.57 A—Lb)~t 1’O<—<1+—)\—>\>.
(4.57) I1( )l < c Mo‘ ol
Now, we change the last two factors in (4.56), and apply (4.57), we get
1y 1 [A= A 4
4.58 A—LH)7Y M < =+ <1+—)\)\>
(4.58) I( )l < c o Mo' ol
< C(1+|AP).
The proof of our Theorem is complete. q.e.d.

Proposition 4.9. Take m € N*. There exists Cp, > 0 such that for
t 6]07 1]7 Q17 By} Q’m S {vt,EN ZZ}1221 and S, 5/ S %§O(R2n7Ewo);

@59) (@0 1Qare (@ LA 15 ), | < Conlslleal e
Proof. Set gij(Z) = g7 (e;,e;)(Z). Let (¢"(Z)) be the inverse of
the matrix (g;;(Z)). Let VEXoe; = FZ(Z)ek, then by (3.5),
(4.60) LY(Z) = —g" (tZ) (Ve Ve, — tT5(t2)V1e,)
—2wq(tZ) — 7(tZ) + *(1r% + ¢(R))(tZ2).

Note that [Vy.,, Z;] = §;;. Thus by (4.60), we know that [Z;, L] verifies
(4.59).
Note that by (4.37),

(4.61) Vi Vie,] = (RLO 4 2RCliffy tQREo) (tZ)(ei ;).
Thus, from (4.60) and (4.61), we know that [V.,,L5] has the same
structure as L} for t €]0,1], i.e., [Vie,, L] has the type as
(4.62) D i (tt2) Ve, Vie, + Y _bi(t,t2)Vie, + clt, t2),

ij i
and a;;(t, 2),b;(t, Z),c(t, Z) and their derivatives on Z are uniformly
bounded for Z € R?", ¢ € [0, 1]; moreover, they are polynomial in .
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Let (Vie,)* be the adjoint of V., with respect to (, ),,, then by
(4.50),

(4.63) (Vie) = —Vie, — t(k™'Ve, k) (t2),

the last term of (4.63) and its derivatives in Z are uniformly bounded
in Z € R?t €0,1].

By (4.62) and (4.63), (4.59) is verified for m = 1.

By iteration, we know that [Q1,[Q2,- .., [Qm,L5]]...] has the same
structure (4.62) as L5. By (4.63), we get Proposition 4.9. q.e.d.

Theorem 4.10. For any t €]0,1], A € UA, m € N, the resolvent
(A—L5)~t maps H™ into Hth. Moreover, for any o € Z", there exist
N €N, Cqym >0 such that fort €]0,1], A€ JUA, s € 65°(Xo,Ey,),

(4.64) 12N\ = L) sllemr1 < Cam(L+ AN Y (12%s

o' <a

P’I“OOf. For Qh ey Qm S {Vt e; 17 Qm-l—ly ceey Qm+|o¢\ € {Zz}?ﬁp
We can express Q1+ Quija|(A — Lt) as a linear combination of
operators of the type
(4.65)

[Q1,[Q2, - [Qurs A= LE) ). Qi1+ Quugla) M <+ al.
Let #; be the family operators %Z; = {[Qj,,[Qjs, --- »[Qj,, L4]] .. ]}
Clearly, any commutator [Q1,[Qs, .. [Qm, (A — LE)71]]..] is a linear

combination of operators of the form
(4.66) (A= Lb) " Ri(A— Lb) " Ry Ruw (A — L)~

with Ry,..., Ry € %;.

By Proposition 4.9, the norm || ||;" of the operators R; € % is
uniformly bound by C. By Theorem 4.8, we find that there exist C' > 0,
N € N such that the norm || ||>" of operators (4.66) is dominated by
C(1+ APV, q.e.d.

Let e~%L2 (Z, Z), (LY e "L3) (Z, Z') be the smooth kernels of the
operators e “L%, LY eIy with respect to dvrx(Z'). Note that L}
are families of differential operators with coefficients in End(E;,) =
End (A (T*®V) X) @ E),,. Let 7 : TX xx TX — X be the natural
projection from the fiberwise product of T'X on X. Then, we
can view e %2 (Z, 7'), (L, e "1%) (Z, Z') as smooth sections of
7 (End(A(T*OVX) @ E)) on TX xx TX. Let VE*(E) he the connec-
tion on End(A(T*(®V) X) @ E) induced by VU and V¥, And VErd(E)
induces naturally a %"*-norm for the parameter xg € X.
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Theorem 4.11. There exists C” > 0 such that for any m,m',r € N,
ug > 0, there exist C > 0, N € N such that for t €]0,1], u > wup,
Z,7' € Ty, X,

d
(4.67) sup

6\a|+|a or
W2 ) euls (2,2
al,|la/|[<m

02407 ot

&' (X)

1 20"
< O(1+12] +1Z))" exp <§Mou BECAVE Z/P) |
u
/|
sup (Lbe"L%) (2,2")
o<

8\a|+|a or
om0z o

&m' (X)

I\N 1 20" /112
< CU+12]+1Z2)N exp ( —gpou = =12 = 2 ).

Here, €™ (X) is the €™ norm for the parameter zg € X.
Proof. By (4.54), for any k € N*,

(4.68)
—ulLt <_1)k71(k - 1)' / —u t\—k
- )
e W2 Yy A e "N 5) "dA,
t —uLl _ (_1)k_1(k_ 1)' —u t\—k t\—k+1
Lhe ™ = [ e [A(A LY - (= L)~ aa

For m € N, let Q™ be the set of operators {V,;eil "’vteij }i<m. From
Theorem 4.10, we deduce that if Q € O™, there are M € N, C,, > 0
such that for any A € §U A,

(4.69) IQEA = L5) ™7 < Crn(1 + A,

Next we study L., the formal adjoint of L% with respect to (4.50).
Then, L has the same structure (4.62) as the operator L}, especially,

(4.70) IQA = LE) ™™ < Con(1 4+ APYM.

After taking the adjoint of (4.70), we get

(4.71) 1A= L8) ™" QI < Con(1+ [AP)™M,

From (4.68), (4.69) and (4.71), we have, for Q,Q’ € Q™,

(4.72) |Qe™ 5 Q[[} < Cneiro,
|Q(Lse™4)Q' 17 < Crne™ 20,

Let | |, be the usual Sobolev norm on ¢*°(R**, E,,) induced by

WBeo — pATERVX)®Er and the volume form dvrx(Z) as in (4.50).
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Observe that by (4.48), (4.50), there exists C' > 0 such that for s €
6> (X0, Eqy), supps C BT0X(0,q), m >0,

1 —m m
(4.73) oLt " lsllem < [slm < CQ+ @)™ [Isllem.

Now (4.72), (4.73) together with Sobolev’s inequalities implies that if
Q,Q € Qm,

(4.74) | |S‘up| 1Q2Qe " 5(Z,2)| < O(1 + q)2"T2 earon,
Z,|Z2"1<q
b 1QzQ (e (2,2 < O+ 9
2" <q

Thus by (4.48), (4.74), we derive (4.67) with the exponential ehot,

¢~ 310U for the case when r = m’ = 0 and C” = 0.
To obtain (4.67) in general, we proceed as in the proof of [6, Theorem
11.14]. Note that the function f is defined in (4.1). For h > 1, put

(4.75)
Kun(a) = /_:O exp(ivv/2ua) exp (-”2—2> (1 —f <%\/ﬂv>) \;%.

Then, there exist C’,C; > 0 such that for any ¢ > 0, m,m’ € N, there
is C' > 0 such that for u > ug, h > 1, a € C, [Im(a)| < ¢, we have

(4.76) ]a\m\KgZ)(aﬂ < Cexp (CICQ”U, - %h2>.

For any ¢ > 0, let V. be the images of {\ € C,|ImA| < ¢} by the map
A — A2 Then V, = {A € C,Re()\) > ;Im(A\)? — ¢?}, and § UA C
V. for ¢ big enough. Let f(u,h be the holomorphic function such that

K, n(a?) = Ky p(a). Then by (4.76), for A € V,
(4.77) AR ()] < Cexp (c’c2u - %fﬂ).

Using finite propagation speed of solutions of hyperbolic equations and
(4.75), we find that there exists a fixed constant (which depends on ¢)
¢ > 0 such that

(4.78) Kun(Lh)(2,2") = e *2(2,2") it |Z—Z'| > ch.

By (4.77), we see that given k£ € N, there is a unique holomorphic

function K, p, () defined on a neighborhood of V, such that it verifies

the same estimates as K, in (4.77) and .f(u’h’k()\) — 0 as A — +oo;
moreover

(4.79) Kl /(= 1)1 = Ky i(V):
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Thus, as in (4.68),

~ 1 ~ _
(4.80) Ku,h(Lg) = 2— Kmh,k()‘)()‘ - Lg) kd)\a
T JsuAa
LYK p(Lh) 5 / KunpO) [MA =LY ™F — (A - Lt2)_k+l} dA.

By (4.69), (4.71) and by proceeding as in (4.72)-(4.74), we find that
for K(a) = Ku,h( ) or aK%h( ), for |Z],1Z'| < q,

(4.81)
‘ glal+a’|

ALY A
Setting h = %|Z — Z'| in (4.81), we get for o, o verified ||, |o/| < m,

K(L5)(Z,2')

<C1+q)Nexp <C’c2u - %fﬂ) )

lal,|a/[<m

g

glol+a

(4.82) |2 ——
92092

K(L3)(Z.Z')

<C1+|2|+1Z')N exp (C’czu— \2) .
By (4.67) with the exponential e%“ou, e"3H0U for ¢ = m! = C" = 0,
(4.78), (4.82), we get (4.67) for r =m’ = 0.

To get (4.67) for r > 1, note that from (4.68), for k > 1

T . _1\k—-1 — 1) T
(4.83) A ) e 1)/ e’“)‘a—()\—Lg)’kd)\.
SUA

otr 2miuk—1 otr

We have the similar equation for 2 50 (Lhe —uls) Set

(4.84)
J J
I, = {(kur) = (ki,74) Zkz = k-h%ZH =7, ki,m € N*} .
i=0 i=1
Then, there exist a¥ € R such that
g O LY _ o Lk _
(4.85) AX(\,t) = (A= Lb) ™ an (A=LH)~k ... 87%2 (A= L5~k
9" ¢ k gk
g (=L = ) arAk(\ 1),
(k,r)elkm

We claim that AX(\,t) is well defined and for any m € N, k > 2(m +
r+1), Q,Q" € Q™ there exist C > 0, N € N such that for A € §U A,

(4.86) QAR )@'sllto < CA+ AN D 112%]lr0.
\,6|<2r

In fact, by (4.60), atrLt is combination of 2~ (gt ( 2)) ( ;22 Vie)

ot

(&iivten,g‘%(d(tzn G5 (di(t2)) (55 Vie,). Now, G (d(tZ)) (vesp.
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g%vt’ei) (r1 > 1), are functions of the type as d’(tZ)Z%, |8] < r1 (resp.
r1+1) and d'(Z) and its derivatives on Z are bounded smooth functions
on Z.

Let %, be the family of operators of the type

By = {[11,Qjy, [[12Qja» - - - [, Qirs L] - - ]}

with fj, smooth bounded (with its derivatives) functions and Q;, €
{Vt,el}%;ll‘

Now, for the operator AX(\,#)Q’, we will move first all the term Z°
in d'(tZ)ZP as above to the right-hand side of this operator. To do so,
we always use the commutator trick, i.e., each time, we consider only
the commutation for Z;, not for Z? with |3| > 1. Then, AX(\,¢)Q’
is as the form Z|B|§2r LtﬁQgZﬁ, and Qj is obtained from Q’ and its
commutation with Z7. Now, we move all the terms V., in % to the
right-hand side of the operator Ltﬂ. Then as in the proof of Theorem

4.10, we get finally that QAX(\, )@’ is as the form 2 18<2r ,ZﬁtZﬂ where
fﬁt is a linear combination of operators of the form

QO — L) M0 Ri (A = L5) MRy - Ry(A — L5) Q" Q",

with Ry,...,Ry € Z), Q" € 9!, Q" € Q™, || < 2r, and Q" is obtained
from @’ and its commutation with Z”. By the argument as in (4.69)
and (4.71), as k > 2(m+r + 1), we can split the above operator to two
parts

QA= LYY MR (A= LY) ™Ry Ry(A — Lb)H;
()\ — Lg)_(kg_k?) .. 'Rl’()\ _ Lé)_k;’QW //’

and the || ||?%-norm of each part is bounded by C(1 + |A|?)Y. Thus,
the proof of (4.86) is complete.

By (4.83), (4.85) and (4.86), we get the similar estimates (4.67) with
m' = C" =0, (4.82) for %e‘“Lé, %(Lge_“%). Thus, we get (4.67)
for m’ = 0.

Finally, for U a vector on X,

(4.87)
7 En —D)k 1k — 1) 7 En
vy E d(E)e—uLg _ (1) ( ) / e_“)‘VU E d(E)()\ —Lé)_kd/\.
SUA

2miuk—1

Now, by using the similar formula (4.85) for Vg* End(E)(x\ — L)=F by
replacing a;i—rng by Vg* End(E) L%, and remark that V;}* End(E)LtQ is a dif-
ferential operator on Ty, X with the same structure as L. Then, by the
above argument, we get (4.67) for m’ > 1. q.e.d.
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Let Py be the orthogonal projection from ¢*°(Xo, E,,) to the kernel

of Ly with respect to (, ), o Set
1
4. Fu(Lh) = — [ e (A —Lb)tdA.
(4.88) (15 = 3 [ 0= b
Let Poi(Z,2"), Fu(LL)(Z, Z') be the smooth kernels of Py ¢, F,(L%) with
respect to durx(Z'). Then by (4.54),
+o0

(4.89) F,(LY) = e uhh — Py = / Lth_“lLédul.

u

Corollary 4.12. With the notation in Theorem 4.11,

T or
4.90 su —  —_F,(L} 7.7
( ) Iahla’l\)gm dZapZ otr u( 2)( )

1
<O+ 121+12/)" exp (~ o~ /Cal2 - 21).

glal+a

e ()

Proof. Note that 1pou + %”]Z —Z'2 > \/C"wo|Z — Z'|, thus
(4.91)
+oo ol , , +o00
/ 6—%MOU1—Z—1|Z—Z |2du1 < e VC7molZ-2 / e—%uouldul
u u

— ﬁe—éﬂou—vc”#olz—zq
Ho
By (4.67), (4.89), and (4.91), we get (4.90). q.e.d.

Remark 4.13. Under the condition of Lindholm [25], the metric on
the trivial holomorphic line bundle on C" is ||1|| = e~#/2. Now, we use
the unit section S;, = e#/21 to trivialize this line bundle. Then, if ¢ is
¢ and aazaacp is bounded for |a| > 3, from (4.67), (4.89), (4.90) with
r = 0, we can derive the off-diagonal estimate of the Bergman kernel on
C". Actually, the ¢ -estimate was obtained by Lindholm [25, Prop. 9].

For k large enough, set

(4.92) FM:(_1)k_1(k"_1)!/6“A S akAk(A,0)d),
A

2mir! uk—1
(k,l‘)elkﬂ‘

(=) '(k - 1)! —uX k gk

T = 5 = | L© D akAF(A,0)dA,
(kvr)elk,r

10" 10"

ra,t — ﬁ%Fu(LtQ) - FT,’U,) Jr,u,t = ﬁ%e uly _ Jr,u-
Certainly, as ¢ — 0, the limit of || ||, exists, and we denote it by

I llom-
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Theorem 4.14. r > 0,k > 0, there exist C > 0, N € N such that
fort € [0,1, A €0 UA,

8rLt 8rLt
(4.93) 22 0)s||  <Ct Y 1Z2%]loa,

( ar ot ) N

" t\—k k 2k

(%(/\—Lz) — Z arAr()\,O))s
(k,l‘)Elk’r 0,0

<G+ DY DT 112%lloo.
|or| <4r+3

Proof. Note that by (4.48), (4.50), for t € [0,1], k > 1,

(4.94) Islleo < Clislloo,  lsller < C D 112%sllox-
ol <k

An application of Taylor expansion for (4.60) leads to the following
equation, if s, s’ have compact support,

oLy 0Lk
4.95 2_ 22| ,’> < Ct||s’ Z%5][0.1.
a9s) (G - Tihea)s o) [0S Y 17l

|a|<r+3

Thus, we get the first inequality of (4.93). Note that
(4.96)  (A=Ly)™ = (A= LY ™" = (A~ Ly) "' (Ly — Ly)(A — Ly) "

After taking the limit, we know that Theorems 4.8-4.10 still hold for
t = 0. From (4.55), (4.95) and (4.96),

497) [(A=L) " = A =LY ") 8[|y < CHA+ NN D 12%s]l00-
|a|<3

Now, from the first inequality of (4.93) for r = 0, (4.85) and (4.97), we
get (4.93). q.e.d.

Theorem 4.15. There exist C > 0, N € N such that for t €]0,1],
u>uy, €N, 2,7 €T, X, |Z|,|1Z'| <q,
< Ct1/2(2n+1)(1 + q)Ne—%uou’

(4.98) Frui(Z,2)

< Ct1/2(2n+1)(1 + q)Ne%,uou.

Jr,u,t(Z7 Z/)

Proof. Let JBO’q be the vector space of square integrable sections

of By over {Z € T, X,[Z| < g+ 1} If s € J) ,, put Hs”%q) -

T

f\Z\§q+1 ]s]%zodvTX(Z). Let || A]|(4) be the operator norm of A€ Z(JY, )

Z0,9
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with respect to || [|(4). By (4.83), (4.92) and (4.93), we get: There exist
C > 0,N € N such that for ¢ €]0, 1], u > wuy,

(4.99) 1Fruillq) < Ct(L + g)Ne~2r00,
| Jru, () < Ct(1 +q)N eiuou‘

Let ¢ : R — [0, 1] be a smooth function with compact support, equal
1 near 0, such that [,  ¢(Z)dvrx(Z) = 1. Take v €]0,1]. By the
o

proof of Theorem 4.11, F;., verifies the similar inequality as in (4.90).
Thus by (4.90), there exists C' > 0 such that if | Z|, |Z'| < ¢, U,U’ € E,,

(4.100)

‘(Fmi(Z, 20,07 — [ (FyudZ — W, 7' — WU, U)
zo zQ

——op(W/v)p(W' Jv)dvrx (W )dvpx (W')| < C'V(1+q)Ne_é“°“|U||U/].

On the other hand, by (4.99),
(4.101) ‘ / (Frup(Z =W, Z'—W"U,U")
T: XxTch
— @W/v)p(W' [v)dvrx (W)dvrx (W)
< Cty—in(l + g)Nem shou| |||,
By taking v = t'/2C"+1) we get (4.98). In the same way, we get (4.98)

for Jy .t q.e.d.

Theorem 4.16. There exists C"” > 0 such that for any k,m,m’ € N,
there exist N € N, C' > 0 such that if t €]0,1],u > uy, Z,72' € Tp;, X,

(4.102)

022972"™ &m (X)

2 (R - 3 Frut')(2,2))
r=0

|al,[e/[<m

1
<Ot 1+ 12|+ |1 Z' )N exp (—guou —C"wo|Z — Z'|> ,

o+ t )
(e ZW ).

1
<Ot (1412 + |1 Z')N exp <§,ugu -

&' (X)

Z- Z’|2>

|al,[e/[<m

C/l
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Proof. By (4.92), and (4.98),

1o 1O urs
rlotr r! ot"

Now, by Theorem 4.11 and (4.92), J; 4, F}.,, have the same estimates
as el OLF (LL), in (4.67), (4.90). Again from (4.67), (4.90),
(4.92), and the Taylor expansion G(t) — Zf:o %%}G )" = 4 fot(t -
to)k%(to)dto, we get (4.102). q.e.d.

(4.103) Fu(Lg)’t:O = FT,U7 |t:0 = Jr,u'

4.4. Evaluation of J.,. For u > 0, we will write uA; for the rescaled
simplex {(u1,...,u;)] 0 <up <wup <--- <uy <wup. By (4.40),

(4.104) D} =05+> > O,0,t"=Li+> Q"
r=1

r=1ri+ro=r

Set J = —2my/—1J. By (1.1), J € End(TM0X) is positive, and
the J action on TX is skew-symmetric. We denote by detc for the
determinant function on the complex bundle 79 X. We denote by
| Tzo| = (jfo)l/Q, and by Lg’c the restriction of LY on €>°(R?*", C), then
by (3.4), (4.60),

1 2
(4.105) e == (Ve + 3 RE(Z.e) = T,

J

0 0
L2 - LZ,(C - 2wd’1-0.

Let e_uLgaC(Z, Z"), e4L2(Z, Z') be the smooth kernels of e Mo emull
with respect to dvpx(Z'). Now, from (4.105) (cf. [5, (6.37), (6.38))]),

(4.106) e “He(z,7)
_ 1 j:):o o 1 \-710/2
B (27T)ndet(c<1 — 6—2qu0) P < 2 <tanh(uu7x0)Z’ Z>

_1 jwo/z 1 ij/Q uT /
2 <tanh<ujzo>z 7 > ! <sinh<ujmo>e "4z >>

efuLg (Z, Zl) — B_UL(Q),C (Z, Z’)62uwd‘z0 .

Theorem 4.17. For r > 0, we have

(4107) Ju= > (1) /A'e<uuj>bggrje<ujujlmg

j J
Zgzl ri=r,7;>1

_ 0
e ere ulLQdul .. d/u/]7
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where the product in the integrand is the convolution product. Moreover,

there exist Jy. 55 (u) € End(A(T*OVX) @ E),, smooth on u €]0, +o0|

such that

(4108) S22 = Y dpew)zPz” e e (2,2"),
|8]+18'|<3r

and 3|54 5 <ar Ir.p.5" (W) 282" as polynomial of Z,Z' is even or odd
according to whether r is even or odd.

Proof. We introduce an even extra-variable o such that o't =
Set [ ]I the coefficient of ¢”, L, = LY + > i—1Qjo’. From ( .92
(4.103), we know

0.
);

10" ¢
(4.109)  Jyu(Z,2') = _'%ewz(z, ZN im0 = [e7 oIl (Z, Z1).
Now, from (4.109) and the Volterra expansion of e~%“F (cf. [3, Section
2.4]), we get (4.107).
We prove (4.108) by iteration. By (4.106), (4.107) and Theorem 4.6,
we immediately derive (4.108). By the iteration, (4.106) and Theorem

4.6, the polynomial of Z, Z’ has the same parity with r. q.e.d.

4.5. Proof of Theorems 1.1, 1.2. By (4. 89) (4.102), for any u > 0
fixed, there exists C,, > 0 such that for t = 2,7 € Ty X, x0 € X,

\/_7
we have
(4.110) plefle] ( Zt )(Z Z")
: sup — | Fo,t — -
lal o’ |<m | 040 Z' & (X)
< Cut* 1+ 2] + | Z')N exp(—/C"wo| Z — Z')),
Set
(4.111) P" = J.\— Fry.

Then, P(") does not depend on u > 0 by (4.110), as Py does not depend
on u. Moreover, by taking the limit of (4.90) as t — 0,

4112)  |Fu(2,2'
ang Rz,
1
C(1L+ 12| + 12" exp (—guou )7 - Z’|) .
Thus
(4.113)

Joal2,2') = PY(Z,2') + Fru(2,2") = PUN(Z,2") + 6 sV,

uniformly on any compact set of T, X x T, X.



ON THE ASYMPTOTIC EXPANSION OF BERGMAN KERNEL 27

Let P(Z,Z') be the Bergman kernel of L9 c in (4.105), i.e., the smooth
kernel of the orthogonal projection from L2 (R?",C) on Ker LY . Then
for 2, 7' € T, X,

(4.114)

P(z,7')

_ detc \.710

o (2m)n
NOW, eujzo = COSh(’U,‘ijD + Slnh(u\jxof)w B thus %e“«fbo —
(| Two| + Tuy) + O(e72W20l). From (4.106), and (4.107), we get as

U — 00,

(-1 1912 = 20,2 - 2) 4 5 (32.2)).

(4115)  Jou(Z.2') = (2, 2') = P(Z,Z)Icop + O(e "),

POz,2') = P(2,Z)Icsn

uniformly on any compact set of Ty, X x Ty, X. From (4.108), (4.113),
and (4.115), we know that as u — oo,

(4.116) JT7575/(U) = erg’g/(oo) + ﬁ(e—éuouy

and by (4.113), (4.115) and (4.116),

@117)  PNZ,Z') = 1o 2,2') = Y Jrp i (00)2° 27 P(2,2").
8.6

Note that in (4.49), k(Z) = (detgij(Z))1/2 = (det(@f@?))l/? By
(4.37), for Z,7' € T,,, X,

(4.118) PN(2,2") = p"Pou(Z/t, Z' [t} (Z'),

exp (—2DX02) (7. 2") = pre " (Z/t. 7' Ik~ (Z)).
p - : P :
p

We now observe that, as a consequence of (4.110) and (4.118), we
obtain the following important estimate.

Theorem 4.18. For any k,m,m’ € N, there exist N € N,C > 0
such that for a,o/ € N, |a| + || < m, Z,7' € T,, X, |Z],|Z'| < e,
Ty € X} b > 17

(4.119)

Plal+le] 1 k
— | =Pz, 7 PO (52, /pZ k=N (Z"p T/
9zZ297' \ pn P( ) TZ:O (\/]_7 VP )k (Z")p

&' (X)

< Cp W=+ | pZ] + VP2 )N exp(—/C"poy/plZ — Z')).
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By (4.26) and Theorem 4.18, we obtain the following full off-diagonal
expansion for the Bergman kernel on X.

Theorem 4.18'. With the notation in Theorem 4.18,
(4.120)

glal+lal {1 G
e —_p 27 Z/ o P(T) Z, Z/ -1 Z/ 77'/2
iz | ) S PORZ 2 2y

™' (X)

< Cp~H=m2(1 | /pZ| + VP Z' )N exp(—/C"o\/plZ — Z'))
+O0(p™™).

The term &'(p~°°) means that for any [,{; € N, there exists Cj;, > 0
such that its €*'-norm is dominated by Cii, p!
From Theorem 4.17, we know that .J,.,,(0,0) = 0 for  odd. Thus from
(4.113), P(")(0,0) = 0 for r odd. Thus from (4.120), for Z = Z' = 0,
m = 0, we get
1 k

(4.121) —Py(xo,20) — > PC(0,0)p™" < Cp~k L,
P r=0 ' (X)

From (4.115),

(4.122) PO(0,0) = P(0,0)Icer = (det )2 Ipgp.

Moreover, from Theorems 4.6, 4.17, (4.104), we deduce the desired prop-
erty on b, in Theorem 1.1. To get the last part of Theorem 1.1, we notice
that the constants in Theorems 4.11 and 4.15 will be uniform bounded
under our condition, thus we can take C}, ; in (1.6) independent of gt
Thus, we have proved Theorem 1.1.

From Proposition 4.3, we know that for any v > 0 fixed, for any
I € N, there exists C > 0 such that for Z, 7" € T,,, X, |Z|,|Z'| < e,

xg € X,
_E 2 _ o E X0,2 ! <
(4123) ‘(exp( pr) exp( pr ))(Z7Z) (gm/(X) >~ Cp

Thus, from Theorem 4.17, (4.102), (4.118), and (4.123), we get
(4.124)
1

-l

(—ED)xo,l’o Zj2ru00
p

Hence, we have (1.4) and at x,
(4.125) br = Joru(0,0).

Now, from (4.106), (4.113), (4.121), and (4.125), we deduce Theo-
rem 1.2.
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From our proof of Theorems 1.1, and 1.2, we also obtain a method
to compute the coefficients. Namely, we compute first the heat kernel
expansion of exp(—%Dg)(x,m) when p — oo by Y7 bry(z)p™ " (cf.
(4.124)), then let u — oo, we get the corresponding coefficients of the
expansion of #Pp(l‘, x). As an example, we will calculate b in the next
section.

In practice, we choose {w;}}; an orthonormal basis of Té;’O)X , such
that

(4.126) T, = diag(a1(wo), . .-, an(z0)) € End(T 10 X),
with 0 < aj(xg) < a2(zg) < -+ < an(xp), and let {wj}?zl be its dual

basis. Then eg;_1 = %(wj +w;) and ey = %(wj —-w;),j=1,...,n
forms an orthonormal basis of T,,, X. In the coordinate induced by {e;}

as above, all even function ¢(Js,) of Js, is diagonal, and ¢(Jz,) =

9(| Txo)-

5. Applications

This section is organized as follows. In Section 5.1, we calculate the
coefficient b; in Theorem 1.1 when the manifold is Kahler. In Section
5.2, we extend Theorem 1.1 to the orbifold case. Again the finite prop-
agation speed allows us to localize the problem which was also used in
[27].

5.1. Kahler case. In this Section, we assume that (X, w) is K&hler and
J = J, and the vector bundles FE, L F, L are holomorphic on X with the
holomorphic connections VZ, VE. Then, a;(z) = 27 for j € {1,...,n}
in (4.126). Note that for {w;} (resp. {e;}) an orthonormal basis of
TUOX (resp TX), the scalar curvature 7~ of (X, g7™¥) is given by

(5.1) 7% =— Z <RTX(ej, er)ej, e) =2 Z <RTX(wj,Ej)wk,Ek> .
ik jk

Now, the Levi-Civita connection VIX preserves 79 X and TV X,
and VI"OX = pTHOXgTX pTOX jq the holomorphic Hermitian con-
nection on 79 X In this situation, the Clifford connection VI on
AT*OD X)) is VAT OYX) the natural connection induced by vTox,
Let 3" ©"* be the formal adjoint of the Dolbeault operator """ on
Q%*(X,LP ® E). Then, the operator D, in (3.3) is D, = \/Q(ELF@E +
5LP®E’*). Note that D2 preserves the Z-grading of Q%*(X, L’ @ E). Let

D]%,i = D2 |qo.i(x,1r0E), then for p large enough,
(5.2) Ker D, =Ker D>y = H'(X, L’ ® E).

By (5.2), By(z) € End(FE) and we only need to do the computation
for Dg}o. In what follows, we compute everything on ¢°(X, LP ® E).
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Especially, Q, in (4.104) takes value in End(E). Now, we replace X
by R?" ~ TIOX.?:LS in Section 4.2, and we use the notation therein.
We denote by (g* ( )) the inverse of the matrix (g;; (Z)) (gU (Z))

Let ATX = ZZ 822 o
respect to the metric g7#0X. Then by (4.29), (4.35),
(53)  9ij(Z Zekek = 0ij+ 5 <RTX(R e)R,e;) + O(|Z)%).

Theorem 5.1.
(5.4) Qo = —AT* + 72| Z)? — 2mn + 2V/-17V r, Q1 =0,
Q2=Z( <R (R, e; el,e]>
J

V-1
- (RIX(R,JR)R,e;) — RE (R, ¢;) | Ve,

— —ZR (e, Jej)

+7V/=1RE (R, JR) — % (RTX(R, JR)R, JR)
+ Z (RIX(R,e))R,e;) Ve, Ve,

Proof. Let Féj be the connection form of VX with respect to the
basis {e;}, then (VIXe;)(Z) = I‘éj(Z)el. By (5.3),

1
(5.5) TL(Z)= 3 E 9" (0i9;% + 0j9ik — Ongi;)(Z)
%

1
= g [ <R£0X (R, €j)€i, €1>x0 + <R£OX (R, ei)ej, el>x0 }

+6(2).

Observe that J is parallel with respect to VX, thus (Je;,¢;), =
(Jei, e5),,- By (1.1), (4.29), and (4.35),

(5.6) ?RL ek,el 291 Jei,'éj>Z

1
— (RN (R en)R, Jer),

= <J6k’el>mg 6
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(Ri (R, Jer)R,er), + O(Z).

@l*—‘

y (4.37), (4.46) and (5.6), for t = ﬁ, we get
(5.7) Vielz =tS;'VE9ES,,

=V, + %FL(ei)(tZ) + 175 (e;) (t2)
= V. — V=11 (JR,e;) — ‘/_”tQ (RTX(R,JR)R, e;)

t2
+ EREO(R’ e;) + O(t).

By a direct calculation (4.60) or by Lichnerowicz formula in [4, Propo-
sition 1.2], we know

ij l
(5:8) Dig=—Y g7 [VESPGLE 1l gLeF]
2

— T_l Z RE(&;, J&;) — 2mnp.

Thus from (4.38), (5.3), (5.7), and (5.8),
(5.9)
D} = S, '*D2 S,
= - Zgij(tz) [vt,eivt,ej - tréj (t')vt,el} (2)

ij
_ gﬁ > RF(&,J&)(tZ) — 2mn
- Z ( RTX(R, ei)R,ej) + ﬁ(t3)>
{( _VTIn (R, — “_” £ (RIX (R, JR)R, e;)

2
+ ERfo(Rv ei) + ﬁ(t?’))

: (vej —V=1r (JR,ej) — ~ 1_217Tt2 (RIX(R,JR)R, €;)
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g 3
+ S RE (R e;) + O(F)
— T, (t2) (vel —VTIr (R, &) + ﬁ(t2)> }
— —t2 ZR e, Je;) — 2mn + ﬁ(t?’)

Now since eg; = Jeg;j_1, we see that <RTX(R, e2j—1)R, J62j_1> =
— (RTX(R, e2;)R, Jea;), and thus > (RTX(R,e;)R, Jej) = 0. From
(5.5), (5.9) and the fact that RTX is a (1,1)-form, we derive (5.4). q.e.d.

Proof of Theorem 1.3. From (4.106), and (5.4),
> ( _n(1Z212+12'P)

5.10 ~ull(z,7') =
(5.10) ¢ (2,2) 2 tanh(27u)

(1 _ e—47ru)n

T —2v/—1muJ /
+ sinh(27u) <e 2,2 >)

By (4.107), (5.4), (5.10), J1.u(Z, Z") = 0, and
(5.11)
J2.4(0,0)

u 1
— d
/0' Ui A2n (1 — e—4muy )n(l _ e—47T(’lL—'lL1))n

- exp <_2tanh(7;|77Z(’; U1))> Q2(Z) exp <_$§TU1)> .

By (5.4),

61 e (sartl)

2
" (RTX(R,JR)R, JR)

— {m/—_lRfo (R, JR) - =

T X . .
+ 3tanh(27ru1) ; <Rx0 (R7 ez)R, €1>

—n|2f?
. _ZR o) o (sahiaman) )
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Now, fj;o a2e "2y = fj;o e~"*/2dx = /27, and fj;o zhe 2 dy =
3v2m. Thus

(5.13) / <R (R,JR)R, JR) exp< | 2‘2>
= (2m)" Z {<Rgox(ej, Jej)eg, Jek>

ik
+ <R£0X(€j, Jek)ej, J€k> + <R£OX(€]', Jek)ek, J€j>:|

= —(2m)" x dr)

Set c(u1) = Smh(%(zmﬁ(lgifj)nh(%ul) Then from (5.11)—(5.13), we get
(5.14)

J2.4(0,0)

— |} e (e -
. (% - 2c<u1>2> X]

- e | 1) 3 3] Y R

1w U 2 -3 U
+ol5 - — —— sinh(4mu) + < ) | oyt
3 [2 2tanh?(2ru)  sinh?(27u) <327r sinh(dru) 8)] rxo}

Thus, by (1.5), and (4.125),

)\/_ZR (ei, Jes)

l\Dl'—‘

L 1 B 7.y L X
(5.15) bl_ulggob’“(o’o)_zm [\/ 1Zi:R (el,Jel)+2r IdE}.

From Theorem 1.1 and (5.15), the proof of Theorem 1.3 is completed.
q.e.d.

5.2. Orbifold case. Let (X, w) be a compact symplectic orbifold of real
dimension 2n with singular set X’. By definition, for any x € X, there
exists a small neighborhood U, C X, a finite group G, acting hnearly
on R2", and U, C R?" an G,-open set such that U, =% U, /Gy = Uy
and {0} = 7, 4(z) € U,. We will use Z to denote the point in U,
representing z € U,. Let ©X = {(z, (h}))|z € X,Gy # 1, (k%) runs
over the conjugacy classes in G,}. Then, ¥X has a natural orbifold
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structure defined by (cf. [23])

(516)  {(Za,(W)/KL UM — Tl 26, ()} .
(‘TuUQ?uj)

Here, (7;”53 is the fixed point set of R, over Uy, Ze, () is the centralizer
of h} in G, and K3 is the kernel of the representation Zg, (h2) — Diffeo

((73?;) The number |KZ| is locally constant on £X and we call it as the
multiplicity m; of each connected component X; of X UXX.

An orbifold vector bundle E on an orbifold X means that for any
x € X, there exists py, : EU — U a G -equivariant vector bundle
and (G}UEI,EUI) (resp. (GE /KUI, 2), Ky, = Ker(Gf. — Diffeo(U,)))
is the orbifold structure of E (resp. X). Set E{}i the Ky, -invariant
sub-bundle of Ey, on Uy, then (GE /Ku,, EBI;) defines an orbifold sub-

bundle EP* of E on X. We call EP" the proper part of £. We say F is
proper if Gg =G, for any z € X.

Now, any structure on X or E should be locally G, or G _equivari-
ant.

Assume that there exists a proper orbifold Hermitian line bundle L
over X endowed with a Hermitian connection V¥ with the property

that %RL = w (Thus, there exist k& € N such that L* is a line bundle

in the usual sense). Let (E,h") be a proper orbifold Hermitian vector
bundle on X with Hermitian connection V¥ and its curvature RE.

Then the construction in Section 3 works well here. Especially, the
spin® Dirac operator D), is well defined. In our situation, let {S7, ..., Sgp}

(dp = dimKer D)) be any orthonormal basis of Ker D), with respect to
the inner product (3.2). We still have (4.3) for By(x). In fact, on the

local coordinate above, S?(Z) on U, are G, invariant, and

dy N
(5.17) Py(z,2) = > SP(2) @ (SP()".
=1

We note that if Q : €°(X, E) — €°°(X, F) is a pseudo-differential
operator of order m (m < —2n—k, k € N), and E, F' are proper orbifold
vector bundles, then the operator @ has a %*-kernel. In fact, Qu,
lifts to a pseudo differential operator QUx on U, and for QU (z,2 ) the
%% kernel on U, x U, with respect to dvg , the kernel of the operator
Qu, : (U, By,) — €(Us, Fys) is (cf also [27, (2.2))

(5.18)  Qu,(z.2) = (9. 1)Qu,(g7'2.%), (2.%) € UsxU,.

9€Gy
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Indeed, for s € €*°(U,, E) with compact support, then s is a G-

invariant section of Ey, on U, by definition,

(5.19)  (Qs)(2) = . Qu, (2,7)s(Z)dvy (),

1 ~
(9, 1)Qu, (972, 2)s(2)dvg, (7).
’Gx| gGZG:z /z Uz

- /U S (0, 1)80 (971, #)s( v, ().

9€Gy

Proof of Theorem 1.4. At first, we have the analogue of Propositions
4.1,

(520) |Pp(xv xl) - F(Dp)(xa xl)|?f7"(X) < Cl,m,epil'

To prove (5.20), we work on ﬁx” and the Sobolev norm in (4.9) is
summed on Uy, .

Note that on orbifold, the property of the finite propagation speed
of solutions of hyperbolic equations still holds if we check the proof
therein [15, Section 7.8], [31, Section 4.4] as pointed out in [27]. Thus,
for z,2’ € X, if d(z,2’) > ¢, then F(D,)(z,z’) = 0, and given z € X,
F(D,)(,-) only depends on the restriction of D, to BX(z,¢). Thus,
the problem on the asymptotic expansion of Py(z, ) is local.

Now, we replace X by R** /G, , and let E, E be the Gg,-equivariant
vector bundles on ﬁxo corresponding to L, F on ﬁzO /Gz,. In particular,
Gy, acts linearly and effectively on R?". We will add a superscript ~ to
indicate the corresponding objects on R?".

Now, for Z, Z' € R2"/G,,, |Z|,|Z'| < &/2 and Z, Z' € R?" represent
Z,7', then by (4.4), (4.26), and (5.18), for any I,m € N, there exists
Clm,e > 0 such that for p > 1,

(5.21) F(D)(2,2) =Y (9 )F(Dy)g™'2,2),
9€Gy

’F(ﬁp)(za Z/) - ﬁ]?(za Z/)"fm < Cl,m,ap_l-
— L
Moreover, for ¢t = N
~ o~ o~ 1 ~ ~  ~
(5.22) P)(Z,2') = 5 Poa(Z/t, Z' [t)s ™1 (Z),

We will denote P(") in (4.108) by ngg) to indicate the base point xg. For
g € Ggy, we denote by Z = Zy 4 + Zy 4 with Zy , € TUZ,, Zs4 € Ny,
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(here, Ny, is the normal bundle to U, in U,,). By (4.89), (4.102), as
n (4.119), for |Z] < /2, a,a/ with |a| < m,|d/| < m/,

olal gl ~ o~
5.23 P 2. Z
62| T (iP262.2)

_Ztrp VB T VT3 () )|

< CHF (14 /Pl Zag )N exp(—/C" o/l Z2.g).-

Especially, for Z € R?"/G,,, | Z| < &/2, as in (4.121),

ool (1555 =0 R~ e
aZO‘ <_an(Z7Z)_Zp PZ (070)
r=0

(5.24)  sup

|| <m

Thus, from (5.20)—(5.24)! , we get for |Z| < /2,

(5.25)
lol _ LA
| (—an< D)= 6@

< c<p’cl +p R (L4 pd(Z, X))

exp (~/Chay(2, X)) ).

By (4.117), we get for o, @/ with || < m, |a/| <m/,

glal  gle’ 15 ~
5.26 t"P T o g/t 2o g/t
( ) aza 8Z2°‘g ; 2,9/ 2,9/ )

~ N

/ Z C =
<ct™ (1 + % > exp (—T‘ZQ,Q > :
For any compact set K C X \ X', we get the uniform estimate (1.7)
from (5.24) as in Section 4.5 as G; = {1}. From (5.25), (5.26), we get
(1.7) near the singular set X'.

Tn the same way, by Theorem 4.18, (5.21), (5.22), we get the full off-diagonal
expansion of the Bergman kernel on the orbifolds as in Theorem 4.18".
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By the argument in Section 5.1, we have established the last part of
Theorem 1.4. q.e.d.

Note that if zp € X', then |Gy,| > 1. Now, if in addition, L and F
are usual vector bundles, i.e., G, acts on both L,, and E,, as identity,
then by (5.25),

1
(5.27) ﬁpp(:ﬁo,xo) — |G lbo(zo)| < Cp~V/2.

Thus, we can never have an uniform asymptotic expansion on X if X’
is not empty.

Remark 5.2. On (750, g acts on L by multiplication by e, the
action of g on Ey, and on A(T*OV X)) is parallel with respect to the
o

connections VF and VE, We denote by g|asE, g/ the action of g on
AT OV X) @ E, E on UZ,. We define on U,

(5.28)

- 1 -~ -
Urg(Zig) = ) ol [/ 9|A®EP—Z({)§(9 2o, Z,9) Z5 ydvn (Za,)

lor|=q 9:%0

o\,
. =~ K~ *).
<8ZZ,Q> ( Zl’g)

Then, eiapwm(glyg) are a family of differential operators on U, along
the normal direction Ny, with coefficients in End(A(T**VX) @ E),
and they are well defined on ﬁgO/ZGZO (9) and on ¥X. By (4.117),
(5.25), we know that in the sense of distributions,

(5.29)
1
ﬁBp(l’)
b 1
_ _ i . 450 _4a _
:Zp r/2 Z Ep n+d1mX]ezGJp5Xij 2¢r,q+ﬁ(p k)
r=0 X;cxusx 7 >0

Here, X; runs over all the connected component of XU¥ X and g acts on
L|x, as multiplication by e%i | and m; is the multiplicity of X; defined
n [23] (cf. also [27]).

Especially, if XX = {y;} is finite points, then m; = |G,,| and
g’A(T*(Oxl)X)(X)E olcgr = g|g © Icgp. Moreover, as g commutes with
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Tz, from (4.114), for Z = 2z + Z,
(5.30)

P(g7'Z,2)dz

R2n
 dete 7,
= ey
_ detc Ty
-~ (2m)m

det(c Tz _ B B
- @T)no /R?n exp ( - <\75[ZOZ’ Z> + <;7xog 12, Z> )dZ
B 1

det(c(l — 9;31,0))()'

Thus from (4.117), (5.29), (5.30),
(5.31)

n i0;p
_ eI g’E o I(C®E' 1
Bye) = S bl + s, +0(5).
P TE% ' %: ’Gyj | detc(1 — QT(11,0)X) ! p

1 1, 1 _
L exw (= {1l a™! =02 + 5 (g™ 2.2) ) a2

1 1
[ e (=5 0712.2) + 500 + Tu)g'2.2) )iz
R2n

Remark 5.3. Now, assume that (X,w) is a Kéahler orbifold and
J = J, moreover L is an usual line bundle on X. Then, we can embed
X into P(H%(X, LP)*) by using the orbifold Kodaira embedding ¢, for p
large enough (cf. [1, Section 7]). Let O(1) be the canonical line bundle
on P(HY(X, L?)*) with canonical metric h®1). Then, LP = ¢,O(1) and
Y = Bp(a;)(;ﬁ;’;ho(l). We can also interpret as following: Let {Sj};-lp:l
be an orthonormal basis of H°(X, LP) with respect to (3.2), then it
induces an identification H?(X, LP)* = C%; also, choose a local G-
invariant holomorphic frame Sy, (which is possible as G5 acts on L,
as identity) and write S; = f;S7. Then ¢, : X — P(H(X, LP)*) is
defined by ¢,(z) = [fi(x),..., fa,(2)]. Let wrs be the Fubini-Study
metric on P(H°(X, LP)*). Then

d
1, V-1, - ~ 2 V-1, -
(5.32) ]—jqbprS = %86 log ; |fJ| =w+ %38 log Bp(l‘)
Note that g € G, acts as identity on Ly, for Z=z+7% by (4.114),
(5.33) (9:1)P;, (VP Z2g,v/PZ2)
T . ~ 2 . a ~
= exp ( - 5P ((g - 1)22,9‘ +mp <g (229 = Z2,), Z2,g>>-

Set by (Z) =1+ Zl;&gEGxO (9,1) PZLQ (\/ﬁg_l 22,9’ \/1772279)’421 (Z2,g)-

g

Then, EO(Z) has a positive real part on T,,X. By (5.25), for m € N,
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taking k > m, then for p large enough, for |Z| < ¢/2, under the norms
",

(5.

34)

g (1 50(2))

k
fog(io(2)) + 1ot (14 3 To(2) 0 (Z)p

r=1

2k
r=1 A

1#9€Gg,
+O0(p7F 7).

Thus, from (4.117), (5.32), (5.34), for any [ € N, there exists C; > 0
such that

(5.35) Z—I)Q%WFS(»’U) —w(x)

1]
2]

8]
[4]
[5]
(6]

[7]

[9]

(10]

<C (1 + p%e—cﬁdw’)) .
¢! p
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