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1. Introduction

A central problem in the study of geometric flows is to understand singularity forma-
tion. It turns out that singularities can often be modeled on ancient solutions; these are
solutions which are defined on (—oo, T']. The notion of an ancient solution was first intro-
duced in Hamilton’s work [17]. Perelman [21] studied ancient solutions to the Ricci flow
in dimension 3 which are complete; non-flat; xk-non-collapsed; and have bounded and
non-negative curvature. These solutions are referred to as ancient k-solutions. Perel-
man [21] proved that every finite-time singularity of the Ricci flow in dimension 3 is
modeled on an ancient k-solution. Moreover, he proved an important structure theorem

for ancient x-solutions. Roughly speaking, this theorem asserts that every non-compact
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ancient k-solution with positive sectional curvature consists of a tube with a positively
curved cap attached on one side.

The purpose of this paper is to give a classification of all non-compact ancient k-
solutions in dimension 3. In the first part of this paper, we classify all non-compact

ancient k-solutions with rotational symmetry.

THEOREM 1.1. Assume that (M, g(t)) is a 3-dimensional ancient k-solution which
is non-compact and has positive sectional curvature. If (M, g(t)) is rotationally symmet-

ric, then (M, g(t)) is isometric to the Bryant soliton up to scaling.

In the second part of this paper, we reduce the classification of non-compact ancient

k-solutions to the rotationally symmetric case.

THEOREM 1.2. Assume that (M, g(t)) is a 3-dimensional ancient k-solution which
is non-compact and has positive sectional curvature. Then (M, g(t)) is rotationally sym-

metric.

Theorem 1.2 extends our earlier work [8], where we proved that the Bryant soliton is
the only non-collapsed steady gradient Ricci soliton in dimension 3. Note that, by work of
Chen, every complete ancient solution to the Ricci flow in dimension 3 has non-negative
sectional curvature (see [11, Corollary 2.4]).

Combining Theorems 1.1 and 1.2, we obtain the following result.

THEOREM 1.3. Assume that (M, g(t)) is a 3-dimensional ancient k-solution which
is non-compact. Then (M, g(t)) is isometric to either a family of shrinking cylinders (or

a quotient thereof), or to the Bryant soliton.

Combining Theorem 1.3 with work of Perelman [21], we can draw the following

conclusion.

COROLLARY 1.4. Consider a solution to the Ricci flow on a compact 3-manifold
which forms a singularity in o finite time. Then, at the first singular time, the only
possible blow-up limits are quotients of the round sphere S3, quotients of the standard

cylinder S? xR, and the Bryant soliton.

Let us sketch how Corollary 1.4 follows from Theorem 1.3. Consider a smooth
solution of the Ricci flow on a compact 3-manifold which is defined on a finite-time
interval [0,T) and becomes singular as t—T. By work of Perelman [21], every blow-
up limit as t—7T is an ancient k-solution. If a blow-up limit is compact with strictly
positive sectional curvature, then the original flow will have positive sectional curvature
for ¢ sufficiently close to T'. A classical theorem of Hamilton [14] then implies that the
original flow becomes round as t—7. If a blow-up limit is non-compact with strictly
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positive sectional curvature, then it must be the Bryant soliton by Theorem 1.3. Finally,
if a blow-up limit does not have strictly positive sectional curvature, then it must be a
quotient of the cylinder by standard isometries.

Let us mention some related work. In [13], Daskalopoulos, Hamilton, and Sesum
obtained a classification of all compact ancient solutions to the Ricci flow in dimension 2.
In [9], it was shown that the bowl soliton is the only non-compact ancient solution to
the mean curvature flow in R3 which is non-collapsed and strictly convex. Angenent,
Daskalopoulos, and Sesum [3] later obtained a classification of all compact ancient solu-
tions to mean curvature flow in R? which are non-collapsed and strictly convex.

We now give an overview of the main ideas involved in the proof of Theorems 1.1
and 1.2.

In the first part of this paper, we classify non-compact ancient k-solutions with
rotational symmetry. In §2, we set up a barrier argument for solutions to the Ricci flow
with rotational symmetry. One important ingredient in our barrier construction are the
steady gradient Ricci solitons with singularity at the tip which were found by Robert
Bryant [10]. In §3, we study the asymptotic behavior of a non-compact ancient k-solution
with rotational symmetry. To that end, we focus on the cylindrical region, and carry out
a spectral decomposition in Hermite polynomials. As in [4] and [9], a subtle point here
is that we need to control certain error terms arising from the cut-off functions. In our
work, this is done using barrier arguments. Using the spectral analysis, we obtain precise
asymptotics for the solution in the cylindrical region. Combining these estimates with
the barrier arguments, we conclude that liminf; , o Rmax(t)>0 (see Proposition 3.17).
In §4, we complete the proof of Theorem 1.1. The idea is to consider a quantity which
is constant on the Bryant soliton, and then show that this quantity must be constant on
any non-compact ancient x-solution with rotational symmetry.

In the second part of this paper, we show that every non-compact ancient x-solution
must be rotationally symmetric. In §5, we derive a crucial evolution equation for the Lie
derivative of the metric along a vector field. In §§6-8, we establish a neck improvement
theorem for the Ricci flow, which tells us that a neck-like region becomes more symmetric
under the evolution. The proof of the neck improvement theorem is based on the vector
field method developed in [8], and requires a careful analysis of the parabolic Lichnerowicz
equation on the cylinder. Finally, in §9, we complete the proof of Theorem 1.2. The idea
is as follows. Since our solution is of type II, we can find a sequence of points (py, tx)
in space-time such that, if we rescale the flow around (pg,#), then the rescaled flows
converge to a steady gradient Ricci soliton as k—oco. By [8], this limiting soliton must be
the Bryant soliton. In particular, we can find a sequence é;—0 such that the flow is -
symmetric at time f; (see Definition 9.2 for a precise definition). We now move forward
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in time, starting from time ;. As long as the solution is nearly rotationally symmetric,
it will remain close to the Bryant soliton by Theorem 1.1. On the other hand, as long as
the cap is close to the Bryant soliton, we are able to show that the symmetry improves
under the evolution (see Proposition 9.19). Using a continuity argument, we are able to
show that there exists a sequence €, >2£ such that e —0 and the flow is ex-symmetric
at time t for all t€[fg,0]. Passing to the limit as k—oo, it follows that (M, g(t)) is
rotationally symmetric for all ¢.

Remark 1.5. The proof of Theorem 1.2 can be adapted to the compact case. This

will imply that every ancient x-solution on S® must be rotationally symmetric.

Acknowledgements. 1 am grateful to Robert Bryant for sharing with me his insights
on singular Ricci solitons (cf. Theorem 2.1), and to Kyeongsu Choi for pointing out to
me his variant of the Anderson-Chow estimate (cf. Theorem B.1). I would like to thank
Keaton Naff for comments on an earlier version of this paper. I am grateful to Tiibingen
University, where part of this work was carried out. This project was supported by the
National Science Foundation under grant DMS-1806190 and by the Simons Foundation.

Part I. Proof of Theorem 1.1
2. A barrier construction

In this section, we study the Ricci flow in the rotationally symmetric setting. In this
case, the Ricci flow reduces to a parabolic equation for a single scalar function (see [6]).
We first construct a family of functions 1, which will serve as barriers. A key ingre-
dient in our construction is the following result due to Robert Bryant [10] (see also [1,

Proposition 2.1]).

THEOREM 2.1. (Bryant [10, §3.4]) There exists a steady gradient Ricci soliton which
s rotationally symmetric, singular at the tip, and asymptotic to the Bryant soliton near
infinity. This soliton can be written in the form ¢(r)~' dr@dr+r2gg>, where () is a

positive function defined on the interval (0,00) satisfying
p(r)¢" (r) =30 (1) +r72(1—p(r)) (r¢’ (r) +2(r)) = 0.
The function ¢(r) satisfies p(r)—o0 as r—0. Like the Bryant soliton, o(r) satisfies an
asymptotic expansion of the form go(r)zr_2+2r_4+0(r_6) as r—00.
Proof. We sketch how Theorem 2.1 follows from Bryant’s results. In equation (3.26)
n [10], Robert Bryant considers the ordinary differential equation (ODE)

du  u(l—u?)s?
ds — (u+s)(2—s2)
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It is shown in [10] that this ODE admits a solution u(s) which is defined for s€(—+/2,0),
takes values in the interval (0,1), and satisfies u(s)—1 as s \—v/2 and u(s)—0 as s 0.
Moreover, this solution satisfies u(s)+s<0 for all s€(—+/2,0). Given a solution u(s) of
this ODE, the metric

1—u? 1—u?

5 ds®ds+u2

a e

u+5)2(2—s2)

will be a steady gradient Ricci soliton (cf. equation (3.28) in [10]). Using the differential

equation for u, we compute

! 1—u? (1—u?)s
12 - >0
2ds \u2(2—s2) u(u+s)(2—s2)2
for all s€(—+/2,0). Consequently, the function s (1—u?)/u?(2—s?) is strictly monotone

increasing. Moreover, (1—u?)/u?(2—s%)—0 as s\,—v/2, and (1—u?)/u?(2—s%)—00 as

s,0. Hence, the metric g can be rewritten as

g= ga(r)_l drodr+rigge,

1—u? \  s?
v u2(2—s2) ) 2—s2

The function ¢(r) is defined for all r€ (0, o), and satisfies the ODE

where ¢ is defined by

p(r)¢" (r) = 59" (r)*+r72(1=¢(r)) (r¢ (r) +20(r)) =0.

Moreover, ¢(r)— o0 as r—0. Finally, after replacing () by ¢(cr) for a suitable constant
¢>0, the function ¢(r) will have the desired asymptotic expansion as r—oo. From this,
Theorem 2.1 follows. O

Remark 2.2. Robert Bryant proved that there is a 1-parameter family of singular
steady gradient Ricci solitons, which satisfy o(r)~r—2(V2=1) ag r—0. However, for the
purposes of this paper, one example is sufficient.

In the following, we fix a function ¢ as in Theorem 2.1. Moreover, we fix a positive
number 7, such that ¢(r,)=2.

Let us choose a smooth function ¢ such that

A (527 = (72 1) (257550 47,

Note that
(s72—1)"2(2s =55 0—15°T) = —5s724+0(1)
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as s—0, and
(s72-1)72 (257375576—%527) fg( $)2+0(1).

as s—1. The first statement gives ((s)=5s">+0(s72) as s—0. The second statement
implies that ((s) is indeed smooth at s=1, and ¢(1 ):_Z' By continuity, we can find a
small constant §€ (0, 155) such that 2s™*+((s)>1 for all s€[1—6,1+6].

LEMMA 2.3. We can find a large constant N with the following property. If a is
sufficiently large, then

o(as)—a " 24+a"*¢(s) = a_2(3_2—1)+1—16a_4
for all se [1—9, 1+ﬁa_z], and
plas)—a™*+a"((s) = gza™"
for all se [Na_l7 1+Wloa_2] .
Proof. Since 2s™14((s)>% for all s€[1—6,1+6], we obtain

olas)—a 2 4+a"¢(s)=a"2(s72=1)+a (257 +((s))+0(a™ ")
a"?(s7%— 1)+%a_4+0(a_6)

WV

for all s€[1—0,1+0]. Consequently, if a is sufficiently large, then
plas)—a*+a *((s) = a (s —1)+La*

for all s€[1—6,1+46]. This proves the first statement.

In particular, if a is sufficiently large, then
plas)—a~?+a~1¢(s) > a~t

for all se [1 0,1+ ] We next observe that

1004

plas)—a 2 +a"*((s)=a"?s2—a"2+0(a"*s7?)

for all s€[r.a=!,1—6]. Hence, if we choose N sufficiently large (depending on 6), then
olas)—a 2 +a"*¢(s) > (1-0)a 252 —a 2> ((1-0)"'—1)a"2

for all s€[Na~!,1—0]. In particular, if a is sufficiently large (depending on ), then

plas)—a"?+a"1((s) > gya "

for all s€[Na=!,1—6]. Putting these facts together, the second statement follows. The
proof of Lemma 2.3 is now complete. O
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LEMMA 2.4. We can find a large constant N with the following property. Suppose
that a is sufficiently large, and let

Va(s):=p(as)—a"?+a"*((s)
for se [N -1 1+ﬁa 2} . Then,
Ya(5)1g ()= 500 (8)7 452 (1—1ba(5)) (59} (5) +20a(s)) =51 (s) <O

for se [Na_l, 1+ﬁa_2}.

Proof. The function ( satisfies

20! (8) +20() €' (8) = (s~ 1) - (572~ 1) ()

S

=252 5551428

1
55 .

Since —r¢/(r)—2r=2=8r=*+0(r~%) as r—o0, it follows that
(s (5) +2¢a(5)) =515 (s) = s (asy' (as) +2p(as)) —asy' (as) —2a 257
+2a*4s*275a*45*5f%a*4528
=5 2(asy¢' (as)+2¢(as))+8a " *s™*
—|—2a74572—5a74375—§ 1581 0(a%579)

for se [T*a_l, 1—1—&6@_2]. Moreover, using the identity

" (r) =172 (r¢! (r) +4p(r)) =4r~1+0(r~°)
as r—00, we obtain

Ya(8)1g ()= 500(8)% =5~ 2ha(s) (s, (s)+2¢0a(s))

= a*p(as)p" (as) — 3a%¢ (as)® — s~ *p(as)(as¢ (s)+2p(as))
—2a1s7? = [" (as) —a" s *(as¢' (as) +4p(as))]
+a  [p(as)¢" (s)+a*g" (as)((s)—ap' (as)¢ (s)

—5 ' p(as)('(s)—as™ ¢ (as)((s) —4s~*p(as)((s)]

—a”%[¢" (s) =5 72(s¢"(5) +4¢(s))]
+a7P[C(5)¢" ()= 3¢ (s)2 =57 2¢(8)(s¢ (5) +2¢ (5))]

= a’p(as)y” (as) — 50/ (as)? — s~ *p(as)(as¢' (s)+2p(as))
—2a_4s_2—4a_4 “410(a577)
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for s€[r.a™t, 1+ 55a~2]. Adding both identities yields

Ya(8)05 (5) = 504 (5)" +5 72 (1=1a(s)) (51 (5) +20a(5)) — 51, (s)
=a*[p(as)¢" (as)— 3¢/ (as)? +(as) 2 (1—p(as))(as¢' (s) +2¢(as))]

+da s =507 s —2a 1P+ 0(a s
for s€ [r.a™t, 1+ 155a~2]. Using the ODE for ¢(r), we conclude that

Da(8)95(8) = 390 (8)* 572 (1= a(s)) (s (5) +2¢a(s)) — sv5 (s)

=da s =505 —1a s®+0(a %)

for s€[rya™!, 1+ 35a72]. Clearly, the expression on the right-hand side is negative if
s€[Na™', 1+ 5;a72] and N is sufficiently large. O

From now on, we will fix a large number N so that the conclusions of Lemmas 2.3

and 2.4 hold. For a sufficiently large, we can find a smooth function 3,(r) such that

Ba(N)=a"¢(Na™")—a™",
Ba(N)=a"*¢'(Na™),

a

and

p(r) By (r)+¢" (r)Ba(r) =/ (r) B(r)
172 (L= () (rBa (1) +28a(r)) =172 Ba(r) (ré’ (r) + 260(r)) = —1

for re[ry, N]. Note that 8,(N) and B,(N) are uniformly bounded independent of a.
Consequently, the function 3, and all its derivatives are uniformly bounded on the interval

[r«, N], and the bounds are independent of a.

LEMMA 2.5. Suppose that a is sufficiently large, and let
Ya(s) = p(as)+a~" Ba(as)
for s€[r.a™t, Na=1]. Then,
Da(8)Pq (5) = 594(5)" 52 (1=1a(5)) (585 (5) +2¢a(s)) =515 (s) <O

for all s€[roa=t, Na™1].
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Proof. Using the ODEs for ¢(r) and 5,(r), we obtain

Ya(5)¥a (5) = 5% (8)* +572(1=a(s)) (59 (5) +2¢a(5))
=a*[p(as)¢” (as)— 3¢/ (as)’+(as) "> (1-p(as)) (as¢' (as) +2¢(as))]
+alp(as) By (as)+¢" (as)Ba(as) — ¢ (as) B, (as)
+(as) (1= p(as))(asp (as) +2Pa(as))
—(as)7*Ba(as)(asy’'(as) +2¢(as))]
+ [Ba(as)B7 (as) — 38 (as)* — (as) "> Ba(as)(asfy(as) +284(as))]
<—a+C
for all s€[r.a=t, Na~1]. On the other hand,

¥, (s) = asy (as)+ 58, (as) > —C

for all s€[r,a™!, Na~!]. Hence, if a is sufficiently large, then

a(8)0q ()= 3 (5)° +572(1=1a(s)) (s, (5) +200a(5)) < 515 (5)

for all s€[r.a™t, Na™']. O
After these preparations, we now give the definition of our barriers:

Definition 2.6. Suppose that a is sufficiently large. We define a function
Pa: [r*afl,l—i—ﬁa*z} — R

by
plas)—a=2+a"*((s) for se [Na™! 1+ 5a7?],

’l/)ll(s) = { ap(as)+a_1ﬂa(a5)7 for se€ [T*a—lyNa_l]'

Using Lemmas 2.3-2.5, we can draw the following conclusion:

PROPOSITION 2.7. Suppose that a is sufficiently large. Then, 1, is continuously
differentiable, and

Wa(8)a (5) = 30 (5)° +572(1=1a(s)) (504 (5) +20a(s)) = st (s) <0

for all s€ [ma_l7 1+ﬁa_2], Also, we have wa(s)>3—12a_4 for all se [r*a_l7 1+ﬁa_2],

and a(s)=a"2(s72=1)+1za"* for all s€[1—6,14 155a72].
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Proof. Recall that B,(N)=a"3¢(Na=1)—a~! and p,(N)=a"*¢’(Na~!). This im-

plies that 1), is continuously differentiable at the point s=Na~!.

This proves the first
statement. The second statement follows from Lemmas 2.4 and 2.5. Finally, the third

and fourth statement follow directly from Lemma 2.3. O

COROLLARY 2.8. The function

Wo(r,t) =1 (\/%J

satisfies

Vo> U Wopr— 302 412 (1-0,)(r¥,,+2V,)

forre [mail —2t, (1+ﬁa*2) \/—Qt] .
Proof. This follows immediately from Proposition 2.7. O

In the remainder of this section, we will set up a barrier argument based on the func-
tions 1,. We will assume throughout that (M, g(t)) is a 3-dimensional ancient k-solution
which is non-compact, has positive sectional curvature, and is rotationally symmetric.

After a reparametrization, the metric can be written in the form
gty =u(r,t) M drodr+rigge.

For each ¢, the function r—u(r,t) is defined on an interval [0, rmax(t)), where rmax(t)
may be finite or infinite.

The Ricci and scalar curvature of g are given by
i 1 1
RIC!}:—;U u, dr@dr+ 1—u—§rur gs2

and

2
R; = T—Q(l—u—rur)

(cf. [5, p.497]). Since the original metrics g(t) evolve by the Ricci flow, the reparameter-

ized metrics g(t) satisfy an evolution equation of the form

59 = ~2Ric; +2(3)

where V is a radial vector field of the form V =v(r,¢)0/0r, which may depend on time.

Clearly,
0

at? =

w 2wy dr@dr.
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Moreover, £y (r)=v and £y (dr)=wv, dr. This gives
Ly () = (—u2u,v+2u" ) dr@dr+2rvgs:,
and hence
1 1,1, . 1
Ricg —ifv(g) =|—-u ur—f—iu v —u" v, | drdr+ 1—u—§7'ur—rv gg2.
r

Putting these facts together, we conclude that

1 1 1
v=—(1-u—=ru,
r 2

1 1 1
Up =2 (—uur—i— 2urv—uvr) = Uy — §uf+r_2(1—u)(rur+2u).
r

and

The function u has a natural geometric interpretation. Namely, we can view the radius

r as a scalar function on M. Then, u:|dr|§(t). In particular, u is very small on a neck.
LEMMA 2.9. We have u(r,t)<1, u,(r,t)<0, and v(r,t)=0 at each point in space-
time. Moreover, 1—u(r,t)=0(r?) and v(r,t)=0(r) as r—0.

Proof. As the metric is smooth at the tip, we obtain 1—u(r,t)=0(r?) and v(r,t)=
O(r) as r—0. Since (M, ¢g(t)) has positive Ricci curvature, we have w,(r,t)=—rRic,” <0
at each point in space-time. Integrating over r, we obtain u(r,t)<1 at each point in

space-time. Finally, v(r, t)z%r(R—Ricf)}O at each point in space-time. O

LEMMA 2.10. If a sphere of symmetry in (M,g(t)) has radius r, then its diameter
in (M,g(t)) is at least 2r.

Proof. By Lemma 2.9, we have u(r,t)<1. Consequently, the metric satisfies
u(r,t) "t dr@dr+rigs: > drodr+rigss.

This allows us to compare the distance function in (M, g(t)) to the distance function
in Euclidean space. In particular, if we consider two antipodal points on a sphere of

radius r, then their geodesic distance in (M, g(t)) is at least 2r. O
LEMMA 2.11. Given any §>0, we have liminfy , o sup, s, = u(r,t)=0.

Proof. Let e>0 be given. For each ¢, we denote by Ryax(t) the supremum of the
scalar curvature of (M, g(t)). By work of Perelman [21], the set of all points in (M, g(t))
which do not lie on an e-neck has diameter less than C(g) Ryax (t) '/ (see Theorem A.2
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and Corollary A.3). Hence, if 7>C/(g) Rimax (t)~*/? at some point in space-time, then that
point lies on an e-neck, and we have u<2¢e. Thus,
sup u(r,t) < 2e
r>C(e) Rmax (t) ~1/2
for each ¢. On the other hand, we know that our ancient solution is of type II (cf. [25]),
so that limsup, , . (—t)Rmax(t)=00. Putting these facts together, we conclude that
liminf; , o sup,;s,—;u(r,t)<2e for each §>0. Since £>0 is arbitrary, it follows that
liminf; , o sup,;,/—u(r,t)=0 for each §>0. This completes the proof. O

PROPOSITION 2.12. There exists a large number K with the following property. Sup-
pose that a= K and t<0. Moreover, suppose that 7(t) €0, rmax(t)) is a function satisfying
r(t) _1l< ia—2
v —2t 100
for all t<t. Then u(r,t)<to(r/v/—2t) whenever t<t and r.a='v/—2t<r<#(t). In
particular, u(r,t) <Ca=2 whenever t<t and %\/—2t<r§f(t).

_ 1
and u(r(t),t)<§a

Proof. By Proposition 2.7, we can find a large constant K such that 1, (s)> B%a*‘l for
all se [r*a’l, 1+ﬁa*2} and all a> K. Moreover, we can arrange that 1+a*1ﬂa(r*)>0
for all a> K.

We claim that K has the desired property. To see this, we fix an arbitrary number
a>K. Moreover, suppose that 7(¢)€[0, "max(t)) is a function satisfying
r(t
E;t ! ’

1 1
< ma_Q and  u(7(t),t) < 3—2(1_4

for all t<t. Then,

Ya ( \;%) —u(7(t),t) > 3%@—4 —u(7(t),t) >0

for all t<#. Moreover, since ¢(7,)=2 and u<1, we have

Ya(rea ™) —u(r.a ™V =2t,t) =2+a" B (1) —u(ria™ V=2t t) > 14+a" B (r.) >0

for all t<t. On the other hand, Lemma 2.11 implies that

r
lim su inf o| — | —u(r,t)| >0.
tﬁ—oop rea=1/=2t<r<7(t) |:,(/J (\/ —2t> ( ):|

Using Corollary 2.8 and the maximum principle, we obtain

w(&) —u(r,t) >0,

whenever t<t and r,a~1v/=2t<r<#(t). This completes the proof. O
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PROPOSITION 2.13. Suppose that there exists a function 7(t)€[0, Tmax(t)) such that
7(t)=v—2t+0(1) and u(7(t),t)<O(1/—t) as t——o0. Then, we can find a large con-
stant K>100 with the property that

r 1 -2

—  _<l4—a
VvV —=2t+Ka? 100

and
r
u(r ) <%<T+ W)

whenever a> K, tg—KQaz, and r*aflx/—2t+Ka2<r<F(t). Note that K is independent

of a and t. Moreover,

7(t)
liminf(ft)fl/ w(r,t) "2 dr > 0.
0

t——o0

Proof. We choose K >100 sufficiently large so that the following holds:
o 7(t)//—(2+K-1)t=1-0 for all t<—K*;
o 7(t)2+2t<EVEKT(L) for all t<—K*;
o u(r(t),t)<K/27(t)? for all t<—K*;
o Yo(s)2a2(s72=1)+a"*>0 for all s€[1—0,14 5a7%] and all a>K;
o 1+a1B,(ry)>0 for all a> K.
We claim that K has the desired property. To prove this, we fix an arbitrary number
az K. Clearly,
AT O N
V=2t+Ka?  /—(2+K 1)t

for all t<—K?2a®. Moreover, using the inequality 7(t)?+2t< 15V K7(t), we obtain

—Zf—l—KaZ_H_La_Q: {(aQ_f(t_)Q-i-Qt_’_ia_Q
7(t)2 100 F(t)2  F(t)2 100
Ka? \/R 1 5

Z 562 107(t) 100"
3Ka? (\/fa_l _1>2

2r(t) 10"

47(t)?

for all t<—K?a?. Since the right-hand side is positive, it follows that

7 (t) 1\ 1,
S SV ( P— <14+ —
V—2i+Ka? < 100° > +100”

for all t<—K?a?. This proves the first statement.
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We next observe that

7(t) ~ o[ —2t+Ka? 1, _
ha (\/m) —u(7(t),t) =a (W—1>+100a —u(7(t),t)
3K

> W—u(?(t),t) >0

for all t<—K?2a?. Moreover, since p(r,)=2 and u<1, we have
Ya(rea™ ) —u(roa /=2t + Ka?,t) = 24+a" ' B (r.) —u(r.a™ v/ =2t + Ka?2,t)
>1+a B, (r) >0

for all t<—K2a?. On the other hand, Lemma 2.11 implies

r
lim su inf o| —— | —u(r,t)| >0.
tﬁfoop rea= 1/ =2t+Ka2<r<r(t) |:w (\/ —2t+Ka2> ( ):|

Using Corollary 2.8 and the maximum principle, we obtain

%(W)‘“(“ H>0

for all t<—K?2a2 and r.a='vV/—2t+Ka2<r< 7(t). This proves the second statement.

To prove the last statement, we recall that

O N
V—2t+Ka2

for all t<—K?a?. Consequently,

7(t) 12 (1-0)vV—2t+Ka? - —1/2
u(r, t)” dr;/ g () dr
/T*a‘l\/m rea=1V/=2fKa? —2t+Ka?

1-6
:\/—2t—|—Ka2/ Vo(s) V2 ds
1

Tea”

> g\/ —2t+Ka?

C

for t<—K?a?. To summarize, we have shown that

7(t) a
/ u(r, t)_1/2 dr>—+/—t
0 C

whenever a> K and t<—K?2a?. Putting t=—K?2a?, we conclude that

7(t) 1/2 1
t dr > ——(—t
/0 u(r, ) T C ( )

for t<—K*.
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3. Asymptotics of ancient k-solutions with rotational symmetry

We continue to assume that (M, g(t)) is a 3-dimensional ancient x-solution which is non-
compact, has positive sectional curvature, and is rotationally symmetric. Let g€ M be a

fixed reference point satisfying

sup(—t)R(g,t) < 100;
<0

such a point exists by Theorem A.4.

PROPOSITION 3.1. If we dilate (M, g(t)) around q by the factor (—t)~'/2, then the

rescaled manifolds converge in the Cheeger—Gromov sense to a cylinder of radius /2.

Proof. Recall that sup,cq(—t)R(q,t)<100 by our choice of q. Let ¢ denote the
reduced distance from (g,0). Moreover, let us consider an arbitrary sequence of times
tr — —o00. Then,

é(qv tk

\/ t R(q,t) dt <1000

if k is sufficiently large. Let us dilate the flow (M, g(t)) around (g,t;) by the factor
(—tx)~Y2. By work of Perelman, the rescaled flows converge in the Cheeger-Gromov
sense to a shrinking gradient Ricci soliton (see [21, §11]), and this asymptotic soliton
must be a cylinder (cf. [22, §1]). O

For each ¢, we denote by 7(t)€[0, rmax(t)) the radius of the sphere of symmetry
passing through the point ¢q. By Proposition 3.1, 7(t)/v/—2t—1 as t——o0. Since q is
fixed, 7(t) satisfies the following ODE:

We define a function F(z,t) by

)
F</ u(r, t)*1/2 dr, t> =o.
7(t)

In other words, for each time ¢, the function F(z,t) tells us the radius as a function of
the signed distance z from the reference point g. For each ¢, the function z+—F(z,t) is
defined on the interval [—d(t), 00), where

7(t)
d(t)= / u(r, )~ dr
0

denotes the distance of the reference point ¢ from the tip. Note that F'(—d(t),t)=0.
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ProprOSITION 3.2. The function F satisfies
0=Fy(z,t)—F..(2, )+ F(z,t) *(14+F.(2,1)?)
F(Z,t) 1
+2F.(z,t) {F(O, t)~LF.(0, t)+/ —u(r,t)'/? dr] :

Fue) T

Proof. Differentiating the identity

)
0= F(/ u(r, t)_l/2 dr, t)
7(t)

o
1=Fz</ u(r,t)mdr,t>u(g,t)”2-

Taking another derivative with respect to o gives

o 1 4
0= ([ utray2ar utoy =g ([ )2 uto )2 000
7(t) 7(t)

0
F, </ u(r, t)_1/2 dr, t) =u(p, t)1/2

e 1
E. ( / u(r,t) V2 dr, t) _ Lo,
(1) 2

with respect to o gives

Therefore,

and

Using the identity

YN Sy 1,1
a(u )= U Ul iur—i—ﬁ(l w)(ru,+2u)

(1 1 1 2 12
8r<7“u / (”“z’"“r)%ra“/v
we obtain

9 ~1/2 1 —1/2 1
3t (1(t) 'U/(’r', t) dr | = Qu(gv t) 1+U(Q, t) 2@“7‘(@7 t)

~ £y~ <1+u(r(t), t)— %f(t)ur(f(t)7 t))

d 0 3
—u(r(1),6) 72 SR (1) + / e

- %u(g, t)~1/? (Hu(g, t)- %Qur(g’ t))

2 ¢ 2
—7—u7’t,t”2+/ —u r,tl/er.
SOTCONEEY BT
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Hence, if we differentiate the identity

0
o=F (/ u(r, 15)_1/2 dr, t)
7(t)
with respect to ¢, we find

)
0="F; (/ u(r, t)*l/2 dr, t)
7(t)

4
2 ([ a2 ane) Sule. 0 (Leate 0 - joule0)
7(t) o

e 1 0 1
+2FZ</ ur,t—l/zdnt) (-urt,t 1/2_,_/ ur’tl/zdr)
7(t) ( ) r(t) ( ( ) ) 7(t) T2 ( )

Putting these facts together, we conclude that

o )
0=F; (/ u(r,t)fl/2 dr,t)—FZZ (/ u(r, t)71/2 dr,t>
7(t) (1)
0 —1 0 2
—|—F(/ u(r, t)—1/2 dr, t) <1—|—Fz </ u(r, t)—1/2 dr, t> )
7(t) (1)

o 1 0 1
+2FZ(/ “T’t_l/zdrvtx—_uTt7t1/2+/ ur,tl/er>.
o (r,t) =) (7(t),t) o (r,t)

Using the relations F(0,t)=7(t) and F,(0,t)=u(7(t),t)'/2, the assertion follows. O

COROLLARY 3.3. The function F satisfies

|Fy(2,t) = Fou(2,t) 4+ F(2, ) "L (14+ F.(2,1)?)|
<2F(0,t) 1 FL(0, 1) F.(z, )
1

2| s o | 0. FL 00},

Proof. By Lemma 2.9, the function u(r,t) is monotone decreasing in r. Hence, if r
lies in between F(0,t) and F(z,t), then u(r,t)*/2 <max{F.(z,t), F.(0,t)}. This implies

/F(z,t) 1 12 ’ 1 1 ’ (Fa(o) 0.0
—u(r,t dr| < — max{F,(z,t), F.(0,%)}.
Flog) T (1) F(z,t) F(0,1)
Therefore, the assertion follows from Proposition 3.2. O

PROPOSITION 3.4. We have the pointwise estimate
F(z,t)™0r  F (2, )] < C(m)(14+F (2, 8)| Pz (2, ) )™

for each m=0.



18 S. BRENDLE

Proof. We argue by induction on m. Lemma 2.9 implies 0< F, <1 at each point in
space-time. Consequently, the assertion holds for m=0. Moreover, the assertion clearly
holds for m=1.

Suppose now that m>2, and the assertion holds for all integers less than m. Using

the standard formula for the scalar curvature of a warped product, we obtain
R=2F"%(1-F?-2FF,.).

Differentiating this identity with respect to z gives

m+1
P RAAF TR =) > Ciy...iy, P tmmlgntlp  gRtE,
k=1 i1;>0,...,ix=>0
i1+ +ig<m—1

Using the induction hypothesis, we obtain
|0 RHAF IR < O(m)F~ ™ Y (14 F|F..|)™ .
On the other hand, Perelman’s pointwise curvature derivative estimate (cf. [21]) implies
07 R| < Cm)R™D/2 < C(m) P~} (14 FIF,. )"+ )/2,

Putting these facts together, we conclude that

|F71om T | < O(m)F~ ™ Y1+ F|F..|)™. O

We now perform a rescaling. For 7<0, we define
G(&,7):=eT/?F(e77/%¢,—e™T)—V/2.

Since u(r,t)>0 and u,(r, t)<0, it follows that G¢(¢,7)>0 and Gee (€, 7)<O0.
PROPOSITION 3.5. As T——o00, G(§,7)—0 in CZ..
Proof. This follows from Proposition 3.1. O

PRrOPOSITION 3.6. The function G satisfies

|G (6, 7) = Gee(€,7) +3EGe (€, 7) =5 (V2HG(E, 7)) +(V2+G (6, 7)) T (1+Ge(€,7)?) |

<2(V2+G(0,7) ' Ge(0,7)Ge (€, 7)
1 1
2 G ) VarG.r)

maX{Gf (57 T)7 G§ (0’ T)}G§ (f» T)'
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Proof. This follows immediately from Corollary 3.3. O
For each k, we define

Ok = sup |G(0,7)|+G¢(0,7)
k

N F(0,t)
= s [ Va0
= s, \T/(%—\/i‘m(ra),t)l/%

By definition, d; is a decreasing sequence of positive numbers. Moreover, d;—0 by

Proposition 3.5.
LEMMA 3.7. We have ‘G(f,T)|+|G§(€,T)|<C(Si/4 for T<—k and |§|<26,:1/100.

Proof. By definition of dj, we have
r(t)
V=2t
for all t<—e*. We now apply Proposition 2.12 with t=—¢* and a= %05,:1/2. Using Propo-
sition 2.12, we conclude that u(r,t)<Cdy for all t<—eF and all 2/=2¢<r<7(t). This
implies that OgGE(g,T)gCéi/Q whenever 7<—k and —1/v2<G(£,7)<G(0,7). Since
|G(0,7)| <) for T<—Fk, we conclude that |G(£,7)|+|Ge (&, 7)|<C8,/* for all 7<—k and

725;1/100<5<0.
On the other hand, using the inequality Gee (€, 7)<0, we obtain

—1’<5k and  u(7(t),t) <67

0<G5(§,7) <G5(O,T)<5k
for all 7<—k and 0<£<26;, /"%, Since |G(0, 7)|<d, it follows that
G +Ge(€. ) < C8/!
for 7<—k and 0<£<26;, /1. O
LEMMA 3.8. We have \G55(5,7)|<C6i/8 for T<—k and |§|<5,;1/100.
Proof. Applying Proposition 3.4 with m=2, we obtain

|Geee (€6, 7)| S C(A+|Gee(€,7))°

for 7<—k and [¢| <25,;1/100. Moreover, Lemma 3.7 implies that
inf Gee(¢,7)| < C8,/°
grele—8,% 6+8,/%] & :

for 7<—k and (¢] ga,;l/ 190 Putting these facts together, we conclude that

|Geel€,7)| < C5/°

for 7<—k and |¢]<6;, /1.
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LEMMA 3.9. We have |07 G(€,7)|<C(m) for 7<—k and |€ <5, /100,
€ k

Proof. Using Proposition 3.4, we obtain

071G, ) < C(m)(1+|Gee (€, 7)™

for <—k and \§|<25,;1/100. Moreover, Lemma 3.8 implies |G5§(£,7')|§C’6,1/8 for T<—k

and [¢] S(S;l/loo. Putting these facts together, the assertion follows. O

LEMMA 3.10. We have

Geonteca™ [ e s
{le1<8; /1%
and
: 2
/ —1/100 676 /4|GE(§aT)|4 d'fg(j(si/loo/ 00 675 /4‘G(f,7’)|2 df
{l€1<4, ) (lel<s )
—&-Cexp(—%é;l/m)
for T<—k.

Proof. Using Lemma 3.9 and standard interpolation inequalities, we obtain

3/2
Ge(0.7)]* < c( /{ . IG(f,T)I2d£>

1/100 _ g2
<o [ e RGn de
{119y, }

for 7<—k, where in the last step we have used Lemma 3.7. This proves the first statement.

To prove the second statement, we observe that

[ Gl e
{le|<6; /0%

+3/ _1/100 e G (¢, 7)2G (8, 7) Gee(6,7) dE
{le1<s, 1%

o I
2 /{ggakl/mo}e £ 5(557') (5,7’) £

= ﬁ —52/4G 3G d

/{|£|<5;1/100} 8§<e (&, 7)°G(E, 7)) dS

<Cosp(~15, %)
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for 7<—Fk, where in the last step we have used Lemma 3.7. Using Lemma 3.8, we obtain
-, e G (€7 G(E )G, 7) de
{lel<a; /1%

<o [ e~/ (¢, 7)€, )] de

{lel<o;, /1%

for 7<—k. Moreover, Lemma 3.7 implies

1 2 .
! / G (6, 1) GlE, 7) de
2 J{e1<sg 00y

< CsM/100 / G, )| C(E T de
{lel<a, 1%

for 7<—k. Adding these inequalities gives

*/{|€|<6—1/100} 6_52/4G5(€, 7')4 d§
<O,

<O [ G TG Tl
{1€1<dy, }

+C’exp(—§5,:1/50)
<on™ [ e (Gl 1)+ G 7))
{lg<8, 1%
—I—C’exp(—%ék_l/m)
for 7<—k. Rearranging terms, the assertion follows. O

LEMMA 3.11. We have

‘/{|§|<51/100} 6752/4|GT(53T)7G§§(€7T)+%§G£(§7T)7G(§’T)|2 dé_

<C(5,1/100/

_¢? e
{le|<s /100y e ¢ /4|G(§77)|2d§+cexp(_86k 1/50)
Sk

for T<—k.
Proof. Note that
[G(&7) =3 (V2+G(& M) +(V2+G(&, 7)) T < CG(g 7)?
for 7<—k and [ <(5;1/100. Using Proposition 3.6, we obtain the pointwise estimate

|G- (&, 7) = Gee(6,7)+ 3G (&, 7) = G(&, 7))
SCG(E, 1) +CGe(E,7)2+CGe(0,7)Ge (€, 7)
<Co/MG(E, 7)+CGCe (£, 7)+CGCe (0, 7)?

for T<—k and [¢| gé;l/loo. Hence, the assertion follows from Lemma 3.10. O
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We now perform a spectral decomposition for the operator Gggféng +G. This
operator is symmetric with respect to the inner product ||G||F,= [, e~I€7/4G2 d¢. The
eigenvalues of this operator are given by 17%11, where n>0. Moreover, the associated
eigenfunctions are given by Hn(%f), where H,, is the n-th Hermite polynomial. Let us
write H=H,®HoPH_, where the subspace H, is defined as the span of Hg(%f) and
Hi(3€), the subspace Ho is defined as the span of Hs(1¢), and #_ is the orthogonal
complement of H, B Hy. Moreover, let P,, Py, and P_ denote the orthogonal projections
associated with the direct sum

H=H, OHoDH-_.

The eigenvalues of the operator 7G55+%§(157G on H, are bounded from above by
f%. Similarly, the eigenvalues of the operator 7G55+%§ G¢—G on H_ are bounded from
below by %

Let x denote a smooth cut-off function satisfying x(s)=1 for s€ [—%, %], x(s)=0 for
s€R\[-1,1], and sx'(s)<0 for all seR. We define

sup / € G(E, )X (671 8) 2 de,

V)=
TE[_j_lv_j]

TSR / e HPL(G(E TN ) d,
T€|—3—1,—J

= s [ e ARGE X )
T€l—y—1,—y

L [P (Gt e,
TE[=j-1,—J

Clearly, %'yj <7;+7§?+7; <C%;. Using Lemma 3.7, we obtain

v, <C  sup sup  [G(& )P < 05;/4'
TE[=i=1,=j] g|<6; /100

In particular, v;—0.
LEMMA 3.12. We have
_ 1/200 —1/50
Vi S e 82 (47 41) +Cexp(— 65 ™),
1/200 —1/50
51 =191 < C8;2® (v +7511) +Cexp(— 565 ™),

B _ 1/200 —1/50
Vi 2 e —C8; 2% (v +741) —C exp(— 0, ™).



ANCIENT SOLUTIONS TO THE RICCI FLOW IN DIMENSION 3 23

Proof. Fix j, and define @(57T)::G(f,T)X(é;/loof). Note that

/}R EME(E )P dE <yt

for T€[—j Using Lemmas 3.11 and 3.7, we obtain
2

-4l
/ €40, ()~ Gecl6, )+ £Cele,7) ~B(E 7)) de

< 05;/100(7j+7j+1)+ce’(p( 3261 1/50)

for T€[—j—2,—7j]. Consequently,

F([eempaenpas) = [ oepdenka
R R
—05;/200(’yj+'yj+1)—0exp( 645j 1/50)

2 o~ 1 _
( [ /4|PoG(£,T)I2d€> \ < ca;/20°<vj+vj+l>+0exp( Ly /)
R

64 I
([eemp-aenpi) <= [ PP

+C(5]1-/200 (vj+75+1)+Cexp(—g50; 1/50)

S 5=

for T€[—j—2,—7j]. Integrating these inequalities over the interval [t —1, 7] gives
[emp.aer-Pac<e [ eS1paE P i
R R

+C5]1»/200(’}/j +’Yj+1)+CeXp( 6463_1/50)

/ e~ RG(E, T 1)[2de— / e I PGS, ) Pde
R R

<C8*® (5 +7541) + Cexp(— 0, /™),

/ e PGE T-1)PdE > e / e I P_G(g, ) Pde
R R
_05;/200(%4'%“)—06@( 645;1/50)

for Te[—j—1,—j]. We now define é({,T)::G(f,T) ( ]14_11005) Using Lemma 3.7, we

obtain

/ e E G, T 1)~ G, 1) P de
R

e E7/4 12
</{5 R — |G(e, 7—1)|? de

i1 J

< Cexp( 326] 1/‘)0)
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for T€[—j—1,—7j]. Putting these facts together, we conclude that
[erpter-vPa<e [ e C1paE P
R R
L54—1/50

1/200
+C§j/ (7j+7j+1)+cexp(764 j )7

’/ e I PG(E, T—1)PdE — / R G(E TP de
R R

< 05;/200(7j +7j+1)+C eXp(—G%l(sj_l/so),

/ e S MP_GE, T-1)P de > / e I PG(E T de
R R

~ 082 (7 4+7j41) —C exp(— &6, /)

for re[—j—1,—j]. Taking the supremum over T€[—j—1, —j], the assertion follows. O

We next define

—a +._q + 0._« 0 [ -
y:=supy;, I} :=sup~y;, Iy:=supy;, and Iy :=sup~y;.
jzk izk Jjzk izk

Clearly, Fk/C<FZ+F2+I‘,§<CI‘k. The inequality 'yj<05]1./4 gives Fkngi/‘l. In par-
ticular, I'y —0. Using Lemma 3.12, we obtain
T <e ' T +06, 2T+ Cexp(— &6, ™),
09, —T9 < O8>y +C exp(— &6, ™),
Ty = el =082 Ty —Cexp(— &6, /™).
On the other hand, it follows from Lemma 3.9 and standard interpolation inequalities

that

sup  |G(0,7)|+Ge(0,7) < Cy}*,
T€[7j7177j]

hence
§x = sup |G(0,7)|+Ge(0,7) <CT™.

7<—k

Consequently, eXp(—6—14(5,;1/50) <06, <06 T'. Putting these facts together, we conclude
that
T <e 'Tf+06,2Ty,
09 —TRI < 08,/ Ty,
Ty, >ely —C8./2Ty.

The following lemma is inspired by a lemma of Merle and Zaag (cf. [19, Lemma A.1]).
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LEMMA 3.13. We either have I')+T'; <o(1)I'}, or '} +T'; <o(1)IY.

Proof. By definition, the sequence I', is monotone decreasing. This implies that
I, >0, =el, —o(1)ly. Thus, Iy <o(1)['. This gives T'y <o(1)(T'; +I7).

Let I denote the set of all positive real numbers o with the property that the set
{k:T9<al}} is finite. Moreover, let J denote the set of all positive real numbers a with
the property that the set {k:I') >al'} } is infinite. Clearly, IC.J.

We claim that e!/2a.€I whenever a€.J. To see this, suppose that a€.J. We can find
a large integer ko (depending on «) such that

_ 1 _ _
I'i <e 1r;+2(1+a)(e 12 =11} +T9)
and
(e _
TR —TRI< 2(Ha)(lf6 V2T +TR)

for all k>kq. This implies that

Fg-s—l *QI/QO‘FZH >I)—e M 2al'y - (1= V2T +T7)

= (1—0[(1—61/—2)&) (Tp—al})

1+«

for all k>ko. Since a€J, the set {k:F2>aI‘g} is infinite. Hence, we can find an
integer kj>kg such that I‘g—aI‘Z>O for k=k;. Proceeding inductively, we obtain
Y —el/2afz+1 >0 for all k>k;. Consequently, the set {k:I') <e'/2al'} } is finite. Thus,
el/2ael. This proves the claim.

Therefore, we may conclude that either J=& or I=(0,00). If I=(0, c0), we obtain
I} <o(1)I'Y, and hence I'} +T'; <o(1)T'}. On the other hand, if J=@, then I') <o(1)T'},
and hence Fg—&—I’; <o(1)T. O

In the next step, we show that the second possibility in Lemma 3.13 cannot occur.
LEMMA 3.14. We have I')+T'; <o(1)I}.

Proof. Suppose that the assertion is false. Lemma 3.13 implies that I'; +T'; <o(1)I').
For each k, we can find an integer ji >k and a time 7 €[—jx —1, —ji] such that

= = [ G G PO de
R

Note that

eI PG, o)X (85 7°€)) P de <~ <TE <o(1)Ty
R
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and
/ e~ PG (e, mi)x(61/10€) 2 de <, <Ty <o(1)T
R

After passing to a subsequence, the functions fl—)F,Zl/zG(f, Tk)x(éjl-}fmof) converge, in H,

to a non-zero multiple of the function £€2—2. Since the function £+ G(&, ) is monotone

increasing, we have

—1 1 3
[3 G(f,rk>df<[lG<s7Tk)d§</1 (€. m) de

for each k. Passing to the limit as k— o0, we obtain either

—1 1 3
2 2 2
/ (e 2)d£</ (e 2)d5</1<£ 2) de

-3 -1
or
-1 1 3
[ e-eyae< [ e-eyae< [e-eac
-3 —1 1
In either case, we arrive at a contradiction. O

LEMMA 3.15. We have Iy <O(e™*).

Proof. Note that I')+I', <o(1)I'; by Lemma 3.14. This implies
Ty, <e ' T 4+062°TF <e /7Ty

if k is sufficiently large. Tterating this estimate gives I';y <O(e™*/2), hence ', <O(e™*/?).
Using the estimate dkéCF,ch, we obtain 5k<0(e_k/s). This gives

PSRN 6_1F;+05;/200I‘Z < e T} +e~H/2000T

if k is sufficiently large. Iterating this estimate, we conclude that I'y <O(e~*), and hence
I'n.< O(e‘k ) |

LEMMA 3.16. We have |G(0,7)|<O(e™*/?) and |G¢(0,7)|<O(e™*/2) for all T<—k.

Proof. Lemma 3.15 gives
| leenra<oet
{112}

for all 7<—k. Using Lemma 3.9 and standard interpolation inequalities, we obtain

sup |G(&,7)|+|Ge(€,7)| < O(e™/3)

l€l<1
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for all 7<—k. Hence, Proposition 3.6 implies

sup |Gr (€, 7)— Gee (€, 7) + 5EGe (6,7) ~G(€. )| < O(77%)

l€l<1

for all 7<—k. Using standard interior estimates for linear parabolic equations, we con-
clude that

|G(0,7)| <O(e¥/?) and |Ge(0,7)] <O(e "2
for all T<—k. L]
After these preparations, we now prove the main result of this section.

PROPOSITION 3.17. The function d(t) satisfies liminf, ,_..(—t)~1d(t)>0. More-

over, liminf; , o Rmax(t) >0, where Ry.x(t) denotes the supremum of the scalar curva-
ture of (M, g(t)).

Proof. By Lemma 3.16, we have |G(0, 7)|<O(e™/?) and G¢(0,7) <O(e™/?). Changing
variables gives |F(0,t)—+/—2t|<O(1) and F, (0, t)<O(1/r) Since F(0,t)=7(t) and
F.(0,t)=u(7(t),t)*/?, we obtain |7(t) —v/—2t| <O(1) and u(7(t),t)<O(1/(—t)). Applying
Proposition 2.13, we conclude that

7(t)
o -1 D PR -1 —-1/2
12Lnj&f( t)~d(t) ltlgl_lélof( t) /0 u(r,t) dr>0.
We next observe that d(t)=dg (p,q), where p denotes the tip and ¢ is a fixed reference
point on the manifold. Using Lemma 8.3 (b) in [21], we can control how fast the geodesic

distance of p and g can grow as we go backwards in time:

d
7adg(t) (pa Q) < CRmax(t)l/z-

Since lim inf, , oo (=) "'yt (p, ¢) >0, it follows that limsup, , ., Rmax(t)>0. Since the
function ¢+ Ryax(t) is monotone increasing by Hamilton’s Harnack inequality [16], we
conclude that liminf; , o, Rmax(t)>0. O

4. Uniqueness of ancient k-solutions with rotational symmetry

We continue to assume that (M, g(t)) is a 3-dimensional ancient k-solution which is

non-compact, has positive sectional curvature, and is rotationally symmetric.
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PROPOSITION 4.1. Let p denote the tip. Then liminf, ,_ . R(p,t)>0.

Proof. Since the traceless Ricci tensor vanishes at the tip, the tip cannot lie on a
neck. Hence, it follows from work of Perelman [21] that Rpyax(t)<CR(p,t) for some

uniform constant C' (see Corollary A.3 below). Using Proposition 3.17, we obtain

liminf R(p,t) > 0. O

t——o00

Let p denote the tip. By Hamilton’s trace Harnack inequality [16], the function

t— R(p,t) is monotone increasing. Hence, the limit
R:= lim R(p,t)

exists. Moreover, R >0 by Proposition 4.1.

PROPOSITION 4.2. If we dilate (M, g(t)) around the tip by the factor RY/?, then the

rescaled manifolds converge to the Bryant soliton in the Cheeger—Gromouv sense.

Proof. Let p denote the tip, and let ¢ be a sequence of times such that t; ——oo.
Let us dilate the flow around the point (p, t;) by the factor R'/2. The rescaled flows have
uniformly bounded curvature. Hence, the rescaled flows converge in the Cheeger—Gromov
sense to an eternal solution which is rotationally symmetric. Moreover, on the limiting
eternal solution, the scalar curvature at the tip is equal to 1 at all times. Therefore, the
limiting solution attains equality in Hamilton’s Harnack inequality [16]. Consequently,
the limit must be a steady gradient Ricci soliton [15]. Therefore, the limit must be the
Bryant soliton. 0

We will need the following basic fact about the Bryant soliton.

LEMMA 4.3. Consider the Bryant soliton, normalized so that the scalar curvature at
the tip is equal to 1. Let ~y be a geodesic ray emanating from the tip of the Bryant soliton

which is parameterized by arclength. Then,
/ Ric(v/(s),7(s))ds=1.
0

Proof. On the Bryant soliton, we may write Ric=D?f. This implies that

%Wf(v(S))n/(S)) =(D2f)(7(5),7'(s)) = Ric(v/(5), 7 (5))-

Clearly, V=0 at the tip. Moreover, the identity R+|V f|>=1 implies that |V f|—1 at
infinity. Consequently, (Vf(v(s)),~'(s))=|Vf(v(s))|—1 as s—o0. Thus,

/000 Ric(y'(s),7(s)) ds=1. O
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We now continue with the the analysis of our ancient solution. As in §3, we define

7(t)
d(t) :/ u(r,t) Y2 dr.
0

Equivalently, we may write d(t)=dy)(p, q), where p denotes the tip and ¢ denotes the
reference point introduced in §3. Clearly, —d’(t)>0.

LEMMA 4.4. Let §>0 be given. Then,
(1=0)RY? < —d'(t) < (1+6)R'/?

if —t is sufficiently large.

Proof. Let p denote the tip, and let « denote the unit-speed geodesic in (M, g(t))
from the tip p to our reference point ¢, so that y(0)=p and ~(d(t))=q. In view of
Lemma 4.3 and Proposition 4.2, we can find a large constant A (depending on §) such
that A>85~1 and

AR™1/?
(-aR < [T Ry (9 (o) ds< (145 ) RY?

if —t is sufficiently large (depending on ¢ and A).

We now observe that «y is part of a minimizing geodesic ray emanating from the tip p.
Hence, we may apply Theorem 17.4(a) in [17] with c=AR /2 and L=d(t)+AR"'/2.
This gives

d(t)
0< / Ricy(n (7 (), 7/ (s)) ds <44~ 'RV/2.
AR—1/2

Putting these facts together, we obtain

d(t)

(1-86)RV2 < Ricy ) (7 (5),7(s)) ds < <1+g+4A_1)R1/2
0

if —t is sufficiently large (depending on ¢ and A). Since

d(t)
&'(t) = - / Ricyr) (v/(5),7(5)) ds,

it follows that
(1-ORY2<~d'(t) < (1+16+447 1RV,

if —t is sufficiently large (depending on & and A). As 4471 <34, the assertion follows. [
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In the next step, we state a consequence of Hamilton’s Harnack inequality. In the
following, we view the scalar curvature R as a function of r and t. We denote by R; the

partial derivative of R with respect to ¢ (keeping r fixed).

PRrorosITION 4.5. We have
2
Ri—=u"tuw>0.
T
Proof. Hamilton’s trace Harnack inequality [16] implies that

Ri—R,v+2R,w+2Ric,, w? >0,

1 1 1
v=—(1-u—=ru,
r 2

and w is arbitrary. The extra term —R,.v arises because we compute the time derivative

where

of the scalar curvature at a fixed radius r, whereas Hamilton computes the time derivative
at a fixed point on the manifold. Indeed, if we fix a point on the manifold, then the radius
r shrinks at a rate given by —wv, and the scalar curvature changes at a rate of R;—R,v.

Applying the Harnack inequality with w:=v gives

Ry+R,v+2Ric,,. v* > 0.
Note that
R, =— 43 (1—u+1r2u”> = —gu_lut—i—gu_lurv
r 2 r r
and
Ric,., = —luflur,
r

and hence

R, +2Ric,, v= —gu*ut.
Putting these facts together, the assertion follows. O

We next consider the quantity R+|V|?=R+u"'v% Note that this function is

smooth across the tip.

Remark 4.6. On the Bryant soliton, the function w; vanishes identically, and the

function R+u~1v? is equal to 1.

PRrROPOSITION 4.7. We have

-1
(R+u‘1u2)t+§ <1+;u_1v> (R+u"10?), >0.
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Proof. We observe that

T 1
= — —_ 17
v 4R+ 5 (1—w),
hence .
r
(% iRt - 2*%5
This gives

(R+u'0?); = Ry+2u™ tovy —u ™ 2uy0?

2

2 1
= (1+ rulv) (Rt — ulutv> +—u" .
2 T r

Moreover, using the relations

1
= (1+ ru_1v> Ry — —u upv—u"2u0?
T

_ 2 _
R, =—="utu+=u"tuv
r r

and

ufzut = —fufluT+u72urv—2uflvr,
r

we obtain
(R+u~'v?), = R, —u%u,v*4+2u~ Lo,
-1 2 —2 2 -1
=——u Ut —U UV—U UV 2UuT VY,
r r

2
=——Uu 1ut—u Qutv
r

2
=—— <1+Tu_1v> u_lut.
r 2

Consequently,

—1

2

(R+u_1v2)t+% <1+;u_1v> (R+u~'v?), = (1+;u_1v) (Rt—u_lutv)
r

and the right-hand side is non-negative by Proposition 4.5.

PROPOSITION 4.8. The function R+u"'v? satisfies
2
(R+u='v?); =u(R+u"v?)+ “u(R+u= %), +2(r, t) (R4+u"0?),,
r
where

1 \'[1 1 1 , 1
== (1+u27’ur) [r (127"%«) <1u2rur) —u30, <u2 (1+u27’uT) >} .

For each t, we have Z(r,t)=0(r) near the tip.
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Proof. Differentiating the identity

2 1 1

(R—&-u_va),«:—f 1—|—fu_1v = — w72 14u—=ru, |uy
r 2 r 2

with respect to r gives

1 1 1 1
(R+u='0?) = ——u™2 [ 1+u—=ru, |up+—Su"2 14+u—=ru, |u
T 2 r2 2

On the other hand, differentiating the identity
2
1 1 2
Riu 1?2 = 72“_1 <1+u—2ruT) - T—2(1+u)

with respect to t gives

_ 1 _ 1 2
(R+u 1v2)t:—;u 1(1+u—2rur>urt—73ut

1 1 1
— T—2u72 (1+u QTUT) <1u 2’r‘ur) Ug.

Putting these facts together, we obtain

2

(R+u71v2)tfu(RJru*va)Mf;U(RJru*va),,

1 1 1 1 1

=—|=(1-2 1—u—=ruy | —u®0, (w2 14u—= “u2

L( 27“%)( u 2rur> u(‘)T(u (—!—u 2rur>>]ru Ut
1 1 1 1
Z(1=Z= —u—= —ud -2 _Z
[r( 2rur) (1 u 2rur> u’0, (u (1—|—u 27"%))}

1 -1
X (1+u— 2rur) (R+u~'0?),,

as claimed. O
COROLLARY 4.9. We have R+u~'v2>R at each point in space-time.

Proof. Let us fix a point (rg,tg) in space-time such that rg€[0, rmax(to)). Let 7(t)
denote the solution of the ODE
NEGOR) ( (1)

ﬁr(t) == 1+2u(f(t),t)1v(f(t),t)>

1

with initial condition #(t9)=rp. Since v is a non-negative function, we obtain 7(¢)<rg
for t<to. Consequently, the function ri—7(t) is defined for all t€(—00,to], and 7(t)€
[07 rmax(t)) fOI" all tgto
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By Proposition 4.7, the function
t— R(7(t),t)+u(F(t),t) " u(F(t),t)?

is monotone increasing. On the other hand, by Proposition 4.2, we can find a sequence
of times t;——o0 such that the rescaled manifolds (M, Rg(tx)) converge to the Bryant
soliton in the Cheeger-Gromov sense. Since R+u 'v2=1 on the Bryant soliton, we
conclude that

lim  sup |R(r,ty)+u(r, ty) to(r, tg)*—R|=0.

k—o0 re(0,ro]

Consequently,

R= lim R(#(tg), tx)+u(r(tx), tk)_lv(f(tk), tk)Q

k—00

< R(ro, to)+u(ro, to) v(ro, to). [

COROLLARY 4.10. We have (R+u~'v?),>0 at each point in space-time.

Proof. Let us fix a point (rg,tg) in space-time such that r9€[0, rmax(to)). Let #(t)
denote the solution of the ODE
1

%f”(t) - W (Hf(;)“(f‘(t), ) (R (t), t))

with initial condition #(tg)=rq. Clearly, 7(t)<ro for t<to. Consequently, the function
r—>7(t) is defined for all t€(—o00,to], and 7#(¢) €0, rmax(t)) for all t<tg.

Let us consider an arbitrary sequence of times ¢t ——o0. For k large, we define
Qr={(r,t) : t), <t <to,r <P()}.

By Proposition 4.8, the function R+u~'v? attains its maximum on the parabolic bound-

ary of Q. Therefore,

sup R(r,to)+u(r, to)_l’l)(’f’, t0)2

r<ro

<max{ sup R(P(t), )+u(P(t), ) 0(F(0),6)2, sup R(r,t)+u(r ) o(r, te)? |
tr <t<to Tg’f(tk)

for k large. By Proposition 4.7, the function
t— R(F(t), t)+u(f(t),t) to(7(t),)?
is monotone increasing. This implies that

t zligt R(#(t), t)+u(#(t),t) to(#(t),1)? < R(ro, to) +u(ro, to) tv(ro, to)?
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for k large. This gives

sup R(r,to)+u(r, to)flv(r, t0)2

T<To

< maX{R(To, to)+u(ro, to) tv(ro, to)?, sup R(r,tx)4u(r, ty) to(r, tk)z}
Tg’!:(tk)

for k large. We now send k—oo. Recall that 7(t)<ro for k large. Since the solution

looks like the Bryant soliton near the tip, we obtain

lim sup |R(r,tg)+u(r,ty) o(r t;)?—R|=0.

k=00 <i(th)

This gives

sup R(r, to)+u(r, to) " o(r, to)* <max{R(ro, to)+u(ro, to) " v(re, to)?, R}.

r<ro

Since R(ro,to)+u(ro,to) ‘v (ro,t0)?=R by Corollary 4.9, we conclude that

sup R(r,to)+u(r, to)  tv(r, to)? < R(ro, to) +u(ro, to) " v(ro, to)?,

r<ro
which implies the claim. O

LEMMA 4.11. Given €¢>0, there is a large constant Cy with the following property.

If r>=Cy at some point in space-time, then that point lies at the center of an eg-neck.

Proof. By work of Perelman [21], the set of all points in (M, g(t)) which do not lie at
the center of an eo-neck has diameter less than C(eg) Rmax(t) /2 (see Theorem A.2 and
Corollary A.3). Hence, if 7>C(g0) Rmax(t)"*/? at some point in space-time, then that
point lies at the center of an ep-neck. On the other hand, Ry (t) is uniformly bounded

from below by Proposition 3.17. From this, the assertion follows. O
LEMMA 4.12. On an gg-neck, we have r>u<(14+100g)R L.

Proof. On an eg-neck, we have u<eqg. Moreover, on an ¢p-neck, the radial Ricci
curvature is smaller than 10go/72. This gives 0<—7u,<10gg. Using Corollary 4.9, we

obtain
1 1 YV 2 1
R<R+u'o? = T—Qu_l (1 +u— 2ru,«> —T—Q(l +u) < T—Zu_l(l—i—lOOEO).

This proves the assertion. O
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LEMMA 4.13. There is a large constant Cy with the following property. If F>Cy,
then we have F|F,|<Cy and F2|FZZ\+F3|FZZZ‘<01F1/100'

Proof. By Lemma 4.11, every point with F'’>Cj lies at the center of an ey-neck.
Using Lemma 4.12, we obtain F2F3<(1+10050)R_1 on an ¢g-neck. We next observe
that F™|0T 1 F|<C(m) on an gp-neck. Using standard interpolation inequalities, we
obtain F2|F,,|+F3|F,..|<CFY1% whenever F>Cy. O

LEMMA 4.14. There are large constants Co =4Cy and Cs with the following property.
If F>Cs, then 0<—F,, <CyF~5/2+1/100

Proof. Let us fix a point (zg,%9) in space-time, and let ro=F(zq,to)€[0, rmax(to0))-
We assume that ro>max{10Cy, 100C?}. Let 7#(t) denote the solution of the ODE

d _ . 1

with initial condition 7(tg)=ro. Note that 7(¢) can be interpreted as the radius, at time ¢,

(1—u(f(t), £ %i‘(t)ur(vz(t), t))

of a sphere of symmetry passing through a fixed point on the manifold. In particular,
7(t) €10, rmax(t)) for t<t.
We define a function F(z,t) by

_/ ro
F</ u(r,t)1/2dr,t> =o.
7(t)

Clearly, F(0,t)=#(t). Note that F(z,t) and F(z,t) differ only by a translation in z:

- 7(t)
F(z,t):F<z+/ u(r,t)l/zdr,t>.
7(t)

Since F(0,t0)="F (20, to)=ro, we obtain F(z,ty)=F(z+z,to) for all z.
Lemma 2.9 implies that —d(t)/dt>0 for each t. Integrating this inequality over ¢

gives 7(t) >ro for all t<ty. Equivalently, F(0,t)>rq for all t<ty. Moreover, Lemma 4.13
implies ﬁ|ﬁz| <C, whenever F>Cj. Hence, if ro>max{10Cy, 100C?}, then we obtain

P, T, 07201120 b 20037 > o
for all t<tg and all ZG[_TS/Q,’I"S/Q],

The function F satisfies the evolution equation

0=Fy(z,t)—F..(z, )+ F(z,t) " (14 F.(2,t)?)

_ - _ F(z,t)
+2F.(z,1) <—F(O,t)1FZ(O,t)+/ —u(r, )12 dr).
Foue T
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This implies
0=(F2)i(2,t)— (F?)..(2,t)+24+4F, (2, t)?

~ ~ . - ﬁ(z,t)
+4F(z,t)Fz(2,t)(—F(O,t)_le(O,t)—f—/ —u(r, t)l/Zdr)
T

F(0,t)

Consequently, if we define Q(z, t)::%(ﬁz)z(z, t)=F(z,t)F.(z,t), then

0=Qu(2,t)— Q.. (2,t)+4F. (2, t) Fos (2, ) +2F (2,8) ' F.(2, 1)

_ - » F(z,t)
+2(F(z,t)Fzz(z,t)+Fz(z,t)2)<F(O,t)le(O,t)+/F %u(r, t)1/2 dr).

F(0,t)
Using Lemma 4.13, we obtain |Q(z,)|<C and

1Qi(2,t) = Q. (2, 1) < Crg /10

for tefto—r3,t0) and z€ [—rg/Z, 7”8/2]. Using standard interior estimates for linear para-

bolic equations, we conclude that \@Z (0,0)| <C’r0_3/2+1/100. Consequently,

|ﬁzz(0;t0)| < CT65/2+1/100.

This finally implies | F}.(zo, to)] <0T55/2+1/1°0. .

LEMMA 4.15. There exist large constants Cy and Cs with the following property. If
—t>Cy and F(z,t)>=Cy, then

|F (2, t)Fy (2, t)+1| < C5F (2, 1) ~3/2F1/10 L og ()L,
Proof. Recall that
0=Fy(z,t)—F..(2,t)+ F(z,t) (14 F.(2,t)%)

F(Z,t) 1
+2F,(z,t) (—F(O7 t)"1F,(0, t)+/ —u(r, t)1/? dr) .
F¢t) T

Note that
F(O7t)71|Fz(0at)| < C(it)il'

Moreover, if F(z,t)>max{Cy, C2}, then Lemmas 4.13 and 4.14 imply that
|F.(2,t)| SCF(z,t)"" and  |F..(z,t)| < CF(z,t)~5/2+1/100,

Putting these facts together, the assertion follows. O
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LEMMA 4.16. There is a large constant Cg with the following property. If —t>Cy
and F(z,t)>Cs, then —F(z,t)Fy(z,t)>%.

Proof. This follows immediately from Lemma 4.15. O

In the following, p will denote the tip. By Proposition 4.2, we can find a large
constant C7 with the following property. If —¢t>C7 and z is a point in (M, g(t)) with
dg(t)(p, ) >Cq, then the sphere of symmetry passing through = has radius

r> I‘IlaX{Co, Cy, Cy, Oﬁ}
Moreover, let us fix a large constant A>C% such that

d(t) =dg(e)(p, q) <A

for all t€[— max{C4, Cs,C7},0].
For each z€(—00, 0], we define a time 7 (z)€(—o0, — max{Cy, Cs, C7}] by

t=T(z) <= d{t)=A—z

In other words, at time 7 (z), the reference point ¢ has distance A—z from the tip.
LEMMA 4.17. Let 2<0 and t<T(z). Then F(z,t)>max{Cy,Cs,C4,Cs}.

Proof. By assumption, d(t)=dg)(p,q)=A—z. Let x be a point in (M, g(t)) which
has signed distance z from the reference point g. Then dy)(p,z)>A. In particular,
dgt)(p, ©)>Cr. Moreover, —t>—T (2)>C7. By our choice of C7, the sphere of symmetry
passing through z has radius greater than max{Cy, C3,C4,Cs}. O

LEMMA 4.18. Let 2<0 and t=T (z). Then, F(z,t)<A.

Proof. By assumption, d(t)=d,)(p,q)=A—z. Let x be a point in (M, g(t)) which
has signed distance z from the reference point g. Then dg(p, #)=A. Hence, the sphere

of symmetry passing through x has radius at most A. O

LEMMA 4.19. There exists a large constant Cg such that
|F(2,6)2—2(T (2)—t)| < Cs (T (2) —t)/4+1/200 1 o

whenever z<0 and t<T(z).

Proof. Using Lemmas 4.16 and 4.17, we obtain —F(z,t)F;(z,t)>2 whenever 2<0
and t<7(z). Integrating this inequality over t gives F(z,t)2>T (2)—t whenever 2<0
and t< 7T (2).
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Using Lemmas 4.15 and 4.17, we obtain
|F(z,t)Fy(z,t)+1| < CF(z,t)73/2F1/10 L 0(—¢)~1
whenever z<0 and ¢t<7 (z). Using the inequality F(z,t)>>7 (z)—t, we deduce that
|F(2,t)Fy(2,1)+1]| < O(T (z)—t)~3/4+1/200
whenever 2<0 and t<7 (z). Integrating this inequality over t gives
|F(2,8)2=2(T (2)—t)| < C(T (2)—t)/4+1/200 L ¢

whenever z<0 and t<7 (2). In the last step, we have used the fact that, by Lemma 4.18,
F(z,t)<A whenever z<0 and t=T (z). O

LEMMA 4.20. Let 6>0 be given. Then, F(0,t)F,(0,t)>(14+46)"*R™Y2 if —t is
sufficiently large.

Proof. By Lemma 4.4,
(1=0)RY2 < —d'(t) < (1+6)R'/?
if —t is sufficiently large (depending on ¢). Integrating over ¢, we obtain
(1—28)RY?(—t) <d(t) < (14+26)RY/?(—t)
if —t is sufficiently large (depending on ¢). Putting t=T(z) gives
(1420) "RV2(A—2) < —T(2) <(1-28) " 'RV23(A-2)
if —z is sufficiently large (depending on §).
In the following, we assume that —t is sufficiently large, so that t <7 (—+v/—t)<T(0).
We apply Lemma, 4.19 with z=0 and, separately, with z=—+/—t. This gives

|F(0,8)%2—=2(T(0)—t)| < Cs(T(0)—t)/4+1/200 L g

and

|F(—V=1, 1) =2(T(—V=1)—t)| < Cs (T (—v/—=t ) —t)/*T1/20 1. g,

This implies

F(0,8)2=F(—v/=1,t)2=2(T(0) =T (—v/—t)) > —2Cg(—1)/4+1/200 _o(Cy.
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Moreover,

TO0) =T (—vV—=t) = (1+28) " "R™V2(A+v—=t)+T(0)
if —t is sufficiently large (depending on ¢). Putting these facts together, we obtain
F(0,8)2 = F(—V/=1,1)? > 2(1426) " "R™V2(A4++/—1 ) +2T(0) — 20 (—t)/4+1/290 _ocy
if —t is sufficiently large (depending on ¢). Consequently,

sup  F(z,t)F,(z,t) > (F(0,t)2—F(—V/=t,t)%) > (14+36) " 'R~1/2

1
2€[=v=7,0] 2yt

if —t is sufficiently large (depending on ¢). On the other hand, using Lemmas 4.13
and 4.14, we obtain

(FE,).| = |FF..+F2| < CF~3/2+1/100  ((_)=3/4+1/200
for all z€[—+/—t,0]. This implies

sup  F(z,t)F.(z,t) < F(0,8)F.(0,t)+C(—t)~1/4H1/200,
z2€[—v/=t,0]

Thus, we conclude that

F(0,)F.(0,t) > (14+48)"*R™1/2

if —t is sufficiently large (depending on ). O
The following lemma is similar to [9, Proposition 6.10].

LEMMA 4.21. Let §>0 be given. Then,

inf F(z,t)F.(z,t) > (1+56) 'R 1/2

220
if —t is sufficiently large.
Proof. Let us define

Q(z,t):=3(F?).(2,t) = F(2,t)F.(2, t).
Note that Q(z,t)>0. Moreover,
0=Q:(2,t)=Q..(2,t)+4F, (2,t)F.. (2, t)+2F (2,t) ' F.(2,1)3

F(Z,t) 1
+2(F(2,)F..(2,t) + Fo(2,1)?) (—F(O,t)lFZ(O,tH—/ ﬁu(r, t)'/2 dr).
F(0,t)
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If —t¢ is sufficiently large, then F(z,t)>F(0,t)>+/—t for all 2>0. Using Lemma 4.13, we
obtain

|Qt(z,t)—sz(z,t)\ < OF(Z,t)73+1/100—|—0(—t)71F(2’,t)71+1/100 < C(—t)73/2+1/200

for all z>0. Let
@(z, t) = Q(z, )4 (—t)"L/2+1/100,

Clearly, inf,>q @(z, t)>0 for each ¢t. Moreover, if —t is sufficiently large, then
Qi(2,)—Q22(2,1) >0
for all z>0. Finally, Lemma 4.20 implies that
Q0,1)>Q(0,1) > (1+45) 'R~/

if —t is sufficiently large. Basic facts about the 1-dimensional heat equation on the

half-line with Dirichlet boundary condition imply that
inf Q(z,t) > (1448)TR-1/2
if —t is sufficiently large. Consequently,
inf Q(z,t) > (1+456)TR1/2
if —t is sufficiently large. O
LEMMA 4.22. If —t is sufficiently large, then

1
F(ZJ)Q = E(Z—t) and |(FF,) < 010F—1+1/100
9
for all z>0.

Proof. If —t is sufficiently large, then Lemma 4.21 implies that
1
F(z,t)F.(z,t) > =
(50 1)> &
for all z>0. Integrating this inequality over z gives
1
F(z,t)?> = (z2—t
(507> S (1)

for all z>0. This proves the first statement. To prove the second statement, we consider
the function Q(z,t):=F(z,t)F.(z,t). We have shown above that

|Qt(27 t) _sz(za t)' < CF(Za t)_1+1/100
for all z>0. Moreover, Lemma 4.13 implies that
Q2 (2, 1) = |F(2,8) Frza (2, 1)+ Fo(2,8) Frz(2, ) | < CF (2, t)72+1/100

for all z>0. Consequently, |Q;(z,t)|<CF(z,t)~1F1/100 for all 2>0. O
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LEMMA 4.23. We have

lim F(z,t)F.(z,t)=R~Y?

Z—>00
if —t is sufficiently large.
Proof. Lemma 4.22 implies that liminf, .., F(z,t)F,(z,t) is independent of ¢, pro-
vided that —t is sufficiently large. On the other hand, it follows from Lemma 4.21 that
liminf F(z,t)F,(z,t) > (1450) *R~1/2

Z—00

if —t is sufficiently large (depending on ¢). Since 0 is arbitrary, we conclude that

liminf F(z,t)F,(z,t) >R /2

zZ—00
if —t is sufficiently large. On the other hand, since (M, g(t)) is neck-like at spatial infinity,
Lemma 4.12 implies that

lim sup F(z,t)F.(z,t) <R /2

Z—>00

for each t. O
After these preparations, we now complete the proof of Theorem 1.1. Lemma 4.22
implies that ryax(t)=00 if —t is sufficiently large. By Lemma 4.23, we have

lim F(z,t)F,(z,t)=R"1/2

Z—700

if —t is sufficiently large. Equivalently, lim, .o, r?u(r,t)=R ™1 if —t is sufficiently large.
Moreover, since (M, g(t)) is neck-like at spatial infinity, we know that lim, . u(r,t)=0

and lim, o ru,.(r,t)=0. Using the identity

Rtu tv? = iu_l 1+u—1ru 2—3(1—&—11)

2 2 ") 2 ’

we obtain lim,_,., R+u~'v?

R+u~'v?<R if —t is sufficiently large. Using Corollary 4.9, we conclude R+u"'v?=R
if —t is sufficiently large. In view of the identity

=R if —t is sufficiently large. Corollary 4.10 then implies

2
(R+u %), =-= <1 + Tu1v> by,

T 2
it follows that u; =0 if —t is sufficiently large. Consequently, (M, g(t)) is a steady gradient
Ricci soliton if —t is sufficiently large. By the uniqueness result in [12], (M, g(t)) is a
steady gradient Ricci soliton for all . This completes the proof of Theorem 1.1.
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Part II. Proof of Theorem 1.2
5. A PDE for the Lie derivative of the metric along a vector field

We now study general solutions to the Ricci flow which are not necessarily rotationally
symmetric. Given a Riemannian metric g and a symmetric (0, 2)-tensor h, we define the

Lichnerowicz Laplacian of h by
Ay ghii = Al +2R; b7 = Ric) hyy —Ric), hy.
Moreover, the divergence of h is defined by
(div h)k = D;n'*,

The following fact plays a key role in our analysis.

PROPOSITION 5.1. Let g be a Riemannian metric on a manifold M, and let V be a
vector field. We define h:=4y(g) and Z:=divh—iV(trh). Then,

Z=AV +Ric(V),
where Ric is viewed as a (1,1)-tensor. Moreover,
Ly (Ric) = -5 AL gh+5L2(9),

where Ric is viewed as a (0,2)-tensor.

Proof. Using the identity h;;=D;V;+D;V;, we obtain

Zx=g" Dihji,— 19" Dyhi; = g D? ,Vi+¢" D} V; — g D}, ,V; = AV +Ricj, Vi.
This proves the first statement.

To prove the second statement, let ¢s: M — M denote the 1-parameter family of
diffeomorphisms generated by V. Then,

0
Sovsl9)|  =h
s s=0
Using [23, Proposition 2.3.7], we obtain
%y (Ric) = 2L i LA L bt E24(9) 0
v (Ric) = == RiCyx(y) =—-Ar, 5<z\9)-
s TN 2779 2

We now state the main result of this section.
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COROLLARY 5.2. Suppose that g(t) is a solution to the Ricci flow on a manifold M.
Moreover, suppose that V (t) is a family of vector fields satisfying

%V(t) = Ay V (t)+Ricyqy (V(t)).

Then, the Lie derivative h(t):=2y +)(g(t)) satisfies the parabolic Lichnerowicz equation

0

ah(f) =Ap gyh(t).

Proof. As above, let Z:=divh—1V(tr k). Proposition 5.1 implies that

%v = AV +Ric(V) =2,

where Ric is viewed as a (1, 1)-tensor. Moreover,

3tg = —2Ric,

where Ric is viewed as a (0, 2)-tensor. Using Proposition 5.1 again, we obtain

0 0 .
Eh =2y (&9) +Zovyai(9) = =22y (Ric)+Zz(g9) = AL ¢h,

where Ric is viewed as a (0, 2)-tensor. O

PROPOSITION 5.3. Let g(t) be a solution to the Ricci flow on a manifold M and let
V(t) be a family of vector fields satisfying

Dy (1) = 8y V(1) Ricy 0 (V1) +QU0).
Then,
21Vt < Byt V Ol HROlgc)
on the set {V (t)#0}.
Proof. We compute
19, ., ) .
s (V={V, oV ) Rie )= V. a1+ (7:0)

= IA(V)=|DVP+(V,Q) < LA(VIA) — VIV +V] QL.

From this, the assertion easily follows. O
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6. The parabolic Lichnerowicz equation on shrinking cylinders

In this section, we study the parabolic Lichnerowicz equation in a model case where the
background metrics are a family of shrinking cylinders. Let (S? xR, g(t)) be a family of
shrinking cylinders evolving by Ricci flow, so that g(t)=(—2t)gsz +dz®dz for t<O0.

PROPOSITION 6.1. Let h(t) be a 1-parameter family of symmetric (0,2)-tensors on
the cylinder which is defined in the region {|z|<%L, —%Lgtg—l} and satisfies the par-

abolic Lichnerowicz equation

0

Assume that |h(t)|54) <1 in the region {|z|<3iL,—3L<t<—1L}, and |h(t)|50) <L in
the region {|z| <%L, —%Lgtg—l}. On each slice S? x{z}, we may decompose the tensor
h(t) as

h(t)=w(z,t)gs2+x(2,t)+dz®@0(z,t)+0(z,t) @dz+8(z,t) dz®dz,

where w(z,t) is a scalar function on S%, x(z,t) is a trace-free symmetric (0,2)-tensor on
52, o(z,t) is a 1-form on S?, and B(z,t) is a scalar function on S?. Then, there exists
a function 1: S?—R (independent of t and z) such that v lies in the span of the first

spherical harmonics on S2, and
() =& (2, t)gs> — B2, 1) dz@dz— (—t)bgs |5 < CL™/?
in the region {|z|<1000, —1000<t<—1}. Here, @(2,t) and B(z,t) are rotationally in-

variant functions satisfying

/ (w(z,t)—w(z,t)) dvolge :/ (B(z,t)—PB(z,t)) dvolg> =0
S2x{z} S2x{z}

for t€[—1000, —1] and z€[—1000,1000]. In other words, @(z,t) and B(z,t) are obtained
from w(z,t) and B(z,t) by averaging over the individual 2-spheres S? x {z}.

Proof. The parabolic Lichnerowicz equation is equivalent to the following system of

equations for w(z,t), x(z,t), o(z,t), and B(z,t):

2 9? 1
&W(Z,t):@W(Z,t)‘i’TQtASMM(Z,t)

g t —872 t L A t)—4 t
atX(Z? )_BZQX(Z? )+72t< 5'2X<Z7 )_ X(zv ))7
9 9? 1
aa(%t):@U(zvt)+_72t(ASZU(Zat)*U(Zat)),

2

0 0 1
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By assumption, |h(t)|54) <1 in the region {|2|<iL,—3L<t<—1iL}, and |h(t)]g)<L™
in the region {|z|<2L,—1L<t<-1}. This implies that

in the region {|z|<3L,—

in the region {|z|<iL,—3L<t<—1}.

Step 1. We first analyze the equation for x(z,t). Let S;, j=1,2,..., denote the

eigenfunctions of the Laplacian on trace-free symmetric (0, 2)-tensors on S?2, so that
Assz = —Vij.

Clearly, ;>0 for each j. We assume that the eigenfunctions S; are normalized so that

/52 15515 dvolgz =1

for each j. Then, supg: |5y, <C|| Sl 2 <Cv; for each j. Moreover, v;~j as j—o0
(cf. [7, Corollary 2.43]). Let us write

o0
X(Z7 t) = Z Xj(27 t)SJ
j=1
where
Xj(z>t):/2<X(th),5j>gs2 dvolgs.
s
Note that |x;(2,t)|<Csupg: [x(2,t)]g,, . Moreover, the function x;(2,t) satisfies

0 82 l/j+4
&Xj(zvt) - @Xj(zvt)i ot

X;(z,t).
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Hence, the function X;(z,t):=(—t)~@+4/2y (2, t) satisfies

0 . 0? _
an(Zat) = @Xj(zvt)'

Moreover,
%) (z, 1) S O(—t) a2/

in the region {|z|<3L,—3L<t<—%L}, and
1Xj(2,1)] <CL® (—t)~Wi+2/2

in {\z| Q%L, —%Lgtg—l}. Using the solution formula for the Dirichlet problem for the

1-dimensional heat equation on the rectangle [fiL, %L] X [f%L, 71], we obtain

1
(1
o3

t
+CL/ e—L2/100(t—s)(t_S)—3/2(
—L/4

IXj(z,1)]<C  sup
z€[—L/4,L/4]

(1
X] (4-[/73)

t
+oL / efLQ/IOO(tfs)(t75)73/2(75)7(1/j+2)/2 ds
—L/4

and hence
1 \"wit2)/2
Riol<c()

1\~ (wit2)/2 t ,
gc(L> +CL20/ 6_L /200(t—3)(_8)—(l/j+2)/2 ds
4 —L/4
—(v;+2)/2 (1+1/ i)t
<0(1L> +C’L20/ 4 67L2/200(tfs)(73)—(1/#2)/2ds
4 —L/4
t
+CL20/ e—L2/2oo(t—s)(_8)—(Vj+2)/2 ds
A+1//v5)t
1\t 20 ,—L/100 1\ /2
< -L L e 1+ — —t)™Y
o(ar) e gn) e

+CL2067L2\/117/200(7t) (7t)7uj/2

for all t€[—1000, —1] and all z€[—1000, 1000]. Therefore,

L\
; <O ——
Ixy(z,t)|\0<4(_t)>

for all t€[—1000, —1] and all z€[—1000, 1000]. Summation over j gives

—v;/2
+ (O L20e—L/100 (1+ \1ﬁ> +CL2067L2\M/200(%)

Vj

SC’ZVj\Xj(z,tH <CL™!

9s2 j=1

|X(z7 t)|gs2 =

> xi(,0)8;
j=1

in the region {|z|<1000, —1000<¢t< —1}.
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Step 2. We next analyze the equation for o(z,t). Let Q;, j=1,2,..., denote the
eigenfunctions of the Laplacian on vector fields on S?, so that Ag2Q;=—pu,;Q;. By [8,
Proposition A.1], the eigenvalues satisfy p;>1. We assume that the eigenfunctions @,

are normalized so that fSQ 1Q; 552 dvolg2=1 for each j. Then,
Sup 1Qjlge. <CQjll 2 < Cuy

for each j. Moreover, p;~j as j—oo (cf. [7, Corollary 2.43]). Let us write
[ee]
O-(Zat) = Zgj(zat)Qja
j=1

where

oi(2.1) :/52 (0(2.1).Q5) .0 dvols:.

Note that |o;(z,?)|<Csupgz |0(z,1)|y,,. Moreover, the function o;(2,t) satisfies

82

o 1
aaj(z,t)zﬁaj(z,t)—'u]i

m U'j(Z,t).

Hence, the function &;(z,t):=(—t)~ (i T1/25,(z,t) satisfies

7] 0?

*f}j(z’t):@

ot CATj(Z,t).

Moreover, 13, )| <C(~£) /2 i the region {|2|<}L, ~}L<1<~}L}, and
‘&j(zv )] < CLQO(—t)_(Hj+2)/2

in the region {\z| < %L, —iLgtg—l}. Using the solution formula for the Dirichlet prob-

lem for the 1-dimensional heat equation on the rectangle [—%L, %L] X [—iL, —1], we

(o)

t
+CL/ €L2/100(ts)(t_8)3/2(
—L/4

obtain

65(2,1)|<C sup
2€[—L/4,L/4]

_|_

1
(7] <4L, 5)

1
0j <—4L, s> D ds,
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and hence

—Hi/2 t
|6;(2,1)] <C< L) +CL21/ e‘Lz/lOO(t_s)(t—s)_3/2(—s)_(’”+2)/2 ds
—L/4

N
g e

— 15 /2 t
C( L) JrC«Lzo/ 67L2/200(t75)(78)7(uj+2)/2 ds
—L/4

— 5 /2 (14+1//m)t
SC(lL) ! +CL20/ VH e—Lz/QOO(t—s)(_S)—(/Lj+2)/2ds
4 —L/4

t
—|—C’L20/(1 ) ) e—L /QOO(t*S)(_S)*(}Lj+2)/2dS
+1//m5)t

1 — 5 /2 1 —pj/2
<C<L) +CL206_L/100<1+> (—t) /2
4 Vit

+CL206—L2m/200(—t)(_t)—w/z
for all t€[—1000, —1] and all z€[—1000, 1000]. Therefore,
L a2 20,_—L/100 1 a2 20 ,—L?/[i;/200(—t)
loj (2, )] < C() +CL*e” (1—1—) +CL* e v -
! A(-t) N/
for all £€[—1000, —1] and all z€[—1000, 1000]. Summation over j gives

<CY ploj(zt)|<OL™?

9s2 7j=1

|0 (2,)]gg2 =

Z gj (Z, t)Qj
j=1

for all t€[—1000, —1] and all z€[—1000, 1000].

Step 3. We next analyze the equation for 3(z,t). Let Y;, j=0,1,2, ..., denote the
eigenfunctions of the Laplacian on scalar functions on S2, so that Ag:Y;=—\;Y;. Note
that Ao=0 and A\;=2. We assume that the eigenfunctions Y} are normalized so that
Jg2 Y} dvolga=1. Then, supgs: |Y;|<C||Yj|| g2 <CA; for j>1. Moreover, \j~j as j—oo.

Let us write
o0

ﬂ(z7t) ZZ,Bj(Z,t)}/j,

j=0
where

5J(th):/ 5(2,15)}/] dVOlsz.
SZ
Note that |3;(z,t)|<Csupg- |8(z,t)|. Moreover, the function 5;(z,t) satisfies

0 02 A
aﬂj(zvt) = @/Bj(zvt)f_iétﬁj(%t)'



ANCIENT SOLUTIONS TO THE RICCI FLOW IN DIMENSION 3 49

Hence, the function f3;(z,t):=(—t)"%/2;(z,1) satisfies

0 4 0% -

In the following, we consider modes with j>1, so that A;>2. By assumption,
1B; (2, 1) < C(—t) ™M/
in the region {|z|<%L7 _%LgK—iL}’ and
1B;(2,t)| < CL?°(—t) =i +2)/2

in the region {|z|<%L, —iLété—l}. The solution formula for the Dirichlet problem

for the 1-dimensional heat equation on the rectangle [—iL, iL] X [—iL —1] implies

o 1
P (ML)\

t
+CL/ 6L2/100(ts)(t5)3/2(
—L/4

|BJ(Zat)|<C sup
z€[—L/4,L /4]

Bj <iL, s) ‘+ Bj (iL, s) D ds

for all t€[—1000, —1], 2€[—1000, 1000], and j>1. Therefore, we obtain

Aj/2 t
+CLA / e—L2/100(t—s)(t_s)—3/2(_8)—(>\j+2)/2 ds
—L/4

leni<o(5)

1 —X;/2 t
< C<L> +CL% / €7L2/200(t78)(78)7()\]"‘1'2)/2 ds

4 —L/4
—X;/2 (14+1/4/2,)t
<0(1L> +C’L20/ VA 67L2/200(t78)(_8)7()\3'4'2)/2ds
4 —L/4
t
+C’L2°/ e—LZ/QOO(t—s)(_S)—()\j+2)/2 ds
(1+1/4/25)t

<C<4L> +CL2067L/100 <1+ > (*t)i)\j/z

VA

+CL206—L2\/>\7/200(—t)(_t)ij/z

for all t€[—1000, —1], 2€[—1000, 1000], and j>1. Consequently,

—X;/2 —X;/2
e alse(gly ) rorme (s ) omme Ry

4(=1) ey
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for all t€[—1000, —1], 2€[—1000, 1000], and j>1. Summation over j>1 gives

<CY NlBi(zt)<CL™!

J=1

‘6(27t)_6(z7t)| =

> Bz, 1)Y;
j=1

for all t€[—1000, —1] and all z€[—1000, 1000].

Step 4. We finally analyze the equation for w(z,t). As above, let Y}, j=0,1,2,...,

denote the eigenfunctions of the Laplacian on scalar functions on S?, so that
Ag2Y; =—)\;Y;.
Note that A\g=0, Ay=X>=A3=2, and \y=6. We write
w(z,t)= i w;(z,t)Y;
§=0
where

wj(z,t)= /52 w(z,t)Y; dvolge.

Note that |w;(z,t)|<Csupg: |w(z,t)|. Moreover, the function w;(z,t) satisfies

0 2 A
pr (z,t)= 920 (z,t)— o (z,1).

Hence, the function (2, t):=(—t)"*/2w;(z,t) satisfies
d >
awj(z, t)= prely (z,1).

In the following, we consider modes with j>1. We break the discussion into two subcases.

e Suppose first that j>4, so that A;>6. By assumption,
5 (2,1)] < C(—=t)~ A =2/2
in the region {|z|<iL,—2L<t<—-1L}, and
(2, 1)| < CLP (=)~ +2)/2

in the region {|z|<%L, —%Lgtg—l}. The solution formula for the 1-dimensional heat
equation on the rectangle [f%L, iL] X [fiL, 71] implies that
|j(z, )| <C  sup

1
(:Jj <Z, —L) ‘
2€[—~L/4,L/4] 4

t
—|—C’L/ 67L2/100(t75) (t—5)3/2<
—L/4

1

1
W, <—4L, s) D ds
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for all te[—1000, —1], 2€[—1000,1000], and j>4. Therefore,

|@j(z7t)|<0<4L> +C L E/100 (1+> (—t)~ /2

vy

+CL206—L2\/A7/200(—15) (_t)f,\j/z

for all t€[—1000, —1], z€[—1000, 1000], and j>4. Consequently,

—(A;j—2)/2 —Xj/2
lwj(z,t)] gc(L> + L0 L/100 <1+1> +CL206—L2\/,\7/200(—0

A(—t) Ner

for all t€[—1000, —1], 2€[—1000, 1000], and j>4. Summation over j>4 gives

<CY Ajlws(z, )< 0L

Jj=4

> wi(z,1)Y;
j=4

for all t€[—1000, —1] and all z€[—1000, 1000].
e Suppose finally that 1<j<3, so that A;=2. In this case, |&;(z,t)|<C in the region
{|2|<3L,—5L<t<—3L}, and |@;(2,1)|<CL* in the region {|z|<j{L,—3L<t<—1}.

Using standard interior estimates for the linear heat equation, we obtain
0 .
o <02
z
in the region {|z|<iL,t=—1L}, and
9 20 —-1/2
a—wj(z,t) < CL(—t)
z

in the region {|z| giL, —%Lgtg—l}. The solution formula for the 1-dimensional heat

equation on the rectangle [—iL, iL} X [—iL, —1} implies that

0 . 1
<C sup —j (z,—L)‘
ze[~L/4,L/4| 0% 4

_|_CL/t —L2/100(t—5)(t )—3/2 95 lL +Q/\ EL d
7L/4€ y (92% 4 ' azw] 4 ' s

for all t€[—2000, —1], z€[—2000, 2000], and 1<j<3. Therefore,

’aaaj(z,t)‘ <COL™Y/?
z
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for all t€[—2000, —1], z€[—2000,2000], and 1<j<3. Using standard interior estimates

for the linear heat equation, we obtain
2
‘822&7](2, t)‘ § CL71/2
for all t€[—1000, —1], 2€[—1000, 1000], and 1<5<3. This implies
‘;@j(z,t)‘ <CcL'?

for all t€[—1000,—1], z€[—1000,1000], and 1<j<3. Consequently, for each 1<;j<3,

there exists a constant ¢; such that
@)z, 0) —q| <OL™?

for all t€[—1000, —1] and all z€[—1000,1000]. Note that ¢; is independent of ¢ and z.
Thus, we conclude that
Jwj (2, 1) = (~t)g;| <CL™'/?2

for all t€[—1000, —1], 2€[—1000, 1000], and 1<j<3.
Putting these facts together, we conclude that

lw(z,t)—w(2,t) = (=) (1 Y1+q2Yo+q3Y3)|

g CL_1/2

3 oo
Z(%‘(Z’ )= (—1)g;)Y;+Y_wj(z,1)Y;

j=4

for all £€[—1000, —1] and all z€[—1000, 1000].

To summarize, we have shown that

|h(t) —©(2,t)gs2 —B(z,t) dz@dz—(—t) (@1 Y1+q2Y2+q3Y3)gs2 |51)
<COlw(z,t)—w(z,t) = (=) (q1Y1+q2Ya+q3Y3)|

+OIX(2,t)|gg2 +Clo (2, D)5 +C1B(2,1) = B(2, 1))
< CL71/2

in the region {|z/<1000, —1000<¢<—1}. Hence, if we define
Vi=qY1+q2Y2+q3Ys,

then the assertion follows. O
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7. Gluing approximate Killing vector fields

LEMMA 7.1. Let U be a vector field on a Riemannian manifold, and let v be a

unit-speed geodesic. Then,
DD U+g"" R(v'(5), 0,7 (5), U)0m| < CID(ZLu (9))]
along .
Proof. We compute
|D;DjUg+ Ry iU+ D; DUy + R U'|

=|D;i(D;Ux+DyU;)+D;(D;Uy+DyU;) — Dy (D;U; + D;Us )|
<CID(ZLu(9))l.

From this, the assertion easily follows. O

LEMMA 7.2. Let g denote the standard metric on the cylinder S%x[—20,20] with
scalar curvature 1, and let g be a Riemannian metric which is close to g in C19. Let
T be a point on the center slice S?>x{0}. Suppose that U is a vector field satisfying
SUP g, (7,12) |D(Zy(9))I<1 and |U|+|DU|L1 at T. Then, SUPg, (7,12) |U|<C.

Proof. Let v be a unit-speed geodesic emanating from & with length at most 12. By
Lemma 7.1,
D DU+ R(~'(5), 0k, ' (5), U)0m| < C

along ~. Since |U|+|DU|<1 at &, we conclude that |U|<C along ~. O

LEMMA 7.3. Let g denote the standard metric on the cylinder S%x[—20,20] with
scalar curvature 1, and let g be a Riemannian metric which is close to § in C'°. Let T
be a point on the center slice S?x{0}, and let & denote the leaf of the CMC foliation
with respect to g which passes through T. Suppose that U is a vector field satisfying

sup | Zy(g)| +HD(L @) <1 and [ [UPdu, <1
By(z,12) )

Then,

sup |U|<C.
By(2,12)

Proof. Suppose that the assertion is false. Then, there exist a sequence of metrics
g on S?x[-20,20] and a sequence of vector fields UU) such that g¢) —g in C1°,

sup | Ly (99) |+ D(Lya (99))] <1,
Bg(j) (2712)

[ 09 Fdng <1
>
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and supg - (z.12) |UGU)| —o00. Here, £U) denotes the slice of the CMC foliation with

respect to ¢¢9) which passes through Z. For each j, we define a real number A;j so that
|UD|+|DUD|=A; at 7. By Lemma 7.2,

sup UV <CA;+C.
Bg<j> (f,12)

In particular, A;—oo. Also, the estimate suppg o (#:12) |D(Lyi(g9))| <1 implies that
glI) A

sup |Ag(j)U(j)+Rng(j)(U(j))l <C.
Bg(j) (52712)

Consequently, the rescaled vector fields A;lU(j) converge in C11/2(B;(7, 10)) to a vector
field U. The limiting vector field U satisfies 27 (7)=0 and [5 |U|[*duz=0. In other words,
U is a Killing vector field on the cylinder which vanishes along . Consequently, U
vanishes identically. On the other hand, |U|+|DU|=1 at Z. This is a contradiction. O

PROPOSITION 7.4. If g is sufficiently small, then the following holds. Let g denote
the standard metric on the cylinder S*x[—20,20] with scalar curvature 1, let g be a
Riemannian metric with ||g—g|lcio<eo, and let e<eg. Let T be a point on the center
slice S?x {0}, and let X denote the leaf of the CMC foliation with respect to g which
passes through &. Suppose that UV U and UG are vector fields with the following
properties:

o 500,z 1) Lot |20 (9) 1D (Lo (9 <2

o supp Y0, (U@, u>\2<s

. Zmb:l |0ap—areag ()2 [ (U@, U®) dpg|?<e?.

Moreover, suppose that (7(1), (7(2), and U®) are vector fields with the following
properties:

* 5P, 2.12) Zamt o (0)*+ID (Lo (0)) <

o supyg Yo, (T, V>\2<E

° Za,b:l \éab—areag 2f2 g, o d/‘g|2<52'

Then there exists a 3x3 matriz weO(3) such that

sup Z Zw LU 0

Bg(2,9) q—11p=1

2
< Ce2.

Proof. Suppose that the assertion is false. Then, we can find a sequence of metrics
g9 on §%x[—20,20], a collection of vector fields U7, U(%9) and UG, a collection
of vector fields U9, U29) and UG and a sequence of positive numbers ; with the
following properties:

o [lg¥) —gllero<j~" and g;<57



ANCIENT SOLUTIONS TO THE RICCI FLOW IN DIMENSION 3 99

o Sy a2y S [ Lo (892 HID (L (922,

o supso) Yooy (U, <

d Zi,b:l |5abfareag(2(j))*2 fg(j) <U(a’j)v U(b’j)> dpig) |2<5?%

® SUPB ;) (z.12) 2221 |$ﬁ<a,j>(9(j))\2+|D( ﬁ<a,j>(9(j)))|2<5?§

o sups) Yoy (U9, 1)[2<e;

i Zi,b:l |6ab—areag(2(j))_2 fg(j) <[7(a’j)7 ﬁ(b’j)> dﬂgw |2<E§§

° 6?::infw€0(3) SUPp ;) (2,9) 22:1 | 22:1 WU :3) — {7 (@:9) 12> (je;)2.

Here, ©() denotes the leaf of the CMC foliation with respect to ¢\¥) which passes
through z.

Clearly,
3 3
/ Z |U(a’j) |2 dpgih <C  and / Z |U(a’j) |2 dpgih <C.
56 = 56 =
Hence, Lemma 7.3 implies that
3 3
sup Z|U(‘”)|2<C and sup Z\U(‘“)Féa
By (#12) o4 By (@12) o5
g g

Moreover,

3
sup Z |Ag(j)U(a’j)+Rng(j) (U(“’j))|2 < CE?,
B o) (:12) o1
3

sup Z|Ag(j)ﬁ(a’j)+Rng(j)(ﬁ(a’j))|2 <C€§

Bg(j) (i,l?) a=1

After passing to a subsequence, the vector fields U(*9) converge in (71’1/2(Bg(§c7 10)) to
a vector field U(® which satisfies .Z};(.)(§)=0 and is tangential along ¥. Similarly, the
vector fields U(*4) converge in CY1/2(By(7,10)) to a vector field U@ which satisfies
Z5(a(3)=0 and is tangential along ¥. Note that

areag(i)_2/E<U(a),U(b)>du§:areag(i)_2/<(7(a),(7(b)>dug:5ab.

%

Consequently, there exists a matrix @€O(3) such that

3
0 =3 2 U®).
b=1

This implies §; —0.
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For each j, we choose a 3x3 matrix w/) €O(3) such that

3

sup ZZW(J)U(W) 7 (a3)

B (@9) g1l

*52.

Clearly, w9 —@ as j—o00. We next define

Vi) . <Zw ] (am)

The vector fields V(%7) have the following properties:
® SUPB_;)(2.9) Zi:l [V(@D2=1
® SUPp  (5,12) Yoei 1Ly (9D P+ D(Lywn (99))2<CH 7%
o supso) Yy [(VHD), 1) <O 2.
Using Lemma 7.3, we obtain SUPp ;) (z,12) Zi:l |V (@3)|2<C. Moreover,

3
sup Z|A o V@) 4 Ric (,)(V( IO

B (@:12) 5=
Thus, after passing to a subsequence, the vector fields V(%) converge in C'/2(By(z, 10))
to a vector field V(@) which satisfies .2} () (7)=0 and is tangential along . Consequently,
V(a)zzl‘?:l opU® for some 3 x 3-matrix o.
We next observe that

'5]./(')(g}(a,j)’V(b,j>>+<v<a’j>,ﬁ(bn)»dﬂg(j)MJZ/ (VD VD dy
0

» ()

/( )<ﬁ(a,j>+5jv<a,j>7 TOD 45,7 0D dp _/ (@D TNy dy
>

» (@)
3 ) )
> wlul? |

c,d=1 X

<C€j.

(UeD U@y dpy ;) - / (T2, TCD) dpgi
» )

€]

Since §;—0 and §j_1sj <j~1, we conclude that
/ (T, V)4 (V@) TO)) dpry =0,
b))

Consequently, o is an anti-symmetric matrix. Let &) :=exp(—d;0)w)€O(3). Since
V(a)zzgzl aabﬁ(b), we obtain

sup
B (J) (I 9)

,j)+5 12 (J) (J) U(b,j) =0
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as j—o00. On the other hand, it follows from the definition of §; that

3 3 2
sup Z V(a’j)—i—d;l Z(wab—w((jb))U(b’j) >1
B i) (#.9) g1 b=1
for each j and each weO(3). This is a contradiction. O

COROLLARY 7.5. Let § denote the standard metric on the cylinder S?x[—20,20]
with scalar curvature 1, let g be a Riemannian metric with ||g—g||cw <eo, and let e<eg.
Moreover, suppose that UM, U and U, and ﬁ(l), 5(2), and U®) are vector fields
satisfying the assumptions of Proposition 7.4. Let n be a smooth cut-off function such
that n=1 on S%x[—1000,—1] and n=0 on S?x[1,1000]. Then, there exists a 3x3
matriz we€O(3) with the property that the vector fields

3
v .= 7 Z W U® +(1 fn)ﬁ(a)
b=1
satisfy

3
Z | Ly (9)*+1D(Lyw (9)) P < Ce?
a=1

in the transition region S%x[—1,1].

Proof. By Proposition 7.4, we can find a 3x3 matrix weO(3) with the property
that the vector fields

3
w@ .— Z wapU® — U@,
b=1

satisfy supp_(z o) S W@ 2L 02 Moreover,

3
sup > JAW W+ Ric(W()]> < Ce?.

B5(2,9) ,—1

Using standard interior estimates for elliptic equations, we obtain

sup |[DW@|2 < Ce2,
B3(z,8)

We now define

3
V@ .=y Z wapU®) +(1—n)U@.
b=1
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Then,

3
Ly (9) =1 warLyw (9)+(1=0) Lo (9)+dn@g (W, ) +g(W @, ) @dn,
b=1

Using the estimate

3
sup Y (W@ P+ DW @) < Ce?,
Bg(z,8) .

we conclude that

3
sup D (| Ly (9)*+|D(Lw (9)P) < C2.

By(2,8) ,—1

Since the transition region S? x [—1, 1] is contained in By(Z,8), the assertion follows. [

8. The neck improvement theorem

Definition 8.1. Let (M, g(t)) be a solution to the Ricci flow in dimension 3, and let
(#,%) be a point in space-time with R(Z,#)=r"2. We say that (Z,%) lies at the center
of an evolving e-neck if, after rescaling by the factor r—!, the parabolic neighborhood

By (T,e7tr) x [t—e1r?,1] is e-close in CE to a family of shrinking cylinders.

Definition 8.2. Let (M, g(t)) be a solution to the Ricci flow in dimension 3, and let
(#,%) be a point in space-time with R(z,#)=r"2. We assume that (Z,#) lies at the center
of an evolving gg-neck for some small number g9. We say that (Z,t) is e-symmetric if
there exist smooth, time-independent vector fields U, U®?) | and U®) which are defined
on an open set containing Eg(g)(f, 100r) and satisfy the following conditions:

® SUPB_ ;) (2,100r)x [{—100r2 7] Zzzzo 22:1 2 DY Ly (9(1))) P <e?;

o if t€[t—100r2,t] and ©C B, (&, 100r) is a leaf of the CMC foliation of (M, g(t)),

then supy, 22:1 r=2(U@), 1)|?<e?, where v denotes the unit normal vector to ¥ in

(M, g(1));
o if t€[t—100r2,t] and ©C B, ) (&, 100r) is a leaf of the CMC foliation of (M, g(t)),

then
2

éab—areag(t)(E)_2/E<U(a)aU(b)>g(t) dhg(t) <e?.

3
a,b=1

LEMMA 8.3. Suppose that (Z,t) is a point in space-time which is e-symmetric. If
(#,1) is sufficiently close to (z,t), then (,t) is 2e-symmetric.
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Proof. This follows immediately from the definition. O

LEMMA 8.4. If L is sufficiently large and ey is sufficiently small depending on L,
then the following holds. Let (M, g(t)) be a solution of the Ricci flow in dimension 3,
and let (xg,—1) be a point in space-time which lies at the center of an evolving eo-
neck and satisfies R(xzg,—1)=1. Moreover, we assume that every point in the parabolic
neighborhood By_1)(xo, L)x[-L—1,—1) is e-symmetric for some positive real number
e<eg. Then, given any te [—%L, —1], we can find time-independent vector fields UM,
U@ and UG on Bg(,l)(mo, %L) with the following properties:

o S0 [ Lo (0 P+ ()DL (9(1))PSCE2 on By(yy (o, L) x 10 7];

o« 30 (=) U@ 1) 2<Ce? on By(—1)(z0, 325 L) x [10¢, ], where v denotes the
unit normal vector to the CMC foliation of (M,g(t));

e if t€[10,t] and XCBy_1)(z0, 122 L) is a leaf of the CMC foliation of (M, g(t)),

then
3

)y

a,b=1

2
Sap—area()(X) /E (U@, U) g0y | <O

Moreover, UV, U®, and U are C(L)eg-close to the standard rotation vector

fields on the cylinder in the C%-norm.
Proof. We proceed in two steps.

Step 1. Suppose first that te [—%L, —1). By assumption, the point (Z,7) is e-
symmetric whenever 7€ By(_1)(zo, L). By a repeated application of Corollary 7.5, we can
construct vector fields UM, U®) | and U®) satisfying the conditions above. Moreover, in
view of Definition 8.2, the Lie derivatives £ (9), Ly (g), and £ (g) are bounded
by C(L)e in the C?norm. Consequently, the vector fields UM, U®), and U®) are
C(L)eg-close to the standard rotation vector fields on the cylinder in the C%'/2-norm.

Step 2. Suppose next that t=—1. In this case, the assertion follows from the result
in Step 1 by passing to the limit. Since the vector fields constructed in Step 1 are bounded
in C*'/2 we may take the limit in C2. O

LEMMA 8.5. If L is sufficiently large and €¢ is sufficiently small depending on L,
then the following holds. Let (M, g(t)) be a solution of the Ricci flow in dimension 3, and
let (o, —1) be a point in space-time which lies at the center of an evolving eo-neck and
satisfies R(xo,—1)=1. Consider a time t€|—L,—1] and a positive real number e<eg.
Suppose that UV, U | and UG are time-independent vector fields on By-1) (3:0, %;L)
with the following properties:

o 0 1L (9D P+ (DD Ly (9D <E? on By (w0, 2EL);
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. 22:1(75)71|<U(a),u>|2<62 on By(_1)(zo, %;L), where v denotes the unit nor-
mal vector to the CMC foliation of (M,g(t));

o if ECBg(_l)(Io, %L) is a leaf of the CMC foliation of (M,g(t)), then

2
—area, (E)”/(U(“) Ub)> ydpgiy| <&
b

> Joo

a,b=1

Moreover, suppose that (7(1), ﬁ@), and U® are time-independent vector fields on
By-1) (:170, 127L) with the following properties:

o X 1L )P+ (DD (s (9(0))P <2 0n By 1) (w0, 12201

. 22:1(—5)71|<(7(a),u>|2<5 on Bgy_1) (2o, 122 L), where v denotes the unit nor-
mal vector to the CMC foliation of (M,g(t));

o if XCBy_1)(o, %L) is a leaf of the CMC foliation of (M,g(t)), then

3 2
S {6 —areay g (2) 2 / (T, T, 0y dugery| <2
a,b=1 x
Then, there exists a 3x3 matriz weO(3) such that
sup (—1) -1 wWaprU®) — U(a) < CL?E2.
By(_1)(z0,31L/32) ; ; g(t)

Proof. By assumption, the flow is close to a family of shrinking cylinders. For
each integer me [—83L, 83 L], Proposition 7.4 implies that there exists a 3x3 matrix
w(™ €0(3) such that

3

2
ng}”)U(b) _yla)

g(t)

<Ce2.

S2x[m—1,m+1]

3
sup ()7
a= =
From this, we deduce that \w(m) —w(mt1) |<Ce for every integer m. Consequently, there
exists a 3 x 3 matrix w€O(3) such that |w(™ —w|<CLe for every integer me [~ L, 83 ]
This implies that

2
< CL2%:?

g(t)

Zw VO T

3
WINIGURDY

S2x[m—1,m+1]

for every integer me [ L7 2i L] O

We now state the main result of this section.
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THEOREM 8.6. (Neck improvement theorem) There exist a large constant L and
small positive constant €1 with the following property. Let (M, g(t)) be a solution of the
Ricci flow in dimension 3, and let (xq,to) be a point in space-time which lies at the center
of an evolving e1-neck and satisfies R(xo,to)=r"2. Moreover, suppose that every point
in the parabolic neighborhood By, (wo, L) x [to—Lr?, to) is e-symmetric, where e<ey.

Then, (z9,t0) is 1e-symmetric.

Proof. Throughout the proof, we will assume that L is sufficiently large, and e;
is sufficiently small depending on L. Without loss of generality, we may assume that
to=—1 and R(xo,—1)=1. In the parabolic neighborhood Bgy_1)(zo,L)x[-L—1,~-1],
the metric g(t) is e1-close to a family of shrinking cylinders in the C'%-norm. Let

g(t)=(—2t)gs2 +dz®dz denote the standard metric on the shrinking cylinders.

Step 1. Using Lemmas 8.4 and 8.5, we can construct time-dependent vector fields
UM, U and U®), defined on By-1) (:co, %L) x [—L, —1], with the following properties:

9 15 1

am ) =0 on By (xo, 16L> X [—L, —44,
9 a _ 15 1

EU( I <CL(—t)Y2e  on By_1 (xo, 16L> x [—4L, —1];

o | Ly (9(0))[+ (=) ?|D(Lyw (9(t)))|<Ce on By(1) (w0, 1g L) x [~L, —1].
Also, we can arrange that UM, U®) and U®) are C(L)e;i-close to the standard

rotation vector fields on the cylinder in the C?-norm. Note that
AU +Ric(U)| < CID(Lyw (9))| S C(—1) 712

on By (:co, %L) x[—L,—1].
Step 2. Let V(@ denote the solution of the PDE

9yt _ AV @ 4 Ric(V@)
ot
in the region {|z| < %L, —Lgtg—l} with Dirichlet boundary condition V() =U(®) on the
parabolic boundary {|z|<IL,t=—L}U{|z|=%L,—~L<t<-1}. Note that the difference
V(@) (@) satisfies
%(V(“LU(“)%A(V(“)fU(“))fRic(V(“)fU(“)) = |AU@ +Ric(U@)|
<O(=t)" V2%
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in the region {|z|<fL,-L<t<—3iL}, and

%(V@ —U@O)—A(V@ @) _Ric(V®@ U(“))‘ < ‘;U(“) +|AU@ 4 Ric(U@)|

SCL(—t)" Y%
in the region {|z\ < %L, —iLgtg—l}. Hence, Proposition 5.3 implies that
9 (@ _ @ () _ /(@ 172
EW —UW| <AV U +C(-1) €
in the region {|z\<%L, —Lgtg—iL}, and
9 @ g (@ _ 7@ 172
aﬂf U | <AV U +CL(-t) €
in the region {|z\ < %L, —%Lgtg—l}. Using the maximum principle, we obtain
|V(“)—U(“)| <COLY?%¢
in the region {|z\<%L, —Lgtg—iL}, and
V@ _yl)| <CL?

in the region {|z\<%L, —§L<t<—1}. Standard interior estimates for linear parabolic
equations imply
|ID(V@ —U@)| < Ce

in the region {|z\<%L, —%Lgtg—iL}, and

|D(V® —U@)| <CL%

4
vector fields VD, V) and V) are C(L)e;-close to the standard rotation vector fields
on the cylinder in the C'-norm. Consequently, in the region {|z| <1000, —1000<t<—1},
the vector fields V), V) and V) are C(L)e;-close to the standard rotation vector

fields on the cylinder in the C''°°-norm.

in the region {|z|§%L,71L§t§fl}. In particular, in {|z\§%L,f%L<t§fl}, the
)

Step 3. We now define h(“)(t)::.fv(a)(t)(g(t)). Since

0
aV(a) = AV(“)—i-Ric(V(“)),
we conclude that
0 (a)
ah (t)=Arguh* (1)
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by Corollary 5.2. Using the estimate for V() —U(®) in Step 2, we obtain
(RO Ly (9)|+CIDVE —U)| < Ce
in the region {|z|<%L, —%Létg—iL}, and
(D] <[ Ly (9)|+C|D(V@ —U@)| < CL2
in the region {|z| <%L, —§L<t<—1}. Using standard interior estimates for linear para-

bolic equations, we deduce that

100
> ID'R@ < C(L)e
=0

in the region {|z|<iL,—$L<t<-1}.

Step 4. By assumption,

in the region {|z|<1L,—3L<t<—1}, where g(t)=(—2t)gs:+dz®dz denotes the stan-
dard metric on the shrinking cylinders. Let h(*) denote the solution of the equation

a 7 (a 7 (a
&h( V() =Ap 5 h'™ (t)
in the region {|z\<%L, —%Lgtg—l} with Dirichlet boundary condition A(*)=h(* on

the parabolic boundary {|z|<3L,t=—1L}U{|z|=3L, —3L<t<-1}. We compute

0

S (R ()= (1) = Ay gy (B (1) () () = B 1),

where the error term E(®)(t) is defined by
B9 () :=Ap g0yh ) (t) = Ap gy bV ().

Using the estimates

100 100

> DN G(t)—g(t)| < C(L)er and Y |D'A@|<C(L)e,
=0 =0

we obtain
90
Z |ID'E@| < CO(L)ese
1=0
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in the region {|z\ < %L, —%Lgtg—l}. Using the maximum principle, we conclude that
|h(@) —p(| < C(L)ese

in the region {|z\<%L, —%Lgté—l}. Standard interior estimates for linear parabolic

equations imply

80
SIDHR® —h )| < C(L)ee
=0

in the region {|z/<1000, —1000<t<—1}.

Step 5. We now apply Proposition 6.1 to i_z(“)(t). Using the results in Steps 3 and 4,
we obtain

|h | < Ce+C(L)ese

in the region {|z\<%L, —%Lgtg—iL}, and
|| < CL?4+C(L)ere

in the region {|z| < %L7 —iLgtg—l}. By Proposition 6.1, there is a function 1(®): §2 -R
(independent of z and t) and rotationally invariant functions ©(®)(z,t) and 3(®(z,t) with
the following properties:

e (@ lies in the span of the first spherical harmonics on S?;

e @@ (z,t) and B(?)(z,t) are solutions of the 1-dimensional heat equation;

o R D(t) o) (2,t)gg: — D (2,t) dz@dz— (—t)p( D gg2 | <CL™Y2e4+C(L)e; € in the
region {|z|<1000, —1000<t<—1}.

Note that @@, (@) and ¢(*) are bounded by C(L)e. Moreover, the tensor

RO () =2 (2, )52 =B (2, 1) dz@dz— (—t)y W gs2
satisfies the parabolic Lichnerowicz equation with respect to the background metrics g(t).
Using standard interior estimates for linear parabolic equations, we obtain

80
YDA (1) =0 (z,1)g52 =B (2,1) dz@dz—(—t)9 D gs2)| SOL™?e+0(L)ere
1=0
in the region {]z|<800,-400<t<—1}. Combining this estimate with the estimate in
Step 4, we conclude that

80
D IDH RN () =2 (2, t)gs2 — B (2,t) dz@dz — (— 1)1\ gge )| < CL ™2+ C(L)ere
=0

in the region {|z| <800, —400<t<—1}.
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Step 6. Let us define a vector field £(4) on S? by gg= (£, -)=—1dy(®). Note that
€@ is independent of z and ¢, and |£(*)|<C(L)e. Since 1(*) lies in the span of the first

spherical harmonic on 5%, we obtain Z; (gs2)=3%

*51/1(“)9527 and hence

Lew (§(t) = (—1)1 W gga.

We now define W(®):=V(@) _¢(@)  In the region {|z|<1000, —1000<t<—1}, the vector
fields W, W@ and W® are C(L)e;-close to the standard rotation vector fields on
the cylinder in the C®-norm. Using the identity

Ly (g(t) =B\ ()= (=) gs2+ Lew (G(t) —g(t))

and the estimates in Step 5, we obtain

60
S ID (Lo (1) =2 (2, 8) g2 — B (2, 8) dz@d2)| < CL™2e+C(L)eye
=0

in the region {|z|<800, —400<t<—1}.
We next estimate the time derivative of W(®). We compute

Iy@_9

1
Zyla) — Ay (@) (Ve = divh(@ 2wy (@)
. . +Ric( )y=divh 3 (tr h'%).

Using the estimates in Step 5, we obtain

o™ o 1 -
D' divh@® -2 — 2 —¢@)|<or=1/? I
; <1V 9 9. ¢ C e+C(L)ee
and
60 _ -
@ 1 dw @\ o 2
: (@) —_ 22 g(a) < —1/2

=0

in the region {|z|<800, —400<t<—1}. Putting these facts together, we conclude that

60 2 _
o) 19p@ 1 dw@\ o _
U Zyyle) [ 2 - Y < 1/2
; D (815 W (2 5 9 92 ) Bz) ‘ < CL™/?e+C(L)ere

in the region {|z|<800, —400<t<—1}.

Step 7. We now define

x@ . [W(Q), W(3)]’ x® .— [W(3)7 ]/[/(1)]7 and X® .— [1/[/(1)7 W(Q)]_
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In the region {|z|<800, —400<t<—1}, the vector fields XM, X2 and X©) agree with
the standard rotation vector fields on the cylinder up to constant factors and errors of
order C(L)e1. Moreover,

Lxm(9)=Lwe (Lwe (9) —Lwe (Lwe (9))
=L (Lo (9) —w® (z,t)gs2 —B® (z,t) dz®dz)
— Ly (L (9) =23 (2,)gs2 — BP) (2, 1) dz@dz)
+ Ly (@3 (2,t)g52+BP (2, 1) dz®dz)
— L (@D (2,8) 952+ 8P (2,1) dz@dz).

Analogous identities hold for .Zx = (g9) and Ly (g). Since WL, W and W) agree
with the standard rotation vector fields on the cylinder up to errors of order C(L)eq, we
obtain

40
1D (Lo (@0 (2, g +5O (2, 1) d=0d2)] < O(L)ene
1=0
in the region {|z|<800, —400<t<—1}. Combining this with the estimates in Step 6, we

conclude that

40
> DN Ly (9)| < CL™?e+C(L)ese
=0

in the region {|z| <800, —400<t<—1}.

We now estimate the time derivative of X(*). We compute
9 vy _ {aW@) W<3>] N [W@) §W<3>}
) b t

ot
_ {aW@)_ (135(2)_1‘%(2) ) g, W(?J}
z

[ 9 1983 1 dw®\ 8
@ Oy (1989 1 9PN 9
VT HW (2 02 2t 0- )&J

[(105® 1 05®\ 0
+_(28z_—2t e )az’W }

e (1989 1 0@ 9
I ’ 0z

Analogous identities hold for X (?) /9t and 9X ) /ot. Since W, W) and W®) agree

with the standard rotation vector fields on the cylinder up to errors of order C(L)eq, we

obtain
19p® 1 9™\ o
pDHw@ (= _ el
{W ’(2 0z =2t 0z )82}

40

>

=0

<C(L)ee
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in the region {|z|<800, —400<t<—1}. Combining this with the estimates in Step 6, we

conclude that

40 P
Z D! ((,%X(“)> ‘ SCL Y240 (L)ese
1=0

in the region {|z| <800, —400<t<—1}.

Step 8. Let Y(%) be a time-independent vector field such that Y () =X (@) at time —1.
In the region {|z|<800, —400<t<—1}, the vector fields Y, Y2 and Y3 agree with
the standard rotation vector fields on the cylinder up to constant factors and errors of
order C(L)e;. The estimates for X (%) /0t in Step 7 imply

40
S IDN(Y @ - X @) < CLT e+ C(L)ese
=0

in the region {|z|<800,—400<¢<—1}. Using the estimates for s (g) in Step 6, we

obtain
30

> ID Ly (9)| SCL2e+C(L)ese
=0

in the region {|z| <800, —400<t<—1}.

Step 9. In the following, we fix a time t€[—200,—1]. We denote by X the leaves
of the CMC foliation of (M, g(t)). Note that the foliation depends on ¢, but we suppress
this dependence in the notation. Let v denote the unit normal vector field to the foliation
Y. For each s, we denote by v: ¥;—R the lapse function associated with this foliation.
We assume that the foliation X, is parameterized so that xqo€Xy and fEs v=1 for all s.

Since Y is a CMC surface for each s, the function v satisfies the Jacobi equation
As;, v+ (| A +Ric(v, v))v = constant

on Y, where |A| denotes the norm of the second fundamental form of X in (M, g(t)).
The Jacobi operator Ay, +(|A|?+Ric(v,v)) is a small perturbation of the Laplacian Ay, .
Hence, for each s, the Jacobi operator Ay +(]A|>+Ric(v,v)) is an invertible operator
from the space {fECQ’l/Q(ZS):fZS f=0} to the space {fGC'l/z(Es):fEs fv=0}, and we
have a uniform bound for the norm of its inverse.

In the following, we only consider those leaves of the foliation X4 which are contained
in the region {|z|<700}. Let us define a function F(®): ¥, R by F(@:=(Y(®) v) The
quantity

As, F@ 4 (|A?+Ric(v,v))F@ = H®
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can be expressed in terms of %) (g) and the first derivatives of %) (g). Using the
estimate for %) (g) in Step 8, we deduce that

20
> ID'H@W|<CL™?e+C(L)ee
=0

in the region {|z|<700}. We next define G(“)(s)::fzs F@ and F(@.=F@) _G@) (),
Then [;, F(*=0 and

As, F@ 4+ (JA?+Ric(v,v))F@ = g — / H@y
s

on X,. Using the estimate

20
> ID'HW| < CL™?e+C(L)ese,
=0

we conclude that i

Y ID'F| < CL™?e+C(L)ese
=0

in the region {|z|<600}. Since v~ F @ =y=1(Y (@ 1) —G)(s), it follows that
10
S DMWY, 1) =G (s))| < CL™2e+C(L)ere
1=0
in the region {|z|<600}.
By the divergence theorem, the quantity

G (5)— G (0) = /

s

<y(a)’ V) _/ <y(a)) v)

can be expressed as an integral of divY(®) over the region bounded by ¥y and .

Differentiating this identity with respect to s gives

d
(U/) — ] (CL)
p G (s)= / vdiv Y.

Using the estimate for %y () (g) in Step 8, we obtain

10

>

=1

l
ig(a) (s)

74 <CL Y2e4+C(L)ee.
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Putting these facts together, we conclude that
10
> ID' (Y™ )| < CL™?e+C(L)ere
=1

in the region {|z|<600}.

Step 10. Finally, we define
71 .— [y(2)’ Y(3)], 7(2) . [y(3)7 y(l)] and 73 .— [Y(l)7 y(2)}.

We note that 21, Z®?) and Z®) are time-independent vector fields. In the region
{]2| <800, —400<t< —1}, the vector fields Z(), Z(?) and Z(3) agree with the standard
rotation vector fields on the cylinder up to constant factors and errors of order C(L)e;.
Note that

Lz (9) =Ly (Lye (9) —Lye (Lye(g))
We have shown in Step 8 that
30
> DLy (9)| S CLTV?e+C(L)ere
1=0
in the region {|z|<500,t€[—200, —1]}. This gives

20
> DY Ly (9))| KCL™2e+C(L)ere
=0

in the region {|z| <500, —200<t<—1}. Now, let us fix a time t€[—200, —1], and let v and

v denote the normal vector field and the lapse function of the CMC foliation at time ¢,

1

respectively. Since the vector field T:=v~ v is a gradient vector field, we have

(ZzW, Ty ={y® v(y® 1)) (Y vy 1))).

Using the estimates in Step 9, we obtain
10
> IDH(Y W, T))| < CL™V?e+C(L)ese
I=1

in the region {|z| <500, —200<t<—1}. Consequently,

8
> ID'((2, T))| < CL™?e+C(L)ese
=0
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in the region {|z|<500,—-200<¢<—1}. Using again the fact that T is a gradient vector

field, we compute
(V(IT?), Z29) = =(ZLg (9)) (T, T)+2(V((Z'“, T)), T)
and
g([T, Z(a)]7 ) = (XZ(a) (g))(T, ')_d(<Z(a)7 T>)

Using our estimates for %) (g) and (Z(®, T, we finally obtain

6
Y IDI((V(TP), 29)| < CL™2e+O(L)ere
=0

and
6

> DT, Z )| < CL™?e+C(L)ese
=0

in the region {|z| <500, —200<t<—1}.

To summarize, we have shown that
8
> ID'((Z2,v))| <LV e+ C(L)zse,
1=0
6

> ID'(Vu, 29))| < CL™Y2e4+-C(L)ese,
=0

|Dl v, ZW))| < CL Y24+ C(L)ee,

IMe

|D!([ov, Z@))| < CL™Y?e+C(L)ese

M@N

l

Il
=)

in the region {|z|<500, —200<¢<—1}. In particular, if t€[—200, —1] and X C{]z|<400}
is a leaf of the CMC foliation in (M, ¢(t)), then the lapse function v satisfies

bup|v areay(;)(X) | < CL™ V264 C(L)ese.

Step 11. In the next step, we obtain information on the Ricci tensor and the second
fundamental form of the CMC foliation. To that end, let us consider an arbitrary point
(z,t) in the region {|z|<400, —200<t< —1}. Let {e1, e2} denote an orthonormal basis for
the tangent space to the CMC foliation at (Z,%). Since the vector fields Z(1), Z() and
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Z®) are close to the standard rotation vector fields on the cylinder up to some constant
factor, we can find a vector A=(\1, Ao, A3) ER3 such that

3 3
D AalZ e) = Xa(Z2,e5) =0
a=1 a=1
at the point (z,7) and
3
> AalDe, 2 e5) =1
a=1

at the point (z,%). Note that [\ <C.
Using the estimate for (Z(®),v) in Step 10, we obtain

3

Z/\Q<Z(a),1/>

a=1

<CL™Y2e4C(L)ee.

Consequently,
<CL Y240 (L)ese

3
Z A\, Z(@

a=1

at the point (Z,t). Using the estimate for %5 (g) in Step 10, we obtain
|<D€1 Z(a)v 61>|+|<D62Z(a)a €2>| < CvLi1/254_(7(‘[’)51E
(Do, ZY, e) 4+ (De, 2V e1)| < CL™Y2e+C(L)eye.
This implies
3
143 Aa(De, 2 e1)| KCL™2e+C(L)ese
a=1

at the point (Z,#). Moreover, the estimate for the derivatives of (Z(), 1) in Step 10 gives
(De, 2D ) +(Z\D Do) KCL™Y2e4+C(L)e e

for i€{1,2}. Hence, for each i€{1,2}, we obtain

3

Xa(Dp. Z D v
> (D, )

a=1

<CL™Y2e4+C(L)ee

at the point (Z,1).

In view of the estimates in Step 10, the Ricci tensor satisfies

|- Ly Ric| <CL™Y2e4+C(L)ese
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for each a€{1,2,3}. A straightforward calculation gives

(L@ Ric)(eq, €2) = (D y Ric)(er, e2)+Ric(De, 2V, e)+Ric(er, De, ZV)
= (D g Ric)(e1, e2)+((De, 2, 1) +(De, Z“), €3)) Ric(ey, e2)
+(De, Z'Y  e5) Ric(eg, e3)+(De, Z'Y, e1) Ric(ey, e1)
+(D., AR v) Ric(v, 62)+<D62Z(“), v) Ric(eq, v).

If we multiply this identity by A\, and sum over a€{1,2,3}, we conclude that
[Ric(eq, e2) —Ric(er, e1)| <CL™Y2e+C(L)e e
at the point (Z,t). Therefore,
|Ric(e;, e5) — & trsy(Ric)d;;| < CL™2e+C(L)eqe
at the point (z,7), where
trg (Ric) = Ric(eq, e1) +Ric(ez, €2).

Let A denote the second fundamental form of the CMC foliation. We can think of A
as a (0, 2)-tensor on M, which vanishes in the normal direction. The estimates in Step 10
imply |-Zy @ A|<CL™Y/2e+C(L)e e for each a€{1,2,3}. A straightforward calculation

gives

(Zyw A)ler, ez) = (D g A)er, e2)+A(De, ZY  e3)+Aley, Do, Z()
= (DgwA)(e1,e2)+((De, 2, 1) +(De, Z\)  €2)) Aler, e2)
+(Do, Z'Y e9) A(eg, e3)+(De, Z'D 1) Aleq, €1).

If we multiply this identity by A\, and sum over a€{1,2,3}, we conclude that
|A(es, e2)—A(ey, e1)| <CL™Y2e4+C(L)e e
at the point (Z,t). Therefore,
|A(ei, e;)—$Hé;j| < CL™?e+C(L)ee

at the point (Z,7), where H denotes the mean curvature of the CMC foliation.

Finally, the estimates in Step 10 imply that

inf sup|L trs(Ric) —o| < CL™Y2e+C(L)ese
e =
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if t€[—200, —1] and ¥.C{|z|<400} is a leaf of the CMC foliation in (M, g(t)). To sum-
marize, if t€[—200,—1] and X C{|z|<400} is a leaf of the CMC foliation in (M, g(¢)),
then

ir;f s121p| (Ric —og)|rs| <CL™Y?e+C(L)ee

and
sup| (A= 3 Hg)pg| < CL™?e+C(L)ere,
b

where H denotes the mean curvature of ¥ (which is constant).

Step 12. Let us fix a time t€[—200, —1]. By Step 10, the vector fields ADRVACR
and Z®) are tangential to the CMC foliation of (M, g(t)), up to errors of order

CL™'2c+C(L)ee.

Moreover, the vector fields Z(1), Z() and Z®) are tangential to the CMC foliation of
(M, g(—1)), up to errors of order CL~'/2¢+C(L)ee. Since the vector fields Z(V), Z(2),
and Z©®) are close to the standard rotation vector fields on the cylinder, we conclude that
every leaf of the CMC foliation of (M, g(t)) which is contained in the region {|z|<400} is
(CL™Y24C(L)e e)-close in the C'-norm to a leaf of the CMC foliation of (M, g(—1)).

Step 13. We again fix a time t€[—200, —1]. Let ¥, denote the CMC foliation of
(M, g(t)), and let v and v denote the normal vector field and the lapse function associated
with this foliation, respectively. In the following, we only consider those leaves of the
foliation which are contained in the region {|z|<300}. Our goal is to show that the

quantity
areay(;) (Z;) /Z (29, 200 dpgqry

is nearly constant in s, up to errors of order CL~'/2¢4C(L)e . Recall that the surfaces

¥ move with normal velocity v. This implies that
d
o areag ;) (Xs) = . Huvdpgqy = H,

where H denotes the mean curvature of ¥, with respect to the metric g(¢). We next

compute

d a

- / Ho(Z, Z0) 0 dpiy + / (Lo (@)(ZD, Z0)) dpys

s

+/z ([vv, 291, 2 g2y dpsgey+ /E (29, [ov, Z) g0y dpg ey

s s
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The estimate |(A—2Hg)|rs|<CL™Y?¢4+C(L)e1 in Step 11 implies that
(Lo (9))(Z2@, 20~ Ho(Z ™, Z®)) ()| <CL™Y2e+C(L)ese.
Moreover, the estimate for [vr, Z(*)] in Step 10 gives
(ov, @), Z®)) ] S CL™Y2e+C(L)ee.
An analogous argument yields
(2, v, ZO)) g1y S OL™Y2e+C(L)eqe.

Putting these facts together, we obtain

d " . )
dS(/Z <Z( )’Z(b)>g(t) dﬂg(t)) *2/2 H’U<Z( )7Z(b)>g(t) d/u'g(t) < (CL 1/25+C(L)616),
and hence
d 2H
- 2@, z®) o d _7/ 7@ 70y 4
ds (/Ef s >g(t) Hg(t) areag(t)(zs) Es< s >g(t) Hg(t)

<(CL™Y%e4C(L)eqe).

Thus, we conclude that

d
‘ds <areag(t)(25)2 / <Z(a), Z(b)>g(t) d,ug(t)> ’ < OL71/2€+C(L)61€.
s

Step 14. The estimate in Step 13 implies that there exists a symmetric 3 x 3 matrix
Qap (independent of ) such that

’Q“b—areag<-1><z>‘2 29, 20,1y dsy | < OL e O(1)ere

whenever £.C{|z|<300} is a leaf of the CMC foliation of (M, g(—1)). Moreover, since the
vector fields Z(), Z) and Z®) are close to the standard rotation vector fields on the
cylinder, up to some constant factor, the eigenvalues of the matrix @ lie in the interval
[1/C, C] for some fixed constant C. The estimate for the Ricci tensor in Step 11 gives

d _ _
‘dt (areag(t)(Z) 2 / (Z@), Z(b)>g(t) d/@(@)‘ <CL™Y2e40(L)ese
)

if t€[—200, —1] and £C{]2|<300} is a fixed leaf of the CMC foliation of (M, g(—1)).

Consequently,

]Qabareag@(E)Q /Z (28, Z®) g4y dpgey| < CL™/2e+C(L)ere

whenever t€[—200, —1] and XC{|z|<300} is a leaf of the CMC foliation of (M, g(—1)).
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By Step 12, every leaf of the CMC foliation of (M, g(t)) which is contained in
the region {|2|<200} is (CL~'/24+C(L)e;e)-close in the C'-norm to a leaf of the CMC
foliation of (M, g(—1)). This finally implies that

Qup—areay ) (X) > /)S (2@, Z®)) ) dpgy| < CL™?e+C(L)ese

whenever t€[—200,—1] and XC{|z|<200} is a leaf of the CMC foliation of (M, g(t)).
Note that the matrix @, is independent of ¢ and independent of 3.

By considering the vector fields Zgzl(Q_1/2)abZ(b), we see that the point (zg, —1)
is (CL~'2c4-C(L)e;e)-symmetric. Hence, if we choose L sufficiently large and ¢, suffi-

ciently small (depending on L), then (g, —1) is $e-symmetric. O

9. Rotational symmetry of ancient k-solutions in dimension 3

In this section, we give the proof of Theorem 1.2. Throughout this section, we assume
that (M, g(t)), te(—o0,0], is a 3-dimensional ancient k-solution which is non-compact
and has positive sectional curvature. Our goal is to show that (M, g(t)) is rotationally
symmetric. For each ¢, we denote by Rpax(f) the supremum of the scalar curvature of
(M, g(t)). By Perelman’s pointwise derivative estimate [21], the function ¢+ Ryayx(t) ™
is uniformly Lipschitz continuous.

Let us fix a large constant L and a small constant €; such that the conclusion of
the neck improvement theorem holds. We assume that ; is chosen small enough so that
the results in §7 can be applied on every e1-neck. For each point (x,t) in space-time, we
denote by A1 (x,t) the smallest eigenvalue of the Ricci tensor at (x,t). The following is a

direct consequence of Perelman’s work.

PROPOSITION 9.1. Given €1, we can find a small positive constant 6 (depending on
€1) with the following property. Suppose that (T,t) is a point in space-time satisfying
M (Z,t)<OR(z,t). Then, (z,t) lies at the center of an evolving e1-neck. Moreover, if x
lies outside the compact domain bounded by the leaf of the CMC foliation passing through

(z,t), then (x,t) lies at the center of an evolving €1-neck.

Proof. By Theorem A.2 and Corollary A.3, we can find a domain 27 with the fol-
lowing properties:

o if ze M\ Qy, then (z,%) lies at the center of an evolving &1-neck;

. diamg(g)(Qg)SCORmax(f)‘l/Q, where Cj is a large constant that depends on &;.

Now, if we choose 6 sufficiently small, then every point (z,t) satisfying

M (Z,t)<OR(z,t)
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lies at the center of a neck N of length 10CoR(Z, )~ /2, and furthermore every point on
N lies at the center of an evolving e1-neck. The complement M\ N has two connected
components, one of which is bounded and one of which is unbounded. The bounded
connected component of M\ N must contain a point which does not lie at the center of
an evolving ej-neck. If the unbounded connected component of M\ N also contains a

point which does not lie at the center of an evolving €1-neck, then
diamg(t)( ) > 4CoR( ) 1/2 > 4CORmax( ) 1/2

which is a contradiction. Consequently, every point in the unbounded connected com-
ponent of M\ N must lie at the center of an evolving €;-neck. From this, the assertion

follows easily. O
In the following, we fix 6 so that the conclusion of Proposition 9.1 holds.

Definition 9.2. We say that the flow is e-symmetric at time # if there exist a compact
domain DC M and time-independent vector fields UM, U®) | and U®) which are defined
on an open set containing D such that the following statements hold:

e there exists a point €D such that A\ (z,¢)<OR(z,?);

e for each z€D, we have A (z,%)>20R(z,1);

e the boundary 9D is a leaf of the CMC foliation of (M, g(%));
for each x€ M\ D, the point (z,t) is e-symmetric in the sense of Definition 8.2;

Wb S DU Fo () <

X[E=Runax (£) 7181 1250 a=1

if XC D is a leaf of the CMC foliation of (M, g(t)) satisfying

sup dy(7)(z,0D) < 10 area, ;) (8D)1/27
zeX

then
SUP Y Runax ()T, 1) > <,
b))

where v denotes the unit normal vector to X in (M, g(%));
e if XCD is a leaf of the CMC foliation of (M, g(t)) satisfying

sup dy(7)(z,0D) < 10 area, ;) (0D)*/?
TEX
then
3

a,b=1

ab —areay (s (2)72/<U @) Ub)) ) ditg() <&l
b
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Remark 9.3. For each z€M\D, the point (x,?) lies at the center of an evolving
e1-neck by Proposition 9.1.

Remark 9.4. Since DC{x€M:Xi(x,t)>30R(z,1)}, Corollary A.3 implies that

— o~

diamg sy (D) < CRumax(t) 7?2 and = Ruax(f) < R(2,1) < Ryax(?) for all € D.

C

Here, C is a large constant that depends on . By Lemma 7.1, the vector fields UM,
U@, and U®) satisfy

3
supz U@ 2 < CRpax ()7L,
D a=1
where the norm is computed with respect to g(t).

LEMMA 9.5. Suppose that the flow is e-symmetric at time t. If t is sufficiently close

to t, then the flow is 2e-symmetric at time t.

Proof. As the flow is e-symmetric at time ¢, we can find a compact domain DC M
and time-independent vector fields UM, U®) | and U®) which satisfy the conditions in
Definition 9.2. In particular, every point in (M\ D) x{t} is e-symmetric.

By continuity, we can find a slightly larger domain Dy with the following properties:

e there exists a point x€dD; such that A\ (z,t)<OR(z,t);

e for each z€ Dy, we have Ay (z,t)>10R(z,1);

e the boundary 9D, is a leaf of the CMC foliation of (M, g(t));

2 3
sip 33 R )7 D (Lo (9(0))? < 26

D1 X [t=Rumax (¥) 1] 120 =1

if ¥C D, is a leaf of the CMC foliation of (M, g(t)) satisfying

sup dgp)(z,0D1) <10 areagy s (0D1)Y?,
TEY

then s
su g Royax(t U(“),V 2<252,
pa « a; ( )‘< >|

where v denotes the unit normal vector to ¥ in (M, g(¥));
e if XC D, is a leaf of the CMC foliation of (M, g(t)) satisfying

sup dg(7)(z,0D1) < 10 areag ;) (8D1)1/2,
reEX

then
2

5arareag(£)(2)72/E<U(“),U(b)>g(f) dpg(y| <2¢°.

3
a,b=1
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Let Dg be a compact domain with the property that 9Dy is a leaf of the CMC
foliation and 0Dy lies in between 0D and dD;. Using Lemma 8.3, we can find an open
interval I containing ¢ such that every point on (M \ Dg)x I is 2e-symmetric. Moreover,
if £ is sufficiently close to £, then we can find a domain D close to D, with the following
properties:

e D Cf);

e there exists a point 2€dD such that A (z,1)<OR(z,1);

o for each z€ D, we have A\ (z,1)>L10R(z,7);
the boundary 8D is a leaf of the CMC foliation of (M, g(f));

Wb 33 R @)D L (00 < 4%

DX [f~Rmax ()18 1=0 a=1

e if XCD is a leaf of the CMC foliation of (M, g(f)) satisfying
sup d 7 (7, dD) <10 area, ) (8D)'/?
€D

then
SupZRmaX U(“) V)2 <4e?,

where v denotes the unit normal vector to ¥ in (M, g(t));
e if XCD is a leaf of the CMC foliation of (M, g(f)) satisfying

sup dy ;) (2, dD) < IOaLreag(g)(af))l/2
€Y

then
2

6ab7areag(5)(2)*2/E<U(a),U(b)>g(g) dfrg (i) <4e?

3
a,b=1

Therefore, if £ is sufficiently close to £, then the flow is 2e-symmetric at time £. [

LEMMA 9.6. Let us fiz a time t. Suppose that, for each €>0, the flow is e-symmetric
at time t. Then the manifold (M, g(t)) is rotationally symmetric.

Proof. We consider the vector fields in Definition 9.2, and pass to the limit as e —0.
Hence, we can find a compact domain DC M and vector fields UV, U@ and U®) on
D with the following properties:

e the boundary 9D is a leaf of the CMC foliation of (M, g(%));

e the metric g(f) is rotationally symmetric on M\ D;

e the vector fields U@ satisfy %) (g(f))=0 in D;
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e the vector fields U(®) are tangential along dD;

areag(g)(ﬁD)fz /6D<U(a), U(b)>g(g) d,ug(g) =04p-

In particular, we have that (9D, g(t)) is a round sphere, and every Killing vector
field on (0D, g(t)) can be extended to a Killing vector field on (D, g(#)). This implies
that the metric g(#) is rotationally symmetric in D. O

We now proceed with the proof of Theorem 1.2. We first show that we can find a
sequence of times where the solution is arbitrarily close to the Bryant soliton. This argu-
ment relies on the Harnack inequality together with the classification of steady gradient

Ricci solitons in [8].

PROPOSITION 9.7. We can find a sequence of times tp——oo and a sequence of
points pr€ M with the following property. If we perform a parabolic rescaling around the
point (Pr,tr) by the factor Rmax(tr)'/?, then the rescaled flows converge to the Bryant
soliton in the Cheeger—Gromov sense. Moreover, the points py converge to the tip of the

Bryant soliton, and we have

R(py, t1,)
Rmax(tk)

Proof. By [25], (M, g(t)) is a type-II ancient solution, i.e.

—1 as k— .

sup (—=t)R(x,t) =00.
(z,t)EM X (—00,0]
We now argue as in [17, §16] to extract a type-II blow-up limit. For k large, we choose
a point (pg,tx) €M x (—k,0) with the property that

s (14 )orwo < (14) (1+f,j) (0 R (B, 1),

(z,t)EM X (—k,0)

In particular,

. 1 .~
Rmax(tk:) < (1+k)R(Pk,tk)

Since (M, g(t)) is a type-1I ancient solution, we know that

t
sup (1+>(t)R(x,t) — 00,
(2,t) €M x (—k,0) k

and hence

(1+ t:) (—tk) R(Pr, tr) — oc.
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This implies that (7£k)R(ﬁk,£k)*}OO, (k+tAk)R(ﬁk,£k)*}OO, and

lim sup sup M <1
k00 (2,)e Mx[fh—AR(pr i)~ fut AR (b b)) LDk L)
for every fixed A.

We now rescale around the point (pg, ) by the factor R(py,i1)'/?. Passing to the
limit as k— o0, we obtain an eternal solution to the Ricci flow which is complete; xk-non-
collapsed; has non-negative sectional curvature; and has scalar curvature at most 1 at
each point in space-time. Moreover, there exists a point on the limiting solution where
the scalar curvature is equal to 1. Therefore, the limiting solution attains equality in
Hamilton’s Harnack inequality [16], and consequently must be a steady gradient Ricci
soliton [15]. By [8], the limit flow must be the Bryant soliton. O

COROLLARY 9.8. There exists a sequence é,—0 with the following properties. For
each te[z?k—é,meaX(Ek)—l,tAk], we have

(1*ék)Rmax(tk) g R(ﬁkv t) g Rmax(t) < Rmax(tk)-

Moreover, for each tE[tAk—émeax(tAk)*l,fk], the flow is éx-symmetric at time t.

Proof. The Harnack inequality (cf. [16]) implies Rmax(t)éRmax(fk) for each t<iy.

The remaining statements follow by combining Proposition 9.7 and Theorem A.2. O

From now on, we assume that the ancient solution (M, g(t)) is not rotationally
symmetric. In view of Corollary A.3, we can find a sequence of positive real numbers &y,
with the following properties:

e ¢, —0;

o =28y

e if a point (x,t) in space-time satisfies R(x,t) <& Rmax(t), then (z,t) lies at the
center of an evolving £7-neck.

For each k, we define

ty, = inf{t € [}, 0] : the flow is not ex-symmetric at time ¢}.

For abbreviation, let Rmax(tk):rk_Q. The Harnack inequality [16] implies Rpax ()< r,:Q

for all t<t;.

LEMMA 9.9. If te[{k—é,ZQRmax(fk)*l,tk), then the flow is e-symmetric at time t.
In particular, if (z,t)€M x [fkféngmaX(tAk)*l,tk) is a point in space-time satisfying
M (z,t)<10R(x,t), then the point (z,t) is ex-symmetric.
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Proof. The first statement follows immediately from the definition of ¢;. The second

statement follows from the first statement, keeping in mind Definition 9.2. O
LEMMA 9.10. The sequence tj satisfies limy_, oo tp=—00.

Proof. Suppose that limsup,_,. tx>—00. Let us now consider an arbitrary time
t<limsupy_,., tx. Then, there exist arbitrarily large integers k with the property that
te(tr, tr). By Lemma 9.9, there exist arbitrarily large integers k& with the property that
the flow is eg-symmetric at time ¢. Since e;—0, Lemma 9.6 implies that (M, g(t)) is
rotationally symmetric.

To summarize, we have shown that the solution (M, g(t)) is rotationally symmetric
for all t<limsup,_ . tx. By the uniqueness result in [12], the solution is rotationally

symmetric for all ¢, contrary to our assumption. O

In the next step, we show that, at time ¢, the solution is close to the Bryant soliton.
This argument relies in a crucial way on Theorem 1.1.

ProOPOSITION 9.11. There exists a sequence of points pr€M with the following
properties. If we perform a parabolic rescaling around the point (py,tr) by the factor
Rmax(tk)lmzr,zl, then the rescaled flows converge to the Bryant soliton in the Cheeger—
Gromov sense. Moreover, the points py converge to the tip of the Bryant soliton, and we
have 13 R(py, ti)—1 as k—o0.

Proof. For each k, the manifold (M, g(tx)) contains a point which does not lie on a

neck. Hence, we can find a sequence of points ¢, € M such that

lim inf 7>\1 (g5, tr)

> 0.
k—o00 R(qk, tr)

By Corollary A.3, lim infy_, 72 R(qx, t;)>0. This implies that

liminf rf\; (qx, t) > 0.
k—o0

1

We now rescale the flow (M, g(t)) around the point (qx,tx) by the factor r,~. Passing

to the limit as k— o0, we obtain a non-compact ancient s-solution (M, g>(s)). Since
liminf 7\ (qx, tg) >0,
k—ro0
the limit manifold (M®°, g*°(0)) does not split off a line. By the uniqueness result in [12],

the manifold (M, g*(s)) does not split off a line for any s<0. By the strict maximum
principle, the limit flow (M°°, g*°(s)) has positive sectional curvature for each s<0.
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We claim that the limiting flow (M, ¢>°(s)) is rotationally symmetric. To prove

this, we fix an arbitrary time 5<0. Since Rmax(fk)gr;2, it follows that
20 ~[F 22 £ -1
tk—l—?“kSE[tk—Ek Rmax(tk> 7tk)

if k is sufficiently large. By Lemma 9.9, the original flow is e-symmetric at time ¢ +7323,
provided that k is sufficiently large. By the Harnack inequality,

Riax (tg —|—ri§) < 7,];2.
n the other hand, since ,g°°(8)) has positive sectional curvature, we obtain
On the other hand, si M, g™ h iti tional t btai
lim inf 72 \; (g, tr+735) > 0.
k—o0

Therefore, the cap in (M, g(tx+735)) has diameter <ry, the scalar curvature on the cap
is Nr,;27 and the cap has distance <rj from the point gx. We now pass to the limit as
k—oco. In the limit, we obtain a domain D> M and vector fields U1, (2 and
U(>:3) on D> with the following properties:

e the boundary 9D is a leaf of the CMC foliation of (M®°, g>°(3));
the metric ¢(3) is rotationally symmetric on M\ D*°;
the vector fields U satisfy .2} (co.a) (9°°(5))=0 in D>;
the vector fields U are tangential along D>;

areages (z) (8D°°)_2 AD& <U(oo,a)7 U(Oo’b)>goo (3) d,ugoo(g) =0ab-

Thus, we conclude that the limiting manifold (M®°, g°°(3)) is rotationally symmetric.
To summarize, we have shown that (M, g°(s)) is a non-compact ancient x-solution
which is rotationally symmetric and has positive sectional curvature. By Theorem 1.1,
the limiting flow (M, ¢g*°(s)) must be isometric to the Bryant soliton, up to scaling.
Finally, we claim that Rge () (Poo)=1, Where p,, € M > denotes the tip of the limiting
soliton (M®°, g°°(s)). To see this, consider a sequence of points px, € M converging to peo.
Clearly,
Ryoo 0) (Poo) = lim i R(pr, ti) € (0,1].
Using Proposition A.1, we can find a large constant A such that
sup R(z,tr) < 1
TEM\ By (s, (pr, AR(pr,ti)~1/2) Dk Tk) 2
if k is sufficiently large. Moreover, since the scalar curvature of (M*°,¢°°(0)) attains its
maximum at the point p.,, we obtain

lim sup sup —— = <
k=00 z€By(s, ) Pk, AR(PK,tK) ~1/2) R(pk’tk)
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for every fixed A. Putting these facts together, we conclude that
. R(x, tk)
TR S R t)
Thus,
Ry (0)(Poo) = lim 7 R(py, ti) > 1. O
k—o0
COROLLARY 9.12. There exists a sequence of positive real numbers d—0 such that
O =2¢y, for each k and the following statements hold when k is sufficiently large:
o for each t€[ty—5; 'r?, 11, we have

$(1=6,)g <ri Ric< (1+6k)g

at the point (pg,t);
e the scalar curvature satisfies
1
2K
for all points (x,t)eBg(tk)(pmé;lrk) X [tk—(S,;lr,%,tk];

(ri Y dyy (P, 2)+1) T <rRR(z, 1) 2K (ry, ' dy iy (p, ) +1)

e there exists a non-negative function f:Bg(tk)(pk,élzlrk)x [t—0; 'r2, tx] >R such
that

0
|RiC—D2f|<5kr;2, |Af+|Vf|2—r,;2|<5kr,;2, and &f—l—sz‘ngrkz;

o the function f satisfies
1
2K
for all points (l‘,t)GBg(tk)(pkyd;lTk) X [tk—ék_lri,tk].

(ri Y dyy (P, 2)+1) < f(a, £)+1 < 2K (15, dy 1) (pr, ) +1)

Here, K>10 is a universal constant.
Proof. On the Bryant soliton, the eigenvalues of the Ricci tensor at the tip are equal
to % Moreover, on the Bryant soliton, the scalar curvature satisfies

L)+ SRS K(d(p0)+1) 7,

where p denotes the tip of the Bryant soliton and K is a universal constant. Furthermore,

on the Bryant soliton, the potential function f satisfies

%(d(p, x)4+1) < f+1< K(d(p, x)+1),

where again p denotes the tip of the Bryant soliton and K is a universal constant. Finally,

the potential function f satisfies
Ric=D?f, Af+|Vf*=1, and %f+|Vf|2:0.

The assertion now follows from Proposition 9.11. [
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COROLLARY 9.13. For each tG[tk—églri,tk], we have
(1=0k)ry * S R(pr, t) < Runax(t) <73 °.

Proof. The Harnack inequality (cf. [16]) implies that R (t)<ry? for each t<ty.
Moreover, Corollary 9.12 implies R(py,t)>(1—0;)ry > for each t€ [ty —8; 'r7, tx). O

LEMMA 9.14. The time derivative of the distance function satisfies

d _
0< ———dg) (pr, x) <80r; !

Cdt
for all (z,t)€ M x [ty —6; ' r3, tx].

Proof. Using Lemma 8.3(b) in [21], we obtain

d
gty (Phs @) < 80 R (1) /% < 8077

0<——
dt

for all (z,t)€ M x [ty —d; 'r2,ty]. O

In view of Theorem A.2 and Corollary 9.13, we can find a large constant A with the
following properties:

o L\/AK/A<107%;

o if (Z,1)€M x [ty —5; 'r},tx] is a point in space-time satisfying dgy (PR, T) = A,
then i (z,t)<160R(z,t) for all points (z,t)€ By (Z, LR(z,1)~Y/?)x [f—LR(z,t)~1,1].

LEMMA 9.15. If k is sufficiently large, then the following statement holds. If (Z,t)€
Mx[tk—d,;lr,%,tk] satisfies dy(p)(pr, T) > Ary, then (Z,1) is %6k—symmetm‘c,
Proof. We distinguish two cases.

Case 1. Suppose first that R(Z,t)<égRmax(f). By our choice of e, the point

(z,7) lies at the center of an evolving e7-neck, and this directly implies that (z,f) is
%Ek—symmetric.

Case 2. Suppose next that R(Z,t)>érRmax(t). Note that Corollary 9.13 implies
Rmax(f)kér;a and hence R(Z, f)}%ékrk_? On the other hand, Rmax(fk)gr,;Q. Hence,
if k is sufficiently large, then we obtain

t—LR(z,6)" ' >ty -0, 'ri—2Lé; '}
>
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By definition of A, we have A\;(z, t)<%0R(x, t) for all points
(2,t) € By (2, LR(2,%)"/?) x [[-LR(z,T) ", 1].
Hence, by Proposition 9.1, every point in
By (2, LR(z,t) ") x [{—LR(z,t)"",1]
lies at the center of an evolving e1-neck. Moreover, by Lemma 9.9, every point in
By (2, LR(z,t) /) x [t—LR(z,t)" ", 1)

is ex-symmetric. Using the neck improvement theorem, we conclude that the point (z, )

is %sk—symmetric. O

ProroSITION 9.16. If k is sufficiently large, then the following statement holds.
If (z,8)€M x [ty —2775, 'r2,t)] satisfies 2j/400Ark<dg(g)(pk,:E)<(4OOKL)*j5,;1rk, then

(z,t) is 279 Leg-symmetric.

Proof. We argue by induction on j. For j=0, the assertion follows from Lemma 9.15.

We now assume that j>1 and the assertion holds for j—1. We will show that the
assertion holds for j. To that end, we consider a point (Z,f)€M x [t —2796; 'r2, tx]
such that 297400 Ary, <dy i (pr, ) < (400K L) =96, 'ry. Clearly, A1 (Z,1)<30R(z,T) by def-
inition of A. By Proposition 9.1, we have that (Z,7) lies at the center of an evolving
e1-neck. Let R(Z,t)=r"2. We will show that every point in By (Z, Lr)x [t—Lr? ] is
27/ gg-symmetric. By Corollary 9.12, r? <4K7rydy i) (pk, Z). This implies that

t—Lr?> £—4KLdeg({) (pk, )
>t—AKL(400K L) 75, r}
—27985, 1}

—j+15-—1.2
tk*? it 5]@ Tk-

\Y%
o+

WV

In the next step, we observe that

4K _
r? < 4K7"kdg({) (pk,T) < ng(f) (P, 33)2.

Since Ly/4K/A<1075, we obtain

4K - —67— T
r <\ o) (e, ) <107 L™y e) (i, 7).
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Consequently,

dg(t)(pr,T)—Lr
1-107%)dy ) (pr T)
1—1076)29/400 A,

(7=1)/400 7 ).

dg(#) Pk, T)

AR\

WV

(
(
2

WV

for all x€ By (%, Lr). On the other hand, rk:RmaX(tk)_l/QSRmax(f)_l/Q<7“ by the
Harnack inequality. Using this, together with the inequality r2<4K Tedg(7)(Pr, T), We

obtain
dg)(Pr, ) —|—80L7“2r,;1 <dyi (P, T) +Lr+80Lr2r;1
< dg(g) (pk, 9_3)—‘1-81[/7’27";1
<A00K Ly i) (pr, @)
< (400K L)=T15, ry,

for all z€ By(7)(Z, Lr). Lemma 9.14 gives

dy (@) (P, ©) < dg(r) (Pr, ) < dy (i) (pr, ) +80Lr?ry 1,
and hence

QU=D/A0 ., < dgty (Pr, ) < (400K L) =15, ry,

for all (z,t)€By)(Z, Lr) x [t—Lr?,t]. Therefore, the induction hypothesis implies that
every point in By)(Z, Lr) x [t— Lr?, t] is 277 e,-symmetric. Consequently, the point (z,7)
is 2777 l¢;-symmetric by the neck improvement theorem. O

LEMMA 9.17. If j is sufficiently large and k is sufficiently large depending on j,
then the following holds. Given any te [tk—2j/100rz,tk]7 there exist time-independent
vector fields UV, U and UB) on By (pr, 277490 Ary) with the following properties:

Lo (9(0) |+ 7] D( Ly (9(0))] < Clri oy () +1) Ve

for all (z,t)€ By (pr, 2/4C Ary,) x [t—12, T];
o if te[t—r},t] and TE€By) (pr, 27/4%0Ar,)\ Byt (pr, 2Ary), then

U ) S Oy gy (prs ) +1) 71 P,

where v denotes the unit normal to the CMC foliation of (M, g(t));
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o if telt—ri,t] and :L‘EBg(g)(pk,2j/400A1"k)\Bg(g)(pk,2A7’k), then
3
a,b=1
where ¥ denotes the leaf of the CMC foliation passing through (z,t).

Moreover, on the ball By (pk72j/400Ark), the vector fields UV, U and UB) are

close to the standard rotation vector fields on the Bryant soliton in the C?-norm.

6ab_a'reag(t)(2)_2 /Z<U(a)7 U(b)>g(t) d/Jg(t) < C(T;ldg(t) (pk, x)—l—l)_loogk’

Proof. We proceed in two steps.

Step 1. Suppose first that t€ [tk—Qj/wOr,%, tx). By Lemma 9.9, we have that the flow
is e-symmetric at time . Moreover, if T€ By (pr, 2j/400Ark)\Bg(g)(pk, Ary), then the

)) 400, -symmetric by Proposition 9.16. By a repeated

point (z,%) is C(r}; "y (pk,
application of Corollary 7.5, we can construct vector fields UM, U®) | and U®) satisfying
the conditions above. Moreover, in view of Definitions 8.2 and 9.2, the Lie derivatives
Ly (9), Ly (g), and L) (g) are small in the C?-norm. Consequently, the vector
fields UM, UR) | and U®) are close to the standard rotation vector fields on the Bryant

soliton in the C%1/2-norm.

Step 2. Suppose next that t=t#;. In this case, the assertion follows from the result in
Step 1 by passing to the limit. Since the vector fields constructed in Step 1 are bounded
in C*'/2 we may take the limit in C2. O

LEMMA 9.18. If j is sufficiently large and k is sufficiently large depending on j, then
the following statement holds. Consider a time te [tk—2j/100ri,tk]. Suppose that UM,
U@ and UB) are vector fields on By) (pr, 277490 Ay with the following properties:

Ly (@) +7k D(Ly@ (9(0))] < Clry; dyis (pr, ) +1) 7P

for all x€ By)(pr, 207400 Ay ):;
o if [L’GBg(g)(pk, 2j/400A7"k)\Bg([)(pk, 4[\7%), then

7"1;1 ‘ <U(a)7 V>| < C(rlzldg(f) (pkv x)"_l)_loogh

where v denotes the unit normal to the CMC foliation of (M, g(t));
o if EByi)(pk, 27/ A1)\ By iy (pr, 4Ary,), then

by

a,b=1

5ab_areag(f)(2)_2/E<U(a)7U(b)>g(f) dpg(iy| < O(ry; Mgy (pr, ©) +1) ' Pey,

where 3 denotes the leaf of the CMC foliation passing through (z,t).
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Moreover, suppose that (7(1), 5(2), and U® are vector fields on By (pr, 2j/40(]Ark)
with the following properties:

L0 (9(E)) 74l D( L0 (9(ED)] < Oy iy (o, ) +1) %

for all QL‘EBQ(E) (pk, 2j/400A7“k);
o if J}EBg(t‘) (pk, 2j/4OOArk)\Bg(t‘) (pr,4Ary), then

e O, )| < Ol tdy iy (i, ) +1) 71 %%,

where v denotes the unit normal to the CMC foliation of (M,g(t));
o if £€By)(pr, 27/40Ar)\ By (pr, 4ATy), then

3
a,b=1

where X denotes the leaf of the CMC foliation passing through (z,t).
Then there exists a 3x3 matriz weO(3) such that

3
—1
Tk Z

a=1

Sap —areayq) (%) 2 /E@(a), U)oty dig (i)

< C(T.]Zldg(f) (pka x)+1)71005k7

3
3 U -7
b=1

< C(r; My (pr, ) +1) "%,
g(t)

on Bg({) (pk, 2(3'*1)/4001&7";6).
Proof. For each integer me[8A, 20 ~1/400A] Proposition 7.4 implies that there exists

a 3x3 matrix w(™) €0(3) such that
3

-1

a=1

3
3 Wiyt @
b=1

<Cm 8%,
g(t)

on Bg(g)(pk, (m—i—l)rk)\Bg(g) (pk, (m—1)7)). Note that |w(m) —w(m+1)|<Cm*605k. Con-
sequently, there exists a 3 x3 matrix w€O(3) such that [w(™ —w|<Cm~*%¢. Hence, for
every integer me[8A,20~1/400A] we obtain

3
—1
Tk Z

a=1

—20
<COm™ ey,

3
E :wabU(b) _p@
g(t)

b=1

on By (pr, (m+1)rk)\ By(#)(pr, (m—1)7%). Using Lemma 7.1, we deduce that

3
—1
Tk Z

a=1

3
3 U - 7@

b=1

<Cey

g(?)

on Bg({) (pk,lﬁATk). 0
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In the following, we define
QUR = {(2,t) € Byi,) P 0 'rie) X [t — 271007 ]« f (@, t) < 27/400},

where f: By, ) (ks 6 k) x [t — 6, '3, t] =R is the function in Corollary 9.12. We now

state the main result of this section.

PROPOSITION 9.19. Let j be a large positive integer. If k is sufficiently large (de-
pending on j), then we can find time-independent vector fields WO, W, and WG

such that
40

> kD Ly (9)) < €274,

1=0
Jor all points (x,t)€ By, (P, 4073) X [ty —1000K Ar} , t;]. Here, C is a constant which
is independent of j and k. Finally, on the set By, (pr, 4Ary) X [t —1000K Arg, ty], the
vector fields WO, W@ and WG are close to the standard rotation vector fields on the

Bryant soliton in the C8°-norm.

Proof. We will assume throughout that j is large, and k is sufficiently large de-
pending on j. This ensures, after rescaling by the factor 7“,;1, the domain QU*) is close
to a piece of the Bryant soliton. By Corollary 9.12, the function f:QU*) SR satisfies
R—Af<30,r; % and Af+|VfI?<(1+8;)r,, %, and hence

RA|VfI? < (1446, 2 <2r) %
Moreover, Corollary 9.12 implies that
2 —2 of 2 2
Af+|VfIF>(1—=0)r,° and E—va' <Oy 7,
and hence 9 .

Note that

1

ﬁ(Tk_ldg(t)(pk, 2)+1) < f(z, ) +1< 2K (ry 'dyy (pr, @) +1)

by Corollary 9.12.

Step 1. Using Lemmas 9.17 and 9.18, we can construct time-dependent vector fields
UM, U and U®), defined on QU*) | with the following properties:

o 7|0U@ /9t| <C(f4100)"¢; on QUF)

o | Ly (9)| 47k D(Lyw (9)| <C(f+100)"1%0%; on QUF).
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Here, C is a large constant that does not depend on j or k. Moreover, we can arrange
that, on the set QU*) the vector fields UM, U and U®) are close to the standard

rotation vector fields on the Bryant soliton in the C?-norm. Note that

P AU 4 Ric(U@) | < Cra D(Zy o (9))] < O(f+100) P, on Q6.

Step 2. Let V(@ denote the solution of the PDE

%V(“) = AV 4 Ric(V@) on QUK

with Dirichlet boundary condition V(® =U(®) on the parabolic boundary of Q%) Using

the estimate

Tk

%U(“) —AU@ Ric(U(“))‘ <C(f4100)" ¢,

we obtain

Tk %(V(G)*U(a))*A(V(G)*U(a))fRic(V(“)fU(a)) < O(f+100)~ 1y

in QUF) where C is a large constant that does not depend on j or k. Proposition 5.3
gives

T <§;A) V(@ U@ <O(f+100) ¢,

in QU*) where C is a large constant that does not depend on j or k.

Using the inequalities

1
(;—A)f < —57“,:2 and |V f|?<2r; 2,

we obtain

(gt_A) (f+100)7 = —8(/+100)™ (;—A)f—72(f+100)_10Vf|2
> 4(f+100)~°r; %~ 144(f +100) ;7

> (f+100) %,
in QU-*) Using the maximum principle, we conclude that
r V@ U@ < C(f4100) 3¢,

in QUHA) where C is a large constant that does not depend on j or k. Using standard

interior estimates for linear parabolic equations, we obtain

ID(V@ —U@)| < C(f+100) B¢,
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in QU=1%) where C is a large constant that does not depend on j or k. In particular, on
the set QU—1%) the vector fields V1), V() and V) are close to the standard rotation

vector fields on the Bryant soliton in the C'-norm. Consequently, on the set
Byt (pr, 8Ary) x [ty —2000K Ary, t],

the vector fields V), V2 and V3 are close to the standard rotation vector fields on

the Bryant soliton in the C''%-norm.
Step 3. We now define h(“)(t):zfv(@(t)(g(t)). Since

0

§V<“> = AV@ 4 Ric(V@),

we obtain 5
SR ()= Ap g0 h ) ()

by Corollary 5.2. The estimate for V() —U(®) in Step 2 implies that
| < | Ly (9)|+CID(VD —U) | < O(f+100) "%y,

in QU1K where C is a large constant that does not depend on j or k.

Let Cy4 and cx denote the constants in Theorem B.1. If j is sufficiently large and
k is sufficiently large depending on j, then C#Q’j/200r1;2<R(x,t)<Tk_2 for all points
(z,t) €QUk) Therefore, we may apply Theorem B.1 with g:z?’j/morlf. Consequently,

the function

(@)
(@) o 0—j/200,—2, |h\]
P = exp(—cu 277 r (g t>)7’riR—2_j/200

satisfies 5 )
2rj; i ) (a)\2
<8t_A_r,§R—2j/200D RD;) () <0
on the set QU=1%) We now apply the maximum principle to the function 1(*) on the
set QU1K This gives
1/,(@) < 0273'/400%

on the set QU1 where C is a large constant that does not depend on j or k. Since
r2R(z,t)<1 for all t<ty, it follows that

|h(a)| < C27j/4005k

on the set By, (pr, 16Ar;) X [tk —2000K Ar?, t;], where C is a large constant that does
not depend on j or k. Using standard interior estimates for linear parabolic equations,

we obtain
100

> DR < 27940,
=0
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on the set By, )(pk, 8AT%) X [ty —1000K Ar?, tx]. To summarize, we have shown that
100 ‘
> D (L (9))| < €279/,

=0

on the set By, (pk, 8Ary) X [t —1000K Ar7, t;]. Moreover, using the identity

d 1
EV(G) = AV 4 Ric(V@) =div h@ —§V(trh(“)),
we obtain
80
0 .
ZT?-I D! (atv(a)> ‘ < 6127]/4008167
=0

on the set By, (pk, 8ATy) X [t —1000K Ar7, ty].

Step 4. Let W, W®_ and W® be time-independent vector fields such that
W@ =V (@) at time t;. On the set Bty (Pr, 8ATy) X [ty —1000K Ar?, tx], the vector fields
W®, W®_ and W®) are close to the standard rotation vector fields on the Bryant
soliton. Using the estimate for 9V(® /9t in Step 3, we obtain

60
S DI W V@) < 0279400,
1=0
and hence
40
> 1k DLy (9))| < C279/40%,,
1=0
on the set By, (pk, 8ATy) X [t —1000K Ar?, ty]. O

For each k large, we choose a compact domain Dy C M with the following properties:
e there exists a point 2€0Dy, such that A (z, ty)=20R(z,t});

o for cach €Dy, we have Ay (z, tx) > 20R(z, tr);

e 0Dy, is a leaf of the CMC foliation of (M, g(t1)).

Note that

Dy C {$ M : M (z,tg) > %QR(m, tk)} C Bg(tk)(pk7 Ary),

in view of our choice of A. Moreover, if € M\ Dy, then the point (Z, ¢ ) lies at the center
of an evolving €;-neck by Proposition 9.1.
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PROPOSITION 9.20. Let j be a large positive integer. If k is sufficiently large (de-
pending on j), then the vector fields WO, W and W constructed in Proposi-
tion 9.19 have the following property. For each point T€ By, )(pk, Ari)\ Dy, we have

10

S e DN (W@, vy < 0277400,
=0

on the parabolic neighborhood
Byt (@, 600R(Z, t1) 71/%) x [t —200R(z, 1) ™', t).

Here, v denotes the unit normal to the CMC foliation and C' is a constant which is

independent of j and k.

Proof. Let us consider a point &€ By, )(pk, Ar)\ Di. Recall that the point (z,1)
lies at the center of an evolving e1-neck. By Corollary 9.12, R(Z,tx) ' <4KAr?. Since
VAK JA<10~%, we obtain R(Z,t,)/2<107%Ar,. Hence, the parabolic neighborhood

By(te) (T, 1000R(Z, t) /%) x [t), —200R(Z, t) ", s

is contained in
Bg(tk) (pk, 4/\7“k) X [tk — IOOOKATIZC, tk].

In particular, the estimates in Proposition 9.19 hold on the parabolic neighborhood
Byt (@, 1000R(Z, t) ~1/2) x [t), — 200R(z, t1,) ", L.

Let us fix a time t€[ty —200R(Z, t;) "1, ], and let X, denote the CMC foliation of
(M, g(t)). Note that the foliation depends on ¢, but we suppress this dependence in our
notation. In the following, we only consider those leaves of the foliation that are contained
in By, )(Z,800R(z, ;) ~'/2). We define a function F(@: £, —R by F():=(W(® v). The
quantity
As, F9 4 (|A?+Ric(v,v))F@ = H®

can be expressed in terms of %y (g) and the first derivatives of L) (g). Using the
estimate for L) (g) in Step 4, we obtain

20

> D H® | < 027940,

1=0
We now consider the spectrum of the Jacobi operator Ay +(|A|?+Ric(v,v)) on .
Since X, C By, (Z, 800R(Z, t1,) ~*/%) C By, (pk, 4Ty, the eigenvalues of the Jacobi op-

erator lie outside the interval [—crk_Q, cr,:2] for some small positive constant ¢ which is
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independent of j and k. (This can be easily verified on the Bryant soliton. For the
general case, we observe that the actual solution is a small perturbation of the Bryant
soliton in the relevant region.) Consequently, we can invert the Jacobi operator. Using

the estimate
20

Z rfjl |DlH(“)| < C279/400¢,
1=0

we obtain
10

> r D@ < 027940
=0

Since te[ty —200R(Z, t;) "1, t] is arbitrary, we conclude that

10

S DI (W@, )| < 0279400,
=0
on By, (Z, 600R(Z, t);) ~1/%) x [tp —200R(Z, t),) ~*, ti). 0

PROPOSITION 9.21. Let j be a large integer. If k is sufficiently large (depending
on j), then the vector fields WO W and WO constructed in Proposition 9.19 have
the following property. For each point T€ By, (pr, Ari)\ Dy, we can find a symmetric
3x3 matriz Qup such that

Qab—areag(t)(Z)_2/Z<W(a)7W(b)>g(t) d/ig(t) <C2_j/400€k

whenever t€[t,—200R(Z,tx) "1, t;] and S CByg,)(Z,200R(Z,t,)~'/2) is a leaf of the
CMC foliation of (M,g(t)). Note that Qap is independent of t and X. Moreover, the
eigenvalues of the matriz Qqp lie in the interval [1/C,C), where C is independent of j
and k.

Proof. Let us consider a point Z€ By, )(pk, Ary)\ Dg. Recall that the point (z,1)

lies at the center of an evolving e1-neck. Moreover, since
R(Z,tx) P <4KAr? and  R(Z,t;) /2 <1075Ar,
the parabolic neighborhood
Byt) (, 600R(F, tx) ~H/?) x [t —200R(Z, tr) ", 1]

is contained in
Bg(tk) (pk, 4A7’k) X [tk — IOOOKA’/‘]%, tk].
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Therefore, the estimates in Propositions 9.19 and 9.20 hold on the parabolic neighborhood
Byt (T, 600R(Z, t1) 71/%) x [t —200R(z, t1,) ™1, t).

We now argue as in Steps 11-14 in the proof of the neck improvement theorem. This

implies that there exists a symmetric 3x 3 matrix @, such that

Qab_areag(t) (z)_Q / <W(a)aW(b)>g(t) dug(t) < CQ_j/400€k
b

whenever te [ty —200R(Z,t;) "1, ;] and ECBg(tk)(.f,QOOR(i‘,tk)_l/2> is a leaf of the

CMC foliation of (M, g(t)). Finally, since the vector fields W), W®  and W) are

close to the standard rotation vector fields on the Bryant soliton, the eigenvalues of the

matrix Qg are uniformly bounded from above and below. O

COROLLARY 9.22. If k is sufficiently large, then (Z,ty) is Sex-symmetric for all
j:EBg(tk)(pkvArk)\Dk-

Proof. This follows by combining Propositions 9.19-9.21. O

We can now complete the proof of Theorem 1.2. Combining Lemma 9.15 and Corol-
lary 9.22, we conclude that (Z,ty) is %ak—symmetric for all ze M\ Dy. Moreover, if k is
sufficiently large, it follows from Propositions 9.19-9.21 that there exist vector fields on
the cap Dy which satisfy the requirements of Definition 9.2 with &‘:%Ek. Therefore, the
flow is %ak—symmetric at time t; if k is sufficiently large. By Lemma 9.5, we can find a
time >t with the property that the flow is ex-symmetric at time ¢ for all te[tk,fk].
This contradicts the definition of ¢;. This completes the proof of Theorem 1.2.

Appendix A. Summary of known results about ancient k-solutions

In this appendix, we collect some of the main known results on ancient x-solutions, which

we use in this paper. We first recall a basic Riemannian geometry fact.

PROPOSITION A.l. Let (M,g) be a complete, non-compact manifold with positive
sectional curvature, and let N be a neck in M. Let U denote the unbounded connected

component of M\N. If every point in NUU lies at the center of a neck, then

sup R<C'sup R.
U N

Proof. The assertion is a consequence of [20, Corollary 2.21]. (Note that the soul
cannot lie at the center of a neck, and therefore must be contained in M\ (NUU).)
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In the following, we give an alternative argument for the convenience of the reader.
By assumption, every point in NUU lies at the center of a neck. Hence, by work of

Hamilton, there is a canonical CMC foliation X, s€[0, 00), such that

SoCN and Uc [J Z,CNUU.

s€[0,00)
Let v denote the lapse function of this CMC foliation. We assume that the lapse function
v has mean value 1, so that [, v=area(X;) for each s. Note that supy_ [v—1[ is very
small; in particular, v is positive. We next compute

d 9 . L.
—£H: Ay v+(|A]* +Ric(v,v))v > Agsv+§H v

at each point on ;. We now take the mean value over X;. Clearly, Ay v has mean
value 0, by the divergence theorem. Moreover, since H is constant on X5 and v has mean

value 1, it follows that the function H2v has mean value H2. This gives

d 1 5

—$H > §H .

Hence, if H(s)<O0 for some s, then H(s) converges to —oo at a finite value of s, which is
impossible. Therefore, H(s)>0 for all s. Consequently, area(X;) is an increasing function
of s. This implies that

1
— sup R <area(X,) ! <area(Xy) ' <CsupR
C P o

for all s€[0,00). From this, the assertion follows. O
We now recall the following fundamental theorem due to Perelman.

THEOREM A.2. (Perelman [21, §11.8]) Let (M, g(t)) be a 3-dimensional ancient k-
solution which is non-compact and has positive sectional curvature. Given any >0, we
can find a compact domain  C M with the following properties:

o for each x€ M\, the point (x,t) lies at the center of an evolving e-neck;

e the boundary 0 is a leaf of the CMC foliation at time t;

® Sup,cq, R(z,t)<C(e)infreq, R(z,t);

o diamg () (Q)? sup,cq, Rz, t)<C(e).

Combining Theorem A.2 with Proposition A.1 gives the following.

COROLLARY A.3. Let (M, g(t)) be a 3-dimensional ancient k-solution which is non-
compact and has positive sectional curvature. Let ¢ be a small positive real number, and
let Q; be as in Theorem A.2. Then,

sup R(z,t) <C(e) inf R(z,t) and diaung(t)(Qt)2 sup R(z,t) <C(e).
zeM € zEM
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Proof. Proposition A.1 implies

sup R(z,t)<C sup R(z,t).

zeM\Q, o
This gives
sup R(z,t) < C sup R(z,t).
rzeM €N,
Hence, the assertion follows from Theorem A.2. O

Next result is a consequence of the neck stability theorem of Kleiner and Lott.

THEOREM A.4. (Cf. Kleiner-Lott [18, Theorem 6.1]) Suppose that (M,g(t)) is a
3-dimensional ancient k-solution which is non-compact and has positive sectional curva-
ture. Then, there exists a point g€ M such that sup,<q(—t)R(q,t)<100.

Proof. In the following, we give a proof for the convenience of the reader. Suppose
that the assertion is false, so that sup,<y(—t)R(q,t)>100 for each point g€ M. Let g
be a sequence of points going to infinity. For each k, we denote by ¢ (z,t) the reduced

distance of (x,t) from (gx,0). Moreover, we denote by

Vi (t) = (—t)_3/2 /M e_ek(z’t) dvolg(t)

the reduced volume at time t.

By work of Perelman [21], we can find a sequence €, —0 such that the point (gx,0)
lies at the center of an evolving ex-neck (cf. Theorem A.2). This implies (—¢)R(z,¢)<10
for all t€[—e; ' R(gx,0)1,0]. Therefore, £ (gx,t)<100 for all te[—e; ' R(gy,0)~1,0). By
a result of Ye, there exists a universal constant C' such that

dg(t) (.’L’, y)2

— SC(lg(,t)+ Ly, t)+1)

for all t<0 and all x,ye M (see [24], Lemma 3.2). Putting y=qy, gives

dg(t) (ZL’, Qk)2

- < O(t(a, ) +1)

for all te[—¢; ' R(qx,0)~",0) and all z€ M.
Recall that the point (gg,0) lies at the center of an evolving ex-neck. Using this fact

together with Ye’s estimate, we obtain

lim sup Vi, (7 R(q, 0) ™) < Ve (7)

k—o0
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for each 7<0, where Vey1(7) denotes the reduced volume for a family of shrinking cylin-

ders. Using the monotonicity of the reduced volume, we deduce that

limsup Vi,(—e; " R(qr, 0) ") < Ve (7)

k—o00

for each 7<0. Taking the limit as 7— —o0 gives

lim sup Vi, (—¢;, ' R(qx, 0) 1) < Vey1(—00),
k—o0
where Viy1(—00):=lim, o Veyi(7). On the other hand, since the asymptotic shrinking

soliton is a family of shrinking cylinders, we have
lim Vi(t) > Vega(—00)
for each k. Since Vi () is monotone increasing in ¢, it follows that
Vi(t) 2 Veyi (—00)

for all £ and all ¢.
For each k, we define t;:=sup{t<0:(—t)R(qx,t)>10}. Clearly, tkg—slle(qk, 0)71,
(—tr)R(qx, tr)=10, and (—t)R(qx,t)<10 for all t€[tx,0]. This implies

O (i, t) < FR(qk, t) dt < 100.

wj

The discussion above gives

Vie(t) = Veyi(—00)

m
te(—o0,tg]

and
sup  Vi(t) < Vk(—sglR(qk, 0)_1) — Veyi(—00)

te(—oo,ty]
as k—o00. Hence, if we dilate the flow (M, g(t)) around (qx,t) by the factor (—t;) /2,
then the rescaled flows converge in the Cheeger—Gromov sense to a shrinking gradient
Ricei soliton (see [21, §11]). Since (—tx)R(qx,tr)=10 for each k, this limiting soliton is
non-flat, and consequently must be a cylinder with scalar curvature 1 (cf. [22, §1]). In
particular, (—t;)R(qx, tr)—1 as k—oo. This contradicts the fact that (—tx)R(qx, tx)=10
for each k. O
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Appendix B. A variant of the Anderson—Chow estimate

In [2], Anderson and Chow proved an important estimate for solutions of the parabolic
Lichnerowicz equation. In this appendix, we state a variant of that estimate which is

due to Kyeongsu Choi.

THEOREM B.1. (Choi) There exists a large constant Cx>10 and a small positive
constant cy such that the following holds. Let (M, g(t)) be a solution to the Ricci flow
in dimension 3 with non-negative Ricci curvature, let h(t) be a 1-parameter family of

symmetric (0,2)-tensors satisfying the parabolic Lichnerowicz equation

0

ah(t) =Ap gt)h(t),

and let o denote a positive real number. Then,

9 A—_% DinD;) (ex (2¢ t)ﬁ <0
ot R—op ! Plecsl (R—0)?) =
whenever R=Cyup.

In the following, we sketch the proof of Theorem B.1. We assume throughout that
R>0>0. The computation of Anderson—-Chow yields

4S8
(R—0)%’

9 A~ pirp, e 2 |(R—0)D;hji—D; Rhj|* —
g~ R—o” ) R=op T (R—gt TR

where
S:=—2(R—p)(Ric, h) tr(h)+2(R—p)(Ric, h2> — %R(R—Q)(|h|2—t]r(h)Z)—i-|h|2 |Ric|2

(cf. [2, p.8]). Let us fix a point pe M, and consider an orthonormal basis of T, M with
the property that h is diagonal. We denote by hi, ho, and hgz the diagonal entries of h.
Moreover, we denote by 71, r, and r3 the diagonal entries of Ric. We may assume that
r1 <ra<rz. Clearly, R=r1+72+r3 and |Ric|?>7%? +73+r3. This implies that

ha
252[h1 ho h3}AQ ha |,
h3

where A, is defined by

2(ri+ry+73) (e—=R)(ri+7r2—73) (0—R)
Ap= | (0—R)(r1+ra—r3) 2(r34+ri4r3) (o—R)(ro+r3—r1)
(0—R)(rs+r1—r2) (0—R)(ro+rz—r1) 2(r24ri4r3)

(rg+r1—ra)
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We claim that the matrix A, is positive definite. In order to prove this, we use Sylvester’s

criterion. The first minor is clearly positive. The second minor satisfies

4(ri4r5+73)2 = (0= R)*(ri+ra—r3)® 2 A(ri+r5+713)> = R*(r1+r2—13)*
4

(rf+r3+75) = ((r1+72)* =15)* > 0,
where in the last step we have used the inequality
—2(ri+ra4rd) < (ri4ra) =13 <2(ri+ri4rd).
Finally, we consider the third minor of A,. Expanding det A, in powers of o gives

det A, > det A0+4QR(T%+T§+T§)[(T1 47y —r3)2—|—(r2—|—r3 —r1)2+(r3—|—r1 —7“2)2}
+6QR2(7“1 -‘1-7“2—7“3)(7“2—1—7‘3—7“1)(7“3—1-7“1 —TQ)—CQ2R4—CQ3R3_

By work of Anderson—Chow, det Ag>0 (see [2, pp. 10-11]). Moreover,

R(T‘l +7‘277’3) = (7‘1 +7’2)277’§ 2 77’%

and
0< (ro+rs—ry)(r3+ri—r2) < %[(T2+7‘3—7‘1)2+(T3+T1—7"2)2]-

This implies that
R(ri+ro—rs3)(ro+rs—ry1)(rs+ri—re) = 7%7‘%[(7’2 +r3—11)2 4 (r3+11—12)7).
Putting these facts together, we obtain

det Ay > 4oR(r+r5+73)[(r +r2—13)* + (ra+r3—r1)* + (r3+r1-72)]
73@R7’§[(T’2 +T‘377‘1)2+(7’3+T’1 77”'2)2] 7CQ2R4*CQ3R3.

Hence, we can find a large constant C'y >10 and a small positive constant ¢ with the prop-
erty that det A,>coR®>0 whenever R>Cyp. By Sylvester’s criterion, the matrix A4, is
positive definite whenever R>Cyp. Moreover, the largest eigenvalue of A, is bounded
by CR? whenever R>p. Since det A,>coR®, it follows that the smallest eigenvalue of
A, is greater than coR whenever R>Cyp.

To summarize, we have shown that there exists a small positive constant cy such
that 25>c4oR|h|* whenever R>Cyp. Putting these facts together, we conclude that

9 2 |2 48 |h|?
— —A——"_D'RD; <— <—2e40———
(at R—o ) (R—02 " (R—0P > “#%(R-0)p

whenever R>C4p. From this, the assertion follows.
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