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A torus theorem for homotopy nilpotent loop
spaces

Cristina Costoya, Jérôme Scherer and Antonio Viruel

Abstract. Nilpotency for discrete groups can be defined in terms of central extensions.
In this paper, the analogous definition for spaces is stated in terms of principal fibrations having
infinite loop spaces as fibers, yielding a new invariant between the classical LS cocategory and the
more recent notion of homotopy nilpotency introduced by Biedermann and Dwyer. This allows us
to characterize finite homotopy nilpotent loop spaces in the spirit of Hubbuck’s Torus Theorem,
and obtain corresponding results for p-compact groups and p-Noetherian groups.

Introduction

Hubbuck’s Torus Theorem, [27, Theorem 1.1], characterizes, up to homotopy,
classical homotopy commutative finite H-spaces as tori, i.e. finite products of circles.
Mod p versions were established after by Lin [32, Theorem 1] and Aguadé–Smith
[2, Corollary], and many extensions of this theorem have been obtained by relax-
ing the finiteness conditions. For example, Castellana–Crespo–Scherer [12, Corol-
lary 7.4] proved that connected homotopy commutative H-spaces with finitely gen-
erated cohomology as algebra over the Steenrod algebra, at the prime 2, are homo-
topically equivalent to products of a torus and a Potsnikov piece. In this paper we
relax instead the commutativity assumption by considering the Biedermann–Dwyer
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notion of homotopy nilpotent loop spaces and show that tori are the only homotopy
nilpotent finite loop spaces.

Biedermann and Dwyer, [10, Definition 5.4], used the stages of the Goodwillie
tower of the identity to provide the first definition of homotopy nilpotency which
interpolates between infinite loop spaces (homotopy commutative groups or, equiva-
lently, homotopy 1-nilpotent groups) and loop spaces. Even though this might come
as a surprise to those which are more accustomed to relate the Goodwillie tower
of the identity to vn-periodicity, as discovered by Arone and Mahowald, [5], there
is a quite straightforward relationship between the essence of Goodwillie calculus,
namely higher excision, and nilpotency.

In order to explain this let us first go back to group theoretical nilpotency.
The nilpotency of a discrete group is understood either as the minimal number of
iterated commutators that must always vanish, or as the minimal number of central
extensions needed to construct the group. The commutators approach has been
successfully interpreted in homotopy theory leading to the classical Berstein–Ganea
nilpotency [8]. Work of Hopkins, [24], and Rao, [40], gives a complete understand-
ing of the classical Berstein–Ganea nilpotency for compact Lie groups: those with
finite nilpotency index are precisely the torsion free ones. This is the case of the
3-dimensional sphere, an example which has been studied by Porter in the early
1960s, [39].

The central extensions approach will be this article’s viewpoint. In homotopy
theory a commutative (or 1-nilpotent) group is an infinite loop space as it should be
commutative not only up to homotopy, but up to all higher homotopies. Therefore
a natural analogue notion of nilpotency for loop spaces (i.e. group like spaces) is the
following formal translation. We replace central extensions by principal fibrations
whose fiber is an infinite loop space and, the invariant which is introduced in this way
is the minimal number of extensions by such principal fibrations needed to construct
a given loop space. We call this invariant the extension by principal fibrations length,
or epfl for short. Let us mention that considering a central extension of groups
as a principal fibration by taking classifying spaces, is a classical procedure (see
[1, Lemma IV.1.12]). It appears notably in algebraic K-theory, in Quillen’s use of
the plus construction, a point of view adopted for example in [7].

The relationship to Goodwillie calculus is provided by the structure of the
Goodwillie tower. Let F be a functor from spaces to spaces and F→PnF denote
the n-excisive approximation of F , [21, Section 1]. This means that P1F is basically
a homological functor turning homotopy push-outs into homotopy pull-backs and
more generally PnF satisfies higher excision, [20, Definition 2.1]. The homotopy
fiber DnF of the natural transformation PnF→Pn−1F is a homogeneous n-excisive
functor, [21, Proposition 1.17], and Goodwillie showed that it is classified by a spec-
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trum together with an action of the symmetric group Σn, [21, Section 5]. Concretely
DnF (X) is the infinite loop space corresponding to the Σn-equivariant smash prod-
uct of this spectrum with X∧n. Even better, this fibration of functors is actually
principal, [21, Lemma 2.2].

In this paper, we prove the following.

Theorem 1.5. Let Z be a pointed connected space. Then, we have the in-
equalities

nilBG(ΩZ)≤ cocat(Z)≤ epfl(Z)≤nilBD(ΩZ).

Here the two nilpotency invariants refer to the classical Berstein–Ganea nilpo-
tency, nilBG (see Section 1.2), and the Biedermann–Dwyer nilpotency, nilBD (see
Section 1.1).

We mention finally two problems where our epfl invariant is key to the solution.
First we recover the vanishing of iterated Whitehead products in values of excisive
functors. If F is an n-excisive functor from the category of pointed spaces to pointed
spaces and K a finite space, then ΩF (K) is a homotopy nilpotent group of class n,
[10, Corollary 9.3]. Thus Theorem 1.5 immediately implies that all (n+1)-fold
iterated Whitehead products vanish in F (K). This has been proven originally in
[14] relying on Goodwillie’s generalized Blakers–Massey Theorem and the definition
itself of an n-excisive functor. In [18] Eldred obtains another proof by analyzing
Goodwillie’s construction of the n-excisive approximation PnF of a functor F . She
shows in fact that Whitehead products already vanish in TnF , a functor directly
related to Hopkins’ symmetric cocategory, [25, Definition p. 219].

The second problem, from which the title of this paper comes from, concerns
our understanding of finite homotopy nilpotent loop spaces, with which we come
back to the first lines of this introduction. We recall briefly that a loop space
(X,BX) consist of a pair of pointed spaces X and BX, together with a homotopy
equivalence e:ΩBX�X defining a loop structure on X. The space BX is called
the classifying space of X and (X,BX) is said to be finite if H∗(X;Z) is finitely
generated as a graded abelian group. In this paper we offer the following version
of Hubbuck’s Torus Theorem for finite loop spaces. Whereas the original state-
ment, [27, Theorem 1.1], focuses on homotopy commutative H-spaces, we deal with
arbitrary homotopy nilpotent groups.

Theorem 3.6. Let (X,BX) be a connected finite loop space. If nilBD(X) is
finite, then X has the homotopy type of a torus.

We obtain analogous characterizations of Biedermann–Dwyer nilpotency for
p-compact groups (Theorem 3.1) and p-Noetherian groups (Corollary 3.5). Two
key ingredients in the proof are, on the one hand, the existence of a finite tower
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of principal fibrations and, on the other hand, the effect of Neisendorfer’s functor,
[38], on the fibers of this tower making them contractible (see Section 2).

The result above shows that, in particular, simple compact Lie groups are not
nilpotent loop spaces in the sense of Bierdermann–Dwyer, in contrast to the classical
situation when considering Berstein–Ganea nilpotency where all torsion free simple
Lie groups are nilpotent [25] and [40]. This provides yet more evidence that nilBD
is the correct notion for nilpotency of loop spaces.

Acknowledgments. The first and third author would like to acknowledge the
hospitality of the EPFL, where this paper has been completed. We would like
to thank Georg Biedermann for sharing his unpublished results with us, and the
referees for their careful reading and constructive comments.

1. Background and first results

In this section we briefly introduce the main ingredients in Theorem 1.5.

1.1. Nilpotency in the sense of Biedermann–Dwyer

We need some basic notions on algebraic theories to understand the nilpotency
in the sense of Biedermann–Dwyer. Algebraic theories were introduced by Law-
vere [31] to describe algebraic structures, and successfully interpreted in homotopy
theory by Badzioch [6]. We will need simplicial theories and follow closely the
viewpoint from [10, Section 3].

Definition 1.1. An algebraic theory is a small category T whose objects are
indexed by the natural numbers {T0, T1, ..., Tn, ...} such that for n∈N the n-fold
categorical coproduct of T1 is naturally isomorphic to Tn.

In our situation, the algebraic theory T will be required to be pointed and
simplicial, which means that T is enriched over the category S∗ of pointed simplicial
sets. We distinguish between strict and homotopy T -algebras: simplicial functors

˜X : T op→S∗ taking coproducts in T op to products in S∗ strictly or up to homotopy,
respectively.

Biedermann and Dwyer define homotopy nilpotent groups as homotopy Gn-alge-
bras in the category of pointed spaces, where Gn is a simplicial algebraic theory con-
structed from the Goodwillie tower of the identity, [10, Definition 5.4]. Concretely,
Gop
n is the simplicial category which has for each natural number k≥0 exactly one

object given by Gn(k)=
∏

k Ω(Pn(id))inj. The functor Pn(id) lives in the category of
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functors from finite pointed spaces to pointed spaces, it is the n-excisive approxima-
tion of the identity functor, and (Pn(id))inj denotes the fibrant replacement in the
injective model structure constructed by Lurie in [33, Proposition A.3.3.2], see also
Joyal [29], Jardine [28] for related work, and [10, Section 4] for the application to
homotopy nilpotent groups. The simplicial set of morphisms Gop

n (k, l) is the space
of natural transformations

∏
k Ω(Pn(id))inj→

∏
l Ω(Pn(id))inj.

Hence, a pointed space X is a homotopy nilpotent group of class ≤n if it is the
value at 1 of a simplicial functor ˜X from Gn to pointed spaces, which commutes
up to homotopy with products. In fact, the homotopy nilpotent group is the whole
functor ˜X and we isolate abusively the space ˜X(1), that comes in particular with
a loop space structure since there is a structure map ˜X(1)×˜X(1)� ˜X(2)→ ˜X(1)
corresponding to the loop space product. We say that X is a homotopy nilpotent
group if it is of class ≤n for some n and we write nilBD(X)≤n. The two extremes of
this theory are well understood: loop spaces (nilBD(X)≤∞) and infinite loop spaces
(nilBD(X)≤1, see [10, Theorem 5.13]) can be described as homotopy algebras over
the theories G∞ and G1 respectively.

1.2. Nilpotency in the sense of Berstein–Ganea

Applying the functor π0 to the simplicial algebraic theory Gn gives us the ordi-
nary theory of n-nilpotent groups, Niln, [10, Theorem 8.1]. Now, product preserving
functors to the homotopy category of pointed spaces, N : Nilopn →Ho(Spaces∗), are,
in other words, Niln-algebras in the homotopy category of pointed spaces. These are
exactly the n-nilpotent groups in the sense of Berstein–Ganea [14, Proposition 4.2].
Recall that for a loop space ΩZ, the nilpotency of ΩZ in the sense of Berstein–Ganea
is the least integer n for which the (n+1)-st commutator map ϕn+1 :(ΩZ)n+1→ΩZ

is homotopically trivial [8, Definition 1.7]; in this paper we write nilBG(ΩZ)≤n.
We recall here that if such an integer n exists then all the (n+1)-fold iterated
Whitehead products vanish in Z, [8, Theorem 4.6].

The following example shows that nilpotency in the sense of Berstein–Ganea
does not capture the subtlety of the loop space structure.

Example 1.2. Let f :CP∞→K(Z, 6) represent the cube of the fundamental class
of the infinite complex projective space, and let Z be the homotopy fiber of f . The
Berstein–Ganea nilpotency of ΩZ is 1 [37, Corollary 5.6] but its Biedermann–Dwyer
nilpotency is strictly greater than 1 since ΩZ is not an infinite loop space (Z is not an
H-space [37, Lemma 5.2]). Indeed, even though ΩZ is homotopically equivalent to
a product of infinite loop spaces, ΩZ�S1×K(Z, 4), [37, Lemma 5.4], the homotopy
does not preserve the loop structure.
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The next two invariants are recalled in the following paragraph since they are
both related to fibrations, and in some sense, the second one is a refinement of the
first.

1.3. Inductive cocategory and epfl

Different notions of cocategory exist; see, for example [26, Definition 2], [25,
Definition p. 219], and [37, Definition 3.4]. In this paper, we concentrate on the
inductive cocategory introduced by Ganea, [19, Definition 2.1], concretely, on its
normalized version. Thus, for a connected pointed space Z, cocat(Z)=0 if and
only if Z is contractible and, for any n≥1, cocat(Z)≤n if there exists a fibration
F→Y →B with cocat(Y )≤n−1 and F dominates Z (i.e. Z is a retract of F );
it is clear from the definition that cocat(F )≤cocat(Y )+1. It is also clear that
cocat(Z)≤1 if and only if Z is dominated by a loop space.

The relation between the cocategory and the nilpotency in the sense of Ber-
stein–Ganea is given by the inequality nilBG(ΩZ)≤cocat(Z), [19, Theorem 2.12].

In this paper, we introduce a variant of the previous definition.

Definition 1.3. We say that a pointed connected space Z is an extension by
principal fibrations of length 0 if and only if Z is contractible and, for n≥1, a space
Z is an extension by principal fibrations of length ≤n, if there exists a tower of
principal fibrations

(1) Z�Zn
�� Zn−1 �� ... �� Z1 �� Z0=∗

Fn

��

Fn−1

��

F1

where Z0 is a point and all fibers Fk=Fib(Zk→Zk−1) are infinite loop spaces. In
that case, we write epfl(Z)≤n.

Lemma 1.4. Let Z be a pointed connected space. Then cocat(Z)≤epfl(Z).

Proof. We prove the lemma by induction on epfl(Z). If epfl(Z)=1, Z is an in-
finite loop space, so cocat(Z)≤1. If epfl(Z)≤n for some integer n>1, by definition
there exists a tower of principal fibrations (1) where the fibration Z→Zn−1 is clas-
sified by θ : Zn−1→BFn, that is, Z is the homotopy fiber of θ. Hence, cocat(Z)≤
cocat(Zn−1)+1 and, by induction, we get that cocat(Z)≤cocat(∗)+n=n. �

We are now ready to prove the main theorem in this section. We exploit a
characterization of homotopy nilpotent groups through excisive functors. For if F
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is an n-excisive functor (so F sends strongly homotopy co-Cartesian (n+1)-cubes to
homotopy Cartesian ones, and also F�PnF by [21, Theorem 1.8]) then, for every
finite space K, ΩF (K) is a homotopy nilpotent group [10, Corollary 9.3]. Even
better, Biedermann shows that every functor ˜X associated to a homotopy nilpotent
group of class ≤n is of the form ΩF where F is n-excisive, [9].

We prove the following:

Theorem 1.5. Let Z be a pointed connected space. Then, we have the in-

equalities

nilBG(ΩZ)≤ cocat(Z)≤ epfl(Z)≤nilBD(ΩZ).

Proof. In view of the previous paragraphs, nothing needs to be done for the
first two inequalities. The first one is [19, Theorem 2.12] and the second one is
Lemma 1.4. Suppose that ΩZ is a homotopy nilpotent group of class ≤n. Then, by
[9], there exists an n-excisive functor F and a space K such that ΩZ and ΩF (K)
are weakly equivalent as loop spaces. Therefore we have an equivalence Z�F (K).
Now, as we mentioned in the Introduction, the Goodwillie tower for F�PnF yields
a tower

F (K)�PnF (K)−→Pn−1F (K)−→ ...−→P1F (K)−→ ∗
whose fibers DkF (K) are infinite loop spaces, and PkF (K)→Pk−1F (K) are prin-
cipal fibrations classified by maps Pk−1F (K)→BDkF (K), [21, Lemma 2.2]. This
directly implies that epfl(Z)≤n. �

When ΩZ is not only a loop space, but an infinite loop space, all inequalities
are indeed equalities. This comes from the fact that homotopy 1-nilpotent groups
are infinite loop spaces [10, Theorem 5.13].

Corollary 1.6. Let X be an infinite loop space. Then nilBG(X)=nilBD(X)=1.

This approach leads us to an alternate and more direct proof of a result ob-
tained in [14, Theorem 2.1] (see also Eldred’s point of view, [18, Corollary 4.3]).

Corollary 1.7. Let F be any n-excisive functor from the category of pointed

spaces to pointed spaces. Then all (n+1)-fold iterated Whitehead products vanish

in F (K) for every finite space K.

Proof. Since F is an n-excisive functor, ΩF (K) is a homotopy nilpotent group
of class ≤n, [10, Theorem 9.2]. Thus nilBG(ΩF (K))≤n by Theorem 1.5 and all the
(n+1)-fold iterated Whitehead products vanish in F (K) (see Section 1.2). �

This application highlights the simplicity of the arguments when using the
relationship between the classical notions of nilpotency, nilBG and cocat, and the
more recent ones, epfl and nilBD.
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Remark 1.8. The upper bound we obtain in Corollary 1.7 is a crude estimate.
In [4, Theorem 4.2] Arone, Dwyer, and Lesh show that any (2n−1)-excisive space-
valued functor F , for which Pn−1F�∗, takes its values in infinite loop spaces.
Therefore, since nilBG F (K)≤1, all Whitehead products vanish in F (K), whereas
by Corollary 1.7 we would only obtain that the 2n-fold iterated Whitehead products
vanish.

We end this section by showing that all nilpotency notions coincide for discrete
groups. In order to do so, we use the relation of the simplicial algebraic theory Gn

with the set-valued theory of ordinary n-nilpotent groups Niln.

Theorem 1.9. Let G be a discrete nilpotent group. Then

nilBG(G)= cocat(BG)= epfl(BG)=nilBD(G).

Proof. Let G be a nilpotent group of class n, i.e. n=nilBG(G). There ex-
ists then a set valued Niln-algebra given by the functor ˜G : Niln→Sets∗ where

˜G(k)=Gk. Considering the isomorphism of categories Niln∼=π0Gn [10, Theorem 8.1]
and viewing pointed sets as a full subcategory of S∗, shows that G is a homotopy
nilpotent group of class ≤n since the functor ˜G¨π0 : Gn→S∗ extends to a simplicial
functor as all mapping spaces between discrete groups are discrete. It is therefore
a homotopy Gn-algebra and

n=nilBG(G)≤ cocat(BG)≤ epfl(BG)≤nilBD(G)≤n. �
Remark 1.10. We would be remiss in not saying a word about examples of

spaces for which these inequalities are sharp. All of our attempts have been un-
successful to find an example of a space X for which epfl(X) is strictly less than
nilBD(ΩX).

2. Towers of principal fibrations and Neisendorfer’s type functor

The aim of this section is to show that the effect of certain homotopical loca-
lization functors on loop spaces with finite epfl, see Definition 1.3, is predictable.
We start with a short subsection where we fix the notation and terminology about
localization and cellularization. Most of this is taken from the first chapters in [15].
It is convenient to work here in the category of simplicial sets (which we call spaces).
From now on p denotes a prime number.

2.1. Localization and cellularization

Let f : A→B be a map. A space X is f -local if map(f,X) is a weak equivalence.
A map g is an f -local equivalence if map(g,X) is a weak equivalence for all f -local
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spaces X. There exists a coaugmented homotopy idempotent functor Lf called
f -localization, [15, Theorem 1.A.3], such that the coaugmentation map η :X→Lf X

is an f -local equivalence to an f -local space.

Example 2.1. When f is a map of the form A→∗, one traditionally writes PA

for the localization functor Lf . This functor is called A-nullification. It turns A into
a point and one says that PA kills A. For A=Sn+1 one obtains a functorial con-
struction of the n-th Postnikov section since PSn+1 X�X[n], [15, Example 1.A.1.1].
We will also be interested in BZ/p-nullification.

Example 2.2. Let f be a universal HFp-equivalence, meaning that f is a wedge
of all maps between countable simplicial sets that induce an isomorphism in mod
p homology. Then Lf is mod p homological localization, [15, Example 1.E.4]. The
effect of Lf on nilpotent spaces is, up to homotopy, Bousfield–Kan p-completion,
[11].

We turn now to the description of the localization functor we need. We combine
BZ/p-nullification and HFp-localization so as to obtain a functor that “kills” BZ/p

and “inverts” all mod p homology equivalences.

Definition 2.3. Let f :BZ/p→∗ and g be a universal HFp-equivalence. We set
L=Lf∨g.

The reason behind this definition is that L is a homotopy idempotent version
of Neisendorfer’s functor (PBZ/p(−))∧p , [38, Section 1], BZ/p-nullification followed
by p-completion. Note that, by the universal properties of the functors, we have
a natural transformation of coaugmented functors (PBZ/p(−))∧p →L. This induces
a weak equivalence (PBZ/p X)∧p

∼ �� LX whenever PBZ/p X is a nilpotent space
since in that case we know that (PBZ/p X)∧p is BZ/p-null.

Remark 2.4. If X is a connected infinite loop space with a torsion fundamental
group, then LX is contractible. Indeed, McGibbon proved that for such spaces,
(PBZ/p X)∧p is contractible, [35, Theorem 2]. As infinite loop spaces are nilpotent,
we have also that PBZ/p X is nilpotent and therefore, by the comments above LX�
(PBZ/p X)∧p �∗. In general, however, L and (PBZ/p(−))∧p differ.

The functorial nature of homotopy localization is quite powerful, as is illus-
trated by the following central property.

Theorem 2.5. ([15, Theorem 1.H.1]) If F→E
p−→B is a fibration and Lf F�∗,

then Lf (p):Lf E→Lf B is a homotopy equivalence.



62 Cristina Costoya, Jérôme Scherer and Antonio Viruel

We end this subsection by introducing cellularization functors. We fix a pointed
space A. A pointed space X is A-cellular if it belongs to the smallest class of pointed
spaces containing A and closed under weak equivalences and pointed homotopy
colimits, [15, Definition 2.D.1]. A pointed map f is an A-equivalence if map∗(A, f)
is a weak equivalence. There exists an augmented homotopy idempotent functor
CWA called A-cellularization such that the augmentation map ε:CWA X→X is an
A-equivalence from an A-cellular space, [15, Theorem 2.B.3].

Example 2.6. When A=Sn+1, then CWSn+1 X is a functorial analogue of X〈n〉,
the n-connected cover of X, [15, Example 2.D.2.6]. Thus CWSn+1 X coincides with
the homotopy fiber of the coaugmentation X→PSn+1 X. In particular, when n=1,
we get a functorial construction of the universal cover.

Farjoun shows in [15, Theorems 3.A.1 and 3.A.2] that localization and cellu-
larization functor behave well with respect to loop space structures. His statements
and the proofs are more precise than the following theorem, which will be sufficient
for us.

Theorem 2.7. (Farjoun, [15]) For any map f and any pointed space A, the

coaugmentation ΩX→Lf ΩX and the augmentation CWA ΩX→ΩX are homotopic

to loop maps, i.e. maps between loop spaces preserving the loop space structure.

2.2. The effect of L on certain loop spaces

We work with the functor L introduced in Definition 2.3. We first show that
the effect of L on loop spaces can be seen in the universal cover and second, that
the epfl of the universal cover is not greater than that of the space.

Lemma 2.8. Let X be a connected space such that π1X is a finite group, and

let X〈1〉 be the universal cover of X. If L(X〈1〉) is contractible, then so is LX.

Proof. Consider the fibration sequence X〈1〉→X→Bπ1X given by the univer-
sal cover. As we assume that L(X〈1〉) is contractible, Theorem 2.5 implies that
LX�L(Bπ1X). But PBZ/p(Bπ1X) is contractible by [22, Lemma 6.6], hence so
are L(Bπ1X) and LX. �

Lemma 2.9. Let f : Z→Y be a map of connected spaces whose homotopy

fiber F is an infinite loop space. Then the homotopy fiber of the induced map on

universal covers f〈1〉 : Z〈1〉→Y 〈1〉 is an infinite loop space as well. Moreover, if f

is a principal fibration, then so is f〈1〉.
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Proof. Consider the horizontal ladder of fibration sequences

Fib(f〈1〉) ��

ψ

��

Z〈1〉 f〈1〉
��

��

Y 〈1〉

��

F �� Z
f

�� Y,

and the associated ladder of long exact homotopy sequences. By the Five Lemma,
we obtain that πr(ψ) is an isomorphism for r≥2, while the Snake Lemma shows
that π1(ψ) is a monomorphism. Moreover, since Fib(f〈1〉) is connected, the range
of ψ is in Fc, the base point component of F , and the long exact homotopy sequence
of the fibration

Fib ψ �� Fib(f〈1〉) ψ
�� Fc

shows that Fib ψ is a homotopically discrete space. Then, Fib(f〈1〉) is a covering
of Fc, and therefore it is an infinite loop space since infinite loop structures are
preserved when considering connected components and covers (see Theorem 2.7).
Moreover, if f is a principal fibration, so is f〈1〉, since taking universal covers is
a particular case of cellularization (see Example 2.6) and, the cellularization of a
principal fibration is again a principal fibration by [16, Theorem 2.1]. �

Corollary 2.10. Let Z be a pointed connected space. Then, epfl(Z〈1〉)≤
epfl(Z).

Proof. Suppose that Z is an extension by principal fibrations of length n and
apply, to the associated tower of principal fibrations, the universal cover functor.
Then, the result follows by Lemma 2.9. �

We refine this elementary observation to obtain a version where the homotopy
fibers in the tower are simply connected, a key technical fact for what follows.

Lemma 2.11. Let f : Z→Y be a principal fibration of simply connected spaces

whose homotopy fiber F is an infinite loop space. There exists then a factorization

f : Z→Y →Y such that the homotopy fiber Fib(Z→Y ) is F 〈1〉, the universal cover

of F .

Proof. Let θ : Y →BF denote the classifying map of the principal fibration f .
Since F is connected, BF is simply connected and the second stage of the Postnikov
tower becomes

B(F 〈1〉)�(BF )〈2〉 �� BF
ˇ2 �� K(π2BF, 2).

Let Y be the homotopy fiber of ˇ2¨θ : Y →K(π2BF, 2). Since ˇ2¨θ¨f�∗, then f

factors through f : Z→Y . Loop now the existing fibration sequences to obtain the
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following commutative diagram of horizontal and vertical fibration sequences:

ΩY

��

ΩY

��

F 〈1〉 ��

��

F ��

��

K(π2BF, 1)

��

Fib f �� Z
f

�� Y

Since the lower right square is a homotopy pull-back (principal fibrations with
the same vertical fiber), the map between the horizontal fibers F 〈1〉→Fib f is a
homotopy equivalence. �

The following result is the final step that will allow us to understand the effect
of the functor L on a space Z with finite epfl.

Proposition 2.12. Let Z be a connected space with epfl(Z)≤n. Then, Z〈1〉
is also an extension by (not necessarily principal) fibrations of length n, where the

fibers are simply connected infinite loop spaces.

Proof. Since epfl(Z)≤n there exists a tower of principal fibrations

Z�Zn
�� Zn−1 �� ... �� Z1 �� ∗

such that the homotopy fibers Fib(Zk→Zk−1) are infinite loop spaces. Since Z is
connected the spaces Zk can be chosen to be connected as well (notice that fibrations
are, in particular, surjective maps). Lemma 2.9 implies that the tower of universal
covers is made of principal fibrations that have also infinite loop spaces as homotopy
fibers. We are thus left with a tower of simply connected spaces

Z〈1〉�Zn〈1〉 �� Zn−1〈1〉 �� ... �� Z1〈1〉 �� ∗.

The fibers Fk however are not simply connected in general, but only connected. We
modify thus the spaces Zk〈1〉 for k<n to find a different and more convenient tower
for Z〈1〉. Since F1=Z1〈1〉 is simply connected, we can assume by induction that
Zn−1〈1〉 is an extension by fibrations of length n−1, with simply connected infinite
loop spaces as fibers.

We use now the factorization Zn〈1〉→Zn−1〈1〉→Zn−1〈1〉 of Lemma 2.11. Since
the homotopy fiber of the first map is a simply connected infinite loop space, to
conclude the proof we must show that the space in the middle is an extension
by fibrations of length n−1 with simply connected infinite loop spaces as fibers.
Consider now the homotopy fiber H of the composite map Zn−1〈1〉→Zn−1〈1〉→
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Zn−2〈1〉. The homotopy fiber H fits by construction into a fibration sequence

H −→Fn−1 −→K(π2BFn, 2).

However, since Fn−1 is simply connected by induction hypothesis, the map Fn−1→
K(π2BFn, 2) factors through the second Postnikov section of Fn−1. This is a map
of infinite loop spaces, see Theorem 2.7, which implies that H is an infinite loop
space. Therefore, the tower Zn−1〈1〉→Zn−2〈1〉→...→Z1〈1〉 exhibits Zn−1〈1〉 as
an extension by fibrations of length n−1 with connected infinite loop spaces as
fibers. The induction hypothesis allows us to conclude that it is also an extension
by principal fibrations of length n−1 with simply connected infinite loop spaces as
fibers. �

We finally describe the effect of L (see Definition 2.3) on loop spaces of finite
extension by principal fibrations length:

Theorem 2.13. Let ΩZ be a connected space with finite fundamental group.

If epfl(Z) is finite, then L(ΩZ) is contractible.

Proof. By Lemma 2.8 it is enough to prove that L
(
(ΩZ)〈1〉

)
is contractible.

Let epfl(Z)≤n. Then, since looping a tower of fibrations with infinite loop spaces
fibers yields another such tower, epfl(ΩZ)≤n and by Proposition 2.12, (ΩZ)〈1〉 is
also an extension by fibrations of length n,

(ΩZ)〈1〉�Yn −→Yn−1 −→ ...−→Y1 −→ ∗

where the fibers are simply connected infinite loop spaces Fk. By Remark 2.4, LFk

is contractible for any n≥k≥1, and according to Theorem 2.5, L(Yk)�L(Yk−1).
Therefore, an inductive argument shows that L

(
(ΩZ)〈1〉

)
�∗. �

Remark 2.14. The finiteness assumption on the fundamental group in Theo-
rem 2.13 is not necessary, but the contractibility of L(ΩZ) does not hold as soon
as there is a copy of the integers in π1(ΩZ). Suppose for example that π1(ΩZ) is a
finitely generated abelian group which is infinite. There exists then an epimorphism
to Z which can be used to construct a map ΩZ→K

(
π1(ΩZ), 1

)
→K(Z, 1)=S1.

This map has a section hence ΩZ dominates S1. Therefore L(ΩZ) dominates
LS1�(S1)∧p , and L(ΩZ) is not contractible.

3. Homotopy nilpotency of p-complete loop spaces

In this section we characterize homotopy commutative loop spaces in the sense
of Biedermann–Dwyer, and more generally homotopy nilpotent groups with finite-
ness conditions.
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We first recall some definitions. A loop space (X,BX) is said to be a p-compact
group [17, Definition 2.3] if BX is p-complete and X is Fp-finite, i.e., H∗(X;Fp) is
a finite dimensional Fp-vector space. A p-compact torus of rank r is a loop space
(T,BT ) such that BT is an Eilenberg–MacLane space of type K

(
(Z∧

p )r, 2
)

[17,
Definition 6.3]. The following result characterizes homotopy nilpotent p-compact
groups in the Biedermann–Dwyer sense.

Theorem 3.1. Let (X,BX) be a connected p-compact group. Then, nilBD(X)
is finite if and only if (X,BX) is a p-compact torus.

Proof. By applying the cellularization functor CWS2 to X, we obtain the uni-
versal cover of X, CWS2(X)=X〈1〉�Fib(X→Bπ1(X)). Cellularization is a contin-
uous functor that preserves products up to homotopy [15, Theorem 2.E.10], there-
fore if nilBD(X) is finite, then so is nilBD(X〈1〉). Now, since X〈1〉 is a connected
loop space with finite fundamental group, Theorem 2.13 tells us that L(X〈1〉) must
be contractible.

However, by Miller’s proof of the Sullivan conjecture [36, Theorem A] the
pointed mapping space map∗(BZ/p,X〈1〉) is contractible. In terms of localization
functors, this means that X〈1〉 is BZ/p-local, and so PBZ/p

(
X〈1〉

)
�X〈1〉, as no-

ticed already in the introduction of [38]. Therefore, since X〈1〉 is p-complete, it
is in fact (f∨g)-local, which means that L

(
X〈1〉

)
�X〈1〉. Thus, X〈1〉 must be

contractible, so that X is homotopy equivalent to Bπ1(X).
Finally, by [17, Remark 2.2], the fundamental group of a p-compact group is a

finite direct sum of copies of cyclic groups Z/pr and copies of p-adic integers Z∧
p .

Since X is Fp-finite, and BZ/pr is not, this implies that π1(X) contains no factor
of Z/pr-type. We conclude that (X,BX) is a p-compact torus. �

For any simply connected Lie group G, the p-completion of BG gives rise to a
p-compact group. The following result is thus straightforward.

Corollary 3.2. Let G be a non-trivial simply connected compact Lie group.

Then nilBD(G∧
p ) is infinite.

This implies that the nilpotency in the sense of Berstein–Ganea, and the nilpo-
tency in the sense of Biedermann–Dwyer do not coincide in general.

Example 3.3. McGibbon’s p-local examples of classically homotopy commuta-
tive compact Lie groups can be translated into the p-complete setting, [34, The-
orem 2]. Simply connected simple Lie groups at large enough primes, Sp(2) at
the prime 3, and the exceptional group G2 at the prime 5, have Berstein–Ganea
nilpotency 1, whereas according to Corollary 3.2 they all have infinite Biedermann–
Dwyer nilpotency.
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In [30], Kaji and Kishimoto study examples of p-compact groups that are
nilpotent in the sense of Berstein–Ganea but they are not p-compact tori, so by
Theorem 3.1 they are not homotopy nilpotent in the sense of Biedermann–Dwyer.
There exist, in fact, infinitely many loop spaces X for which nilBG(X)<∞, but
nilBD(X)=∞. This is the case for E8 at the prime 41 with nilBG((E8)∧41)=3, [30,
Theorem 1.6].

We move now from p-compact groups to p-Noetherian groups. Let us recall
from [13] that a p-Noetherian group is a loop space (X,BX) where BX is p-complete
and H∗(X;Fp) is a finitely-generated (Noetherian) Fp-algebra.

Theorem 3.4. Let (X,BX) be a connected p-Noetherian group. If X is a

homotopy nilpotent group, then BX fits in a fibration sequence

K(Q, 2)×K(Z∧
p , 3)r −→BX −→

(
(BS1)∧p

)s
where Q is a finite abelian p-group, and r, s≥0.

Proof. In [13, Theorem 1.9], for a p-Noetherian group X, the authors construct
a fibration

K(P, 2)∧p −→BX −→BY =(PΣBZ/p BX)∧p
where P=Q⊕(Z/p∞)r, for Q a finite abelian p-group, r≥0, Z/p∞=Z[1/p]/Z is a
Prüfer group, [42, Theorem 10.13], and (Y,BY ) is a p-compact group. Since we
have a series of homotopy equivalences

Y �ΩBY �Ω(PΣBZ/p BX)∧p �
(
Ω(PΣBZ/p BX)

)∧
p

and
(
Ω(PΣBZ/p BX)

)∧
p

is homotopy equivalent to (PBZ/p ΩBX)∧p by [15, Theo-
rem 3.A.1], we get that Y �(PBZ/p X)∧p . Also observe that all the homotopy equiv-
alences are loop maps by Theorem 2.7. This allows us to say that (Y,BY ) is ob-
tained in a functorial way from (X,BX) using the nullification and the p-completion
functors. Both functors are continuous and preserve products up to homotopy.
Therefore, if nilBD(X) is finite, so is nilBD(Y ).

Finally, since (Y,BY ) is a p-compact group and nilBD(Y ) is finite, Theorem 3.1
implies that (Y,BY ) must be a p-compact torus, that is, BY �

(
(BS1)∧p

)s for some
s≥0. For Z/p∞, p-completion shifts dimension by one, [11, Example VI.6.4]:

K(P, 2)∧p �K(Q, 2)×K
(
(Z/p∞)r, 2

)∧
p
�K(Q, 2)×K(Z∧

p , 3)r

and the result follows. �

It follows from the previous theorem that p-Noetherian groups, which are ho-
motopy nilpotent, have epfl at most 2, where the tower of principal fibrations with
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infinite loop space fibers is provided by the Postnikov tower. We prove now that
this invariant coincides with the Biedermann–Dwyer nilpotency in this situation.

Corollary 3.5. Let (X,BX) be a connected p-Noetherian group and assume

that nilBD(X) is finite. Then nilBD(X)≤2.

Proof. By the previous theorem, the homotopy groups πn(BX) vanish unless
2≤n≤3. The non-trivial homotopy groups of the simply connected space BX live
thus in the metastable range, therefore by [10, Example 9.8], nilBD(X)≤2. �

We finally come back to the integral Torus Theorem, [27, Theorem 1.1]. The
classical statement is that, if nilBG(X)=1, then X has the homotopy type of a
torus.

Theorem 3.6. Let (X,BX) be a connected finite loop space. If nilBD(X) is

finite, then X has the homotopy type of a torus.

Proof. For a finite and connected loop space (X,BX), it is well known that the
p-completion (X∧

p , BX∧
p ) is a p-compact group for every prime p (see, for example,

[3, Introduction] and [23, p. 990]). Theorem 3.1 applies and we obtain that X∧
p

is a p-compact torus for every prime p. Now, Sullivan’s arithmetic square, [11,
Theorem VI.8.1],

X ��

��

∏
p X

∧
p

��

X0 ��

(∏
p X

∧
p

)
0

is a homotopy pull-back square. On the right hand side, we have a product of
p-complete tori and its rationalization, whereas on the bottom left corner the ra-
tionalization of a finite loop space is a product of odd dimensional rational spheres
K(Q, 2k+1). Any higher dimensional sphere than S1 would remain in the homo-
topy pull-back, so X0 must be a rational torus and we conclude that X has the
homotopy type of a torus. �

Following the ideas of Rector [41], it is commonly accepted that compact Lie
groups should be thought of as finite loop spaces, and that the structural data of the
Lie group have to be read by means of homotopy invariants. Within this framework,
connected non-abelian compact Lie groups are expected to be highly non-nilpotent.
The previous result shows that nilpotency in the sense of Biedermann–Dwyer is the
right notion in contrast with classical nilpotency in the sense of Berstein–Ganea.
So for example, by a classical result of Porter [39] the sphere S3 is nilpotent in the
sense of Berstein–Ganea, nilBG(S3)=3, but since S3 is not a torus, nilBD(S3)=∞.
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