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PLURISUBHARMONIC FUNCTIONS AND THE
STRUCTURE OF COMPLETE KÄHLER MANIFOLDS

WITH NONNEGATIVE CURVATURE

LEI NI & LUEN-FAI TAM

Abstract
In this paper, we study global properties of continuous plurisubharmonic
functions on complete noncompact Kähler manifolds with nonnegative bi-
sectional curvature and their applications to the structure of such mani-
folds. We prove that continuous plurisubharmonic functions with reasonable
growth rate on such manifolds can be approximated by smooth plurisubhar-
monic functions through the heat flow deformation. Optimal Liouville type
theorem for the plurisubharmonic functions as well as a splitting theorem
in terms of harmonic functions and holomorphic functions are established.
The results are then applied to prove several structure theorems on complete
noncompact Kähler manifolds with nonnegative bisectional or sectional cur-
vature.

0. Introduction

In this paper, we are interested in the class of complete noncompact
Kähler manifolds with nonnegative holomorphic bisectional curvature.
We shall first give a detailed study on the properties of heat flow with
plurisubharmonic functions as initial data. Then we shall use the re-
sults to prove a Liouville theorem on plurisubharmonic functions and a
splitting theorem related to harmonic and holomorphic functions. All
these results will then be applied to obtain structure theorems on Kähler
manifolds with nonnegative sectional or holomorphic bisectional curva-
ture.
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One motivation of the present work is a program proposed by Yau
[51, p. 622] on the study of parabolic manifolds: “The question is to
demonstrate that every noncompact Kähler manifold with positive bi-
sectional curvature is biholomorphic to the complex euclidean space.
If we only assume the nonnegativity of the bisectional curvature, the
manifold should be biholomorphic to a complex vector bundle over a
compact Hermitian symmetric space.” As pointed out in [51], an im-
portant reason for this program comes from the celebrated results of
Cheeger-Gromoll [5] and Gromoll-Meyer [16] on complete noncompact
Riemannian manifolds with nonnegative or positive sectional curvature.
It is also motivated by the work of Greene-Wu [13] on the Steinness of
Kähler manifolds. In both cases, a key ingredient is to study Busemann
functions.

In [5] it was proved that the Busemann function (with respect to all
geodesic rays from a fixed point) on a complete noncompact Rieman-
nian manifold with nonnegative sectional curvature is Lipschitz contin-
uous, convex and is an exhaustion function. Then it was proved that a
complete noncompact Riemannian manifold with nonnegative sectional
curvature is diffeomorphic to the normal bundle over a compact totally
geodesic submanifold without boundary, which is totally convex and is
called the ‘soul’ of the manifold.

On a Kähler manifold with nonnegative holomorphic bisectional cur-
vature, even though the Busemann function is no longer convex, it is
still plurisubharmonic. This was proved by Wu [45]. Moreover, it is in
fact strictly plurisubharmonic at the point where the holomorphic bisec-
tional curvature is positive. Using this fact, it was proved by Greene-Wu
that if the manifold has nonnegative sectional curvature and positive
holomorphic bisectional curvature, then it is Stein because in this case
the Busemann function is also an exhaustion function, see [12]-[15], [45]-
[46] for more results. In the proof, it was first shown that a continuous
strictly plurisubharmonic function can be approximated uniformly by a
smooth one. The result of Grauert [10] can then be applied to conclude
that the manifold is Stein.

If the manifold has nonnegative holomorphic bisectional curvature,
then the Busemann function is only (continuous) plurisubharmonic in-
stead of strictly plurisubharmonic. In order to use the Busemann func-
tion, it is desirable to approximate it by a smooth one. In general,
it seems unlikely that a continuous plurisubharmonic function can be
approximated by C∞-plurisubharmonic functions. However, we shall
prove the following rather general results on the solution of the heat
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equation with continuous plurisubharmonic function as initial data (see
Theorem 3.1).

Theorem 0.1. Let Mm be a complete noncompact Kähler mani-
fold with nonnegative holomorphic bisectional curvature and let u be a
continuous plurisubharmonic function on M satisfying

|u|(x) ≤ C exp(ar2(x))(0.1)

for some positive constants a, C, where r(x) is the distance of x from a
fixed point. Let v be the solution of the heat equation with initial data u.
There exists T0 > 0 depending only on a and there exists T0 > T1 > 0
such that the following are true:

(i) For 0 < t ≤ T0, v(·, t) is defined and is a smooth plurisubharmonic
function.

(ii) Let

K(x, t) = {w ∈ T 1,0
x (M)| vαβ̄(x, t)wα = 0, for all β}

be the null space of vαβ̄(x, t). Then for any 0 < t < T1, K(x, t) is
distribution on M . Moreover the distribution is invariant under
parallel translations.

(iii) If the holomorphic bisectional curvature is positive at some point,
then v(x, t) is strictly plurisubharmonic for all 0 < t < T1 for all
0 < t < T1 unless u is pluriharmonic.

In particular, if u is a continuous plurisubharmonic function satis-
fying (0.1), then it can be approximated by smooth plurisubharmonic
functions uniformly on compact subsets. In application, we shall make
use of the properties of v(x, t) in the above theorem rather than the
result on approximation.

The proof of Theorem 0.1 relies on a general maximum principle
for Hermitian symmetric (1,1) tensor η which satisfies a linear heat
equation on a complete noncompact Kähler manifold with nonnegative
holomorphic bisectional curvature. We obtain a maximum principle for
η under some weak growth conditions on the rate of the average of ||η||,
the norm of η, over geodesic balls. Since there is no pointwise bound on
||η||, we shall apply an indirect cutoff argument together with careful
estimates on the solutions of the heat equation through extensive uses
of the fundamental work of Li and Yau [27].
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In [32], the first author raised the following question:

On a complete noncompact Kähler manifold with nonnegative Ricci
curvature, is a plurisubharmonic function of sub-logarithmic growth a
constant?

It is well-known that for the complex Euclidean space C
m, the answer

is positive. An affirmative answer to the above question is also a natu-
ral analogue, for plurisubharmonic functions, of Yau’s Liouville theorem
[49] for positive harmonic functions on Riemannian manifolds with non-
negative Ricci curvature. An immediate application of the Theorem 0.1
is to give an affirmative answer to the above question on Kähler mani-
folds with nonnegative holomorphic bisectional curvature. Namely, we
have the following (see Theorem 3.2):

Theorem 0.2. Let M be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature. Let u be a contin-
uous plurisubharmonic function on M . Suppose that

lim sup
x→∞

u(x)
log r(x)

= 0.

Then u must be a constant.

Using Theorem 0.2 we obtain the following interesting results (see
Theorem 4.1):

Theorem 0.3. Let Mm be a complete noncompact Kähler mani-
fold with nonnegative holomorphic bisectional curvature. Suppose f is
a nonconstant harmonic function on M such that

lim sup
x→∞

|f(x)|
r1+ε(x)

= 0,(0.2)

for any ε > 0, where r(x) is the distance of x from a fixed point. Then f
must be of linear growth and M splits isometrically as M̃×R. Moreover
the universal cover M of M splits isometrically and holomorphically as
M̃ ′×C, where M̃ ′ is a complete Kähler manifold with nonnegative holo-
morphic bisectional curvature. Suppose that there exists a nonconstant
holomorphic function f on M satisfying (0.2). Then M itself splits as
M̃ × C.

A well-known result in [49, 8] says that if the growth rate of a har-
monic function on a complete noncompact Riemannian manifold with
nonnegative Ricci curvature is ‘close’ to constant functions, namely if it
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is of sublinear growth, then it must be constant. Similar to this, the first
result of Theorem 0.3 says that on a complete noncompact Kähler man-
ifold with nonnegative holomorphic bisectional curvature, if the growth
rate of a harmonic function is ‘close’ to linear, then it must be of linear
growth. On the other hand, for any δ > 0, the ‘round off’ cones with
metrics dr2 + r2 ds2

S1(1/
√

1+δ)
, where S1

(
1√
1+δ

)
is the circle with radius

1√
1+δ

, supports harmonic functions of growth r1+δ(x).
One might also want to compare the splitting result in Theorem 0.3

with some previous related results in [4, 24, 3]. In [4], it was proved that
if a complete noncompact Riemannian manifold with nonnegative Ricci
curvature contains a line then a factor R can be splitted isometrically.
In [24], it was proved that if a complete noncompact Kähler manifold
with nonnegative Ricci curvature with complex dimension m = n/2
supports n+1 independent linear growth harmonic functions, then it is
isometric and holomorphic to C

m. In [3], Li’s result was generalized to
the Riemannian case, and the conclusion is that the manifold is isometric
to Euclidean space. In [3], result on the splitting of the tangent cone in
terms of linear growth harmonic functions was obtained.

The second part of the paper is to study the structure of complete
noncompact Kähler manifolds with nonnegative holomorphic bisectional
curvature. The main tool is to use the heat flow with the Busemann
functions as initial data. As mentioned above, the Busemann function
is a continuous plurisubharmonic function on a complete noncompact
Kähler manifold with nonnegative holomorphic bisectional curvature.
Hence Theorem 0.1 will be very useful. It turns out that Theorem 0.3
will be useful in the study too.

Before we state our next result, let us first introduce some conditions
on a Kähler manifold. The first one is on the growth rate of volumes
of geodesic balls. M is said to satisfy (VGk) for k > 0, if there exists a
constant C > 0 such that

(VGk) Vo(r) ≥ Crk

for all r ≥ 1.
The other two conditions are on the decay of the curvature. Sup-

pose M has nonnegative scalar curvature R. M is said to satisfy the
curvature decay condition (CD) if there exists a constant C > 0 (which
might depend on o) such that∫

Bo(r)
R ≤ C

r
(CD)
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for all r > 0. M is said to satisfy the fast curvature decay condition
(FCD) if there is a constant C > 0, so that∫ r

0
s

(∫
Bo(s)

R(x)dx

)
ds ≤ C log(r + 2)(FCD)

for all r > 0. (FCD) means that the average of the scalar curvature de-
cays quadratically in the integral sense. Hence it is stronger than (CD).
Our next result is the following splitting theorem (see Theorem 4.2):

Theorem 0.4. Let Mm be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature.

(i) Suppose M is simply connected, then M = N×M ′ holomorphically
and isometrically, where N is a compact simply connected Kähler
manifold, M ′ is a complete noncompact Kähler manifold and both
N and M ′ have nonnegative holomorphic bisectional curvature.
Moreover, M ′ supports a smooth strictly plurisubharmonic func-
tion with bounded gradient and satisfies (VGk) and (CD), where
k is the complex dimension of M ′. If, in addition, M has nonneg-
ative sectional curvature outside a compact set, then M ′ is also
Stein.

(ii) If the holomorphic bisectional curvature of M is positive at some
point, then M itself supports a smooth strictly plurisubharmonic
function with bounded gradient and satisfies (VGm) and (CD),
where m is the complex dimension of M . If, in addition, M has
nonnegative sectional curvature outside a compact set, then M is
also Stein.

The conclusion on the volume growth in the first statement in (ii)
was first proved in [7] and the conclusion on curvature decay is a gener-
alization of a result in [7]. The last statement in (ii) is a generalization
of a result in [45]. Note that by [29, 19] (see also [2]), N in the theorem
is a compact Hermitian symmetric manifold, but we shall not use this
fact in the proof. Note also that N may not be present.

An immediate consequence of Theorem 0.4 is on the Steinness of
complete noncompact Kähler manifolds with nonnegative holomorphic
bisectional curvature. Recall that a complete noncompact Riemannian
manifold of dimension n with nonnegative Ricci curvature is said to have
maximum volume growth if Vx(r) ≥ Crn for some positive constant C
for all x and r. A result in [38] states that the Busemann function on
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a complete noncompact manifold with nonnegative Ricci curvature and
with maximum volume growth is an exhaustion function. Using this,
we prove as a corollary to Theorem 0.4 that a complete noncompact
Kähler manifold with nonnegative holomorphic bisectional curvature
and maximum volume growth is Stein. Here we assume neither that
the holomorphic bisectional curvature is positive, which implies that
the Busemann function is strictly plurisubharmonic, nor any curvature
decay conditions as in [6]. We also prove the Steinness for the case that
the manifold has a pole. This answers a question raised in [46, page
255] affirmatively. Recall that a Riemannian manifold is said to have a
pole if there is a point p in the manifold such that the exponential map
at p is a diffeomorphism.

To study M ′ (or M in Theorem 0.4(ii)) further, we obtain the fol-
lowing (see Theorem 4.3):

Theorem 0.5. Let Mm be a complete noncompact Kähler mani-
fold with nonnegative holomorphic bisectional curvature. Assume that
M supports a smooth strictly plurisubharmonic function u on M with
bounded gradient.

(i) If M is simply connected, then M = C
� ×M1 ×M2 isometrically

and holomorphically for some � ≥ 0, where M1 and M2 are com-
plete noncompact Kähler manifold with nonnegative holomorphic
bisectional curvature such that any polynomial growth holomor-
phic function on M is independent of the factor M2, and any
linear growth holomorphic function is independent of the factors
M1 and M2. Moreover, M1 supports a strictly plurisubharmonic
function of logarithmic growth and satisfies (FCD) and (VGa), for
any a < k + 1, where k = dimCM1.

(ii) Suppose the holomorphic bisectional curvature of M is positive at
some point, then either M has no nonconstant polynomial growth
holomorphic function or M itself satisfies (FCD) and (VGa), for
any a < m+ 1.

There is an open question on whether the ring of polynomial growth
holomorphic functions on a complete noncompact Kähler manifold with
nonnegative curvature is finitely generated, see [52, p. 391]. By The-
orems 0.4 and 0.5, in order to study polynomial growth holomorphic
functions on a manifold with nonnegative holomorphic bisectional cur-
vature which is either simply connected or has positive holomorphic bi-
sectional curvature at some point, we may assume that M satisfies the
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fast curvature decay condition (FCD) and the volume growth condition
(VGa) for any a < m+ 1.

Together with the L2 estimates [18] and the mean value inequality
[25] Theorems 0.4 and 0.5 also imply that a simply connected com-
plete noncompact Kähler manifold M with nonnegative holomorphic
bisectional curvature supports many nontrivial holomorphic functions.
Namely, M is a product of a compact Hermitian symmetric manifold,
a complex Euclidean space, a complete manifold M2 and a complete
manifold M1 such that each point of M2 has local coordinate functions
which are the restriction of global holomorphic functions with expo-
nential growth of order ≤ 1 in the sense of Hadamard, and each point
M1 has local coordinate functions which are the restriction of global
holomorphic functions with polynomial growth.

The results in the theorems on the decay rate of the average of the
scalar curvature are related to the work of Shi [39] on the long time
existence of the Kähler-Ricci flow, see also [51]. Theorems 0.4 and 0.5
also imply some uniformization type results when the volume growth
of the manifold is small, see Corollary 4.3. Namely a simply-connected
complete Kähler manifold with nonnegative bisectional curvature and
slow volume growth is biholomorphic to the product of the complex line
with a compact Hermitian symmetric manifold.

Next we shall study Kähler manifolds with nonnegative holomorphic
bisectional curvature whose Busemann functions are exhaustion func-
tions. We also assume that the universal cover of the manifold does not
contain de Rham Euclidean factors. This class of manifolds contains
manifolds which have nonnegative sectional curvature outside a com-
pact set and positive Ricci curvature somewhere. Without assuming
that the manifold is simply connected, one can describe the structure
of M in a rather explicit way, see Theorem 5.1.

Theorem 0.6. Let M be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature such that the Buse-
mann function is an exhaustion function. Suppose the universal cover
M̃ has no Euclidean factor. Then M̃ = Ñ × L̃ where Ñ is a compact
Hermitian symmetric manifold and L̃ is Stein. Moreover, M is a holo-
morphic and Riemannian fibre bundle with fibre Ñ over a Stein manifold
M̂ with nonnegative holomorphic bisectional curvature such that M̂ is
covered by L̃.

Using this structure result, Fangyang Zheng [54] proves that if in
addition that M has nonnegative sectional curvature everywhere, M is
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in fact simply-connected and M = N × L, where N is compact L is
a Stein manifold and is diffeomorphic to R2l where l = dimC L. From
this, one can prove that a complete noncompact Kähler manifold with
nonnegative sectional curvature is a holomorphic and Riemannian fibre
bundle over C

k/Γ for some discrete subgroup of the holomorphic isom-
etry group of C

k, with fibre N × L with the structures as above. The
authors are grateful to Fangyang Zheng for allowing us to include his
results and proofs in this work, see Theorem 5.2 and Corollary 5.1.

The results are motivated by the work of Takayama [43], where
he proved that if M is a complete noncompact Kähler manifold with
nonnegative holomorphic bisectional curvature and negative canonical
line bundle and if M supports a continuous plurisubharmonic exhaus-
tion function, then M has a structure of holomorphic fibre bundle over
a Stein manifold whose fibre is biholomorphic to some compact Her-
mitian symmetric manifold. Obviously, our assumptions are stronger.
However, in Theorem 0.6, the structure of the manifold is described
more explicitly. Moreover, our proof is rather elementary and does not
appeal to the result of [29] for example.

Finally, the methods of our study on the heat equation and the
maximum principle can be applied to obtain the following result which
is related Theorem 0.4 and in particular to the condition (FCD).

Theorem 0.7. Let M be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature. Then M is flat if∫ r

0
s

(∫
Bo(s)

R(y) dy

)
ds = o(log r)

provided that

lim inf
r→∞

[
exp

(−ar2) ∫
Bo(r)

R2

]
<∞

for some a > 0. where R is the scalar curvature of M .

For previous results in this direction, see [30, 32, 34, 6]. One of the
main ideas is to solve the Poincaré-Lelong equation under rather weak
conditions and then apply Theorem 0.2. The solution of the Poincaré-
Lelong equation may have independent interest. See previous works
[30, 34] on this problem.

Recently, Wu and Zheng [47]-[48] prove some interesting splitting
results on Kähler manifolds with nonnegative or with nonpositive holo-
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morphic bisectional curvature in terms of the rank of the Ricci tensor.
In their works, the metric is assumed to be real analytic.

We organize the paper as follows: in §1 we study the solution of the
heat equation; in §2 a maximum principle for Hermitian symmetric (1,1)
tensor is given; we then apply the results to study the solution of the
heat flow with continuous plurisubharmonic initial data in §3, a Liouville
theorem for plurisubharmonic functions is also proved there; in §4–§6,
we shall discuss the structure of Kähler manifolds with nonnegative
holomorphic bisectional curvature; a solution to the Poincaré-Lelong
equation will also be given in §6.

The authors would like to thank Professors Laszlo Lempert, Hing
Sun Luk, Shigeharu Takayama, Hung-Hsi Wu and Fangyang Zheng for
some useful discussions. They also would like to thank Professors Peter
Li and Richard Schoen for their interest in this work.

1. Preliminary results

In this section, we shall derive some basic results on the solutions to
the heat equation on a complete noncompact manifold with nonnegative
Ricci curvature. These results will be used in later sections regularly.
Specifically, we shall show that the Cauchy problem (1.6), which shall be
defined in the following, can be solved, where only the average growth
rate of the initial data over geodesic balls is assumed. This condition is
useful in applications because in many cases a continuous plurisubhar-
monic function can only be approximated by a smooth function without
point-wise estimations on the norms of the complex Hessians. However,
Lemma 1.6 below shows that they can be estimated in the average sense.
Corollary 1.1 and Lemma 1.4 will be used to keep track of the behaviors
of the functions which approximate the Busemann function through the
heat flow. These are important in the study of the structures of the
manifolds.

We always assume that Mn is a complete noncompact Riemannian
manifold with nonnegative Ricci curvature within this section. Let
H(x, y, t) be the heat kernel of M and let o ∈ M be a fixed point.
Denote the average of a function f over Bx(r) by

∫
Bx(r) f . In this work,

we shall make extensive uses of the fundamental work on the heat ker-
nel estimates of Li and Yau [27]. We start with a Lp-estimate on the
nonnegative solution to the heat equation.
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Lemma 1.1. Let f ≥ 0 be a function on a complete noncompact
Riemannian manifold Mn with nonnegative Ricci curvature and let

u(x, t) =
∫

M
H(x, y, t)f(y)dy.

Assume that u is defined on M × [0, T ] for some T > 0 and that for
0 < t ≤ T ,

lim
r→∞ exp

(
− r2

20t

)∫
Bo(r)

f = 0.(1.1)

Then for any r2 ≥ t > 0, and p ≥ 1,

∫
Bo(r)

up(x, t)dx ≤ C(n, p)

[∫
Bo(4r)

fp(x)dx

+ t−p

(∫ ∞

4r
exp

(
− s2

20t

)
s

∫
Bo(s)

fds

)p ]
.

Proof. For any p ≥ 1 and r ≥ √
t,

∫
Bo(r)

up(x, t)dx =
∫

Bo(r)

(∫
M
H(x, y, t)f(y)dy

)p

dx(1.2)

≤ C(p)

[∫
Bo(r)

(∫
Bo(4r)

H(x, y, t)f(y)dy

)p

dx

+
∫

Bo(r)

(∫
M\Bo(4r)

H(x, y, t)f(y)dy

)p

dx

]
.

Now for x ∈ Bo(r) and y /∈ Bo(4r), we have r(x, y) ≥ 3/4r(y). By the
estimates of the heat kernel of Li and Yau [27, p. 176], we have:
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∫
M\Bo(4r)

H(x, y, t)f(y)dy

(1.3)

≤ C1

∫
M\Bo(4r)

1
Vx(

√
t)

exp
(
−r

2(x, y)
5t

)
f(y)dy

≤ C2

∫
M\Bo(4r)

1
Vx(r +

√
t)

·
(
r +

√
t√

t

)n

exp
(
−r

2(x, y)
5t

)
f(y)dy

≤ C2

Vo(
√
t)

·
(
r +

√
t√

t

)n ∫
M\Bo(4r)

exp
(
−r

2(x, y)
5t

)
f(y)dy

≤ C2

Vo(
√
t)

·
(
r +

√
t√

t

)n ∫ ∞

4r
exp

(
− s2

10t

)(∫
∂Bo(s)

f

)
ds

≤ C2

10Vo(
√
t)

·
(
r +

√
t√

t

)n ∫ ∞

4r
exp

(
− s2

10t

)(∫
Bo(s)

f

)
d

(
s2

t

)

≤ C3

(
r +

√
t√

t

)n ∫ ∞

4r

Vo(s)
Vo(

√
t)

· exp
(
− s2

10t

)(∫
Bo(s)

f

)
d

(
s2

t

)

≤ C4t
−1

[∫ ∞

4r

(
s√
t

)2n

exp
(
− s2

10t

)
s

∫
Bo(s)

fds

]

≤ C5t
−1

[∫ ∞

4r
exp

(
− s2

20t

)
s

∫
Bo(s)

fds

]

for some constants C1–C5 depending only on n. Here we have used the
volume comparison and the assumption (1.1) when we perform integra-
tion by parts in the fifth inequality.

On the other hand, by Hölder inequality and the fact that∫
M
H(x, y, t)dy = 1,

we have(∫
Bo(4r)

H(x, y, t)f(y)dy

)p

≤
∫

Bo(4r)
H(x, y, t)fp(y)dy.
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Hence ∫
Bo(r)

(∫
Bo(4r)

H(x, y, t)f(y)dy

)p

dx(1.4)

≤
∫

Bo(r)

∫
Bo(4r)

H(x, y, t)fp(y)dy dx

≤
∫

Bo(4r)
fp(y)

(∫
Bo(r)

H(x, y, t)dx

)
dy

≤
∫

Bo(4r)
fp(y)dy.

The lemma follows from (1.2)–(1.4). q.e.d.

Let u be a continuous function on M such that∫
Bo(r)

|u|(x) dx ≤ exp(ar2 + b)(1.5)

for some positive constant a > 0 and b > 0. Consider the following
initial value problem {(

∆ − ∂
∂t

)
v(x, t) = 0

v(x, 0) = u(x).
(1.6)

Lemma 1.2. The initial value problem (1.6) has a solution on M×
[0, 1

40a ]. Moreover, for (x, t) ∈M × (0, 1
40a ],

v(x, t) =
∫

M
H(x, y, t)u(y)dy,

where H(x, y, t) is the heat kernel of M

Proof. For j ≥ 1, let 0 ≤ ϕj ≤ 1 be a smooth cutoff function such
that ϕj ≡ 1 on Bo(j) and ϕj ≡ 0 on Bo(2j). Let uj = ϕju. Then uj

is continuous with compact support. Hence one can solve (1.6) with
initial value uj for all time. The solution vj is given by

vj(x, t) =
∫

M
H(x, y, t)uj(y)dy(1.7)
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for (x, t) ∈M × (0,∞). By Lemma 1.1, for any 0 < t ≤ 1
40a and for any

r ≥ √
t,

∫
Bo(r)

|vj |(x, t) ≤
∫

x∈Bo(r)

(∫
M
H(x, y, t)|uj |(y)dy

)
dx

(1.8)

≤ C1

[∫
Bo(4r)

|uj | + t−1

∫ ∞

4r
exp

(
− s2

20t

)
s

∫
Bo(s)

|uj |ds
]

≤ C2

[∫
Bo(4r)

|uj | + ebt−1

∫ ∞

4r
exp

(
− s2

20t
+ as2

)
sds

]

≤ C3e
b

[
exp(16ar2) +

∫ ∞

4r
exp

(
− s2

40t

)
d

(
s2

t

)]
≤ C4e

b
(
exp(16ar2) + 1

)
where C1 − C4 are constants depending only on n. Since |vj | are sub-
solutions of the heat equation and |uj | ≤ |u|, by [26, Theorem 1.2] and
(1.7) for R2 ≥ 1/(40a), we have that

sup
Bo( 1

2
R)×[0, 1

40a
]

|vj | ≤ C5

[
exp(16aR2 + b) + sup

Bo(R)
|u|

]
(1.9)

for some constant C5 depending only on n. From this, it is easy to
see that after passing to a subsequence, vj together their derivatives
converge uniformly on compact sets on M × (0, 1

40a ] to a solution v of
the heat equation. Moreover, for any (x, t) ∈ M × (0, 1

40a ], as in (1.3)
we have∣∣∣∣∫

M
H(x, y, t)u(y)dy − vj(x, t)

∣∣∣∣ =
∣∣∣∣∫

M
H(x, y, t) (u(y) − uj(y)) dy

∣∣∣∣
≤
∫

M\Bo(j)
H(x, y, t)|u|(y)dy

≤ C6

∫ ∞

j
exp

(
− s2

20t

)
s

∫
∂Bo(s)

|u|ds

≤ C6

∫ ∞

j
exp

(
− s2

40t

)
d

(
s2

t

)
≤ C6

∫ ∞

j2

t

exp
(
− 1

40
τ

)
dτ
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for some positive constant C6. Here we have used the Harnack inequality
[27, p. 168], the assumption (1.5) on u and the fact that t ≤ 1

40a . Hence
it is easy to see that

v(x, t) =
∫

M
H(x, y, t)u(y)dy

and v(x, 0) = u(x). q.e.d.

In the next lemma, we shall obtain an estimate of the growth rate
of v(x, t) for fixed t in terms of the growth rate of u.

Lemma 1.3. Let u and v be as in Lemma 1.2. Then for any 1 >
ε > 0, there exists a constant C = C(n, ε, a, b) depending only on n, ε,
a and b, and there exists 1

40a > T0 > 0 depending only on a and ε, such
that for all x ∈M × (0, T0] with r2(x) ≥ T0,∣∣∣∣∣v(x, t) −

∫
Bx(εr)

H(x, y, t)u(y)dy

∣∣∣∣∣ ≤ C(n, ε, a, b)

where r = r(x).

Proof. Let x ∈M and let r = r(x). It is easy to see that for s ≥ εr∫
Bx(s)

|u|(y) dy ≤ C1

∫
Bo((1+ε−1)s)

|u|(y) dy

for some constant C1 depending only on n and ε. Hence if T0 > 0 is
small enough, depending only on ε and a, then for 0 < t ≤ T0, as before
by [27, p. 176] we have∫

M\Bx(εr)
H(x, y, t)|u|(y)dy

≤ C2

Vx(
√
t)

∫ ∞

εr
exp

(
−s

2

5t

)(∫
Bx(s)

|u|(y) dy
)
d

(
s2

t

)

≤ C3

∫ ∞

εr

(
s√
t

)n

exp
(
−s

2

5t

)(∫
Bo((1+ε−1)s)

|u| dy
)
d

(
s2

t

)
≤ C3

∫ ∞

εr

(
s√
t

)n

exp
[
−s

2

5t
+ a

(
1 + ε−1

)2
s2
]
d

(
s2

t

)
≤ C4

for some constants C2, C3 C4 depending only on n, ε, a and b. From
this the lemma follows. q.e.d.
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Corollary 1.1. With the same assumptions and notations as in
Lemma 1.3, let C(n, ε, a, b) be the constant in the lemma. Then for
x ∈ M with r = r(x) ≥ √

T0 such that u ≥ 0 on Bx(εr), then for any
0 ≤ t < T0

−C(n, ε, a, b) + C1 inf
Bx(εr)

u ≤ v(x, t) ≤ C(n, ε, a, b) + sup
Bx(εr)

u

for some positive constant C1 depending only on n and ε.

Proof. By Lemma 1.3, since
∫
M H(x, y, t) dy = 1, we have

v(x, t) ≤ C(n, ε, a, b) +
∫

Bx(εr)
H(x, y, t)u(y) dy

≤ C(n, ε, a, b) + sup
Bx(εr)

u.

On the other hand, by the lower bound estimate of the heat kernel of
Li-Yau [27, p. 182] and Lemma 1.3, we have that

v(x, t) ≥ −C(n, ε, a, b) +
∫

Bx(εr)
H(x, y, t)u(y) dy

≥ −C(n, ε, a, b) +
C2

Vx(
√
t)

∫
Bx(ε

√
t)

exp
(
−r

2(x, y)
5t

)
u(y) dy

≥ −C(n, ε, a, b) +
C3Vx(ε

√
t)

Vx(
√
t)

inf
Bx(εr)

u

≥ −C(n, ε, a, b) + C4 inf
Bx(εr)

u

for some positive constants C2–C4 depending only on n and ε. The
proof of the corollary is completed. q.e.d.

Suppose u is Lipschitz, so that |u(x) − u(y)| ≤ βr(x, y), then v is
defined for all t. We have the following.

Lemma 1.4. Suppose u is Lipschitz so that |u(x)−u(y)| ≤ βr(x, y)
for all x, y ∈M and let v be the solution of the heat equation with initial
value u obtained in Lemma 1.2. Then for all t > 0,

sup
x∈M

|∇v(x, t)| ≤ β.

Proof. By [12, Proposition 2.1], for any i > 0, there is a smooth
function ui such that supM |∇ui| ≤ β+ i−1 and supM |ui−u| ≤ i−1. By
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Lemma 1.2, we can solve the initial value problem for the heat equation
with initial value ui. Denote the solution by vi, which is defined for all
t. Moreover,

|v − vi|(x, t) ≤
∫

M
H(x, y, t)|u(y) − ui(y)|dy ≤ i−1.

In particular, for x ∈ M and t > 0, after passing to a subsequence if
necessary,

lim
i→∞

|∇vi|(x, t) = |∇v|(x, t).(1.10)

However, using a more general version of [26, Proposition 2.4], see
Lemma 1.5 below, we have

sup
M

|∇vi|(x, t) ≤ sup
M

|∇ui| ≤ β + i−1.(1.11)

The lemma follows from (1.10) and (1.11). q.e.d.

Lemma 1.5. Let M be a complete noncompact Riemannian man-
ifold with nonnegative Ricci curvature. Let u be a smooth function on
M with bounded gradient and let v be the solution of the heat equation
initial value u. Then for any t > 0

sup
M

|∇v(·, t)| ≤ sup
M

|∇u|.

Proof. For any T > 0, by Lemma 1.3, since |u| is of linear growth,
we have

|v(x, t)| ≤ C1 (r(x) + 1)

for some C1 for all (x, t) ∈ M × [0, T ]. On the other hand, using the
fact that

(
∆ − ∂

∂t

)
v2 = 2|∇v|2, and using a suitable cut off function,

one can obtain∫ T

0

∫
Bo(r)

|∇v|2dxdt ≤ C18

[
r−2

∫ T

0

∫
Bo(2r)

v2dxdt+
∫

Bo(2r)
u2dx

]
and so ∫ T

0

∫
M

exp
(−r2(x)) |∇v|2dxdt <∞.

Combining with the fact that |∇v| is a subsolution of the heat equa-
tion, the lemma follows from the maximum principle in [20] or [36,
Theorem 1.2]. q.e.d.
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Lemma 1.6. Let Mn be a complete Riemannian manifold with non-
negative Ricci curvature. Assume that g(x) is a smooth function satis-
fying

∆g ≥ f(1.12)

for some continuous function f(x). Assume that f ≥ −a for some a ≥ 0
and there exists a monotone nondecreasing function k(r) such that

g(x) ≤ k(r(x)).(1.13)

Then ∫ 1
2
r

0
s

(∫
Bo(s)

f+(y) dy

)
ds ≤ C(n)

(
k(5r) − g(o) +

25
2
ar2

)
(1.14)

where f+ = max{f, 0}. In particular,

r2
∫

Bo(r)
f+ ≤ C(n)

(
k(20r) − g(o) + 50ar2

)
.(1.15)

Proof. Let M1 = M × R and let g1(x, t) = g(x) + 1
2at

2 for (x, t) ∈
M × R. Then ∆M1g1 ≥ 0. By Theorem 2.1 of [34], we have

C(n)
∫ r

0
s

(∫
Bo1 (s)

∆M1g1

)
ds ≤ sup

Bo1 (5r)
g − g1(o1)

≤ sup
Bo(5r)

g +
25
2
ar2 − g(o)

for some positive constant C(n) depending only on n. Here o1 = (o, 0)
and Bo1(s) is the geodesic ball in M1 with center at o1 and radius s. The
lemma follows from the fact that ∆M1g1 = ∆g+a ≥ f+ and Lemma 1.1
in [34]. q.e.d.

2. A maximum principle for tensors

In this section, we always assume thatMm is a complete noncompact
Kähler manifold of complex dimension m (real dimension n = 2m). We
denote the Kähler metric by gαβ̄. We want to establish a maximum
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principle for Hermitian symmetric (1, 1) tensor η satisfying the complex
Lichnerowicz heat equation:(

∂

∂t
− ∆

)
ηγδ̄ = Rβᾱγδ̄ηαβ̄ − 1

2
(
Rγp̄ηpδ̄ +Rpδ̄ηγp̄

)
.(2.1)

Assume η(x, t) is defined on M × [0, T ] for some T > 0. We also
assume that there exists a constant a > 0 such that∫

M
‖η‖(x, 0) exp

(−ar2(x)) dx <∞(2.2)

and

lim inf
r→∞

∫ T

0

∫
Bo(r)

‖η‖2(x, t) exp
(−ar2(x)) dx dt <∞.(2.3)

Here ‖η‖ is the norm of ηαβ̄ with respect to the Kähler metric. By (2.2),
we have ∫

Bo(r)
||η||(x, 0) dx ≤ exp(ar2) · S(2.4)

where S =
∫
M ‖η‖(x, 0) exp

(−ar2(x)) dx.
In the following, we always arrange the eigenvalues of η at a point

in the ascending order.
Before we state our result, let us first fix some notations. Let ϕ :

[0,∞) → [0, 1] be a smooth function so that ϕ ≡ 1 on [0, 1] and ϕ ≡ 0
on [2,∞). For any x0 ∈ M and R > 0, let ϕx0,R be the function on M
defined by

ϕx0,R(x) = ϕ

(
r(x, x0)
R

)
.

Let fx0,R be the solution of(
∂

∂t
− ∆

)
f = −f

with initial value ϕx0,R. Then fx0,R is defined for all t and is positive
and bounded for t > 0. In fact

fx0,R(x, t) = e−t ·
∫

M
H(x, y, t)ϕx0,R(y)dy.

We shall establish the following maximum principle.
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Theorem 2.1. Let M be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature. Let η(x, t) be a
Hermitian symmetric (1, 1) tensor satisfying (2.1) on M × [0, T ] with
0 < T < 1

40a such that ||η|| satisfies (2.2) and (2.3). Suppose at t = 0,
ηαβ̄ ≥ −bgαβ̄ for some constant b ≥ 0. Then there exists 0 < T0 < T
depending only on T and a so that the following are true:

(i) ηαβ̄(x, t) ≥ −bgαβ̄(x) for all (x, t) ∈M × [0, T0].

(ii) For any T0 > t′ ≥ 0, suppose there is a point x′ in Mm and there
exist constants ν > 0 and R > 0 such that the sum of the first k
eigenvalues λ1, . . . , λk of ηαβ̄ satisfies

λ1 + · · · + λk ≥ −kb+ νkϕx′,R

for all x at time t′. Then for all t > t′ and for all x ∈M , the sum
of the first k eigenvalues of ηαβ̄(x, t) satisfies

λ1 + · · · + λk ≥ −kb+ νkfx′,R(x, t− t′).

Remark 2.1. It is well-known that the maximum principle for the
heat equation is not true in general. The assumption of (2.3) type is
the weakest and has been appeared for the scalar heat equation in [20],
[36]. From this consideration, (2.3) is necessary. Also (2.2) in a sense
ensures the solvability of the Cauchy problem of (2.1). Therefore, it is
a reasonable assumption.

To prove the theorem, we begin with some lemmas. By Lemma 1.2
and (2.4), if we let

h(x, t) =
∫

M
H(x, y, t)‖η‖(y, 0) dy,

then h(x, t) is a solution of the heat equation defined on M × [0, 1
40a ]

with initial value ||η||. In the following T0 always denotes a constant
depending only on a and satisfying T > T0 > 0. However, it may vary
from line to line.

Lemma 2.1. Let Mm be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature. Let η be a Her-
mitian symmetric (1, 1) tensor satisfying (2.1) on M × [0, T ]. Then
‖η‖(x, t) is a sub-solution of the heat equation. Moreover, if η also sat-
isfies (2.2) and (2.3), then there exists T > T0 > 0 depending only on a
such that ‖η‖(x, t) ≤ h(x, t) in M × [0, T0].
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Proof. The first part is direct calculation. In fact using (2.1) one
has(

∆ − ∂

∂t

)
‖η‖2 = ‖ηαβ̄s‖2 + ‖ηαβ̄s̄‖2 + 2Rαp̄ηpδ̄ηδᾱ − 2Rαβ̄pq̄ηp̄qηᾱβ

≥ ‖ηαβ̄s‖2 + ‖ηαβ̄s̄‖2.

Combining with the observation

2|∇‖η‖|2 ≤ ‖ηαβ̄s‖2 + ‖ηαβ̄s̄‖2

we have that
(
∆ − ∂

∂t

) ‖η‖ ≥ 0.
Since F = ||η|| − h is also a subsolution of the heat equation, the

second conclusion follows from (2.3) and the proof of Theorem 1.2 of
[36] because the positive part of F is less than or equal to ||η||. q.e.d.

For any r2 > r1, let Ao(r1, r2) denote the annulus Bo(r2) \ Bo(r1).
For any R > 0, let σR be a cut-off function which is 1 on Ao(R

4 , 4R) and
0 outside Ao(R

8 , 8R). We define

hR(x, t) =
∫

M
H(x, y, t)σR(y)||η||(y, 0)dy.

Then hR satisfies the heat equation with initial data σR||η||.
Lemma 2.2. Under the assumption (2.2) on η, there exists T0 > 0

depending only on a such that the following are true:

(i) There exists a function τ = τ(r) > 0 with limr→∞ τ(r) = 0 such
that for all R ≥ max{√T0, 1} and for all (x, t) ∈ Ao(R

2 , 2R) ×
[0, T0],

h(x, t) ≤ hR(x, t) + τ(R).

(ii) For any r > 0,
lim

R→∞
sup

Bo(r)×[0,T0]
hR = 0.

Proof. Note that h is defined on M × [0, 1
40a ], the first condition on

T0 is that T0 <
1

40a .

(i) Suppose R2 ≥ max{T0, 1}, where T0 will be chosen later. For
0 < t < T0, by the definition of h and hR, we have

h(x, t) ≤ hR(x, t) +
∫

M\Bo(4R)
H(x, y, t)||η||(y, 0)dy(2.5)

+
∫

Bo(R
4

)
H(x, y, t)||η||(y, 0)dy.
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For x ∈ Ao(R
2 , 2R) and y ∈ Bo(R

4 ), r(x, y) ≥ R
4 . Moreover, Vx(R) ≥

C(m)Vo(R) for some constant C(m) > 0 by the volume comparison.
Hence if x ∈ Ao(R

2 , 2R), using (2.4), [27, p. 176] and volume comparison
we have

∫
Bo(R

4
)
H(x, y, t)||η||(y, 0)dy(2.6)

≤ sup
y∈Bo(R

4
)

H(x, y, t)
∫

Bo(R
4

)
||η||(y, 0) dy

≤ C1

Vx(
√
t)

sup
y∈Bo(R

4
)

exp
(
−r

2(x, y)
5t

)∫
Bo(R

4
)
||η||(y, 0) dy

≤ C2

Vo(R)

(
R√
t

)2m

exp
(
− R2

100t
+
aR2

16

)
· S,

for some constants C1, C2 depending only on m. On the other hand,
since x ∈ Bo(2R), then as in the proof of (1.3), if T0 is small enough
depending only on a, we have for 0 < t ≤ T0

∫
M\Bo(4R)

H(x, y, t)||η||(y, 0) dy(2.7)

≤ C3t
−1

[∫ ∞

4R
exp

(
− s2

40t

)
s

∫
Bo(s)

||η||(y, 0) ds

]

≤ C4S
∫ ∞

4R
exp

(
− s2

40t
+ as2

)
d

(
s2

t

)
≤ C4S

∫ ∞

16R2

T0

exp
(
− 1

80
ζ

)
dζ

where C3–C4 are constants depending only on m, provided T0 is small
enough depending only on a. Here we have used (2.4) and the fact
t ≤ T0. From (2.5)–(2.7), (i) follows.

(ii) For r > 0 fixed, if T0 is small enough depending only on a and
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(x, t) ∈ Bo(r) × (0, T0], for R >> r, as before we have

hR(x, t) ≤
∫

M\Bo(R
8

)
H(x, y, t)||η||(y, 0)dy

≤ C8

∫ ∞

R
8

exp
(
− s2

100t

)∫
Bo(s)

||η||(y, 0)ds

≤ C9S
∫ ∞

R
8

exp
(
− s2

100t
+ as2

)
ds,

for some constants C8 and C9 depending only on m. From this (ii)
follows. q.e.d.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. We only prove (ii) by assuming (i) is true.
The proof of (i) is similar. Without loss of generality we assume that
t′ = 0. Let T ≥ T0 > 0 be small enough so that Lemmas 2.1, 2.2 are
true. T0 depends only on T and a. By Lemma 1.2 and Corollary 1.1,
we can find a solution φ(x, t),(

∂

∂t
− ∆

)
φ = φ(2.8)

such that φ(x, t) ≥ exp(c(r2(x) + 1)) for some c > 0 for all 0 ≤ t ≤ T .
For example, let φ(x, t) = et

∫
M H(x, y, t)h(y)dy with h(y) ≥ exp(c′r2)

for some c′ > 0.
Assume at t = 0, there exist x0 ∈ M , ν > 0 and R > 0 such that

the first k eigenvalues λ1, . . . , λk of ηαβ̄ satisfy

λ1 + · · · + λk ≥ −kb+ νkϕx0,R

for all x at time t = 0. For simplicity, let us assume that ν = 1.
By Lemma 2.1 and Lemma 2.2(i)

||ηαβ̄||(x, t) ≤ h(x, t) ≤ hR(x, t) + τ(R)(2.9)

for all (x, t) ∈ ∂Bo(R)× [0, T0], where τ(R) > 0 is a constant depending
only on R and τ(R) → 0 as R→ ∞.

Let ε > 0, for any R > 0, define ψ = −f + εφ + hR + τ(R) + b,
where hR is the function defined above and f(x, t) = fx0,R(x, t). Let
(ηR)αβ̄ = ηαβ̄ + ψgαβ̄, where gαβ̄ is the metric tensor of M . Then at
t = 0, at each point the sum of the first k eigenvalues of ηR is positive.



480 l. ni & l.-f. tam

We want to prove that for any T0 ≥ t > 0 and R > 0, the sum of the
first k eigenvalues of ηR in Bo(R)× [0, T0] is positive, provided R is large
enough.

Let R be large enough so that εφ − f > 0 outside Bo(R). Then by
the definition of ψ and (2.9), (ηR)αβ̄ is positive definite on ∂Bo(R) ×
[0, T0]∪Bo(R)×{0} and hence it is positive definite in a neighborhood
of this set. Suppose there exists (x, t) ∈ Bo(R) × [0, T0] such that the
sum of the first k eigenvalues of (ηR)αβ̄ is negative, then there exists
0 < t1 ≤ T0 and a point x1 ∈ Bo(R) such that the sum of the first
k eigenvalues of ηR at x1 at time t1 is zero but the sum of the first k
eigenvalues of ηR at any point (x, t) ∈ B0(R) × [0, t1) is positive.

Let us fix the notations. Suppose v1, . . . , vm are unit eigenvectors of
ηR at (x1, t1), with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λm. We may choose
normal coordinates at x1 such that vj = ∂

∂zj at x1. In particular, if
we write vj = vα

j
∂

∂zα , we have vα
j = δαj at x1. Note that the sum

of the first k eigenvalues of a Hermitian form is the infimum of the
traces of the form restricted to k-dimensional subspaces. Therefore∑k

α,β=1

(
gαβ̄(ηR)αβ̄

)
≥ 0 for all (x, t) with t ≤ t1 and equals to zero

at (x1, t1). Since ηR is positive definite in a neighborhood of ∂Bo(R) ×
[0, T0], we conclude that x1 is an interior point on Bo(R).

Hence at (x1, t1), we have

0 ≥
(
∂

∂t
− ∆

) k∑
α,β=1

(ηR)αβ̄g
αβ̄

 .(2.10)

From now on repeated indices mean summation from 1 to m if there is
no specification. Now

∂

∂t

 k∑
α,β=1

(ηR)αβ̄g
αβ̄

 =
k∑

α,β=1

(
∂

∂t
(ηR)αβ̄

)
gαβ̄.(2.11)

Also at (x1, t1), we have

∆

 k∑
α,β=1

(ηR)αβ̄g
αβ̄

 =
k∑

α,β=1

(
∆(ηR)αβ̄

)
gαβ̄.(2.12)
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By (2.10)–(2.12) and (2.1), at (x1, t1) we have,

0 ≥
k∑

α,β=1

[
Rδγ̄αβ̄

(
ηγδ̄ + ψgγδ̄

)− 1
2
Rαp̄

(
ηpβ̄ + ψgpβ̄

)
(2.13)

− 1
2
Rpβ̄ (ηαp̄ + ψgαp̄)

]
gαβ̄

+
k∑

α,β=1

([(
∂

∂t
− ∆

)
ψ

]
gαβ̄ −Rδγ̄αβ̄ψgγδ̄

+
1
2
ψRαp̄gpβ̄ +

1
2
ψRαp̄gpβ̄

)
gαβ̄.

Since at (x1, t1), η has eigenvectors vp = ∂
∂zp , for 1 ≤ p ≤ m, with

eigenvalue λp

k∑
α,β=1

[
Rδγ̄αβ̄

(
ηγδ̄ + ψgγδ̄

)− 1
2
Rαp̄

(
ηpβ̄ + ψgpβ̄

)
(2.14)

− 1
2
Rpβ̄ (ηαp̄ + ψgαp̄)

]
gαβ̄

=
k∑

α=1

m∑
γ=1

Rγγ̄αᾱλγ −
k∑

α=1

Rαᾱλα

=
k∑

α=1

m∑
γ=1

Rγγ̄αᾱλγ −
k∑

α=1

m∑
γ=1

Rγγ̄αᾱλα

=
k∑

α=1

m∑
γ=k+1

λγRγγ̄αᾱ −
k∑

j=1

m∑
γ=k+1

Rγγ̄αᾱλα

=
k∑

α=1

m∑
γ=k+1

Rγγ̄αᾱ(λγ − λα)

≥ 0

where we have used that fact that M has nonnegative bisectional cur-
vature, and λγ ≥ λα for γ ≥ α. Also by (2.8), the definition of f and
the fact that

(
∂
∂t − ∆

)
hR = 0, we have[(
∂

∂t
− ∆

)
ψ

]
= f + εφ > 0.(2.15)
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Moreover (
−Rδγ̄αβ̄ψgγδ̄ +

1
2
ψRαp̄gpβ̄ +

1
2
ψRαp̄gpβ̄

)
gαβ̄ = 0.(2.16)

From (2.13)–(2.16), we have a contradiction. Hence the sum of the first
k eigenvalues of ηR is nonnegative for all (x, t) ∈ Bo(R) × (0, T0]. In
particular, if r > 0 is fixed then the sum of the first k eigenvalues of
ηR is nonnegative for all (x, t) ∈ Bo(r) × (0, T0]. Let R → ∞, using
Lemma 2.2, we conclude that the sum of the first k eigenvalues of

ηαβ̄(x, t) + (−f(x, t) + εφ(x, t) + b) gαβ̄(x, t)

is nonnegative on Bo(r) × [0, T0] and hence on M × [0, T0]. Let ε → 0,
we conclude that the sum of the first k eigenvalues of ηαβ̄(x, t) must be
larger than or equal to −kb+kf(x, t), for 0 < t ≤ T0 and for all x ∈M .

q.e.d.

From Theorem 2.1, applying the argument of [17] we have the fol-
lowing corollary.

Corollary 2.1. Let M and η be as in Theorem 2.1 with b = 0. That
is η(x, 0) ≥ 0 for all x ∈M . Let T0 > 0 be such that the conclusions of
the theorem is true. For 0 < t < T0, let

K(x, t) = {w ∈ T 1,0
x (M)| ηαβ̄(x, t)wα = 0, for all β}

be the null space of ηαβ̄(x, t). Then there exists 0 < T1 < T0 such that
for any 0 < t < T1, K(x, t) is a distribution on M . Moreover the dis-
tribution is invariant under parallel translations. In particular, if M
is simply-connected, then M = M1 × M2 isometrically and holomor-
phically, where K corresponds the tangent space of M1, (ηαβ̄(x, t)) > 0
on M2 × (0, T1). Both M1 and M2 are complete Kähler manifolds with
nonnegative bisectional curvature.

Proof. By Theorem 2.1, η(x, t) ≥ 0 on M × [0, T0). By Theorem
2.1(ii), we conclude that if dimK(x0, t0) ≤ k for some x0 ∈ M and
0 ≤ t0 < T0 then dimK(x, t) ≤ k for all x ∈ M and t > t0. It is easy
to see that there exists 0 < T1 < T such that dimK(x, t) is constant on
M × (0, T1). Hence for each 0 < t < T1, K(x, t) is a smooth distribution
on M . It remains to prove that the distribution is parallel for fixed t.
We can proceed as in [17, Lemma 8.2].

Fix 0 < t0 < T1, let x0 ∈ M and let w0 ∈ K(x0, t0). Let γ(τ)
be a smooth curve from x0 and let w(τ) be the vector field obtained
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by parallel translation along γ. We want to prove that w(τ) is also in
the null space K(γ(τ), t0) at γ(τ). Since the argument is local, we may
assume that one can extend w to be a vector field in a neighborhood
of γ(τ), and then extend w to be a vector field independent of time t.
Now, projecting w onto K(x, t), we have a vector field v such that v is
in K(x, t) for all x in a neighborhood of γ and for all t. The following
computations are performed in a neighborhood of γ.

Since

ηαβ̄v
α = 0(2.17)

for all β, we have

0 =
∂

∂t

(
ηαβ̄v

αvβ
)

(2.18)

=
(
∂

∂t
ηαβ̄

)
vαvβ + ηαβ̄

∂vα

∂t
vβ + ηαβ̄v

α∂v
β

∂t

=
(
∂

∂t
ηαβ̄

)
vαvβ

where we have used (2.17). Choosing a unitary frame es at a point γ(τ),
we have

0 = ∆
(
ηαβ̄v

αvβ
)

(2.19)

=
1
2

(∇s∇s̄ + ∇s̄∇s)
(
ηαβ̄v

αvβ
)

=
(
∆ηαβ̄

)
vαvβ − ηαβ̄∇s̄v

α∇svβ − ηαβ̄∇sv
α∇s̄vβ

where we have used (2.17) so that(∇sηαβ̄

)
vα = −ηαβ̄∇sv

α,
(∇s̄ηαβ̄

)
vα = −ηαβ̄∇s̄v

α

and their complex conjugates.
Combining with (2.1), (2.18), (2.19), we have

0 = Rts̄αβ̄ηst̄v
αvβ + 2ηαβ̄∇s̄v

α∇svβ + 2ηαβ̄∇sv
α∇s̄vβ.(2.20)

We may choose es so that at a point ηst̄ = asδst. Then

Rts̄αβ̄ηst̄v
αvβ = Rss̄αβ̄asv

αvβ = asRss̄vv̄ ≥ 0

because as ≥ 0 and M has nonnegative bisectional curvature. Hence
(2.20) and the fact that η ≥ 0 imply that ∇sv and ∇s̄v are in the null
space K(γ(τ), t0).
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Since w(τ) is parallel along γ(τ), and w = v + w⊥, where w⊥ is
perpendicular to K(γ(τ), t0), we have

0 =
D

dτ
w =

D

dτ
v +

D

dτ
w⊥.

Hence
D

dτ
w⊥ = −D

dτ
v

which is in K.
Now

d

dτ
〈w⊥, w⊥〉 =

〈
D

dτ
w⊥, w⊥

〉
+
〈
w⊥,

D

dτ
w⊥

〉
= 0

because D
dτw

⊥ is in K and w⊥ is perpendicular to K. At γ(0) = x0,
w = v0 and so w⊥ = 0 at γ(0). Hence w⊥ = 0 for all τ and so w is in
K. The last statement follows from the De Rham decomposition. q.e.d.

Remark 2.2. Given the work [17] of Hamilton, the main difficulty
for noncompact manifolds in the proof of Corollary 2.1 is to obtain
the maximum principle Theorem 2.1. In particular, it can be proved
more easily if we assume that η is bounded. In [1], results similar to
the corollary are obtained independently for the case that η = Ric for
the Kähler-Ricci flow in a complete noncompact Kähler manifolds with
bounded nonnegative holomorphic bisectional curvature. However, it
seems that a maximum principle is still needed in this case.

3. C∞-approximation to continuous plurisubharmonic
functions

In [12], it was proved that on a complete noncompact Kähler man-
ifold a continuous strictly plurisubharmonic function can be approx-
imated uniformly by C∞ strictly plurisubharmonic functions. If the
function is only plurisubharmonic, then it can be approximated uni-
formly by C∞ functions whose complex Hessian are close to being non-
negative, see Lemma 3.2 below. In general, it seems unlikely that a
continuous plurisubharmonic function can be approximated by C∞-
plurisubharmonic functions. However, in this section, we shall show
that this can be done by the solution to the heat equation if the Kähler
manifold has nonnegative holomorphic bisectional curvature, provided
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the continuous plurisubharmonic function satisfies a mild growth con-
dition. Actually, we shall prove more in Theorem 3.1.

Let M be a complete noncompact Kähler manifold with nonnegative
holomorphic bisectional curvature. Let u be a continuous plurisubhar-
monic function defined on M with growth rate satisfying

|u|(x) ≤ C exp(ar2(x))(3.1)

for some positive constants a and C. Let v(x, t) be the solution to
the heat equation on M × [0, 1

40a ] with initial value u, obtained by
Lemma 1.2.

Theorem 3.1. Let Mm, u and v be as above. There exists T0 > 0
depending only on a and there exists T0 > T1 > 0 such that the following
are true:

(i) For 0 < t ≤ T0, v(·, t) is a smooth plurisubharmonic function.

(ii) Let

K(x, t) = {w ∈ T 1,0
x (M)| vαβ̄(x, t)wα = 0, for all β}

be the null space of vαβ̄(x, t). Then for any 0 < t < T1, K(x, t) is
a distribution on M . Moreover the distribution is invariant under
parallel translations.

(iii) If the holomorphic bisectional curvature is positive at some point,
then v(x, t) is strictly plurisubharmonic for all 0 < t < T1 unless
u is pluriharmonic.

As a corollary, we have:

Corollary 3.1. Let M be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature and let u be a con-
tinuous plurisubharmonic function on M satisfying (3.1). Then there
exist C∞ plurisubharmonic functions ui such that ui converges to u
uniformly on compact subsets of M . If in addition, the holomorphic
bisectional curvature is positive at some point, then ui can be chosen to
be strictly plurisubharmonic unless u is pluriharmonic.

We shall prove Theorem 3.1 by using the results in §2 together with
a result in [12]. In order to use the results in §2, we need to the following
estimates.
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Lemma 3.1. Let Mm be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature. Let u be a smooth
function satisfying (3.1) and let v be the solution of the heat equation
on M × [0, 1

40a ] with initial value u, obtained in Lemma 1.2. Moreover,
assume that there exists 1 ≥ b ≥ 0 such that

uαβ̄(x) ≥ −bgαβ̄(x)(3.2)

for all x ∈M . Let ||ρ||(x, t) be the norm of vαβ̄(x, t). Then there exists
1

40a > T0 > 0 depending only on a with the following properties:

(i) There exist constants C1 and C2, where C2 depends only on a such
that

|v(x, t)| ≤ C1 exp
(
C2r

2(x)
)
.

for all (x, t) ∈M × [0, T0].

(ii) There exist constants C3 and C4, where C4 depends only on a such
that ∫

Bo(r)
||ρ||(·, 0) ≤ C3 exp

(
C4r

2
)
,

for all r.

(iii) There exist constants C5 and C6, where C6 depends only on a such
that ∫ T0

0

∫
Bo(r)

||ρ||2(x, t)dxdt ≤ C5(1 + T0) exp
(
C6r

2
)
,

for all r.

Proof. In the following T0 ( 1
40a > T0 > 0) always denote a positive

constant depending only on a, but its exact value may vary from line
to line.

(i) By Lemma 1.3, we conclude that there exists T0 > 0, such that
if r = r(x) ≥ √

T0 then

|v(x, t)| ≤
∫

Bx( r
2
)
H(x, y, t)|u|(y)dy + C7

for all (x, t) ∈M × (0, T0] for some constant C7 independent of x and t.
Since u satisfies (3.1) and

∫
M H(x, y, t)dy = 1, it is easy to see that (i)

is true.
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(ii) Let f = ∆u = gαβ̄uαβ̄ and let f = f+ − f−, where f+ (f−) is
the positive part (negative part) of f . Let k+(o, s) =

∫
Bo(s) f+. By the

assumption on uαβ̄, f− ≤ mb ≤ m. Applying (1.15) of Lemma 1.6 we
have that

r2k+(o, r) ≤ C(n)
(
exp(100ar2) − u(o) + 50mr2

)
.(3.3)

Hence we have

r2k+(o, r) ≤ C11 exp(100ar2)(3.4)

for some constant C11 independent of r. On the other hand, at a point
x, choose an normal coordinates such that uαβ̄ = λαgαβ̄. Since uαβ̄ ≥
−bgαβ̄ and b ≤ 1, for any α

−1 ≤ −b
≤ λα

= ∆u−
∑
β �=α

λβ

≤ f+ + (m− 1)b
≤ f+ + (m− 1).

Therefore,

||ρ||(x) ≤ m (f+(x) + (m− 1)) .(3.5)

(ii) follows from (3.4) and (3.5).

(iii) By (i), there exists 1
40a > T0 > 0 such that for all (x, t) ∈

M × (0, T0), we have

|v(x, t)| ≤ C12 exp
(
C13r

2(x)
)

(3.6)

for some constants C12 independent of x and t, and C13 depending only
on a. Using ∆u = f , integrating by parts after multiplying a suitable
cut-off function, one can prove that∫

Bo(r)
|∇u|2 ≤ C14

[
r−2

∫
Bo(2r)

u2 +
∫

Bo(2r)
|u| |f |

]
(3.7)

≤ C15Vo(r)

[
exp(8ar2) + exp(4ar2)

∫
Bo(2r)

|f |
]

≤ C16Vo(r) exp(C17ar
2)
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for some constants C14–C16 independent of r, and C17 depending only
on a. Here we have used (3.1), (ii) and the fact that |f | ≤ m||ρ||. Using
the fact that

(
∆ − ∂

∂t

)
v2 = 2|∇v|2, and multiplying a suitable cut off

function, one can obtain∫ T0

0

∫
Bo(r)

|∇v|2 ≤ C18

[
r−2

∫ T

0

∫
Bo(2r)

v2 +
∫

Bo(2r)
u2

]
(3.8)

≤ C19(T0 + 1) exp(C20r
2)

for some constants C18 −C19 independent of r, and C20 depending only
on a. Here we have used (3.1) and (3.6). By the Bochner formula,(

∆ − ∂

∂t

)
|∇v|2 ≥ 2|∇2v|2.

Multiplying this inequality by a suitable cutoff function and integrating
by parts, using (3.7) and (3.8) we have∫ T0

0

∫
Bo(r)

|∇2v|2 ≤ C21

[
1
r2

∫ T0

0

∫
Bo(2r)

|∇v|2 +
∫

Bo(2r)
|∇u|2

]
≤ C22(T0 + 1) exp(C23r

2)

for some constants C21 − C22 independent of r, and constant C23 de-
pending only on a. From this, (iii) follows. q.e.d.

We are ready to prove Theorem 3.1. We need the following approx-
imation result of Greene-Wu [12, Corollary 2 to Theorem 4.1].

Lemma 3.2 (Greene-Wu). Let u be a continuous plurisubharmonic
function on M . For any b > 0, there is a C∞ function w such that

(i) |w − u| ≤ b on M ; and

(ii) wαβ̄ ≥ −bgαβ̄ on M .

Proof of Theorem 3.1. (i) Let u and v be as in the theorem. Choose
1 > εi > 0 such that εi → 0 as i → ∞. By Lemma 3.2, we can find ui

such that

|ui − u| ≤ εi(3.9)

on M , and

(ui)αβ̄ ≥ −εigαβ̄(3.10)
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on M . Since u satisfies (3.1), each ui also satisfies (3.1). Namely,

|ui|(x) ≤ ci exp(ar2(x))(3.11)

for some constants ci independent of x. By Lemma 1.2, we can solve
the heat equation with initial data ui on M × [0, 1

40a ]. The solution is
denoted by vi. By Lemma 3.1, (3.10) and (3.11), there exist a constant
1

40a > T0 > 0 depending only on a such that

|v|(x, t) + |vi|(x, t) ≤ di exp(C1r
2(x)),(3.12)

∫
Bo(r)

||ρi||(·, 0) ≤ di exp
(
C1r

2
)
,(3.13)

and ∫ T0

0

∫
Bo(r)

||ρi||2(x, t)dxdt ≤ di(1 + T0) exp
(
C1r

2
)

(3.14)

for some constants di independent of r and for some constant C1 de-
pending only on a, where ||ρi|| is the norm of (vi)αβ̄. Here and below,
1

40a > T0 > 0 always denotes a constant depending only on a, but it
may vary from place to place.

Since the complex Hessian (vi)αβ̄ satisfies the Lichnerowicz heat
equation (2.1) see [37, Lemma 2.1]. By (3.13), (3.14) and the maxi-
mum principle Theorem 2.1(i), there exists 1

40a > T0 > 0 such that

(vi)αβ̄(x, t) ≥ −εigαβ̄(x),(3.15)

for all (x, t) ∈M × [0, T0].
By (3.12), we can apply the maximum principle of [20, 36], to con-

clude that
sup

M×[0,T0)
|v − vi| ≤ εi.

Hence passing to a subsequence if necessary vi together with their
derivatives subconverge to v uniformly on compact sets on M × (0, T0).
By (3.15), we conclude that vαβ̄(x, t) ≥ 0 on M × (0, T0).

(ii) Let T0 be as in (3.15), which is obtained in Theorem 2.1. Let
T0 > t0 > 0. Suppose there exists a point x0 ∈M such that the sum of
the first k eigenvalues of vαβ̄(x0, t0) satisfies

λ1 + · · · + λk > 0,
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then there exists R > 0 and ν > 0 independent of i such that the sum
of the first k eigenvalues of (vi)αβ̄(x, t0) satisfies:

λi,1 + · · · + λi,k > kν,

on Bx0(2R). Since (vi)αβ̄ satisfies (3.15), the sum of the first k eigen-
values of (vi)αβ̄ satisfies:

λi,1 + · · · + λi,k > −kεi + kνϕx0,R

at every point x ∈M at time t0, where ϕx0,R is the nonnegative function
as in Theorem 2.1. By Theorem 2.1(ii), for T0 > t > t0, the sum of the
first k eigenvalues of (vi)αβ̄ at (x, t) satisfies:

λi,1 + · · · + λi,k ≥ −kεi + kνfx0,R(x, t− t0).

where fx0,R is the function defined in Theorem 2.1. Note that fx0,R(x, s)
> 0 if s > 0. Let i → ∞, we conclude that the sum of the first k
eigenvalues of vαβ̄ at (x, t) satisfies

λ1 + · · · + λk ≥ kνfx0,R(x, t− t0).

Hence we have proved that if there exists a point x0 ∈ M such that
the sum of the first k eigenvalues of vαβ̄(x0, t0) is positive, then for all
x ∈ M and t > t0, the sum of the first k eigenvalues of vαβ̄(x, t) is
also positive. One can then proceed as in the proof of Corollary 2.1 to
conclude that (ii) is true.

(iii) SupposeM has positive holomorphic bisectional curvature at x0.
By the proof of Corollary 2.1, there exists 0 < T1 < T0 such that dimK
is constant on M × (0, T1). For 0 < t < T1, suppose dimK(x0, t) > 0.
If dimK(x0, t) < m, then by (ii) locally near x0, M can be split-
ted isometrically as a nontrivial product of two Kähler manifold with
nonnegative holomorphic bisectional curvature. This is impossible. If
dimK(x0, t) = m, then dimK ≡ m on M × (0, T1). This implies that
v(·, t) is pluriharmonic for 0 < t < T1. Since v(x, t) → u(x) uniformly
on compact sets as t → 0, u is smooth and pluriharmonic. Hence if u
is not pluriharmonic, then dimK(x0, t) = 0 and so dimK(x, t) = 0 for
all x. This implies that v(·, t) is strictly plurisubharmonic. The proof
of the theorem is completed. q.e.d.

Using Theorem 3.1, we shall prove the following Liouville theorem
which will be used to prove a splitting theorem as well as a gap theorem
in Sections 4 and 6.
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Theorem 3.2. Let M be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature. Let u be a contin-
uous plurisubharmonic function on M . Suppose that

lim sup
x→∞

u(x)
log r(x)

= 0.(3.16)

Then u must be a constant.

To prove the theorem we need the following lemma.

Lemma 3.3 ([32, Proposition 4.1]). Let Mm be a complete non-
compact Kähler manifold of complex dimension m, with nonnegative
Ricci curvature. Let u(x) be a plurisubharmonic function on M satis-
fying (3.16). Then (∂∂̄u)m = 0.

Proposition 4.1 stated in [32] is under the assumption that M is
nonparabolic. However, the proof without any changes also works for
general complete Kähler manifolds with nonnegative Ricci curvature.

Proof of Theorem 3.2. Let M and u satisfy the conditions in Theo-
rem 3.2. Let M̃ be the universal cover of M , then the distance function
in M̃ dominates the distance function in M . Hence M̃ and the lift ũ of
u also satisfy the conditions in the theorem. Therefore, we may assume
that M is simply connected.

First we let uc = max{u, c}. By the assumption (3.16) it is easy to
see that uc satisfying (3.1) and uc is plurisubharmonic. Therefore, we
can solve the heat equation with uc(x) as the initial data. Denote the
solution by vc on M × [0, T0]. By adding a constant we can also assume
that uc(x) ≥ 0. Applying Theorem 3.1(i) to vc(x, t) we conclude that
vc(x, t) is plurisubharmonic. By Theorem 3.1(ii), for any t0 > 0 small
enough, M = M1 × M2 isometrically and holomorphically such that
(vc)αβ̄ is zero when restricted on M1 and (vc)αβ̄ is positive everywhere
when restricted on M2 by the De Rham decomposition (cf. Theorem 8.1,
page 172 of [22]). By Corollary 1.1, we still have

lim sup
x→∞

vc(x, t0)
log r(x)

= 0.(3.17)

Hence when restricted on M2, (3.17) is still true. This contradicts
Lemma 3.3 and the fact that (vc)αβ̄ is positive when restricted on M2,
unless M = M1. Hence (vc)αβ̄(x, t0) ≡ 0 on M for all 0 < t0 small
enough. By the gradient estimate of Cheng-Yau [8] and (3.17) we can
conclude that that vc(x, t0) is a constant, provided t0 > 0 is small
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enough. Hence uc is a constant. Since c is arbitrary, it shows that
u(x) is also a constant. q.e.d.

4. Structure of nonnegatively curved Kähler manifolds I

In this and the next section, we shall apply the results in the previ-
ous two sections to study the structure of complete noncompact Kähler
manifolds with nonnegative sectional or holomorphic bisectional curva-
ture. Let us begin with some lemmas.

Let Mm be a complete noncompact Kähler manifold with nonneg-
ative holomorphic bisectional curvature. Recall the definition of the
Busemann function at a point o ∈ M , see [5]. Let γ be a ray from o
parametrized by arc length. Then the Busemann Bγ(x) is defined as

Bγ(x) = lim
s→∞ (s− d(x, γ(s))

and the Busemann function B is defined as

B(x) = sup
γ

Bγ(x)

where the supremum is taken over all rays from o. It is well-known
that B is Lipschitz with Lipschitz constant 1. Since M has nonnegative
holomorphic bisectional curvature, by the result of Wu [45, p. 58], B is a
continuous plurisubharmonic function on M . Let v(x, t) be the solution
of the heat equation with initial value B. Then v is defined for all t. We
collect some facts in the follow lemma for easy reference.

Lemma 4.1. With the above assumptions and notations, the fol-
lowing are true:

(i) For any t > 0, v(·, t) is a smooth plurisubharmonic function. If the
holomorphic bisectional curvature of M is positive at some point,
then v(·, t) is strictly plurisubharmonic, unless B is pluriharmonic.

(ii) For any t > 0,
sup
M

|∇v(·, t)| ≤ 1.

(iii) For any t > 0, v(·, t) grows linearly when restricted on a ray from
o. If in addition, B is an exhaustion function of M , then v(·, t) is
also an exhaustion function of M for all t > 0.
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(iv) There exists T0 > 0, such that for any 0 < t < T0, the null space
K(x, t) ⊂ T

(1,0)
x (M) of vαβ̄(x, t) is a parallel distribution on M .

Proof. (i) and (iv) are just special cases of Theorem 3.1. Note that
from the proof of Theorem 3.1, (i) is true for any t > 0. (ii) follows
from Lemma 1.4. It remains to prove (iii). Let γ be a ray from o and
let x = γ(r) where r = r(x, o). Then B(x) ≥ Bγ(x) ≥ r. Since B has
Lipschitz constant 1 we know that B(y) ≥ 1

2r, for all y ∈ Bx( r
2). By

Corollary 1.1, we know that

v(x, t) ≥ C1r − C2

for some positive constants C1 and C2 independent of x. From this we
conclude that v(·, t) grows linearly on γ. The second part of (iii) can be
proved similarly. q.e.d.

Recall that M is said to satisfy (VGk) for k > 0, if there exists a
constant C > 0 such that

(VGk) Vo(r) ≥ Crk

for all r ≥ 1. M is said to satisfy the curvature decay condition (CD) if
there exists a constant C > 0 such that∫

Bo(r)
R ≤ C

r
(CD)

for all r > 0. Finally, M is said to satisfy the fast curvature decay
condition (FCD) if there is a constant C > 0, so that∫ r

0
s

(∫
Bo(s)

R(x)dx

)
ds ≤ C log(r + 2)(FCD)

for all r > 0.
Note that if the bisectional curvature is positive at some point, then

B cannot be pluriharmonic, see Theorem 4.1 below.
Using the ideas in [7], we can prove the following.

Lemma 4.2. Let Mm be a complete noncompact Kähler manifold.

(i) Suppose M supports a smooth plurisubharmonic function u which
is strictly plurisubharmonic at o and suppose u has bounded gradi-
ent. Then M satisfies (VGm), where m is the complex dimension
of M . If in addition, M has nonnegative Ricci curvature and also
supports a nonconstant holomorphic function of polynomial growth
then M satisfies (VGa) for any a < m+ 1.
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(ii) Suppose M has nonnegative Ricci curvature and suppose M sup-
ports a strictly plurisubharmonic function u. If u(x) ≤ C(r(x)+1)
for some constant C, then M satisfies (CD). If u(x) ≤ C log(r(x)
+1) for some constant C, then M satisfies (FCD).

Proof. (i) Let ω be the Kähler form of M which is closed. Since√−1∂∂̄u ≥ 0 and
√−1∂∂̄u > 0 at o, for any r > 1, there exists a smooth

cutoff function 0 ≤ ϕ ≤ 1 such that ϕ ≡ 1 on Bo(r) and ϕ ≡ 0 outside
Bo(2r) and such that |∇ϕ| ≤ C1/r for some constant C1 independent
of r and

∫
Bo(1)

(√−1∂∂̄u
)m ≤

∫
Bo(2r)

ϕm
(√−1∂∂̄u

)m

= −m
∫

Bo(2r)
ϕm−1

√−1∂ϕ ∧ ∂̄u ∧ (√−1∂∂̄u
)m−1

≤ mC2

r

∫
Bo(2r)

ϕm−1
(√−1∂∂̄u

)m−1 ∧ ω

for some constant C2 independent of r, where we have used the fact
that |∇ϕ| ≤ C1/r and |∇u| is bounded. Continuing in this way and
integrating by parts (m− 1) times more, we have

∫
Bo(1)

(√−1∂∂̄u
)m ≤ m! ·

(
C2

r

)m

Vo(2r).

Since ∂∂̄u > 0 at o, it is easy to see that M satisfies (VGm).

If in addition, M has nonnegative Ricci curvature and supports a
nonconstant polynomial growth holomorphic function f . Let v(x) =
log(|f |2 + 1). Then v(x) ≤ C log(r(x) + 2), and v is plurisubharmonic.
Moreover, ∂∂̄v is not zero at every point outside a subvariety. Observe
that

r2
∫

Bo(r)
∆v(y) dy ≤ C3 log(r + 2)(4.1)

by Lemma 1.6 for some constant C3 independent of r. On the other
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hand, using the cut-off function ϕ as above, we have that

0 <
∫

Bo(1)

(√−1∂∂̄v
) ∧ (√−1∂∂̄u

)m−1
(4.2)

≤
∫

Bo(2r)
ϕm

(√−1∂∂̄v
) ∧ (√−1∂∂̄u

)m−1

≤ C4

rm−1

∫
Bo(2r)

√−1∂∂̄v ∧ ωm−1

≤ C5

rm−1

∫
Bo(2r)

∆v(y) dy

for some constants C4−C5 independent of r. Combining (4.1) and (4.2),
we have that for some positive constant C6 independent of r such that,

Vo(r) ≥ C6
rm+1

log(r + 2)
.

This concludes the proof of (i).

(ii) Let us prove the second statement. Our proof is basically a
simplified version of [7]. Using u as a weight function, by the L2 estimate
and Theorem 3.2 of [32], there exists a nontrivial holomorphic section s
of the canonical line bundle KS (a (n, 0) form in terms of Theorem 3.2
of [32]) such that s(o) �= 0 and∫

M
‖s‖2 exp(−C7u(x)) dx = A <∞(4.3)

for some constant C7 > 0. Since u(x) ≤ C log(r(x) + 2), for some
constant C independent of x, (4.3) implies that∫

Bo(R)
‖s‖2(x) dy ≤ (R+ 1)C8

for some constant C8 independent of R. It is well-known that ‖s‖2 is
subharmonic, see Lemma 4.2 of [35] for example. By the mean value
inequality of Li-Schoen [25, p. 287], we have that

‖s‖2(x) ≤ C(m)
∫

Bo(2r(x))
‖s‖2(y) dy

for some constant C(m) depending only on m. Therefore we have that

‖s‖2(x) ≤ (r(x) + 1)C9
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for some constant C9 independent of x, and so

log
(||s||2(x) + 1

) ≤ C10 log(r(x) + 2)(4.4)

for some constant C10 independent of x. By Lemma 4.2 of [35] again,
for any 1 > ε > 0, we have that

∆ log(‖s‖2(x) + ε) ≥ R(x) · ‖s‖2

‖s‖2 + ε
(4.5)

where R is the scalar curvature of M . Applying Lemma 1.6, noticing
that R · ‖s‖2

‖s‖2+ε
≥ 0, we have that

∫ r

0
σ

(∫
Bo(σ)

R(x) · ‖s‖2(x)
‖s‖2(x) + ε

dx

)
dσ(4.6)

≤ C11 log(r + 2) − C12 log(‖s‖2(o) + ε)

for some constants C11 and C12 independent of r. Since s(o) �= 0 by
the construction as one can specify the value of s(o) and since the set
{s = 0} is of measure zero, letting ε → 0, the proof of the second
statement in (ii) is completed.

If we only assume that u is of at most linear growth, then using
similar method, instead of (4.6), we have that∫ r

0
σ

(∫
Bo(σ)

R(x) · ‖s‖2(x)
‖s‖2(x) + ε

dx

)
dσ ≤ C

(
r −R(o) · ‖s‖2(o)

‖s‖2(o) + ε

)
for some constant C independent of r. The result follows by letting
ε→ 0 as before. q.e.d.

Our first result on the structure of complete Kähler manifolds with
nonnegative bisectional curvature is a splitting theorem in terms of har-
monic function and holomorphic function. Together with Lemmas 4.1
and 4.2, this theorem will be used from time to time in the rest of this
section.

Theorem 4.1. Let Mm be a complete noncompact Kähler mani-
fold with nonnegative holomorphic bisectional curvature. Suppose f is
a nonconstant harmonic function on M such that

lim sup
x→∞

|f(x)|
r1+ε(x)

= 0,(4.7)
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for any ε > 0, where r(x) is the distance of x from a fixed point. Then f
must be of linear growth and M splits isometrically as M̃×R. Moreover
the universal cover M of M splits isometrically and holomorphically as
M̃ ′×C, where M̃ ′ is a complete Kähler manifold with nonnegative holo-
morphic bisectional curvature. Suppose that there exists a nonconstant
holomorphic function f on M satisfying (4.7). Then M itself splits as
M̃ × C.

We need the following lemmas for the proof of Theorem 4.1.
The first one is a result in [24, Corollary 5]. For the sake of com-

pleteness, we will sketch the proof. It seems that in the proof of this
result, we need to assume that the holomorphic bisectional curvature is
nonnegative.

Lemma 4.3. Let M be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature. If f is a harmonic
function with sub-quadratic growth defined on M , then f is plurihar-
monic.

Proof. Let h = ||fαβ̄||2 = gαδ̄gγβ̄fαβ̄fγδ̄, where gαβ̄ is the metric of
M and gαβ̄ is its inverse. Since f is harmonic, by Lemma 2.1 in [37] we
know that

∆fγδ̄ = −Rβᾱγδ̄fαβ̄ +
1
2
(
Rγp̄fpδ̄ +Rpδ̄fγp̄

)
.

Hence in normal coordinates so that at a point x, fαβ̄ = λαδαβ , we have

∆h = 2fγδ̄ss̄fδγ̄ + ||fαβ̄γ ||2 + ||fαβ̄γ̄ ||2
= −2Rβᾱγδ̄fαβ̄fδγ̄ +

(
Rγp̄fpδ̄ +Rpδ̄fγp̄

)
fδγ̄ + ||fαβ̄γ ||2 + ||fαβ̄γ̄ ||2

= −2Rαᾱγγ̄λαλγ + 2Rγγ̄λ
2
γ + ||fαβ̄γ ||2 + ||fαβ̄γ̄ ||2

=
∑
α,β

Rαᾱββ̄ (λα − λβ)2 + ||fαβ̄γ ||2 + ||fαβ̄γ̄ ||2

≥ 0,

where we have used the fact that M has nonnegative holomorphic bi-
sectional curvature. Since |f(x)| = o

(
r2(x)

)
where r(x) is the distance

from a fixed point o ∈M , as in [24, pp. 90-91], we have

1
Vo(R)

∫
Bo(R)

h ≤ C

R−2Vo(R)

∫
Bo(R)

|∇f |2 = o(1),
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as R→ ∞. Here C is a constant independent of R and we has used the
gradient estimate in [8]. Since h is subharmonic, h ≡ 0 by the mean
value inequality in [25]. Hence f is pluriharmonic. q.e.d.

Lemma 4.4. Let M be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature. Let f be a pluri-
harmonic function. Then log(1 + |∇f |2) is plurisubharmonic.

Proof. We adapt the complex notation. Let

h = |∇f |2 =
∑
α,β

gαβ̄fαfβ̄.

Here gαβ̄ is the Kähler metric and (gαβ̄) is the inverse of (gαβ̄). To
prove that log(1 + h) is plurisubharmonic, it is sufficient to show that
[log(1 + h)]γγ̄ ≥ 0 in normal coordinates. Direct calculation shows that:

hγγ̄ =

∑
αβ

gαβ̄fαfβ̄


γγ̄

(4.8)

=
∑
α,β

gαβ̄
[
fαγfβ̄γ̄ + fαγ̄fβ̄γ + fαγγ̄fβ̄ + fαfβ̄γγ̄

]
=
∑
α

fαγfᾱγ̄ +
∑
α,s

Rγγ̄αs̄fsfᾱ

where we have used the fact that f is pluriharmonic. Hence

[log(1 + h)]γγ̄ =
1

(1 + h)2
[(1 + h)hγγ̄ − hγhγ̄ ]

(4.9)

=
1

(1 + h)2

[
(1 + h)

(∑
α

fαγfᾱγ̄ +
∑
α,s

Rγγ̄αs̄fsfᾱ

)

−
∑
α

fαγfᾱ

∑
α

fαfᾱγ̄

]

≥ 1
(1 + h)2

(∑
α

fαγfᾱγ̄ +
∑
α,s

Rγγ̄αs̄fsfᾱ

)

where we have used the fact that f is pluriharmonic. From (4.9), the
fact that M has nonnegative holomorphic bisectional curvature, it is
easy to see that log(1 + h) is plurisubharmonic. q.e.d.
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Proof of Theorem 4.1. Let f be a nonconstant harmonic function
on M satisfying (4.7). Then f is pluriharmonic by Lemma 4.3. By
Lemma 4.4, the function u = log(1 + |∇f |2) is plurisubharmonic. By
the gradient estimates in [8], |u|(x) = o(log r(x)). By Theorem 3.2,
we conclude that |∇f | is constant. Hence f must be of linear growth.
Moreover, by the Bochner formula, we conclude that ∇f must be par-
allel. Hence J(∇f) is also parallel, where J is the complex structure
of M . From this it is easy to see that the universal cover of M splits
as M̃ ′ × C isometrically and holomorphically. At the same time by in-
tegrating along ∇f , M splits as M̃ × R isometrically, where M̃ can be
taken to be the component of f−1(0). In the case that M supports a
nonconstant holomorphic function of growth rate (4.7), both the real
and imaginary part will split a factor of R and clearly that they consist
a complex plane C. q.e.d.

An easy consequence is that if the Ricci curvature is positive at some
point of the manifold then any harmonic function satisfying (4.7) must
be a constant.

In the next theorem, we shall give some results on the structure
of complete noncompact Kähler manifold with nonnegative sectional or
holomorphic bisectional curvature.

Theorem 4.2. Let Mm be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature.

(i) Suppose M is simply connected, then M = N×M ′ holomorphically
and isometrically, where N is a compact simply connected Kähler
manifold, M ′ is a complete noncompact Kähler manifold and both
N and M ′ have nonnegative holomorphic bisectional curvature.
Moreover, M ′ supports a smooth strictly plurisubharmonic func-
tion with bounded gradient and satisfies (VGk) and (CD), where
k is the complex dimension of M ′. If, in addition, M has nonneg-
ative sectional curvature outside a compact set, then M ′ is also
Stein.

(ii) If the holomorphic bisectional curvature of M is positive at some
point, then M itself supports a smooth strictly plurisubharmonic
function with bounded gradient, and satisfies (VGm) and (CD),
where m is the complex dimension of M . If, in addition, M has
nonnegative sectional curvature outside a compact set, then M is
also Stein.
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Remark 4.1.

(a) The factor N in (i) may not be present. In this case, M = M ′

and satisfies the conditions on M ′ mentioned in the theorem. This
kind of remark also applies to Theorem 4.3.

(b) It was first proved in [7] that M satisfies (VGm) if the holomorphic
bisectional curvature nonnegative and is positive at some point,
and that M satisfies (CD) if M has positive holomorphic bisec-
tional curvature everywhere.

(c) By [29, 19] (see also [2]), N in (i) is a compact Hermitian sym-
metric manifold.

Proof. Let B be the Busemann function of M and let v be the
solution of the heat equation with initial value B. Let T0 be as in
Lemma 4.1.

(i) Let 0 < t < T0 be fixed and let u(x) = v(x, t). By Lemma 4.1,
suppose M is simply connected, then M = N1 ×M1 isometrically and
holomorphically so that uαβ̄ ≡ 0 when restricted on N1 and uαβ̄ > 0
when restricted to M1. Suppose N1 is not compact, then there is a ray
of M which lies on N1. By Lemma 4.1(iii), u is not constant on N1.
However, u has bounded gradient by Lemma 4.1(ii). Theorem 4.1 then
implies thatN1 = N2×C isometrically and holomorphically. Continuing
in this way, we conclude that N1 = N × C

� isometrically holomorphi-
cally for some � ≥ 0, where N is a compact simply connected with
nonnegative holomorphic bisectional curvature. Let M ′ = C

� × M1.
Then M ′ supports a strictly plurisubharmonic function with bounded
gradient and hence also satisfies (VGk) and (CD) by Lemma 4.2, where
k = dimCM

′.
If, in addition, M has nonnegative sectional curvature outside a

compact set, then B is an exhaustion function by [5, 12]. Hence u is an
exhaustion function by Lemma 4.2. Therefore M ′ in the above is also
Stein.

(ii) Suppose the holomorphic bisectional curvature of M is positive
at some point. Then B cannot be pluriharmonic. Otherwise, since B is
of linear growth and nonconstant, there will be a factor of C splitted
from the universal cover of M by Theorem 4.1. Hence u is strictly
plurisubharmonic by Lemma 4.1(i). The rest of the proof is similar to
(i). q.e.d.
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In [45], Wu proved that a complete noncompact Kähler manifold is
Stein if it has nonnegative sectional curvature outside a compact set,
with nonnegative holomorphic bisectional curvature everywhere which
is positive outside a compact set. The last statement of Theorem 4.2(ii)
is a generalization of this result.

In the last part of Theorem 4.2(i) or (ii), the assumption on the
sectional curvature is needed only for the proof that the Busemann
function is an exhaustion function. In some cases, this is true even if
we only assume that the Ricci curvature is nonnegative. Hence we have
the following result.

Corollary 4.1. Let Mm be a complete Kähler manifold with non-
negative holomorphic bisectional curvature. Suppose that M is of max-
imum volume growth or M has a pole. Then M is Stein. Moreover, M
satisfies (CD).

Proof. Suppose M has maximum volume growth. Let M̃ be the
universal cover of M , then M̃ has maximum volume growth and π :
M̃ → M is a finite cover by [23, p. 10]. Suppose M̃ is Stein, then M̃
has a smooth strictly plurisubharmonic exhaustion function f . Then
the function h(x) =

∑
x̃ f(x̃) for x ∈M , where the summation is taken

over all x̃ ∈ M̃ so that π(x̃) = x. Then h is a strictly plurisubharmonic
exhaustion function of M . Hence M is also Stein. So without loss of
generality, we may assume that M is simply connected.

Since M has maximum volume growth, the Busemann function B is
an exhaustion function by [38, pp. 400-401]. Let u be as in the proof of
Theorem 4.2, then by this theorem, M = N ×M ′ as described in the
theorem. Since M has maximum volume growth, the factor N will not
be present. Hence M = C

� ×M1 holomorphically and isometrically, so
that u is strictly plurisubharmonic on M1. By Lemma 4.1, it is also an
exhaustion function on M1. Therefore M1 must be Stein by [10] and so
M is also Stein. The last statement follows from Lemma 4.2.

Suppose M has a pole, then it is easy to see that the Busemann
function with respect to the pole is an exhaustion function. The mani-
fold is diffeomorphic to R

2m. One can conclude that the splitting given
by Theorem 4.2 contains no compact factor. One can then proceed as
above to conclude that M is Stein. q.e.d.

In [46], it was proved that M is Stein under the assumption that
M has a pole and nonnegative bisectional curvature which is positive
outside a compact subset of M . Our result answers affirmatively the
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question raised in [46, page 255] for the nonnegative bisectional cur-
vature case. Under the maximum volume growth assumption, if the
holomorphic bisectional curvature is actually positive everywhere then
it is easy to see that it is Stein by the results on smooth approximation
of strictly plurisubharmonic function in [15] and the result in [38] men-
tioned above. This was observed in [44]. Under the maximum volume
growth and the nonnegativity of the bisectional curvature assumptions
together with the additional assumption that the curvature decays like
r−1−a, the result was proved in [6]. This kind of results are related to a
conjecture by Greene-Wu [14] and Siu [40] that a complete noncompact
Kähler manifold with positive bisectional curvature is Stein.

Without assuming that M is simply connected or the holomorphic
bisectional curvature of M is positive at some point, by applying The-
orem 4.1 inductively, we immediately have:

Corollary 4.2. Let Mm be a complete noncompact Kähler mani-
fold with nonnegative holomorphic bisectional curvature. Then M have
the holomorphic-isometric splitting Mm = C

k ×Mm−k
2 . Here M2 is a

complete Kähler manifold of nonnegative bisectional curvature with the
property that any holomorphic function on M2 satisfying (4.7) must be
a constant.

There is an open question whether the ring of polynomial growth
holomorphic functions on a complete noncompact Kähler manifold with
nonnegative curvature is finitely generated, see [52, p. 391, Problem
63]. This motivates us to study the factor M ′ in Theorem 4.2(i) or
M in Theorem 4.2(ii) in more details. We have the following further
splitting.

Theorem 4.3. Let Mm be a complete noncompact Kähler mani-
fold with nonnegative holomorphic bisectional curvature. Assume that
M supports a smooth strictly plurisubharmonic function u on M with
bounded gradient.

(i) If M is simply connected, then M = C
� ×M1 ×M2 isometrically

and holomorphically for some � ≥ 0, where M1 and M2 are com-
plete noncompact Kähler manifold with nonnegative holomorphic
bisectional curvature such that any polynomial growth holomor-
phic function on M is independent of the factor M2, and any
linear growth holomorphic function is independent of the factor
M1 and M2. Moreover, M1 supports a strictly plurisubharmonic
function of logarithmic growth and satisfies (FCD) and (VGa), for
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any a < k + 1, where k = dimCM1.

(ii) Suppose the holomorphic bisectional curvature of M is positive at
some point, then either M has no nonconstant polynomial growth
holomorphic function or M itself satisfies (FCD) and (VGa), for
any a < m+ 1.

Proof. (i) We prove this part of the theorem by induction on the
dimension of Mm.

Suppose M does not support any nontrivial polynomial growth holo-
morphic function, then we simply take M2 = M and the factors C

� and
M1 are not present. Suppose there is a nontrivial polynomial growth
holomorphic function f on M . Let w = log(1 + |f |2). It is easy to see
that w is a plurisubharmonic function so that

0 ≤ w(x) ≤ C1 log(r(x) + 2)(4.10)

We can solve the Cauchy problem (1.6) with initial data w(x). Denote
w̃(x, t) to be the solution. Note that w̃(·, t) is nonconstant because
w is nonconstant. We can apply Theorem 3.1 again to conclude that
there exists t > 0 and a parallel distribution K which corresponding to
the null space of w̃αβ̄(x, t). Suppose dimK = 0, then w̃(·, t) is strictly
plurisubharmonic and with logarithmic growth by Corollary 1.1. Then
M = C

� ×M1 by Corollary 4.2 so that every linear growth holomorphic
function on M is independent of M1. M2 is not present in this case.
Moreover, M1 satisfies (FCD) and (VGa) by Lemma 4.2.

Suppose dimK > 0, thenM = N1×N2, such that w̃αβ̄(·, t) ≡ 0 when
restricted on N1, w̃αβ̄(·, t) > 0 when restricted on N2. They are simply
connected, complete Kähler manifolds with nonnegative holomorphic
bisectional curvature. dimCN1 = dimK > 0, but dimCN1 < dimCM .
Otherwise, w̃(·, t) is harmonic on M and is constant by (4.8) and [8].
Hence the dimensions of N1 and N2 are both less than m. They are
also noncompact because M supports a strictly plurisubharmonic func-
tion. Hence N1 and N2 are Kähler manifolds satisfy the same conditions
satisfied by M . By induction hypothesis N1 = C

�1 × N1,1 × N1,2 and
N2 = C

�2 × N2,1 × N2,2 isometrically holomorphically, such that for
j = 1, 2, every polynomial growth holomorphic function on Nj is inde-
pendent of the factor Nj,2 and every linear growth holomorphic function
is independent of the factor Nj,1×Nj,2. Nj,1 satisfies (FCD) and (VGkj

)
where kj = dimCNj,1. Let M1 = N1,1 × N2,1, M2 = N1,2 × N2,2 and
� = �1 + �2. Then M = C

� ×M1 ×M2 isometrically holomorphically.
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Since every polynomial (respectively linear) growth holomorphic func-
tion on M is still a polynomial (respectively linear) growth holomorphic
function when restricted on N1 and N2, hence the splitting satisfies all
the required conditions if we can prove thatM1 also satisfies the required
volume growth and curvature decay conditions.

The volume growth condition is satisfied by M1 because of the cor-
responding volume growth conditions are satisfied by N1,1 and N2,1.
Moreover, for r > 0, if R1, R′ and R′′ are the scalar curvatures of
M1, N1,1 and N2,1 respectively, and if Bo1(s), Bo′(s) and Bo′′(s) are
the geodesic balls of M1, N1,1 and N2,1 respectively where o1 = (o′, o′′),
then ∫

Bo1 (s)
R1 ≤ C

(∫
Bo′ (s)

R′ +
∫

Bo′′ (s)
R′′

)
for some constant C depending only on the dimensions of M1, N1,1 and
N2,1. Since Nj,1 satisfies (FCD) for j = 1, 2, M1 also satisfies (FCD).

From the above proof, it is easy to see that part (i) is true if m = 1.
The proof of Theorem 4.3(i) is then completed.

(ii) If the holomorphic bisectional curvature of M is positive at some
point, suppose M supports no nonconstant polynomial growth holomor-
phic function, then we are done. Otherwise, let f be a nontrivial poly-
nomial growth holomorphic function. Construct w and w̃ as in the proof
of (i), then there exists t > 0, w̃(·, t) must be strictly plurisubharmonic
by Theorem 3.1(iii). One can proceed as in the proof of (i). q.e.d.

Remark 4.2. By the Theorems 4.2 and 4.3, in order to study poly-
nomial growth holomorphic functions on a complete noncompact Kähler
Mm with nonnegative holomorphic bisectional curvature which is either
simply connected or has positive holomorphic bisectional curvature at
some point, we may assume that M satisfies the curvature decay condi-
tion (FCD) and the volume growth condition (VGa) for any a < m+ 1.
Note that under a very mild condition on the bound of the scalar cur-
vature, if it decays faster than (FCD), then manifold must be flat. We
shall discuss this problem in a later section.

As a simple consequence of Theorems 4.2 and 4.3 we have the fol-
lowing uniformization type result.

Corollary 4.3. Let M be a complete, simply-connected, Kähler
manifold with nonnegative holomorphic bisectional curvature. Suppose
that the volume growth of M satisfies Vo(r) = o(r2). Then M is biholo-
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morphic to N × C, where N is biholomorphic to a compact Hermitian
manifold. If M supports nonconstant holomorphic functions of polyno-
mial growth the same result holds if Vo(r) = O(ra), for some a < 3.

5. Structure of nonnegatively curved Kähler manifolds II

In [43], Takayama proved that ifM is a complete noncompact Kähler
manifold with nonnegative holomorphic bisectional curvature and nega-
tive canonical bundle and if M supports a continuous plurisubharmonic
exhaustion function, thenM has a structure of holomorphic fibre bundle
over a Stein manifold whose fibre is biholomorphic to some compact Her-
mitian symmetric manifold. In particular, the result applies to Kähler
manifolds with nonnegative sectional curvature and positive Ricci cur-
vature. This settled a conjecture of Greene-Wu [14, §3] that a complete
noncompact Kähler manifold with nonnegative sectional curvature and
positive Ricci curvature is holomorphically convex. In this section, we
shall give more detailed results on the structure on the class of mani-
folds related to the above conjecture. We shall also include results of
Fangyang Zheng [54] on the structure of complete noncompact Kähler
manifold with nonnegative sectional curvature. The authors are grateful
to Fangyang Zheng for allowing them to include his results and proofs
in this work.

Before we state our results, let us make some preparations. LetM be
a complete noncompact Kähler manifold with nonnegative holomorphic
bisectional curvature. Let B be the Busemann function at a point o ∈
M , and let v be the solution to the heat equation with initial value B.
Then there is t0 > 0 such that v(x, t0) is smooth plurisubharmonic and
the kernel of K(x, t0) of vαβ̄(x, t0) is a smooth, parallel distribution on
M . In the following, we shall suppress the variable t0 and just write
v(x) = v(x, t0). Note that if B is an exhaustion function of M , then
v(x) is also an exhaustion function. Moreover, v has bounded gradient.
All these results are contained in Lemma 4.1.

Let M̃ be the universal cover ofM with projection π̃ and let ṽ = v◦π̃.
Then M̃ = Ñ × L̃ isometrically and holomorphically. In the following,
a point in M̃ will be denoted by (y, z) etc. The splitting of M̃ has the
following properties. For each z ∈ L̃, vαβ̄ ≡ 0 on Ñz = Ñ × {z} and for
each y ∈ Ñ , vαβ̄ > 0 when restricted on L̃y = {y} × L̃. That is, Ñz, for
z ∈ L̃ are integral manifolds of the distribution

(
π̃−1

)
∗ (K).

Let Γ be the fundamental group of M .
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Lemma 5.1. Let M be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature. Suppose that the
Busemann function B of M is an exhaustion function and suppose the
universal cover M̃ contains no Euclidean factor. Then with the above
notations, Ñ is compact and a deck transformation γ ∈ Γ is of the form
γ(y, z) = (γ1(y), γ2(z)) so that γ1 and γ2 are holomorphic isometries of
Ñ and L̃ respectively. Moreover γ2 has no fixed point unless γ is the
identity.

Proof. Let us first prove that Ñ is compact. Fix z ∈ L̃ and consider
Ñz = Ñ × {z}. By the construction of Ñ , ṽ is pluriharmonic on Ñz.
Suppose ṽ is not constant on Ñz, then Ñz will contain a factor C by
Theorem 4.1. This contradicts the assumption that M̃ does not contain
any Euclidean factor. Hence ṽ must be constant on Ñz. Since ṽ is the
lift of v and since B and hence v is an exhaustion function, we conclude
that π̃(Ñz) is a bounded and hence its closure K in M is compact.
Since π̃ is a covering map, there exists a compact set K̃ in M̃ such that
π̃(K̃) ⊃ K. We can now proceed as in [4, p. 126]. Suppose Ñz is not
compact, then there is a ray σ in Ñz. Since π̃(σ(n)) ∈ K, there exists
γn ∈ Γ such that γn(σ(n)) ∈ K̃. Since K̃ is compact, passing to a
subsequence if necessary, we may assume that γn(σ(n)) → p ∈ M̃ and
(γn)∗ (σ′(n)) → �w ∈ Tp(M̃). Let τ be the geodesic with τ(0) = p and
τ ′(0) = �w, then it is easy to see that τ is a line. By [4], M̃ has a factor
of R. This is a contradiction. Hence Ñ is compact.

Let γ ∈ Γ, then Proj2
(
γ(Ñz)

)
is a compact subvariety in L̃ where

Proj2 is the projection onto L̃. Since L̃ supports a strictly plurisubhar-
monic function, it must be a point. Hence γ is of the form γ(y, z) =
(f(y, z), g(z)). Since γ is an isometry, g will not increase length. This
is also true for g−1, and hence it is easy to see that g is a local isometry
and f(y, z) = f(y). Therefore γ(y, z) = (γ1(y), γ2(z)), where γ1 and γ2

are holomorphic isometries on Ñ and L̃ respectively. Suppose γ is not
the identity and suppose γ2(z) = z for some z ∈ L̃, then γ1 will not
have any fixed point. Then Ñ will cover a compact complex manifold
with nonnegative holomorphic bisectional curvature. This is impossible
by [19]. This completes the proof of the lemma. q.e.d.

Let Γ2 be the subgroup of the isometry group of L̃ which is the image
under the map γ → γ2. By Lemma 5.1 Γ2 acts freely and holomorphi-
cally on L̃. Let M̂ = L̃/Γ2. Since M =

(
Ñ × L̃

)
/Γ, by Lemma 5.1
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there is a projection πr : M → M̂ such that the following diagram
commutes:

Ñ × L̃
Proj2−−−→ L̃

π̃

� π̂

�
M

πr−−−→ M̂.

In fact, πr(π̃(y, z)) = π̂(z).

Theorem 5.1. Let M be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature such that the Buse-
mann function is an exhaustion function. Suppose the universal cover
M̃ has no Euclidean factor. Using the above notations, we have the
following:

(i) M̃ = Ñ × L̃ and Ñ is compact.

(ii) πr : M → M̂ has the structure of a holomorphic fibre bundle,
where each fibre is isometrically biholomorphic to N .

(iii) π̂ : L̃ → M̂ is a holomorphic and Riemannian covering map. M̂
is a complete noncomapct Kähler and Stein manifold with non-
negative holomorphic bisectional curvature. L̃ is also Stein.

Proof. (i) follows from Lemma 5.1.

To prove (ii), let z ∈ L̃ and let Û be a neighborhood of π̂(z) in
M̂ which is evenly covered by a family F of neighborhoods in L̃. Let
W̃1 and W̃2 be two members in F , then there exists γ2 ∈ Γ2 such that
γ2(W̃1) = W̃2. Suppose γ2 is such that γ = (γ1, γ2) for some γ ∈ Γ.
Then γ(Ñ × W̃1) = Ñ × W̃2 and π̃ maps Ñ × W̃1 holomorphically and
isometrically onto its image. Let W̃1 be one of the neighborhoods in F .
It is easy to see that π−1

r (Û) = π̃(
⋃

W̃∈F Ñ × W̃ ) = π̃(Ñ × W̃1) which

is holomorphically isometric to Ñ × W̃1. Each fibre π−1
r (π̂(z)) = π̃(Ñz)

which is holomorphically isometric to Ñ . This completes the proof of
(ii).

(iii) Let ṽ be the smooth plurisubharmonic function on M̃ defined
before Lemma 5.1. Since Ñ is compact, ṽ(y, z) = ṽ(z) which is indepen-
dent of the factor Ñ . Since ṽ = v◦ π̃, for any γ ∈ Γ, ṽ(y, z) = ṽ(γ(y, z)).
Hence ṽ is equivariant with respect to Γ2 and so it descends to be a
smooth strictly plurisubharmonic function v̂ on M̂ because ṽ is strictly
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plurisubharmonic on L̃. Note also that v(x) = v̂(πr(x)). Since v is an
exhaustion function on M , v̂ is an exhaustion function of M̂ . Hence M̂
is Stein by [10]. The fact that L̃ is Stein follows from a result of [41]
that the universal cover of a Stein manifold is Stein. q.e.d.

Remark 5.1. The condition in the theorem that B is an exhaustion
function will be satisfied if M has nonnegative sectional curvature out-
side a compact set, see [5, 12]. The condition that M̃ has no Euclidean
factor will be satisfied if the Ricci curvature of M is positive at some
point. Hence if M has nonnegative sectional curvature outside a com-
pact set (in addition to the fact that M has nonnegative holomorphic
bisectional curvature) and if M has positive Ricci curvature is at some
point, then M has the structure as described in the theorem.

The example of Cousin [9] (see also [31, page 839], [43, page 141])
shows that the structure results in Theorem 5.1(ii) and (iii) are not true
if there is a Euclidean factor in M̃ . In this case, M might still be a fibre
bundle but the base space may not be Stein.

Suppose M has nonnegative sectional curvature everywhere, then
Fangyang Zheng [54] obtains the following stronger structure theorem.

Theorem 5.2 (Zheng). Let M be a complete noncompact Kähler
manifold with nonnegative sectional curvature. Assume that the univer-
sal cover M̃ of M does not have Euclidean factors. Then M is simply
connected and M = N × L isometrically and holomorphically where N
is a compact Hermitian symmetric manifold and L is diffeomorphic to
the Euclidean space R

2� where � = dimC L.

The theorem follows immediately from the following lemma and The-
orem 5.1.

Lemma 5.2. Let Mm be a complete noncompact Kähler manifold
with nonnegative sectional curvature so that its universal cover does
not contain a Euclidean factor. Suppose that M supports a strictly
plurisubharmonic function. Then the soul of M is a point and hence M
is simply connected and is diffeomorphic to R

2m.

Let us assume the lemma is true for the moment.

Proof of Theorem 5.2. Apply Theorem 5.1 to M . Using the nota-
tions as in Theorem 5.1, the manifold M̂ satisfies all the conditions in
the lemma because L̃ contains no Euclidean factor. Hence M̂ is simply
connected. So M is also simply connected because it is a fibre bundle
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over M̂ with fibre N which is simply connected. Hence M = M̃ . By the
lemma again, we know that L̃ is diffeomorphic to the Euclidean space.

q.e.d.

It remains to prove Lemma 5.2.

Proof of Lemma 5.2. Let M̃ be the universal cover of M with
covering map π and let S be a soul of M . Let S̃ = π−1(S). Since S is
totally geodesic and totally convex by [5], S̃ is also totally geodesic and
totally convex. In particular, S̃ is connected. Suppose S̃ is noncompact,
then it contains a ray which will also be a ray in M̃ . Since π(S̃) = S
which is compact, we can conclude as in the proof of Lemma 5.1 that
S̃ is compact because M̃ contains no Euclidean factor. Moreover, S̃ is
simply connected by [5, Theorem 2.1]. We want to prove that S̃ is a
point. It will be sufficient to prove that S̃ is flat because S̃ is connected,
simply connected and compact.

By [5, Theorem 3.1], since S is a soul of M and S̃ = π−1(S), we
have

R(u, v)v = R(v, u)u = 0(5.1)

for any point p ∈ S̃, any vector u ∈ Tp(S̃) and v which is normal to
Tp(S̃). Here R is the Riemannian curvature tensor of M̃ . Let J be
the complex structure of M̃ . Let p ∈ S̃ and let W be the subspace of
V = Tp(S̃) consisting of vectors v ∈ V such that Jv ∈ V . Let γ be a
piecewise smooth closed curve on S̃ from p. Since S̃ is totally geodesic, J
commutes with parallel translation along γ on S̃. Hence W is invariant
under parallel translation along γ. Note also that J(W ) = W . Since
S̃ is simply connected, S̃ can be splitted as a product with a factor S̃1

whose tangent spaces are invariant under J . By assumption, M and
hence M̃ supports a strictly plurisubharmonic function. This implies
that S̃1 is a point and W = {0}. That is to say

JV ∩ V = {0}.(5.2)

For v ∈ V , let A(v) be the orthogonal projection of Jv onto V . Since J+
J t = 0, it is easy to see that A+At = 0. We can find orthonormal basis
e1, e2, . . . , e2k−1, e2k, e2k+1, . . . , es, s = dimR V , under which A takes
the block diagonal form A = diag{δ1J2, · · · , δkJ2, 0l}, where k ≥ 0,
1 ≥ δ1 ≥ · · · ≥ δk > 0, l = dim(S) − 2k,

J2 =
[

0 1
−1 0

]
,
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and 0l is a zero matrix. By (5.2), we have δj < 1.
Now take e1, e2 for example. We have

Je1 = αe2 + v1, Je2 = −αe1 + v2,

where v1, v2 ∈ V ⊥. Since 0 < α = δ1 < 1, v1, v2 are nonzero vectors.
Since 〈Jei, Jej〉 = δij , we conclude that 〈vi, vj〉 = β2δij , where β =
||v1|| = ||v2|| =

√
1 − α2. Let v3 = β−1v1 and let v4 = β−1v2. Then we

have

Je1 = αe2 + βv3, Je2 = −αe1 + βv4.(5.3)

Using the fact that J2 = −I, from (5.3), we also have

Je3 = −βe1 − αv4, Je4 = −βe2 + αv3.(5.4)

By (5.1) and (5.3), since M is Kähler, we have

0 = −R(e1, v3, Jv4, e1) = R(e1, v3, v4, Je1)
= R(e1, v3, v4, αe2 + βv3) = αR(e1, v3, v4, e2).

By (5.1) and (5.3),

0 = −R(e1, v4, Je2, e1) = R(e1, v4, e2, Je1)
= R(e1, v4, e2, αe2 + βv3) = βR(e1, v4, e2, v3).

Hence by the Bianchi identity, we have

R(e1, e2, v3, v4) = −R(e1, v3, v4, e2) −R(e1, v4, e2, v3) = 0.

So

0 = R(e1, e2, v3, v4)(5.5)
= R(e1, e2, Jv3, Jv4)
= R(e1, e2,−βe1 − αv4,−βe2 + αv3)
= R(e1, e2,−βe1,−βe2) +R(e1, e2,−βe1, αv3)

+R(e1, e2,−αv4,−βe2) +R(e1, e2,−αv4, αv3)
= β2R(e1, e2, e1, e2)

where we have used (5.1)and (5.4). Using (5.1) and (5.4), we also have

R(e1, Je1, e1, Je1) = R(e1, αe2 + βv3, e1, αe2 + βv3)(5.6)

= α2R(e1, e2, e1, e2) = 0.
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Now we use the following fact in [53]. Suppose X is such that the
holomorphic sectional curvature R(X, X̄,X, X̄) = 0 and if the sectional
curvature is also nonnegative, then R(X, X̄, Y, Ȳ ) = 0 for any Y . Hence
(5.6) implies that the sectional curvature K(e1, u) of the plane spanned
by e1 and any tangent vector u ∈ Tp(S̃) is zero. Similarly, we can prove
that K(ej , u) = 0 for 1 ≤ j ≤ 2k. Since Jej ∈ V ⊥ for 2k + 1 ≤ j ≤ s,
K(ej , Jej) = 0 by (5.1). Hence we have K(ej , u) = 0 for all j and for
all u ∈ Tp(S̃). Since p is any point on S̃, S̃ is flat. This completes the
proof of the lemma. q.e.d.

In case the universal cover of M contains some Euclidean factors,
then we have the following result which is also due to Fangyang Zheng
[54].

Corollary 5.1. Let M be a complete Kähler manifold with non-
negative sectional curvature. Then its universal cover is of the form
M̃ = C

k × Ñ × L̃ where Ñ is a compact Hermitian symmetric mani-
fold, L̃ is Stein and L̃ contains no Euclidean factor. Moreover, there
exists a discrete subgroup Γ ⊆ Ih(Ck) which acts freely on C

k, and group
homomorphisms ρ : Γ → Ih(Ñ), τ : Γ → Ih(L̃), such that M is holo-
morphically isometric to the quotient of M̃ by Γ which acts on M̃ as

γ(x, y, z) = (γ(x), ρ(γ)(y), τ(γ)(z))

for any γ ∈ Γ. In particular, M is a holomorphic and Riemannian fiber
bundle with fiber Ñ×L̃ over the flat Kähler manifold C

k/Γ. Here Ih(X)
denotes the group of isometric biholomorphisms of a Kähler manifold X.

Proof. By Theorems 4.2 and 4.3, it is easy to see that M̃ is of the
form as described in the corollary. Note that Ñ or C

k may reduce to a
point. Let G be the fundamental group of M . Let β ∈ G, we claim that

β(x, y, z) = (f(x), g(y), h(z))

for (x, y, z) ∈ C
k × Ñ × L̃. denote the point of M̃ according to the

splitting. A priori f = f(x, y, z). So are g and h. As in the proof
of Lemma 5.1, we have f = f(x, z) and h = h(x, z) are independent
of y since Ñ is a compact Hermitian symmetric manifold. The next
observation that h is also independent of x. Otherwise, there exists x1,
x2 in C

k and z ∈ L̃ such that h(x1, z) �= h(x2, z). Denote the line passing
x1 and x2 in C

k to be α(s). Then β(α) is also a line. This in particular
implies that h(α) is also a geodesic and distance realizing, therefore a
line, since h(α) is not a point. This contradicts the assumption that
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L̃ does not contain any lines. Hence h = h(z). As in the proof of
Lemma 5.1, we conclude that f = f(x). Moreover, it is easy to see that
f ∈ Ih(Ck), g ∈ Ih(Ñ) and h ∈ Ih(L̃).

Let ρ1 : G → Ih(Ck) be the homomorphism defined by the above
correspondence β → f . Define ρ2, ρ3 similarly. We claim that ρ1 is
a monomorphism. Otherwise, we can find β �=identity in G such that
f =identity, where β = (f, g, h). Then (f, g) will act freely on Ñ × L̃.
This implies that the group generated by (f, g) will be the fundamental
group of some complete Kähler manifold which is covered by Ñ × L̃
and is noncompact by [19] or [4] because Ñ × L̃ contains no Euclidean
factors. This contradicts Theorem 5.2. Therefore we know that ρ1 is an
isomorphism.

Now simply denote Γ = ρ1(π̃). Let ρ = ρ2 ◦ ρ−1
1 and τ = ρ3 ◦ ρ−1

1 .
This completes the proof of the corollary. q.e.d.

6. Poincaré-Lelong equation and a gap theorem

In this section, we shall solve the Poincaré-Lelong equation using
some refined estimates developed in previous sections, in particular in
§1–§3. One of the motivation is to discuss the curvature decay condi-
tion (FCD) defined in Section 4, see Remark 4.2. We shall prove the
following:

Theorem 6.1. Let Mm be a complete noncompact Kähler man-
ifold with nonnegative holomorphic bisectional curvature. Let ρ be a
real closed (1, 1) form with trace f . Suppose f ≥ 0 and ρ satisfies the
following conditions:

∫ ∞

0

∫
Bo(s)

||ρ||ds <∞,(6.1)

and

lim inf
r→∞

[
exp

(−ar2) ∫
Bo(r)

||ρ||2
]
<∞(6.2)

for some a > 0. Then there is a solution u of the Poincaré-Lelong
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equation
√−1∂∂̄u = ρ. Moreover, for any 0 < ε < 1, u satisfies

α1r

∫ ∞

2r
k(s)ds+ β1

∫ 2r

0
sk(s)ds(6.3)

≥ u(x)

≥ −α2r

∫ ∞

2r
k(s)ds− β2

∫ εr

0
sk(x, s)ds+ β3

∫ 2r

0
sk(s)ds

for some positive constants α1(m), α2(m, ε) and βi(m), 1 ≤ i ≤ 3, where
r = r(x). Here k(x, s) =

∫
Bx(s) f and k(s) = k(o, s), where o ∈ M is a

fixed point.

The theorem was first proved in [30] under the assumption that M
has maximal volume growth and ||ρ||(x) decays like r−2(x) pointwisely.
Later in [34, Theorem 5.1] the theorem was generalized by assuming the
following condition instead of (6.2):

lim inf
r→∞

∫
Bo(r)

||ρ||2 = 0.(6.4)

(6.4) is obviously much stronger than (6.2). However, it would be nice
if (6.2) can be totally removed.

We shall use the ideas in [30] and [34]. By [34, Theorem 1.1 and The-
orem 1.2], there exists a solution to the Poisson equation ∆u = f such
that u satisfies (6.3). The difficult part is to prove that

√−1∂∂̄u = ρ.
As in [34], one can prove that ||√−1∂∂̄u|| behaves like ||ρ|| in the aver-
age sense. If (6.4) is assumed, the result will follow easily by using the
mean value theorem of [25, p. 287]. If we only assume (6.2), the method
does not work because the average of ||ρ|| might grow exponentially.

The outline of the proof of
√−1∂∂̄u = ρ is as follows. First we solve

the Cauchy problem (1.6) with initial data u(x) for all time and let
v(x, t) be the solution. Let w = u−v. By an argument as in Lemma 2.1,
one can show that ‖ρ−√−1∂∂̄w‖ is a subsolution of the heat equation,
and that ‖ρ−√−1∂∂̄w‖(x, t) → 0 as t→ ∞ using (6.1) and (6.2). On
the other hand, we shall prove that v(x, t) − v(o, t) together with its
derivatives uniformly converges to a constant over any fixed compact
subset, at least subsequentially. Therefore ‖√−1∂∂̄v‖(x, t) → 0, which
implies that ρ−√−1∂∂̄u ≡ 0.

As in [34], by taking M×C
2, we may assume that M is nonparabolic

and its Green’s function G(x, y) satisfies the following with n = 2m



514 l. ni & l.-f. tam

being the real dimension of M :

σ−1 r2(x, y)
Vx(r(x, y))

≤ G(x, y) ≤ σ
r2(x, y)

Vx(r(x, y))

for some σ = σ(n) > 0.
As mentioned above, by [34] we can solve ∆u = f with u satisfying

(6.3). u is given by

u(x) =
∫

M
(G(o, y) −G(x, y)) f(y)dy.(6.5)

The details of the proof that
√−1∂∂̄u = ρ are contained in the following

two lemmas.

Lemma 6.1.

(i) The Cauchy problem (1.6) with initial value u has long time solu-
tion v(x, t) which is given by

v(x, t) =
∫

M
H(x, y, t)u(y)dy.

(ii) There exists ti → ∞ such that v(x, ti)−v(o, ti) together with their
derivatives converge uniformly on compact subsets to a constant
function.

Proof. (i) We want to apply Lemma 1.2. For any R > 0 and x ∈
Bo(R),

|u(x)| ≤
∫

M
|G(o, y) −G(x, y)| f(y)dy(6.6)

=

{∫
M\Bo(4R)

+
∫

Bo(4R)

}
|G(o, y) −G(x, y)| f(y)dy

= I(x) + II(x).

By (6.1), we have

I(x) ≤ C1r(x)
∫ ∞

2R
k(s)ds ≤ C2r(x)(6.7)
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as in [34, (1.4)], for some constants C1 and C2 independent of R. On
the other hand, as in [34, p. 347 and p. 356], we have∫

Bo(R)
II(x) dx ≤

∫
x∈Bo(r)

[∫
y∈Bo(4R)

(G(o, y) +G(x, y)) f(y)dy

]
dx

=
∫

y∈Bo(4R)

[∫
x∈Bo(R)

(G(o, y) +G(x, y)) dx

]
f(y)dy

= C3Vo(R)
(
R2k(4R) +

∫ 4R

0
sk(s)ds

)
where C3 depends only on n. Combining this with (6.6) and (6.7) and
using (6.1), we conclude that∫

Bo(R)
|u| ≤ C(1 +R2)

for some constant independent of R. By Lemma 1.2, (i) follows.

(ii) Let us first give an estimate of |∇v|. We cannot use the same
method as in Lemma 1.5, because we have neither the estimate of the
integral of u2 as in Lemma 1.5, nor the uniform bound on |∇u|2. How-
ever, we may proceed as in the proof of Lemma 1.2. Namely, use cutoff
functions ϕi and denote fi = ϕif . Solve ∆ui = fi by using (6.5) and find
solution vi of (1.6) with initial value ui. Then vi subconverge to v to-
gether with their derivatives uniformly on compact sets of M × [0,∞).
Note that |∇ui| is bounded by [34, Theorem 1.3] and hence |∇vi| is
bounded by Lemma 1.5 or [26]. We can apply the maximum principle
to |∇vi| which is a subsolution of the heat equation and conclude that
for any x such that r(x) ≤ √

t,

|∇vj |(x, t) ≤
∫

M
H(x, y, t)|∇ui|(y) dy(6.8)

≤ C4 sup
r≥√

t

∫
Bx(r)

|∇ui|(y) dy

≤ C4 sup
r≥√

t

∫
Bo(2r)

|∇ui|(y) dy

≤ C5 sup
r≥√

t

(∫ ∞

4r
k(s) ds+ rk(4r)

)
≤ C6

∫ ∞

4
√

t
k(s) ds
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for some constants C4 − C6 depending only on n. Here we have used
Corollary 3.2 of [33] in the second inequality, Theorem 1.3 of [34] in the
fourth inequality and we have also used the volume comparison as well
as the fact that 0 ≤ fi ≤ f . Hence

sup
x∈Bo(

√
t)

|∇vi|(x, t) ≤ C6

∫ ∞

4
√

t
k(s) ds.

for all i and so

sup
x∈Bo(

√
t)

|∇v|(x, t) ≤ C6

∫ ∞

4
√

t
k(s) ds.(6.9)

On the other hand, fi has compact support, ui and vi are bounded.
Since (vi)t is a solution to the heat equation with initial value fi, as in
the proof of Lemma 1.5 (or (6.12) below), one can prove that for any
T > 0, there exist constants Ci such that∫ T

0

∫
Bo(r)

|(vi)t|2 ≤ Ci

for all r. Hence we can apply maximum principle and conclude that

∂vi

∂t
(x, t) =

∫
M
H(x, y, t)fi(y) dy

≤ C(n) sup
r≥√

t

∫
Bx(r)

fi(y) dy

≤ C(n) sup
r≥√

t

k(x, r).

Here we also have used Corollary 3.2 of [33]. Note we also have (vi)t ≥ 0.
Hence we have

0 ≤ ∂v

∂t
(x, t) ≤ C(n) sup

r≥√
t

k(x, r) ≤ C(n)√
t

∫ ∞
√

t
k(x, s) ds.(6.10)

By (6.9), (6.10) and (6.1), for any t0 > 1, and r > 0, the function
v(x, t)−v(o, t0) is bounded in Bo(r)× [t0−1, t0 +1] by a constant which
is independent of t0 and limt→∞ supBo(r) |∇v(·, t)| → 0. Hence, it is easy
to see that (ii) is true. q.e.d.

Now let w = u− v.
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Lemma 6.2. As t → ∞, ||ρ − √−1∂∂̄w||(x, t) converges to zero
uniformly on compact subsets in M .

Proof. We claim that

‖ρ−√−1∂∂̄w‖(x, t) ≤
∫

M
H(x, y, t)‖ρ‖(y) dy.(6.11)

If (6.11) is true, then one can apply Corollary 3.2 of [33] again to con-
clude that, for x ∈ Bo(

√
t),

‖ρ−√−1∂∂̄w‖(x, t) ≤ C(n) sup
r≥√

t

∫
Bx(r)

‖ρ‖(y) dy

≤ C(n) sup
r≥√

t

∫
Bo(2r)

‖ρ‖(y) dy

for some constant C(n) depending only on n. From the assumption
(6.1), this implies that supBo(

√
t) ‖ρ−

√−1∂∂̄w‖(·, t) → 0 as t→ ∞ and
the lemma follows.

To prove (6.11), we first observe that since ρ is real d-closed (1, 1)
form, locally it can be written as

√−1∂∂̄Ψ. Using ∆Ψ = f , it is easy to
see that Ψ − w satisfies the heat equation. Hence η = ρ −√−1∂∂̄w =√−1∂∂̄(Ψ − w) satisfies (2.1) by Lemma 2.1 in [37]. (6.11) will follow
from Lemma 2.1 provided η satisfies (2.2) and (2.3). By (6.1), since
w ≡ 0 at t = 0, it is easy to see that η satisfies (2.2) for any a > 0.
Next, we estimate |∇2v|2. Again, we may obtain the estimates for vi

first and let i→ ∞. Hence, as in the proof of Lemma 3.1, for any T > 1



518 l. ni & l.-f. tam

and r2 ≥ T , using the first inequality in (6.8) one can prove that∫ T

0

∫
Bo(r)

|∇2v|2(6.12)

≤ C1

[
1
r2

∫ T

0

∫
Bo(2r)

|∇v|2 +
∫

Bo(2r)
|∇u|2

]

≤ C2

[
(T + 1)

∫
Bo(8r)

|∇u|2(x)dx

+
∫ T

0
t−2

(∫ ∞

8r
exp

(
− s2

20t

)
s

∫
Bo(s)

|∇u|(y) dyds
)2

dt

]
≤ C3

[
(T + 1)

∫
Bo(8r)

|∇u|2(x)dx

+
∫ T

0

(∫ ∞

4r
exp

(
− s2

20t

)
d

(
s2

t

))2 ]
dt

≤ C4(T + 1)

[∫
Bo(4r)

|∇u|2(x)dx+ 1

]

≤ C5(T + 1)

[(∫ ∞

16r
k(s)ds

)2

+ r2
∫

Bo(16r)
||ρ||2 + 1

]

≤ C6(T + 1)

[
r2
∫

Bo(8r)
||ρ||2 + 1

]
for some constants C1 − C6 independent of r and T . Here we have
used Lemma 1.1 in the second inequality, (6.1) and Theorem 1.3 of
[34] in third inequality, Theorem 1.3 of [34] in the fifth inequality. By
Theorem 1.3 in [34] again, we have∫

Bo(r)
|∇2u|2 ≤ C7

[
r2
∫

Bo(2r)
||ρ||2 + 1

]
for some constant C7 depending only on n. Combining this with (6.12),
we conclude that∫ T

0

∫
Bo(r)

||ρ−√−1∂∂̄w||2 ≤ C7(T + 1)

[
r2
∫

Bo(2r)
||ρ||2 + 1

]
for some constant C independent of T and r. Hence by (6.2), η also
satisfies (2.3), and we can apply Lemma 2.1 to conclude that (6.11) is
true. q.e.d.
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Now Theorem 6.1 follows from Lemmas 6.1 and 6.2.

Using Theorems 6.1 and 3.2, we can prove that under a mild con-
dition, the scalar curvature of a nonflat complete noncompact Kähler
manifold with nonnegative holomorphic bisectional curvature cannot
decay faster than (FCD).

Corollary 6.1. Let M be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature and let ρ ≥ 0 be a
d-closed real (1, 1) form. Assume that ρ satisfies (6.2). Then ρ ≡ 0, if∫ r

0
s

(∫
Bo(s)

‖ρ‖(y) dy
)
ds = o(log r).(6.13)

In particular, if the scalar curvature R of M satisfies (6.2) and (6.13)
with ||ρ|| replaced by R, then M must be flat.

Proof. By Theorem 6.1, one can solve
√−1∂∂̄u = ρ where u satisfies

(6.3). (6.13) then implies that u(x) = o(log r) and u must be constant
by Theorem 3.2. Hence ρ ≡ 0. The last result follows from this by
considering ρ to be the Ricci form of M . q.e.d.

Remark 6.1. The gap theorem in the last part of the corollary
was first obtained in [30] under the assumptions that M has maximum
volume growth with curvature decays like r−2−ε pointwisely. These
implies (6.4) and (6.13) are true uniformly for all o ∈ M (with ||ρ||
replaced by R). Later, using Kähler-Ricci flow of [39], it was generalized
in [6] by only assuming that (6.13) holds uniformly for all o ∈ M . In
order to use the Kähler Ricci flow, it was also assumed that R is bounded
in [6]. It is easy to see that if R is bounded, then (6.13) will imply (6.4).
In Corollary 6.1, R might grow exponentially. Moreover, we only need
to assume that (6.13) holds at one point.

In Theorem 4.3(ii), it is proved that if M has nonnegative holo-
morphic bisectional curvature which is positive at some point and if M
supports a nonconstant polynomial growth holomorphic function, then
it satisfies (FCD). The following result is a partial converse of this.

Corollary 6.2. Let M be a complete noncompact Kähler mani-
fold with nonnegative holomorphic bisectional curvature. Suppose M
satisfies the condition (FCD) and suppose the Ricci curvature of M is
positive at a point. If the scalar curvature R also satisfies (6.2), then
M supports nonconstant holomorphic functions of polynomial growth.
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Moreover, if Ric(o) > 0, there exists {f1, · · · , fm}, holomorphic func-
tions of polynomial growth such that they form a local coordinates near
o. In particular, there exists a positive constant δ independent of d such
that

dim(Od(M)) ≥ δdm

for d sufficient large. Here Od(M) is the vector space consisting all holo-
morphic functions f such that |f(x)| ≤ C(r(x) + 1)d for some constant
C(f).

Proof. By Theorem 6.1, we can solve the Poincaré-Lelong equation√−1∂∂̄u = Ric, since (FCD) implies ‖Ric‖ satisfies (6.1). Moreover,
by (6.3) we know that u(x) satisfies u(x) ≤ C log(r(x) + 2) for some C.
The corollary then follows from rather standard argument, see [28, 32]
for example. In fact, let {z1, · · · , zm} be the local coordinate near o.
Let hi = ϕ(x)zi, where ϕ(x) is a cut-off function which has support
inside the local coordinate neighborhood. Let θi = ∂̄hi. Now apply
Theorem 3.2 in [32], with E being the anti-canonical line bundle. We
then have functions ηi such that ∂̄ηi = θi and ηi(o) = 0. Moreover the
ηi satisfies the following estimate:∫

M
|ηi|2 exp(−Cu(x)) <∞.(6.14)

It is easy to see that fi = θi−ηi will be holomorphic functions such that
fi = zi near o. Moreover fi satisfies (6.14). Applying the mean value
inequality of [25, p. 287] as in the proof of Lemma 4.2 we conclude that
fi are of polynomial growth. The second claim of the corollary follows
from simple dimension counting. q.e.d.
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[18] L. Hörmander, An introduction to complex analysis in several variables, North-
Holland Publishing Company, Amsterdam-London, 1973, MR 0344507,
Zbl 0271.32001.

[19] A. Howard, B. Smyth & H. Wu, On compact Kähler manifolds of nonnegative bi-
sectional curvature, I, Acta Math. 147 (1981) 51–56, MR 0631087, Zbl 0473.53055.

[20] L. Karp and P. Li, The heat equation on complete Riemannian manifolds, unpub-
lished.

[21] S. Kobayashi, On compact Kähler manifolds with positive definite Ricci tensor,
Ann. of Math. 74 (1961) 570–574, MR 0133086, Zbl 0107.16002.

http://www.emis.de/cgi-bin/MATH-item?0107.16002
http://www.ams.org/mathscinet-getitem?mr=0133086
http://www.emis.de/cgi-bin/MATH-item?0473.53055
http://www.ams.org/mathscinet-getitem?mr=0631087
http://www.emis.de/cgi-bin/MATH-item?0271.32001
http://www.ams.org/mathscinet-getitem?mr=0344507
http://www.emis.de/cgi-bin/MATH-item?0628.53042
http://www.ams.org/mathscinet-getitem?mr=0862046
http://www.emis.de/cgi-bin/MATH-item?0191.19904
http://www.ams.org/mathscinet-getitem?mr=0247590
http://www.emis.de/cgi-bin/MATH-item?0415.31001
http://www.ams.org/mathscinet-getitem?mr=0532376
http://www.emis.de/cgi-bin/MATH-item?0383.32005
http://www.ams.org/mathscinet-getitem?mr=0460699
http://www.emis.de/cgi-bin/MATH-item?0372.53019
http://www.ams.org/mathscinet-getitem?mr=0458336
http://www.emis.de/cgi-bin/MATH-item?0342.31003
http://www.ams.org/mathscinet-getitem?mr=0382723
http://www.emis.de/cgi-bin/MATH-item?0433.32007
http://www.ams.org/mathscinet-getitem?mr=0580152
http://www.emis.de/cgi-bin/MATH-item?0108.07804
http://www.ams.org/mathscinet-getitem?mr=0098847
http://www.emis.de/cgi-bin/MATH-item?0312.53031
http://www.ams.org/mathscinet-getitem?mr=0385749
http://www.emis.de/cgi-bin/MATH-item?0246.53049
http://www.ams.org/mathscinet-getitem?mr=0309010


522 l. ni & l.-f. tam

[22] S. Kobayashi & K. Nomizu, Foundations of Differential Geometry, II, Wiley, New
York, 1969, MR 0238225, Zbl 0175.48504.

[23] P. Li, Large time behavior of the heat equation on complete manifolds with nonneg-
ative Ricci curvature, Ann. of Math. 124 (1986) 1–21, MR 0847950, Zbl 0613.58032.

[24] P. Li, Harmonic functions of linear growth on Kähler manifolds with nonnegative
Ricci curvature, Math. Res. Lett. 2 (1995) 79–94, MR 1312979, Zbl 0855.58019.

[25] P. Li & R. Schoen, Lp and mean value properties of subharmonic functions on Rie-
mannian manifolds, Acta Math. 153 (1984) 279–301, MR 0766266, Zbl 0556.31005.

[26] P. Li & L.-F. Tam, The heat equation and harmonic maps of complete manifolds,
Invent. Math. 105 (1991) 1–46, MR 1109619, Zbl 0748.58006.

[27] P. Li & S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta
Math. 156 (1986) 153–201, MR 0834612, Zbl 0611.58045.

[28] N. Mok, An embedding theorem of complete Kähler manifolds of positive bisec-
tional curvature onto affine algebraic varieties, Bull. Soc. Math. France 112
(1984) 197–250, MR 0788968, Zbl 0536.53062.

[29] N. Mok, The uniformization theorem for compact Kähler manifolds of nonnega-
tive holomorphic bisectional curvature, J. Differential Geom. 27 (1988) 179–214,
MR 0925119, Zbl 0642.53071.

[30] N. Mok, Y.-T. Siu & S.-T. Yau, The Poincaré-Lelong equation on complete Kähler
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