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ELLIPTIC SECTORS IN SURFACE THEORY AND
THE CARATHÉODORY–LOEWNER CONJECTURES

LAURENŢIU LAZAROVICI

Abstract
We identify a distinguished hyperbolic partial differential equation of im-
portance in the study of principal foliations. We apply Riemann’s method
to obtain an obstruction to the occurrence of elliptic sectors in principal
foliations on surfaces and as a consequence we obtain the first global result
on the Carathéodory conjecture.

1. Introduction

The principal foliations on a smooth surface in R
3 have been a sub-

ject of enduring interest in Differential Geometry and Dynamical Sys-
tems from the earliest work of Monge in 1796 through Dupin, Bonnet
and Darboux in the 19th century up to the present (see Gutierrez and
Sotomayor [5], [6], especially the latter useful survey article). The study
of the singularities of the principal foliations, that is the umbilics, is im-
portant for other areas of mathematics. Rozoy’s beautiful solution [11]
of the Lichnerowicz conjecture in General Relativity depends on the
vanishing theorem of Smyth and Xavier [13] for umbilics of index ≥ 1
in smooth surfaces.

The prevailing view is that a principal foliation is somewhat special
in the neighborhood of an isolated umbilic in the surface. From the
point of view of analysis the special nature of such a singular foliation
is completely characterized in the recent paper of Smyth and Xavier
([14], Theorem 2 and Lemma 3). Whether their criterion argues for
some topological or diffeomorphism-type implications for umbilics is an
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open question, but very much in line with the interest in the index of
umbilics early in this century.

Carathéodory’s conjecture asserts that a smooth spherical surface
of class C3 immersed in R

3 must have at least two umbilics (see the
1940 paper of Hamburger [7], p. 63). This conjecture appears to have
been first made prior to 1928 (see Cohn-Vossen’s announcement [4])
and all subsequent studies have been directed toward the (stronger) lo-
cal Carathéodory conjecture that any isolated umbilic on a piece of a
smooth surface must have index ≤ 1; both the local and global conjec-
tures remain open today. Incidentally (see [14]), the local conjecture is
equivalent to Loewner’s conjecture [15] that isolated zeroes of ωz̄z̄ (for
any real-valued function ω on R

2) have index ≤ 2. Until recently there
were few results on isolated umbilics on smooth surfaces and a decided
emphasis on an approach toward proving that the index of an isolated
umbilic in an analytically immersed surface is ≤ 1; all of these assays
([2], [10], [15]) are along the lines of Hamburger’s original works [7] and
[8], and an elucidation of the gaps in — and counterexamples to —
their arguments is contained in Scherbel [12]. All of the results which
we present here never need more than a few derivatives.

Our point of view here entertains the possibility that a spherical
surface have a lone umbilic — consequently of index 2, by the Euler-
Poincaré theorem — and Theorem 1 below addresses the diffeomorphism
type of the resulting configuration of principal foliations: it proves the
nonexistence of principal foliations locally diffeomorphic to the standard
dipole foliation. The standard dipole foliation on S2 may be thought
of as the family of circles on S2 obtained by intersecting S2 with a
co-axial system of planes with axis a tangent line to S2 (see Figure 1).
Smyth and Xavier [14] proved that a principal foliation is never locally
diffeomorphic to the standard dipole foliation under the Gauss map.

Theorem 1. If p0 ∈ S2 is a lone umbilic of an immersion f : S2 →
R

3 of class C4, then the principal foliations can never be C2-diffeomor-
phic to the standard dipole foliation.

Moreover, this result is even local; that is the principal foliations
on a neighborhood of an isolated umbilic on a differentiable surface of
class C4 can never be locally C2-diffeomorphic to the standard dipole
foliation.

That such a result must hold was conjectured to me by Brian Smyth
in 1997. Its very strength suggests that there are broader issues here
than the mere numerical value of the index. By Bendixson’s index for-
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Figure 1: Standard dipole foliation on S2

mula ([1], [9]), j = 1 + e−h
2 (where e and h are the numbers of elliptic

and hyperbolic sectors, respectively) the salient feature of an isolated
umbilic of index > 1 — if such exists — would be the existence of an
elliptic sector in each of the principal foliations. Thus the study of ellip-
tic sectors in principal foliations is central to the study of the existence
of umbilics of index > 1. A more ambitious conjecture than either the
Carathéodory conjecture or the local Carathéodory conjecture is that
a principal foliation cannot contain an elliptic sector. An elliptic sec-
tor is a closed simply connected region bounded by a leaf which tends
to the singularity in both directions and containing no other singular-
ity (cf [9]). Our main result identifies a fundamental local geometric
property of elliptic sectors in a principal foliation.

For any foliation F of a Riemannian surface with an isolated singu-
larity at o, the orthogonal F⊥ is well-defined and has the same singular
set. A lens of F is a closed simply connected region containing o and no
other singular point and bounded by an arc of F and an arc of F⊥, both
exiting a nonsingular point and tending toward o (see §3); an elliptic
sector is a continuum of lenses. The reader is reminded in §2 that an
equivalence between principal foliations and (plane) Hessian foliations
was constructed in [14].

Main Theorem. A C2 singular Hessian foliation cannot have a
biconvex lens.

The biconvexity condition in the theorem amounts to the condition
that the orthogonal trajectories are convex at the walls of the lens.

The proof of the Main Theorem in §3 is in the spirit of the work
of Smyth and Xavier [14] on the system of wave equations ωz̄z̄ = g:
It is based on Riemann’s method in the theory of hyperbolic partial
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differential equations. By contrast, our approach identifies one singular
hyperbolic partial differential equation which is central to the study.
The presence of a lens in the foliation gives simultaneous focusing at o
of the characteristics of this partial differential equation and Riemann’s
method leads to a simple integral identity which must be satisfied by
the solution. The curvature assumptions lead to a contradiction to this
identity.

The proof of Theorem 1 is given in §5 and is a consequence of our
Main Theorem and approximation results for the curvature of foliations.

2. Principal foliations and Hessian foliations

A piece of a smooth surface in R
3 may be thought of as a 2-dimen-

sional orientable manifold M together with an immersion f : M → R
3.

A choice of unit normal field ξ along M defines a tensor field A of
type (1, 1) on M by Xξ = −df(AX) for each vector X tangent to
M . The operator A is symmetric with respect to the induced metric
g = f∗〈 , 〉, where 〈 , 〉 is the euclidean metric on R

3. The points where
A is a multiple of the identity are called umbilics of the immersion f .
The complement of the set of umbilics is foliated by a pair of foliations
(orthogonal with respect to g) given by the eigendirections of A at each
point; these are the principal foliations of the immersion f : M → R

3.
Let p0 be an isolated umbilic and C a simple closed curve enclosing

p0 and no other umbilics and completely contained in a simply connected
local coordinate neighborhood of p0. We may continuously choose an
oriented unit tangent to the foliation as we describe one counterclock-
wise circuit of C and measure the total counterclockwise variation T
of the tangent. Then j = 1

2πT ∈ 1
2Z is independent of the choice of

C and called the index of the umbilic. The foliation is orientable in a
neighborhood of p0 if and only if j is an integer.

Let p0 be an isolated umbilic of f . From the definition of an umbilic
it is clear that K(p0) ≥ 0, where K denotes Gaussian curvature. If
K(p0) = 0, then the map f̃ : = ι ◦ f : M → R

3, where ι is the inversion
in the unit sphere about o ∈ R

3, is an immersion (after we arrange the
origin so that f(M) �	 o) with exactly the same principal foliations on
M as f . If we move f(M) so that the origin o ∈ R

3 does not lie in the
tangent plane dfp0(Tp0M), then K̃(p0) > 0 (see Smyth and Xavier [14]).
Thus, there is no loss of generality in taking K(p0) > 0, so that the
Gauss map ξ : M → S2 is a diffeomorphism of a neighborhood U of p0
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in M onto a neighborhood V of ξ(p0) in S2. After a change of frame
in R

3 we may assume that ξ(p0) is the south pole of S2. Then, under
the stereographic projection Π from the north pole onto the equatorial
plane, the coordinate z = x+iy on a neighborhood Ω of the origin o ∈ C

gives local coordinates B = ξ−1◦Π−1 : Ω → U on the neighborhood U of
p0 ∈ M . These are called Bonnet coordinates on M around the umbilic
p0.

The function ω : Ω → R defined by

ω(z, z̄) = (1 + zz̄)
(〈f, ξ〉 ◦ B

)
(z, z̄)

is called the Bonnet function. By [3] or [14], p0 being an isolated umbilic
of f implies o is an isolated zero of ωz̄z̄ and in this case ωz̄z̄ = |ωz̄z̄| ζ2

on Ω0 := Ω \ {o}, where ζ is a local unit vector field (written as a
complex number) representing the Gauss image of either of the two
principal foliations on Ω0. Note that ω has the same differentiability
class as the immersion f . If f is Cr (r ≥ 2) then B is Cr−1 and from
ω = (1+zz̄)〈f ◦B,Π−1〉 and ωz = z̄〈f ◦B,Π−1〉+(1+zz̄)〈f ◦B, (Π−1)z〉
it follows that ω is in fact Cr (cf [6]).

A continuous 1-dimensional foliation F of a neighborhood Ω of
o ∈ R

2 with an isolated singularity at o is called a singular Hessian
foliation (Smyth and Xavier [14]) if there exists a C2 real-valued func-
tion ω on Ω whose Hessian operator

Hess[ω] =
[
ωxx ωxy

ωxy ωyy

]

has the following properties:

1. The operator Hess[ω] is proportional to I only at o ∈ Ω.

2. Fp is an eigenspace of the operator Hess[ω] at each p ∈ Ω0.

The Hessian foliation F above is said to be of class Ck if ω ∈ Ck+2(Ω).
Beginning with a continuous foliation F on a punctured neighbor-

hood Ω0 of o ∈ R
2 we may represent it locally on Ω0 by a continuous

unit vector field ζ (written as a complex number). Then ζ2 is a well-
defined unit vector field on Ω0, and the foliation F is a singular Hessian
foliation if and only if there exists a function ω ∈ C2(Ω) such that o is
an isolated zero of ωz̄z̄ and

ωz̄z̄ = |ωz̄z̄| ζ2, on Ω0.
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Note that the property of a foliation F being Hessian is a geometric
property in the sense that any orthogonal transformation L of the plane
maps F onto a foliation L(F) which is again a singular Hessian foliation.

Thus, in a Bonnet coordinate neighborhood of an isolated umbilic,
the principal foliations are singular Hessian foliations (of the Bonnet
function) and conversely — as first proved by Smyth and Xavier [14] —
given a function ω : Ω → R on a neighborhood of o ∈ R

2, there exists
an immersion f : Ω → R

3 such that the principal foliations of f coincide
with the Hessian foliations of ω.

Thus there is a simple equivalence between principal foliations in
surface theory and Hessian foliations in the plane.

3. A geometric obstruction to elliptic sectors in Hessian
foliations

Let F be a foliation of a neighborhood Ω of o ∈ R
2 with a singularity

at o. If there exists a closed simply connected region in Ω bounded by an
arc of F and an arc of F⊥ both emanating from some nonsingular point
z0 ∈ Ω and meeting at o, then we call this region a lens of F and we
denote it L(z0). A foliation need not have a lens; but an elliptic sector
has a continuum of lenses. There are also foliations without elliptic
sectors which nonetheless have a continuum of lenses.

Let L(z0) be a lens of some foliation of class C2. We orient its
boundary counterclockwise denoting the first arc C+(z0) as we leave o
and the second arc C−(z0). Let us re-label the corresponding foliations
by F+ and F−. They are then oriented on an open neighborhood Ω′

z0
of

L(z0)\{o} in Ω0 = Ω\{o} and their curvatures k+ and k−, respectively,
are well-defined continuous functions on Ω′

z0
. We say that the lens L(z0)

is biconvex if k− ≥ 0 on C+(z0) and k+ ≥ 0 on C−(z0) (see Figure 2).

It is important to notice that if an isolated singularity of a foliation
F has an elliptic sector then F and its orthogonal F⊥ automatically
determine a continuum of lenses. In particular, by Bendixson’s formula,
lenses are always present if the index is > 1.

The proof of the Main Theorem uses Riemann’s method for linear
second order hyperbolic equations as presented in [14] and we will ex-
plain this first, postponing the proof until later in this section.

Let
H[u] = Auxx + 2Buxy + Cuyy + Mux + Nuy
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z0

o

C−(z0)

C+(z0)

Figure 2: A biconvex lens

be a linear hyperbolic operator of class C2 defined on some domain
Ω ⊂ R

2. This means that A, B and C are of class C2, M and N are
of class C1 and B2 − AC > 0 throughout Ω. Let δ =

√
B2 − AC. The

characteristics of H are the foliations defined by

±δ dx = −B dx + A dy (or ± δ dy = −C dx + B dy),

and are denoted accordingly by C±. The adjoint H∗ of H is defined by

H∗[v] = (Av)xx + 2(Bv)xy + (Cv)yy − (Mv)x − (Nv)y.

One also defines the 1-form

σ[u] = ux(−B dx + A dy) + uy(−C dx + B dy),

and the 1-form

τ = (Bx + Cy − N) dx − (Ax + By − M) dy,

which satisfy the identity(
H[u] − uH∗[1]

)
dx ∧ dy = d(σ[u] + uτ).

Let Pz0Q be a positively-oriented curvilinear triangle (which to-
gether with its interior lies in Ω) such that Pz0 and z0Q are, respec-
tively, parts of a C+ characteristic and a C− characteristic, and Γ is a
simple arc transversal to both C± characteristics at each of its points,
as shown in Figure 3.
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Q

P

Γ

C−

C+

z0

Figure 3: A curvilinear triangle Pz0Q

If [Pz0Q] denotes the closed domain bounded by Pz0Q then by
Stokes’ Theorem∫∫

[Pz0Q]

(H[u] − uH∗[1]) dx dy =
∮

Pz0Q

(σ[u] + uτ)

=
∫

Pz0

(σ[u] + uτ) +
∫

z0Q

(σ[u] + uτ)

+
∫
Γ

(σ[u] + uτ).

From σ[u] = ±δ du along C± one obtains

σ[u] + uτ = ±d(δu) + u(τ ∓ d δ) along C±

and

2(δu)(z0) = −
∫

Pz0

u(τ − dδ) −
∫

z0Q

u(τ + dδ)

+ (δu)(P ) + (δu)(Q) −
∫
Γ

(σ[u] + uτ)

+
∫∫

[Pz0Q]

(H[u] − uH∗[1]) dx dy.

(1)

We also note the identity

H∗[1] dx ∧ dy = −dτ.(2)
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Proof of Main Theorem. Let L(z0) be a biconvex lens of a singu-
lar Hessian foliation of class C2, whose singularity we may take to be at
o. Thus, on an open neighborhood Ω′

z0
of L(z0)\{o} in R

2\{o}, there is
defined a C2 unit vector field F : Ω′

z0
→ S1 ⊂ R

2 ∼= C which is tangent
to F+, and there exists a function ω : Ω → R of class C4 defined on an
open neighborhood Ω of o containing Ω′

z0
, such that

ωz̄z̄ = ρF 2(3)

on Ω′
z0

, where ρ = |ωz̄z̄| ∈ C2(Ω0) ∩ C0(Ω; R+) vanishes only at o.
Differentiating twice with respect to z we have

Im{(ρF 2)zz} = 0(4)

on Ω′
z0

. If we define the operator H by

H[ρ] =
F 2 − F̄ 2

2i
ρxx − 2

F 2 + F̄ 2

2
ρxy − F 2 − F̄ 2

2i
ρyy

−4i(FFz − F̄ F̄z̄)ρx − 4(FFz + F̄ F̄z̄)ρy,

(5)

then (4) becomes

H[ρ] + 4ρIm{(F 2)zz} = 0.(6)

It is easily checked that the operator H is hyperbolic on Ω0 with
δ = |F |2 and its C±-characteristics are given by

dy

dx
=

Im{F}
Re{F} for C+ and

dy

dx
=

Im{iF}
Re{iF} for C−.

Thus,

dz = F dt+ along C+ and dz = iF dt− along C−,(7)

where t± is any arclength parameter along C±.
By straightforward calculations one also obtains

σ[ρ] = ρzF
2 dz̄ + ρz̄F̄

2 dz(8)

and

τ = 2F̄ F̄z̄ dz + 2FFz dz̄.(9)
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Using (2) we obtain

H∗[1] = −4Im{(F 2)zz},

which shows that equation (6) is equivalent to

H[ρ] − ρH∗[1] = 0.(10)

From (9) and (7) we obtain that

{
τ − dδ = (FF̄ F̄z − F̄ 2Fz̄ + FF̄ F̄z̄ − F 2F̄z) dt+ along C+,
τ + dδ = −i(FF̄Fz + F̄ 2Fz̄ − FF̄ F̄z̄ − F 2F̄z) dt− along C−.

(11)

The coefficients of dt+ and dt− in the formulas above are twice the curva-
tures k− and k+, respectively. This follows from the general formula of
the curvature of a curve in terms of its tangent field viewed as a complex-
valued map. To be precise, if t �−→ (x(t), y(t)) ∼= x(t) + iy(t) = z(t)
is a parametrization of a C2 curve then its curvature k is given by the
well-known formula

k =
xtytt − xttyt

(xt
2 + yt

2)3/2

and its tangent field is X = (xt, yt) ∼= xt + iyt. Using

xtt = ∂x

(
X + X̄

2

)
xt + ∂y

(
X + X̄

2

)
yt,

ytt = ∂x

(
X − X̄

2i

)
xt + ∂y

(
X − X̄

2i

)
yt,

one obtains, after a straightforward calculation, the formula

k =
1

2i|X|3 (XX̄Xz + X̄2Xz̄ − XX̄X̄z̄ − X2X̄z).(12)

With (12) above and |F | = 1, (11) becomes{
τ − dδ = 2k− dt+ along C+,
τ + dδ = 2k+ dt− along C−.

(13)

Finally, using (8), (9), and (3) we obtain

σ[ρ] + ρτ =
1
4
d(∆ω),(14)
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where ∆ω = 4ωzz̄ is the Laplacian of ω.
We are now ready to put the pieces together. We apply (1) using

(10), (13), and(14), and obtain that

ρ(z0) +


 z0∫

P

ρk− dt+ +

Q∫
z0

ρk+ dt−




=
1
2
[ρ(P ) + ρ(Q) +

1
4
(∆ω)(P ) − 1

4
(∆ω)(Q)]

(15)

for all P ∈ C+ and all Q ∈ C−.
By the hypotheses, ρ = |ωz̄z̄| ≥ 0, k+ ≥ 0 on C− and k− ≥ 0 on C+

so the integral term inside the parentheses is positive and nondecreasing
as P and Q tend to o (along C+ and C−, respectively). Thus, the left
hand side is ≥ ρ(z0) > 0. But the right hand side is continuous in P
and Q, and goes to ρ(o) = 0 as P and Q tend to o. This contradiction
completes the proof of the Main Theorem.

4. Curvature of a foliation under diffeomorphisms

In this section we compute two formulas: one for the curvature of
the diffeomorphic image of a regular curve in terms of the curvature
of the original curve and another one for the curvature of the foliation
orthogonal to a given nonsingular foliation. These formulas will be used
in §5 to show that the diffeomorphic image of the standard plane dipole
foliation always has a biconvex lens.

We begin by recalling that a curve c : (θ0, θ1) → R
2 is called regular

of class Cm if c is a differentiable map of class Cm and the tangent vector

field ċ :=
dc

dθ
never vanishes. Then the curvature kc : (θ0, θ1) → R of the

regular curve c = (a, b) of class C2 is given by the well-known formula

kc =
aθbθθ − bθaθθ

(aθ
2 + bθ

2)3/2
(16)

where, as usual, the subscripts in the right hand side denote differenti-
ation with respect to the specified variable.

Let φ = (φ1, φ2) : U → R
2 be a differentiable map of class C2. For

z ∈ U we define the map Kφ(z) : R
2 → R by(

Kφ(z)
)
(X) =〈
(∇φ1)z, X

〉
Hessz[φ2](X, X) − 〈

(∇φ2)z, X
〉
Hessz[φ1](X, X)
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where ∇ denotes the gradient operator and Hess[f ] also denotes the
symmetric bilinear form naturally induced by the Hessian operator of
a real valued function f . If X : (θ0, θ1) → R

2 is a vector field de-
fined along the curve c then Kφ(X) : (θ0, θ1) → R is the map de-

fined by
(
Kφ(X)

)
(z) =

(
Kφ

(
c(θ)

))(
X(θ)

)
. Note that Kφ is homo-

geneous of degree 3 in the sense that Kφ(λX) = λ3Kφ(X) for any
function λ : (θ0, θ1) → R. We also denote by Jφ : U → R the Jacobian
Jφ = φ1

xφ2
y − φ2

xφ1
y of the map φ.

Lemma 1. Let c : (θ0, θ1) → U ⊂ R
2 be a regular curve of class

C2 whose image lies in the open set U and let φ : U → V ⊂ R
2 be

a diffeomorphism of class C2. Then the curvature kφ◦c of the curve
φ ◦ c : (θ0, θ1) → V is given by

kφ◦c =
∣∣∣∣dφ

(
ċ

|ċ|
)∣∣∣∣

−3 [
(Jφ ◦ c)kc + Kφ

(
ċ

|ċ|
)]

.(17)

Proof. Let φ ◦ c = (α, β). Then, by a straightforward computation,
we have

αθ =〈(∇φ1)◦c, ċ〉, βθ = 〈(∇φ2)◦c, ċ〉,
αθθ =〈(∇φ1)◦c, c̈〉 +

(
Hess[φ1]◦c

)
(ċ, ċ), βθθ

=〈(∇φ2)◦c, c̈〉 +
(
Hess[φ2]◦c

)
(ċ, ċ),

so that

αθβθθ − βθαθθ =
〈
(∇φ1) ◦ c, ċ

〉〈
(∇φ2) ◦ c, c̈

〉
−

〈
(∇φ2) ◦ c, ċ

〉〈
(∇φ1) ◦ c, c̈

〉
+ Kφ(ċ).

By substituting ċ = (aθ, bθ), c̈ = (aθθ, bθθ) and ∇φn = (φn
x, φn

y ),
n ∈ {1, 2}, one obtains easily

αθβθθ − βθαθθ = (Jφ ◦ c)(aθbθθ − bθaθθ) + Kφ(ċ)

and therefore, by (16) and the homogeneity of Kφ, we obtain that

kφ◦c =
(Jφ ◦ c)(aθ

2 + bθ
2)3/2kc + Kφ(ċ)

(αθ
2 + βθ

2)3/2

=
[

aθ
2 + bθ

2

αθ
2 + βθ

2

]3/2 [
(Jφ ◦ c)kc + Kφ

(
ċ

|ċ|
)]

.
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Since αθ
2 + βθ

2 = |dφ(ċ)|2, formula (17) follows at once. q.e.d.

Let h : (θ0, θ1) × (t0, t1) → U ⊂ R
2 be a t-family of θ-curves such

that h is an orientation preserving diffeomorphism of class Cm, m ≥ 2.
Let F denote the foliation of U by this family of curves; thus F is gen-
erated by the nonvanishing vector field U 	 h(θ, t) �−→ hθ(θ, t) ∈ R

2.
Let F⊥ be the foliation of U by curves orthogonal (at each of their
points) to the leaves of F . Our goal is to obtain an expression for the
curvature k⊥ of F⊥ in terms of h. To do this we first construct suitable
local parametrizations of F⊥. Let (θ′, t′) ∈ (θ0, θ1) × (t0, t1) be fixed
but otherwise arbitrarily chosen. We want to obtain a parametriza-
tion h⊥ : (t′0, t′1) × (θ′0, θ′1) → U of F⊥ by a θ-family of t-curves defined
in a neighborhood (t′0, t′1) × (θ′0, θ′1) of (t′, θ′). We look for a differen-
tiable function Θ: (t′0, t′1) × (θ′0, θ′1) → (θ0, θ1) with the property that
for any θ ∈ (θ′0, θ′1) the correspondence (t′0, t′1) 	 t �−→ h

(
Θ(t, θ), t

)
is a

parametrization of the leaf of F⊥ through h(θ, t′) subject to the initial
value condition

Θ(t′, θ) = θ.(18)

If we let h⊥ : (t′0, t′1) × (θ′0, θ′1) → U be the map defined by

h⊥(t, θ) = h
(
Θ(t, θ), t

)
(19)

then the orthogonality condition is〈
hθ

(
Θ(t, θ), t

)
, h⊥

t (t, θ)
〉

= 0(20)

for all (t, θ) ∈ (t′0, t′1) × (θ′0, θ′1).
To simplify the notation we will use the following convention: If

an expression contains maps pertaining to both foliations F and F⊥

then the maps pertaining to F⊥ (such as h⊥ or Θ) are computed at
(t, θ), the maps pertaining to F (such as h or Jh) are computed at(
Θ(t, θ), t

)
and it should be understood that the formula is valid for all

(t, θ) ∈ (t′0, t′1) × (θ′0, θ′1).
Differentiating (19) with respect to t we obtain

h⊥
t = Θthθ + ht(21)

and substituting this in (20) we obtain that t �−→ Θ(t, θ) satisfies the
first order differential equation

Θt = −〈hθ, ht〉
|hθ|2

(22)
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with the initial value condition (18). By the theory of first order dif-
ferential equations, there exists [t′0, t′1]× [θ′0, θ′1] ⊂ (t0, t1)× (θ0, θ1) with
(t′, θ′) ∈ (t′0, t′1)× (θ′0, θ′1) such that (22) and (18) have a unique solution
Θ defined on [t′0, t′1]× [θ′0, θ′1]. Then the map h⊥ defined by (19) satisfies
(20) and therefore is a parametrization of F⊥.

If we now substitute (22) back in (21) we obtain

h⊥
t = ht −

〈
ht,

hθ

|hθ|
〉

hθ

|hθ| ;

that is, h⊥
t is the component of ht on ihθ (here multiplication of vectors

by i means counterclockwise rotation by π
2 ). Thus

h⊥
t =

〈
ht,

ihθ

|hθ|
〉

ihθ

|hθ|
and from the well-known formula

〈
(v1, v2), i(u1, u2)

〉
=

〈
(v1, v2), (−u2, u1)

〉
= u1v2 − u2v1 =

∣∣∣∣u1 u2

v1 v2

∣∣∣∣
we obtain

h⊥
t =

Jh

|hθ|2 ihθ,(23)

where Jh is the Jacobian of the map h.

Lemma 2. The curvature k⊥ of F⊥ is given by

k⊥ ◦ h =
1

|hθ|3Jh

[
|hθ|2∂θJh −

(
1
2
∂θ|hθ|2

)
Jh

]
.(24)

Proof. Let h = (a, b) and h⊥ = (α, β). Then by (16)

k⊥(h⊥(t, θ)) =
αt

2(
αt

2 + βt
2
)3/2

∂

∂t

(
βt

αt

)∣∣∣∣∣∣∣
(t,θ)

and further by (20)

k⊥ ◦ h⊥ =
αt

2(
αt

2 + βt
2
)3/2

∂

∂t

(
−aθ

bθ

)
.
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According to our convention, the function to be differentiated above is

aθ

bθ
=

aθ

(
Θ(t, θ), t

)
bθ

(
Θ(t, θ), t

)
and therefore

k⊥ =
αt

2(
αt

2 + βt
2
)3/2

[
−(aθθΘt + aθt)bθ − (bθθΘt + bθt)aθ

bθ
2

]
.(25)

By (23)

αt
2 =

Jh
2

|hθ|4 bθ
2, αt

2 + βt
2 =

Jh
2

|hθ|2
so that

αt
2(

αt
2 + βt

2
)3/2

1
bθ

2
=

bθ
2Jh

2
/|hθ|4

Jh
3
/|hθ|3

1
bθ

2
=

1
|hθ|Jh

(26)

(here we have used Jh > 0). With a little calculation using (22), formula
(25) becomes

k⊥ ◦ h =
1

|hθ|3Jh

[
(bθaθθ − aθbθθ)(aθat + bθbt) + |hθ|2(aθbθt − bθaθt)

](27)

(we switched from h⊥ to h using (19) since the right hand side is ex-
pressed in terms of h only). From ∂θJh = aθbθt − bθaθt + aθθbt − bθθat

we have aθbθt − bθaθt = ∂θJh + bθθat −aθθbt, which we substitute in (27)
to obtain

k⊥ ◦ h =
1

|hθ|3Jh

[
|hθ|2∂θJh

+ (bθaθθ − aθbθθ)(aθat + bθbt) + (aθ
2 + bθ

2)(bθθat − aθθbt)

]

=
1

|hθ|3Jh

[
|hθ|2∂θJh − (aθaθθ + bθbθθ)(aθbt − bθat)

]
,

from which (24) follows at once. q.e.d.
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5. Local dipoles are not principal foliations

This section is devoted to the proof of Theorem 1 and other imme-
diate applications of the Main Theorem.

Let f : S2 → R
3 be a C4 immersion of the 2-sphere with only one

umbilic at the south pole σ and let P be either one of its principal
foliations. The goal of this section is to show that P cannot be locally
C2 diffeomorphic at σ to the standard dipole foliation on S2. Let X be
a unit vector field on S2\ {σ} tangent to P.

Let us then assume, to the contrary, that there exists a diffeomor-
phism χ : V1 → U1 of class C2 between two neighborhoods of σ in S2,
such that χ(σ) = σ and the nowhere vanishing vector field dχ(X) on
U1\{σ} is tangent to the standard dipole foliation. The stereographic
projection Π from the north pole onto the equatorial plane, maps the
standard dipole foliation on S2 onto the standard plane dipole folia-
tion D which is the phase portrait of the vector field D(z) = z2 and
consists of circles centered on the imaginary axis and tangent to the
real axis. Thus, the diffeomorphism Π ◦ χ : V1 → U = Π(U1) maps
the principal foliation P onto the plane foliation D. On the other
hand P is mapped diffeomorphically through the Bonnet coordinates
B : V1 → V , B(σ) = o ∈ R

2, onto a singular Hessian foliation F (as
was shown in §3) determined by the nowhere vanishing vector field
F = dB(X) : V \{o} → R

2.
Then our initial assumption of the preceeding paragraph that P is

locally diffeomorphic to the standard dipole foliation on S2 leads to the
diffeomorphism φ : = B ◦(Π◦χ)−1 : U → V with φ(o) = o and mapping
the standard plane dipole foliation onto the singular Hessian foliation
F . It remains to show that the standard plane dipole foliation cannot
be locally diffeomorphic to a singular Hessian foliation. The idea of the
proof is to show that if F is locally diffeomeorphic to D, then F has a
biconvex lens and therefore, by the Main Theorem, cannot be a Hessian
foliation.

The immersion f being of class C4, the Bonnet function ω is also of
class C4 (see §2) and, since φ is C2, the foliation F is C2. Thus the dif-
ferentiability conditions in the Main Theorem are satisfied. The Hessian
property of a foliation being invariant under orthogonal transformations
we may assume that φ is orientation preserving.

Let us begin by considering the map g : (0, π)× (0,∞) → R
2 defined

by

g(θ, t) =
1
t

sin θ(cos θ, sin θ).
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h

oT

t

θπo

t = T

Figure 4: The parametrization of ET

Thus θ �−→ g(θ, t) is a parametrization of the circle of radius 1
2t centered

at (0, 1
2t) and therefore g is a parametrization of the standard plane

dipole foliation in the upper half-plane. Clearly, there exists T > 0 such
that g

(
(0, π) × [T,∞)

)
⊂ U . Then h = φ ◦ g : (0, π) × [T,∞) → V is

a parametrization of an elliptic sector ET of F . That is θ �−→ h(θ, t)
is a parametrization of a leaf of F in ET for each t ≥ T and any point
w �= o in ET is on one of the curves of the t-family {θ �−→ h(θ, t)}t≥T ;
the elliptic sector ET is clearly bounded by the leaf θ �−→ h(θ, T ) (see
Figure 4).

A simple computation shows that the Jacobian Jg of g is given by

Jg(θ, t) =
1
t3

sin2 θ

and therefore h — whose Jacobian is Jh = (Jφ ◦ g)Jg — establishes
an orientation preserving diffeomorphism (of the same class of differ-
entiability as φ) between (0, π) × [T,∞) and ET \ {o}. Let F⊥ be the
orthogonal foliation of F . For θ ∈ (0, π) let C−(θ) be the semitrajectory
of F⊥ starting at h(θ, T ). Thus C−(θ) enters ET and approaches o. Let
C+(θ) be the semitrajectory of F ending at h(θ, T ). Then the closed
region Lθ bounded by C+(θ) and C−(θ) is a lens of F with vertex at
h(θ, T ) (see Figure 5).

By formula (17) of Lemma 1 the curvature k of F on ET is given by

k ◦ h =
∣∣∣∣dφ

( gθ

|gθ|
)∣∣∣∣

−3 [
(Jφ ◦ g)kg + Kφ

(
gθ

|gθ|
)]

(28)

where kg(θ, t) = 2t is the curvature of the standard plane dipole foli-
ation. Since gθ

/|gθ| is a unit vector field, the functions Kφ

(
gθ

/|gθ|
)
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o

C−(θ)

C+(θ)

h(θ, T )

Figure 5: A lens of F

and
∣∣dφ(gθ

/|gθ|)
∣∣ are bounded on (0, π) × [T,∞), the latter being also

bounded away from zero since φ is a diffeomorphism; the function Jφ ◦g
is clearly bounded and positive since φ is orientation preserving. It is
now clear that one can choose T sufficiently large so that

k
(
h(θ, t)

)
> 0(29)

for all θ ∈ (0, π) and all t ≥ T .
On the other hand, by (24), the curvature k⊥ of F⊥ is given by

k⊥ ◦ h =
1

|hθ|3
[
∂θJh

Jh
|hθ|2 −

(
1
2
∂θ|hθ|2

)]
.(30)

From hθ = dφ(gθ), a straightforward computation gives

hθθ = Hess[φ](gθ, gθ) + dφ(gθθ)

where Hess[φ] : U → L(R2 × R
2, R2) is defined as Hess[φ] = (Hess[φ1],

Hess[φ2]). From

gθ(θ, t) =
1
t
(cos 2θ, sin 2θ) and gθθ(θ, t) =

1
t
(−2 sin 2θ, 2 cos 2θ)

we obtain |gθ(θ, t)| = (1/t) and |gθθ(θ, t)| = (2/t) and it is then clear that
the function θ �−→ |hθ(θ, T )| is bounded and bounded away from zero
on (0, π) and that the function θ �−→

(
∂θ|hθ|2

)
(θ, T ) = 2〈hθ, hθθ〉(θ, T )

is bounded.



elliptic sectors in surface theory 471

We will now show that the first term inside the brackets in (30)
tends to +∞ as θ −→ 0. Since Jg(θ, t) = (1/t3) sin2 θ we have

Jh =
1
t3

sin2θ (Jφ ◦ g)

and

∂θJh =
1
t3

[
sin 2θ (Jφ ◦ g) + sin2θ

(
dJφ(gθ)

)]
.

Clearly

lim
θ↘0

(∂θJh)(θ, T )
θ

=
2
T 3

Jφ(o)

and

lim
θ↘0

Jh(θ, T )
θ2

=
1
T 3

Jφ(o)

so that

lim
θ↘0

θ
(∂θJh)(θ, T )

Jh(θ, T )
= 2.

Thus, for any M > 0 there exists θ1 = θ1(M) ∈ (0, π) such that

(∂θJh)(θ, T )
Jh(θ, T )

> M

for all θ ∈ (0, θ1). We have therefore established that there exists
θ1 ∈ (0, π) such that

k⊥(h(θ, T )) > 0(31)

for all θ ∈ (0, θ1).
From (29) and (31) we may now finally conclude that for θ ∈ (0, θ1)

the lens Lθ with vertex at h(θ, T ) is a biconvex lens of F and therefore,
by the Main Theorem, F cannot be a singular Hessian foliation. The
proof of Theorem 1 is now complete.

Remark 1. Let F be a C1 foliation on S2 with only one singularity
at the south pole σ. By a simple application of the classical theory of
dynamical systems ([1], [9]) one obtains that any trajectory τ of F
must close up at σ (that is, both ends of τ tend to σ). We say that
the trajectories of F are nested if the elliptic sectors within any elliptic
sector are ordered by inclusion.
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n = 3/2, N = 1 n = 5/2, N = 3

Figure 6: Standard plane N -poles.

Theorem 2. Let f : S2 → R
3 be a smooth immersion of the

2-sphere with only one umbilic at the south pole σ and let P be ei-
ther one of its principal foliations. If the trajectories of P are nested
then P is homeomorphic to the standard dipole foliation but can never
be diffeomorphic to it.

The proof of this theorem follows immediately from our Theorem 1
once we show that the principal foliation P is necessarily homeomorphic
to the standard dipole foliation. But this is a simple consequence of the
classical topological classification results for smooth foliations on plane
or spherical regions (see [1], [9]).

Remark 2. For n ∈ 1
2Z, n > 1, let En be the foliation determined

by the line field En : C
∗ → RP

1, En(z) = lzn . Its phase portrait consists
of N = 2n − 2 elliptic sectors separated by the rays θ = mπ/(n − 1),
m ∈ {0, 1, . . . , 2n − 3}. En is the simplest foliation with an isolated
singularity at o of index n and is called the standard plane N -pole fo-
liation (see Figure 6). The orthogonal foliation E⊥

n is determined by
the line field E⊥

n (z) = lizn and its phase portrait is the phase portrait
of En rotated by − π

2n−2 . Using (12) of §3 one obtains at once that the
curvatures kn and k⊥

n of En and E⊥
n respectively are given by

kn(reiθ) =
n

r
sin(n − 1)θ and k⊥

n (reiθ) =
n

r
cos(n − 1)θ.

It is now easy to see that for any z0 with 0 < arg z0 < π
2n−2 the lens of

En with vertex at z0 is a biconvex lens and so, by the Main Theorem,
En cannot be a singular Hessian foliation.
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