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NON-NEGATIVE PINCHING, MODULI SPACES AND

BUNDLES WITH INFINITELY MANY SOULS

Vitali Kapovitch, Anton Petrunin & Wilderich Tuschmann

Abstract

We show that in each dimension n ≥ 10, there exist infinite se-
quences of homotopy equivalent, but mutually non-homeomorphic
closed simply connected Riemannian n-manifolds with 0 ≤ sec ≤ 1,
positive Ricci curvature and uniformly bounded diameter. We
also construct open manifolds of fixed diffeomorphism type which
admit infinitely many complete non-negatively pinched metrics
with souls of bounded diameter such that the souls are mutu-
ally non-homeomorphic. Finally, we construct examples of non-
compact manifolds whose moduli spaces of complete metrics with
sec ≥ 0 have infinitely many connected components.

1. Introduction

In this article, we discuss several infiniteness phenomena in non-
negative sectional curvature.

Our first such result is motivated by the finiteness theorems in Rie-
mannian geometry and a question of S.-T. Yau which asks whether
there always exists only a finite number of diffeomorphism types of
closed smooth manifolds of positive sectional curvature that are homo-
topy equivalent to a given positively curved manifold ([37], Problem 11).

If one relaxes the condition sec > 0 to sec ≥ 0, then the answer to
Yau’s question is known to be false in all dimensions ≥ 7, even in the
category of simply connected manifolds. Counterexamples can here be
obtained in the following way: By a result of Grove and Ziller [22], the
total space of any linear Sk-bundle over S4 admits a Riemannian metric
with non-negative curvature. However, for k ≥ 3, the total spaces of
such bundles fall into infinitely many homeomorphism, but only finitely
many homotopy types ([12]; if k = 3, one has in addition to assume
that the Euler class of the bundle be zero). On the other hand, when
rescaled to have uniformly bounded diameter, by [30], these examples
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cannot satisfy any uniform upper curvature bound. More generally, it
is natural to look at the following question:

Question 1.1. Given fixed n ∈ N, D > 0 and c, C ∈ R, are there
at most finitely many diffeomorphism classes of pairwise homotopy
equivalent closed Riemannian n-manifolds Mn with sectional curvature
c ≤ sec ≤ C and diameter ≤ D?

The diffeomorphism finiteness theorems in Riemannian geometry (see,
e.g., [1, 10, 28, 14, 16, 21, 30, 34]) leave this question in general di-
mensions completely open. However, the answer is known to be positive
in some special situations.

This is, for example, the case if c > 0 and n = 2m by [24, 10],
if Mn, n 6= 4, is simply connected and C = 4c > 0 by [7, 11], if
D = D(C, c, n) is sufficiently small by Gromov’s theorem on almost flat
manifolds [20, 9, 31] and the rigidity of infranilmanifolds [3] (cf. [17]),
if M is 2-connected by [30], or if C ≤ 0 and n ≥ 5 by results of Farrell
and Jones [18, 19]. Remarkably enough, in the latter case, one actually
does not even need the lower curvature and the upper diameter bounds.
In other words, for n ≥ 5, the answer to the analogue of Yau’s question
for non-positive curvature (which in this case is a special case of the
Borel conjecture) is yes.

As a preliminary result, we first show that, in general, the answer to
Question 1.1 is actually negative in all dimensions ≥ 7:

Proposition 1.2. There exists D > 0 such that for any n ≥ 7,
there exist an infinite sequence of homotopy equivalent, but mutually

non-homeomorphic closed Riemannian n-manifolds Mn
k with

| sec(Mn
k )| ≤ 1 and diam(Mn

k ) ≤ D.

If n 6= 8, all these manifolds can in addition be chosen to be simply-

connected.

Notice that for simply connected manifolds, by [14, 34], n = 7 is
indeed the smallest dimension where such sequences can occur.

Our first main concern in this paper is, however, the analogue of
Yau’s question for non-negative pinching, i.e., the following special case
of Question 1.1:

Question 1.3. Given fixed n ∈ N and C, D > 0, are there al-
ways at most finitely many diffeomorphism types of pairwise homo-
topy equivalent closed Riemannian n-manifolds with sectional curvature
0 ≤ sec ≤ C and diameter ≤ D?



NON-NEGATIVE PINCHING, MODULI SPACES AND BUNDLES 367

Notice here that starting from dimension n = 6, from [22], one
may infer the existence of infinite sequences of closed simply connected
non-negatively curved n-manifolds of mutually distinct homotopy type,
and in dimensions n > 8, n 6= 10 by [33], there even exist infinite
sequences of closed simply connected non-negatively pinched Riemann-
ian n-manifolds with pairwise non-isomorphic rational cohomology rings
that also satisfy uniform upper diameter bounds. Totaro ([33]) also
showed that there exist infinite sequences of closed simply connected
non-negatively curved 6-manifolds with pairwise non-isomorphic ratio-
nal cohomology rings, and (improving earlier work of [15] for manifolds
of dimension n ≥ 22) that for any n ≥ 7, n 6= 8, there exist infinitely
many closed simply connected Riemannian n-manifolds with |sec| ≤ 1
and uniformly bounded diameter and pairwise non-isomorphic rational
cohomology rings.

Our first main result shows that if n ≥ 10, the answer to Question 1.3
is in general negative, even under the extra assumption of positive Ricci
curvature.

Theorem A. There exists D > 0 such that for each dimension

n ≥ 10, there exists an infinite sequence (Mn
k )k∈N of pairwise homotopy

equivalent, but mutually non-homeomorphic closed simply connected Rie-

mannian n-manifolds satisfying

0 ≤ sec(Mn
k ) ≤ 1, Ric(Mn

k ) > 0 and diam(Mn
k ) ≤ D.

Notice that this result relates Yau’s problem to another long standing
open question in Riemannian geometry:

Are there any obstructions to the existence of a Riemannian metric
with positive sectional curvature on a closed simply connected manifold
of non-negative sectional and positive Ricci curvature?

It is quite likely that the dimensional restriction n ≥ 10 in Theorem
A is not optimal. Again, by [14, 34], this dimension must be at least 7.

We continue with a description of the further main results of this
paper, which concern the souls and moduli spaces of metrics of open
manifolds of non-negative sectional curvature.

Very recently, in [5], Belegradek constructed the first examples of
manifolds admitting infinitely many non-negatively curved metrics with
mutually non-homeomorphic souls. In our second main theorem, we
sharpen this result by constructing such examples which in addition have
uniform bounds on the curvature of the manifolds and the diameters of
the souls:

Theorem B. For any k > 10, the manifold S2 × S2 × S3 × S3 × R
k

admits an infinite sequence of complete non-negatively curved metrics

gi with pairwise non-homeomorphic souls Si such that

0 ≤ sec(M, gi) ≤ 1 and diam(Si) ≤ D
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where D is a positive constant independent of k and i.

Another interesting application of the construction that we employ in
the proof of Theorem B concerns the moduli spaces of open manifolds
with non-negative sectional curvature. Let Rsec≥0(M) denote the space
of complete Riemannian metrics with non-negative sectional curvature
on a given smooth manifold M . Then Diff(M), the group of diffeo-
morphisms of M , acts on this space by pulling back metrics, and the
orbit space Rsec≥0(M)/Diff(M) is called the moduli space of (complete)
non-negatively curved Riemannian metrics on M . We show:

Theorem C. There exists a manifold M22 which admits an infinite

sequence of complete metrics gi with pairwise non-homeomorphic souls

Si such that

0 ≤ sec(M, gi) ≤ 1 and diam(Si) ≤ D

and such that the equivalence classes of the metrics gi all lie in differ-

ent connected components of the moduli space Rsec≥0(M)/Diff(M) of

complete metrics with sec ≥ 0 on M .

Moreover, for any closed non-negatively curved manifold (N, g), the

product metrics gi × g all lie in different connected components of the

moduli space Rsec≥0(M × N)/Diff(M × N).

To put Theorem C into further perspective, we note first that in [25],
Kreck and Stoltz constructed a closed manifold M7 such that the moduli
space of metrics of positive Ricci curvature on M has infinitely many
connected components. In fact, by choosing somewhat different metrics,
their methods also show that Rsec≥0(M)/Diff(M) also has infinitely
many connected components! Since this was not observed in [25], let
us briefly explain why that is true.

Kreck and Stoltz actually construct an invariant s which distinguishes
components of Rscalar>0(M)/Diff(M). They look at various S1-bundles
over S2×CP 2 with indivisible Euler classes, which admit Einstein met-
rics of positive Ricci curvature constructed by Wang and Ziller ([35]).
It is then shown [25, Theorem 3.11] that provided the metrics are S1

invariant and have totally geodesic fibers (which is true for Wang–Ziller
metrics), the invariant s depends only on the Euler class of the bundle.
One can exhibit infinitely many bundles with distinct s invariants, but
diffeomorphic total spaces [25, Theorems 3.2, 3.4]. Unfortunately, the
Einstein metrics given by [35] do not have non-negative sectional cur-
vature. However, we notice here that one can represent any S1 bundle
over S2 × CP 2 with an indivisible Euler class as a free isometric quo-
tient (S3×S5)/S1. The natural Riemannian submersion metric coming
from the product metric on S3 × S5 is easily seen to have sec ≥ 0 and
Ric > 0, it has totally geodesic fibers and it is S1-invariant. There-
fore, the same bundles as considered in [25], but taken with these met-
rics have distinct s-invariants and hence, lie in different components of
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Rscalar>0(M)/Diff(M). Since any metric of sec ≥ 0 on M has scalar
≥ 0 and scalar > 0 at a point, by [2] it can be deformed to a nearby
metric of scalar > 0. Therefore, the above metrics also lie in different
components of Rsec≥0(M)/Diff(M).

Observe, however, that all the different components of Rscalar>0(M)/
Diff(M) obviously become connected if we stabilize M by multiplying
it by a closed manifold with non-negative sectional and positive scalar
curvature, for example, by Sn with n > 1. Therefore, in contrast to
Theorem C which yields non-connected moduli spaces of non-negative
sectional curvature metrics in all dimensions ≥ 22, it is not clear if
the components of Rsec≥0(M)/Diff(M) remain disconnected after such
stabilization.

There are many other interesting results about the connectedness or
disconnectedness of moduli spaces of metrics satisfying certain geomet-
ric bounds, for which we refer to, eg., [26, 27, 29, 30].

We conclude the introduction with a short description of the ideas
and outlines of the proofs.

To prove Proposition 1.2, we look at a 6-manifold X6 which is ho-
motopy equivalent to S2 × S2 × S2, but has non-trivial first Pontrjagin
class. By an easy topological argument, among the S1-bundles over
X6, there are infinitely many spaces which are homotopy equivalent
to S2 × S2 × S3, but have distinct Pontrjagin classes. All S1-bundles
we consider can be represented as quotients of a fixed manifold Q by
various subtori T 2

i ⊂ T 3 where T 3 acts freely and isometrically on Q.
This implies that the induced metrics on Q/T 2

i have uniformly bounded
curvatures and diameters.

To prove Theorem A, we fix a rank 2 bundle ξ over S2 ×S2 ×S2 and
look at the sphere bundle P of ξ ⊕ ǫk−1 with k ≥ 3. We then look at
various circle bundles S1 → Mi → P . A topological argument shows
that with an appropriate choice of ξ, infinitely many such bundles have
total spaces homotopy equivalent to S2×S2×S3×Sk, but distinct first
Pontrjagin classes and thus are mutually non-homeomorphic.

We can represent all Mis as S3 × S3 × S3 × Sk/T 2
i where T 2

i ⊂ T 3

which acts freely and isometrically on S3 × S3 × S3 × Sk. This easily
implies that the Mi satisfy all geometric constraints in Theorem A.

To prove Theorem B, we put k = 3, fix a rank 2 bundle ζ over
P and look at the pullbacks of ζ ⊕ ǫl−2 to Mi. By the same reasons
as before, the total spaces of these pullbacks have metrics satisfying all
geometric restrictions of Theorem B with souls isometric to Mi. Another
topological argument then shows that with an appropriate choice of ζ,
the total spaces of the pullbacks are diffeomorphic to S2 × S2 × S3 ×
S3 × R

l if l > 10.
To prove Theorem C, we modify the construction in the proof of The-

orem B to produce a manifold with infinitely many non-diffeomorphic
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souls whose normal bundles have non-trivial rational Euler classes. We
then show that for such a manifold, all elements of a connected compo-
nent of Rsec≥0(M)/Diff(M) have diffeomorphic souls.
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3. Proof of Proposition 1.2

Proof. Let α, β, γ be the standard basis of H2(S2 × S2 × S2). By
Lemma A.1 in the appendix, for some m > 0, there exists a closed
manifold M6 and a smooth homotopy equivalence f : M → S2×S2×S2

such that p1(M) = f∗(mβ ∧ γ).

Consider the principalT 3 bundleT 3 p
→ S3×S3×S3 → S2×S2×S2 and

let Q = f∗(p) be its pullback. Choose a Riemannian metric g on Q which
is invariant under theT 3 action. For any subtorus T 2 ⊂ T 3, the quo-
tient space Q/T 2 is naturally a principal S1-bundle over Q/T 3 = M6.
Clearly, any principal S1- bundle over M6 with indivisible Euler class
can be realized in this way. Let us denote the subtorus correspond-
ing to the bundle with Euler class (a, b, c) by T 2

a,b,c. Here, the Eu-
ler class is written with respect to the natural product basis α, β, γ of
H2(M6) ∼= H2(S2 × S2 × S2).

By Lemma A.2, all the quotients Q/T 2
a,b,c with the induced submer-

sion metrics satisfy | sec | ≤ C,diam ≤ D for some C, D > 0.
Also from Lemma A.3, we see that all the spaces Na,b = Q/T 2

a,b,0 with

(a, b) = 1 are homotopy equivalent to S2 × S2 × S3.
Now, for π : Na,b → M with (a, b) = 1, we have π∗(α) = −bω, π∗(β) =

aω, π∗(γ) = γ and thus π∗(β ∧ γ) = aω ∧ γ, where ω ∧ γ is the gener-
ator of H4(Na,b). Therefore, p1(Na,b) = π∗(p1(M)) = amω ∧ γ. This
means that all manifolds Na,b with distinct a and (a, b) = 1 have distinct
Pontrjagin classes and thus are mutually non-homeomorphic.

Finally, observe that crossing the manifolds Na,b with round spheres
produces examples satisfying the conclusion of Theorem 1.2 in all di-
mensions ≥ 8. q.e.d.

4. Proof of Theorem A

Proof. Fix k ≥ 3.
Consider the standard free T 3 action on S3×S3×S3 giving rise to the

bundle T 3 → S3 ×S3 ×S3 → S2 ×S2 ×S2. For any subtorus T 2 ⊂ T 3,
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the homogeneous space S3 × S3 × S3/T 2 is naturally a principal S1-
bundle over S3 × S3 × S3/T 3 = S2 × S2 × S2. Clearly, any principal
S1-bundle over S2 ×S2 ×S2 with indivisible Euler class can be realized
in this way. Let us denote the subtorus corresponding to the bundle
with Euler class (a, b, c) by T 2

a,b,c. Here, the Euler class is written with

respect to the natural product basis α, β, γ of H2(S2 × S2 × S2). Let
Na,b,c be the corresponding total space and π : Na,b,c → S2 × S2 × S2

be the natural projection.
By Lemma A.3, Na,b,0 is homotopy equivalent to S2 × S2 × S3 if

(a, b) = 1.
Let us fix a representation ρ : T 3 → SO(2) given by the weight

(p, q, r). Look at the associated R
2 bundle ξ over S2 ×S2 ×S2 given by

S3 ×S3 ×S3 ×T 3 R
2. Its Euler class is (p, q, r). Let η = ξ⊕ ǫk−1 and let

ηS be the corresponding sphere bundle Sk → P
ηS

→ S2 × S2 × S2 (here
and in what follows, ǫm denotes a trivial R

m-bundle).
Next, look at the pullback of η to Na,b,0. It can be written as S3 ×

S3 × S3 ×T 2

a,b,0
R

2 × R
k−1. We will denote this bundle by ηa,b. Let

Sk → Ma,b

ηS
a,b
→ Na,b,0 be the corresponding sphere bundle over Na,b,0.

We claim that by choosing an appropriate ρ : T 3 → SO(2) and by
varying a, b the manifolds Ma,b provide examples satisfying the conclu-
sion of Theorem A.

Let us first check the geometric conditions.
Observe that we can write η and ηS as S3 × S3 × S3 ×T 3 R

k+1,
S3 × S3 × S3 ×T 3 Sk respectively. Here, T 3 acts on S3 × S3 × S3 by
the canonical homogeneous action and on R

k+1 and Sk via ρ followed
by the canonical inclusion SO(2) →֒ SO(k + 1).

Hence, Ma,b = S3 × S3 × S3 ×T 2

a,b,0
Sk.

Therefore, by Lemma A.2, when equipped with the induced quotient
metrics, all total spaces have uniform curvature bounds 0 ≤ sec ≤ C for
some C > 0 and diam ≤ D for some D > 0.

Next, let us check that Ric(Ma,b) > 0. Obviously, Ric(Ma,b) ≥ 0.
Suppose there exists x0 ∈ TpMa,b such that Ric(x0) = 0. Let x̃0 be its

horizontal lift to Tp̃(S
3×S3×S3×Sk). By O’Neill’s formula, this means

that sec(x̃0, x) = 0 for any horizontal vector x ∈ Tp̃(S
3 ×S3 ×S3 ×Sk).

Let h and m, respectively, denote the horizontal and the vertical tangent
space at p̃.

Then, x̃0 contains a non-trivial component tangent to some sphere
factor. By construction, the projection of m to the tangent space to
that sphere is at most one dimensional. Therefore, we can find a vector
x tangent to that spherical factor and perpendicular to both m and x̃0.
Then, sec(x̃0, x) > 0 which is a contradiction.
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To finish the proof of Theorem A, it remains to show that among
the spaces Ma,b, there are infinitely many homotopy equivalent, but
mutually non-homeomorphic ones.

First, we claim that there exists an integer m such that for any ρ
with weight (mp, mq, mr), all spaces Ma,b are homotopy equivalent to

S2 × S2 × S3 × Sk if a and b are relatively prime.

Look at the sphere bundle Sk → P
η
→ S2 × S2 × S2.

Up to fiberwise homotopy equivalences, such bundles are classified
by the homotopy classes of maps in [S2 × S2 × S2, BAut(Sk)]. Here,
BAut(Sk) is the classifying space for Aut(Sk) which is the identity
component of the monoid of self-homotopy equivalences of Sk.

Moreover, in our case, by construction, the classifying map into
BAut(Sk) corresponding to the bundle η factors through BAut0(S

3)
where Aut0(S

k) is the subset of Aut(Sk) fixing a base point.
It is a well known fact that if k is odd, then πi(Aut0(S

k)) is finite for
any i. Indeed, it is easy to see that Aut0(S

k) is the identity component
of Ωk(Sk), and therefore, for any i > 0, πi(Aut0(S

k)) ∼= πk+i(S
k), which

is always finite if k is odd.
A standard obstruction theory argument now implies that [S2×S2×

S2, BAut0(S
3)] is finite.

Claim. There is an m > 0 such that if e(ξ) is divisible by m, then
the classifying map fη : S2 × S2 × S2 → BAut0(S

3) is homotopic to a
point.

For any m > 0, let gm : S2 → S2 be a map of degree m.
Let Fm = gm × gm × gm : S2 × S2 × S2 → S2 × S2 × S2. Clearly,

e(F ∗
mξ) = me(ξ) for any rank 2 bundle ξ over S2 × S2 × S2. Hence, if

fη : S2×S2×S2 → BAut0(S
3) is the classifying map for the Sk bundle

coming from ξ, then fη ◦ Fm is the classifying map for the Sk bundle
coming from the rank 2 bundle with Euler class equal to me(ξ).

The claim now follows from a standard obstruction theory argument.
Let us give a brief sketch. If f1, f2 : S2 × S2 × S2 → BAut0(S

3) are
two maps which are homotopic on the (i − 1)-skeleton, the obstruction
to extending this homotopy to the i-skeleton lies in Γi = H i(S2 × S2 ×
S2, πi(BAut0(S

3)) which is finite by what has been said above. Let
mi = |Γi|. By naturality, the obstruction corresponding to the maps
f1 ◦ Fmi , f2 ◦ Fmi is zero. Repeating this process finitely many times,
we see that for m = m1 · . . . · m6, and any f1, f2, the maps f1 ◦ Fm,
f2 ◦Fm are homotopic. By taking f1 to be a constant map, we see that
for any f : S2 × S2 × S2 → BAut0(S

3), the map f ◦ Fm is homotopic
to a constant. This proves our claim.

From now on, we will assume that e(ξ) is divisible by m and hence,

the bundle Sk → P
ηS

→ S2 × S2 × S2 is fiberwise homotopically trivial.
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Of course, the same is true for any pullback of this bundle and hence,
ηS

a,b is fiberwise homotopically trivial for any a, b. Thus, its total space

Ma,b is homotopy equivalent to Na,b,0 × Sk which, by Lemma A.3, is

homotopy equivalent to S2 × S2 × S3 × Sk if (a, b) = 1.
Let us finally show that for appropriately chosen p, q, r, infinitely

many of the spaces Ma,b have distinct Pontrjagin classes and thus are
mutually not diffeomorphic.

Consider the bundle π : S1 → Q → S2 × S2 with Euler class (a, b)
with respect to the canonical generators α, β of H2(S2 × S2). Let ω be
the generator of H2(Q). Then, we see from the Gysin sequence that
π∗(α) = −bω, π∗(β) = aω.

Now, look at the bundle π : Ma,b → P . Let ω, γ be the natural basis
of H2(Ma,b). Then, by the above, we have that π∗(α) = −bω, π∗(β) =
aω, π∗(γ) = γ. (We purposefully slightly abuse notations by denoting
by γ elements of both H2(P ) and H2(Ma,b).)

We compute

p1(ζa,b) = p1(ξa,b)

= e(ξa,b) ∪ e(ξa,b)

= π∗(pα + qβ + rγ) ∪ π∗(pα + qβ + rγ)

= ((−pb + qa)ω + rγ) ∪ ((−pb + qa)ω + rγ)

= 2(−pb + qa)rω ∧ γ.

Notice that ω ∧ γ is the generator of H4(Ma,b) ∼= Z.

From the bundle Sk → Ma,b

ηS
a,b
→ S2 × S2 × S3, using the Whitney

formula, we see that p1(Ma,b) = p1(ηa,b) + ηS∗
a,b(p1(S

2 × S2 × S3)) =

2(−pb + qa)rω ∧ γ.
Clearly, for fixed p, q, r, infinitely many of these spaces have distinct

p1. For example, if p = 0, q = mq1 6= 0, r = mr1 6= 0, the spaces Ma,b

with distinct a will work, as in this case p1(Ma,b) = 2qar.
By the above, all of these spaces are homotopy equivalent to S2 ×

S2×S3×Sk and hence, they satisfy all conclusions of Theorem A. q.e.d.

Remark 4.1. Observe that unlike the examples constructed in [5],
the manifolds constructed in the proof of Theorem A have infinite π2.
This is actually necessary by the π2-finiteness theorem [30].

Also, all our examples are constructed as quotients of a fixed manifold
E (in our case E = S3 × S3 × S3 × Sk) by free torus actions. This is
also necessary by [30, Corollary 0.2].

5. Proof of Theorem B

We will use the notation and constructions employed in the proof of
Theorem A.
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We will make use of the following fact from algebraic topology
which follows from a combination of results of Haefliger and Sieben-
mann [23, 32].

Fact. Let R
l → Ei → Mn

i , (i = 1, 2) be two vector bundles over
smooth closed manifolds. Suppose f : E1 → E2 is a tangential homo-
topy equivalence and l ≥ 3, l > n.

Then, f is homotopic to a diffeomorphism (cf. [5] for details).

In the proof of Theorem A, let now k = 3.

Recall that from the construction of P as S3 × S3 × S3 ×T 3 S3, we
see that the map Z

3 ∼= π2(P ) → π1(T
3) ∼= Z

3 is an isomorphism.
Consider a representation φ : T 3 → SO(2). It gives rise to a rank 2

bundle ζ over P . Its total space can be written as Eζ = S3 ×S3 ×S3 ×
S3 ×T 3 R

2, where T 3 acts on S3 ×S3 ×S3 ×S3 by the action described
above and on R

2 by φ. By the above, choosing appropriate φ, we can
realize in this way any rank 2 bundle over P with Euler class (x, y, z)
with respect to the basis α, β, γ of H2(P ) ∼= H2(S2 × S2 × S2).

Recall that by the proof of Theorem A, we can choose ξ so that
e(ξ) = (0, q, r).

Let us choose ζ so that e(ζ) = (ηS)∗(0, q,−r) where we recall that ηS

is the sphere bundle S3 → P → S2 × S2 × S2.
Let ζa,b be the pullback of ζ to Ma,b via the natural projection

π : Ma,b → P .

We will show that infinitely many of the stabilized bundles ζ̃a,b =

ζa,b ⊕ ǫl−2 satisfy the statement of Theorem B if l > 10.

Let us first check the geometric conditions. The total space of ζ̃a,b can

be written as E(ζ̃a,b) = S3×S3×S3×S3×T 2

a,b
R

l. Here, T 2
a,b ⊂ T 3 is the

subtorus which corresponds to the bundle S1 → Ma,b → P . Therefore,
by Lemma A.2, we have uniform curvature bounds. Note that while the
manifolds in question are not compact, it is easy to see that curvature
remains uniformly bounded at infinity, so that Lemma A.2 still applies.
Alternatively, rather than taking R

l with a flat metric, we can take it
with a rotationally symmetric non-negatively curved metric isometric

to Sl−1 × R+ at infinity. Then, the uniform curvature bounds follow
directly from Lemma A.2.

Of course, the soul of E(ζ̃a,b) is isometric to Ma,b, and thus, all the
souls have bounded diameter and are not homeomorphic for different a.

Next, we will show that infinitely many of the bundles ζ̃a,b have dif-
feomorphic total spaces.

First, by the same computation as in the proof of Theorem A, we
find p1(ζ̃a,b) = −2qar and hence, p1(E((ζ̃a,b)) = p1(ζ̃a,b) + p1(Ma,b) =
−2qar + 2qar = 0.
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Since Pontrjagin classes determine a bundle up to finite ambiguity,
infinitely many of the spaces E(η̃a,1) are tangentially homotopy equiv-
alent and hence diffeomorphic.

This observation is already sufficient to produce examples of mani-
folds with infinitely many non-negatively pinched metrics whose souls
have bounded diameter and are mutually non-homeomorphic. Unfor-
tunately, it does not give us the precise diffeomorphism type of these
manifolds.

However, with a little more work, we can show that, in fact, all

manifolds E(ζ̃a,b) with (a, b) = 1 are diffeomorphic to S2 × S2 × S3 ×
S3 × R

l.
Look at the following commutative diagram:

S3 −−−−→ Ma,b

ηS
ab−−−−→ Na,b,0

π





y

π





y

S3 −−−−→ P
ηS

−−−−→ S2 × S2 × S2

First, notice that the bundle ζ is the pullback via ηS of the bundle ζ̂
over S2×S2×S2 with “the same” Euler class. Bundle ζ̂ can be written
as S3 × S3 × S3 ×T 3 R

2 where T 3 acts on R
2 by the representation φ.

Similarly, ζa,b = ηS∗
a,b(ζ̂a,b).

Next, observe that TE(ζ̃a,b)|Mab
= TMa,b⊕ ζa,b⊕ ǫl−2 = TMa,b⊕ ǫ1⊕

ζa,b ⊕ ǫl−3 = ηS∗
a,bTNa,b,0 ⊕ ηS∗

a,b(ξa,b ⊕ ǫ2) ⊕ ζa,b ⊕ ǫl−3 = ηS∗
a,b(TNa,b,0 ⊕

ξa,b ⊕ ζ̂a,b ⊕ ǫl−1).
Since Na,b,0 is the total space of an S1 bundle over S2 × S2 × S2, it

immediately follows that TNa,b,0 ⊕ ǫl−1 = el+6. (Alternatively, this is
also clear since Na,b,0 is diffeomorphic to S2 × S2 × S3 by [4].)

Thus, TE(ζ̃a,b)|Mab
= ηS∗

a,b(ξa,b ⊕ ζ̂a,b) ⊕ ǫl+6 = ηS∗
a,bπ

∗(ξ ⊕ ζ̂) ⊕ ǫl+6 =

ηS∗
a,bπ

∗(ǫ4) ⊕ ǫl+6 = ǫ10+l. Here, the next to last equality holds because

by the choice of ζ, we have that e(ζ̂) = (0, q,−r) and e(ξ) = (0, q, r) so

that ξ ⊕ ζ̂ = ǫ4 by Lemma A.4 below.
Thus, E(ζ̃a,b) is tangentially equivalent and hence, diffeomorphic to

S2 × S2 × S3 × S3 × R
l. q.e.d.

Remark 5.1. Using the same procedure as in the proof of Theo-
rem B, we can also construct manifolds with non-trivial p1 which admit
infinitely many non-negatively pinched metrics with non-homeomorphic
souls.
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6. Proof of Theorem C

We will use the same notations as in the proofs of Theorem A and
Theorem B. Let us first construct the Riemannian manifolds in ques-
tion. The construction is very similar to the one used in the proof of
Theorem B. Therefore, we will skip some details.

Let m be as in the proof of Theorem A. Let us fix positive integers
n and k and look at a rank 2 vector bundle ξ over S2 × S2 × S2 with
Euler class m(0, 1, k). Let S3 → P → S2×S2×S2 be the sphere bundle
in ξ ⊕ ǫ2. Look at the rank 2 bundles ζ1, ζ2 over P with Euler classes
mπ∗(0, 1,−k), mπ∗(n+1, n, 0), respectively. Now, look at the S1 bundle
πab : Na,b → P over P with Euler class π∗(a, b, 0), where (a, b) = 1 and
pull back ζ = ζ1 ⊕ ζ2 to Na,b.

By the proof of Theorem A, Na,b is homotopy equivalent to S2×S2×
S3 × S3 for any pair of integers a, b with (a, b) = 1.

As before, we also see that the total space of the bundle π∗
a,b(ζ) admits

a complete metric with 0 ≤ sec ≤ C and the soul isometric to Na,b with
diam(Na,b) ≤ D where C, D are independent of a, b.

A computation similar to the one in the proof of Theorem B shows
that for the first Pontrjagin and Euler classes of the bundles in question,
we have

p1(Na,b) = 2m2akω ∧ γ, p1(π
∗
a,b(ζ)) = −2m2akω ∧ γ,

and

e(π∗
a,b(ζ)) = m2(−b(n + 1) + an)kω ∧ γ.

Set a = 1 + r(n + 1), b = 1 + rn where r ∈ N and let Nr =
N1+r(n+1),1+rn.

Then

(1) p1(Nr) = 2m2akω ∧ γ, p1(π
∗
r (ζ)) = −2m2akω ∧ γ,

and

(2) e(π∗
r (ζ)) = −m2kωγ.

This means that the manifolds Nr have distinct Pontrjagin classes
and hence are mutually non-homeomorphic.

Let Er be the total space of the bundle π∗
r (ζ). From the above, we

see that

(3) p1(Er) = 2m2akω ∧ γ − 2m2akω ∧ γ = 0.

Look at the spaces Xr = Er × TS4 with the product metric where
we take the natural non-negatively curved metric on TS4 given by the
submersion metric on TS4 = SO(5) ×SO(4) R

4.
We claim that the spaces Xr fall into finitely many diffeomorphism

classes.
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Indeed, let fr : N1 → Er be the homotopy equivalence given by the
homotopy equivalence of the souls followed by the embedding of the
soul into Er. Note that H4(Nr) ∼= H4(S2 × S2 × S3 × S3) ∼= Z. By (2),
by possibly composing fr with an orientation reversing self homotopy
equivalence of N1, we can assume that f∗

r (e(π∗
r (ζ))) = e(π∗

1(ζ)).
Observe that Xr is the total space of a rank 4 + 4 = 8 vector bundle

over Nr × S4 and dimNr × S4 = 10 + 4 = 14. Since fr × IdS4 is a
homotopy equivalence and 3 ·8 > 14+2, we are in the metastable range
and by Haefliger’s Embedding Theorem [23], fr × IdS4 is homotopic to
an embedding gr. Since the codimension of Nr × S4 in Xr is = 8 > 3,
by [32], Xr is diffeomorphic to the total space of the normal bundle νgr .

From (1) and (3), using the Whitney formula, we see that all νgr have
the same Pontrjagin classes. From (2), we see also that all νgr have the
same non-trivial Euler classes equal to −2m2kω ∧ γ ∧ [dvol(S

4)]. That
is because the rational Euler class of νgr is a homotopy invariant of gr

which can be defined homologically by the formula

〈e(νgr), x〉 = gr∗[X1] · gr∗(x)

for any x ∈ H8(X1) where · is the algebraic intersection number. Thus,

e(νgr) = f∗
r (e(π∗

r (ζ)) ∪ e(S4)) = −m2kωγ ∧ 2[dvol(S
4)]

by (2) and the fact that χ(S4) = 2. Here, we disregard the difference
between rational and integer coefficients since all involved cohomology
groups are torsion free. See also [6] for a more detailed discussion of
invariants of maps.

Thus, we see that all the bundles νgr have the same Euler and Pon-
trjagin classes. Since Euler and Pontrjagin classes determine a bundle
up to a finite ambiguity, the bundles νgr fall into finitely many isomor-
phism classes. Hence, the total spaces of νgr fall into finitely many
diffeomorphism classes. By the above, the total space of νgr is diffeo-
morphic to Xr and hence all manifolds Xr also fall into finitely many
diffeomorphism classes.

Thus, after passing to a subsequence, we can assume that all Xri are
diffeomorphic to M = Xr1

.
We claim that M satisfies the conclusion of the Theorem. Observe

that Xr carries by construction a natural metric of 0 ≤ sec ≤ C with
soul isometric to Nr×S4 of diam ≤ D. Hence, all the souls have distinct
Pontrjagin classes by (1) and thus are mutually not homeomorphic.

Since for any non-negatively curved metric g and any self-diffeomor-
phism of the underlying manifold φ, the souls of g and φ∗(g) are diffeo-
morphic, the statement of Theorem C will follow from the following

Lemma 6.1. Let (M, gt), t ∈ [0, 1] be a continuous family of non-

negatively curved metrics such that the normal bundle to the soul of

(M, g0) has non-trivial rational Euler class.
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Then, all the souls of (M, gt) are diffeomorphic.

Proof. Let St be the soul of (M, gt). We claim that the family
(St, gt|St) is continuous in Gromov–Hausdorff topology. Observe that
since St →֒ M is a homotopy equivalence, by the same argument as
above, the rational Euler class of νSt is non-zero for any t. Therefore,

it is enough to show that St
G−H
→ S0 as t → 0.

Let πt : M → St be the Sharafutdinov retraction with respect to gt.
Let dt be the inner metric on M induced by gt. Since gt → g0

uniformly on compact sets, we clearly have that for any x, y ∈ S0,
dt(x, y) ≤ d0(x, y) + ǫt where ǫt → 0 as t → 0. Since πt is distance non-
increasing, we see that dt(πt(x), πt(y)) ≤ d0(x, y) + ǫt for any x, y ∈ S0.
Since πt : S0 → St is a homotopy equivalence, it must be onto and hence
diamSt ≤ diamS0 + ǫt.

From the assumption on the Euler class, we see that St ∩ S0 6= ∅ for
any t and since, by the above, all St have uniformly bounded diameters,
they all must lie in some fixed closed ball B̄(p, D) where the ball is taken
with respect to d0. Again, using that gt converges to g0 uniformly on
compact sets, we have that d0(x, y) ≤ dt(x, y) + ǫt for any x, y ∈ St.
Hence, d0(π0(x), π0(y)) ≤ dt(x, y)+ ǫt for any x, y ∈ St. Combining this
with the above, we finally get that

d0(π0(πt(x)), π0(πt(x))) ≤ d0(x, y) + 2ǫt for any x, y ∈ S0.

By Lemma A.5, this implies that for some ǫ̃(t) →
t→0

0

d0(x, y) − 2ǫ̃t ≤ d0(π0(πt(x)), π0(πt(x)))

≤ d0(x, y) + 2ǫt for any x, y ∈ S0.

Hence, π0◦πt : S0 → S0 is a max(ǫt, ǫ̃t)-Hausdorff approximation and

the same is true for π0 : (St, dt) → (S0, d0) which proves that St
G−H
→ S0

as t → 0.
Since St is a smooth manifold for any t and dimSt = dimS0, by

Yamaguchi’s Stability theorem [36], this implies that St is diffeomorphic
to S0 for all small t. q.e.d.

As observed before, Lemma 6.1 implies that all elements of a con-
nected component of Rsec≥0(M)/Diff(M) have diffeomorphic souls. This
immediately implies the statement of Theorem C. q.e.d.

Remark 6.2. We suspect that Lemma 6.1 is true without any as-
sumptions on the rational Euler class. If this holds true, then the exam-
ples constructed in the proof of Theorem B would directly yield Theo-
rem C.
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Appendix A.

We will need the following lemma which is an easy consequence of
some well-known topological results:

Lemma A.1. There exists an integer m such that for any element

p ∈ H4(S2 × S2 × S2), there exists a closed smooth manifold M6 and a

homotopy equivalence f : M → S2×S2×S2 such that f∗(p) = mp1(M).

Proof.

By the Browder–Novikov Surgery Theorem [8, Thm. II.3.1, Cor.
II.4.2], given a vector bundle ξ over a simply connected manifold X6,
there exists a manifold M6 and a homotopy equivalence M6 → X, such
that f∗(ξ) is isomorphic to the stable normal bundle of M if and only if
the stable spherical fibration coming from ξ is isomorphic to the Spivak
normal spherical fibration ν(X).

If X = S2 × S2 × S2, we obviously have that ν(X) is trivial. Recall
that stable spherical fibrations are classified by the homotopy classes
of maps into the classifying space BG and that all homotopy groups
of BG are finite. The same obstruction theory argument as in the
proof of Theorem A shows that there exists an m1 such that for any
f : S2×S2×S2 → BG, the map f ◦Fm1

is homotopic to a point. Recall
here that Fm = gm × gm × gm : S2 × S2 × S2 → S2 × S2 × S2 where
gm : S2 → S2 has deg gm = m.

Next, observe that by looking at Whitney sums of rank 2 bundles, we
can realize any even element of H4(S2×S2×S2) as the first Pontrajagin
class of a vector bundle.

Combining these two facts, we obtain the desired claim with m =
2m1. q.e.d.

The geometric part of the proof of Theorem A is based on the fol-
lowing lemma, which is originally due to Eschenburg [13, Prop 22]. For
convenience of the reader, we include a short outline of its proof.

Lemma A.2. Let (M, g) be a closed Riemannian manifold on which

a k-dimensional torus T k acts freely and isometrically. Then, there exist

C, D > 0 such that for any subtorus Tm ⊂ T k, the quotient manifold

M/Tm, when equipped with the induced quotient metric, satisfies

| sec(M/Tm)| ≤ C and diam(M/Tm) ≤ D.

Proof. The uniform diameter bound is obvious, and we need to find
a uniform bound on the O’Neill term in the Gray–O’Neill curvature
formula for Riemannian submersions. As the formula is local, it makes
sense to look at the local quotients of M by R

m ⊂ R
k where R

k is
the universal cover of T k. The compactness of the Grassmannian of
m-planes in R

k now implies the result. q.e.d.
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Lemma A.3. Let S1 → P → S2 × S2 be a principal S1 bundle such

that P is simply connected. Then P is homotopy equivalent to S2 ×S3.

In fact—though we will not need this fact in this paper—by a theorem
of Barden [4], P is diffeomorphic to S2 × S3.

Proof. It is easy to see that H2(P ) ∼= H3(P ) ∼= Z.
We can write P as the homogeneous space S3 × S3/S1 for some

S1 ⊂ S3 × S3. From the Gysin sequence, it is easy to see that the
map H3(S

3 × S3) → H3(P ) is onto. Since, by the Hurewicz theorem,
π3(S

3 × S3) ∼= H3(S
3 × S3) and since, by the long exact homotopy

sequence, π3(P ) ∼= π3(S
3 × S3) we see that π3(P ) → H3(P ) is also

surjective. Let f : S2 → P be a map representing a generator of π2(P ) ∼=
H2(P ) ∼= Z. Let g : S3 → P be a map representing a generator of
H3(P ) ∼= Z. Let ĝ : S3 → S3 × S3 be a lift of g. Such a lift exists by
the previous discussion. Consider the map F : S2 × S3 → P given by
F (x, y) = ĝ(y) · f(x), where x ∈ S2, y ∈ S3 and where the · represents
the homogeneous space action of S3 × S3 on P . It is straightforward
to check that F induces an isomorphism on homology and thus is a
homotopy equivalence. q.e.d.

Lemma A.4. Let ξ1, ξ2 be rank 2 bundles over S2 × S2 such that

e(ξ1) = (q, r) and e(ξ2) = (q,−r) with respect to the canonical basis of

H2(S2 × S2).
Then, ξ1 ⊕ ξ2 is trivial.

Proof. A direct computation shows that w2(ξ1 ⊕ ξ2) = p1(ξ1 ⊕ ξ2) =
e(ξ1 ⊕ ξ2) = 0.

Since, w2(ξ1 ⊕ ξ2) = 0, its classifying map f into BSO(4) factors as
f = g ◦ c. where c : S2 × S2 → S4 is the collapsing map of degree 1.
Thus, ξ1 ⊕ ξ2 = c∗(η) where η is a rank 4 bundle over S4. Since c∗ is an
isomorphism on H4, p1(η) = e(η) = 0 and hence, η is trivial. q.e.d.

Lemma A.5. Let S be a closed Riemannian manifold. There exists

a function δ : R+ → R+ such that δ(ǫ) → 0 as ǫ → 0 and such that the

following holds. If f : S → S is a homotopy equivalence satisfying

d(f(x), f(y)) ≤ d(x, y) + ǫ for any x, y ∈ S,

then

d(x, y) − δ(ǫ) ≤ d(f(x), f(y)) ≤ d(x, y) + ǫ for any x, y ∈ S.

Proof. Suppose Lemma A.5 is false. Then, there exists a sequence
fi : S → S as well as a sequence ǫi → 0 satisfying

d(f(x), f(y)) ≤ d(x, y) + ǫi for any x, y ∈ S
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such that for some δ > 0 there exist xi, yi ∈ S such that d(f(xi), f(yi)) ≤
d(xi, yi) − δ. By Arzela–Ascoli and the compactness of S, we can as-
sume that fi uniformly converges to f : S → S and xi → x0, yi → y0.
Then, f is 1-Lipschitz and d(f(x0), f(y0)) ≤ d(x0, y0) − δ. By uni-
form convergence fi is homotopic to f for large i. Hence, f is onto. A
surjective 1-Lipschitz self-map of a closed manifold has to preserve the
volume which easily implies that it must be an isometry. Therefore, we
must have d(x0, y0) = d(f(x0), f(y0)). This is a contradiction and hence
Lemma A.5 is true. q.e.d.
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