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1. Introduction

For a real reductive group G one important step towards the Plancherel theorem is the
determination of the support of the Plancherel measure, i.e. the portion of the unitary
dual of G which is contained weakly in L?(G). It turns out that these representations
are the so-called tempered representations, i.e. representations whose matrix coefficients
satisfy a certain moderate growth condition. Further, one has the central theorem of

Langlands.

TEMPERED EMBEDDING THEOREM. ([28]) Ewery irreducible tempered representation
7 is induced from discrete series, i.e. there is a parabolic subgroup P<G with Langlands
decomposition P=MAN, a discrete series representation o of M and a unitary char-

acter x of A such that 7 is a subrepresentation of Ind% (@ x1).

Thus (up to equivalence) the description of the tempered spectrum is reduced to
the classification of discrete series representations. A generalization with an analogous
formulation was obtained by Delorme [12] for symmetric spaces G/H.

In this article we consider the more general case of real spherical spaces, that is,
homogeneous spaces Z=G/H on which the minimal parabolic subgroups of G admit
open orbits. This case is more complicated and several standard techniques from the
previous cases cannot be applied. The result which in its formulation comes closest to
the theorem above is obtained for a particular class of real spherical spaces, said to be

of wave-front type. The spaces of this type feature a simplified large scale geometry [21]
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and satisfy the wave-front lemma of Eskin—-McMullen [13], [21]. In particular, they are
well suited for lattice counting problems [25]. The notion was originally introduced by
Sakellaridis and Venkatesh [34].

Another large class of real spherical spaces Z=G/H is obtained by taking real
forms of complex spherical spaces Zc=Gc/Hc. We call those Z absolutely spherical. A
generalization of Langlands’ theorem will be obtained also for this class of spaces. It
should be noted that all symmetric spaces are both absolutely spherical and of wave-
front type, but there exist real spherical spaces which do not satisfy one or both of these
properties.

Complex spherical spaces Z¢ with Hc¢ reductive were classified by Kramer [23] (for
Gc simple) and Brion-Mikityuk [6], [32] (for G¢ semi-simple). Recently we obtained
a classification for all real spherical spaces Z for H reductive (see [18], [19]). In par-
ticular, if G is simple, it turns out that there are only few cases which are neither
absolutely spherical nor wave-front; concretely these are SL(n,H)/SL(n—1, H) for n>3,
SO(4,7)/(SO(3) x Spin(3,4)), and SO(3,6)/(Gi xSO(2)).

Let now Z=G/H be a unimodular real spherical space. On the geometric level we
attach to Z a finite set of equal-dimensional boundary degenerations Z;=G/H;. These
boundary degenerations are real spherical homogeneous spaces parametrized by subsets
I of the set of spherical roots S attached to Z.

In the group case Z=(G x@G)/diag(G)~G the boundary degenerations are of the
form Zp=(GxG)/((N x N°PP) diag(MyA)) attached to an arbitrary parabolic subgroup
P=MAN <G. We remark that, up to conjugation, parabolic subgroups are parametrized
by finite subsets of the set of simple restricted roots.

To a Harish-Chandra module V and a continuous H-invariant functional 1 (on some
completion of V') we attach a leading exponent Ay, and we provide a necessary and
sufficient criterion, in terms of this leading exponent, for the pair (V,n) to belong to a
twisted discrete series of Z, induced from a unitary character of H.

In [21] we defined tempered pairs (V, 7). Under the assumption that Z is absolutely
spherical or wave-front, the main result of this paper is then that for every tempered pair
(V,n) there exists a boundary degeneration Z; of Z and an equivariant embedding of V'
into the twisted discrete series of Z;.

In the special case of real spherical space of wave-front type, our result gives rise to
a tempered embedding theorem in the more familiar formulation of parabolic induction;
see Corollary 9.13. In the case of p-adic wave-front space, such an embedding theorem
was proved by Sakellaridis—Venkatesh [34].
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1.1. The composition of the paper

There are two parts. A geometric part in §§2-5, and an analytic part in §§6-9.

The geometric part begins with the construction of the boundary degenerations Z;
of Z. Here we choose an algebraic approach which gives the deformations of h:=Lie(H)
into h:=Lie(Hy) via a simple limiting procedure. Then, in §3, we relate the polar
decomposition (see [20]) of Z and Z; via the standard compactifications (see [17]). This
is rather delicate, as representatives of open Ppi,-orbits on Z (and Z;) naturally enter
the polar decompositions and these representatives need to be carefully chosen. §4 is
concerned with real spherical spaces which we call induced: For any parabolic P<G with
Levi decomposition P=GpUp, we obtain an induced real spherical space Zp=Gp/Hp,
where Hp <G p is the projection of PNH to Gp along Up. We conclude the geometric
half with a treatment of wave-front spaces and elaborate on their special geometry.

The analytic part starts with power series expansions for generalized matrix co-
efficients on Z. We show that the generalized matrix coefficients are solutions of a
certain holonomic regular singular system of differential equations extending the results
of [27, §5].

For every continuous h-invariant functional  on V', we then construct hy-invariant
functionals n; on V by extracting certain parts of the power series expansion. Passing
from n to nr can be considered as an algebraic version of the Radon transform. The
technically most difficult part of this paper is then to establish the continuity of n;. For
symmetric spaces this would not be an issue in view of the automatic continuity theorem
by van den Ban, Brylinski and Delorme [3], [8]. For real spherical spaces such a result
is currently not available. Under the assumption that Z is either absolutely spherical or
wave-front, we settle this issue in Theorems 7.2 and 7.6, via quite delicate optimal upper
and lower bounds for the generalized matrix coefficients. Already in the group case, these
bounds provide a significant improvement of the standard results (see Remark 7.4). The

proof is based on the comparison theorems from [9], [6], and [1].

Acknowledgement. It is our pleasure to thank Patrick Delorme for many invaluable

comments to earlier versions of this paper.

2. Real spherical spaces

A standing convention of this paper is that (real) Lie groups will be denoted by upper
case Latin letters, e.g. A, B, etc., and their Lie algebras by lower case German letters,
e.g. a, b, etc. The identity component of a Lie group G will be denoted by G..

Let G be an algebraic real reductive group by which we understand an open subgroup
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of the real points of a connected complex reductive algebraic group G¢. Let H<G be
a closed connected subgroup such that there is a complex algebraic subgroup Hc<Ge
such that H=(GNHc).. Under these assumptions we refer to Z=G/H as a real algebraic
homogeneous space. We set Zc=G¢/Hc and note that there is a natural G-equivariant

morphism

Z%Z@,

gH — gHc.

Let us denote by zp=H the standard base point of Z.

We assume that Z is real spherical, i.e. we assume that a minimal parabolic subgroup
Ppin <G admits an open orbit on Z. It is no loss of generality to request that Pyin H CG
is open, or equivalently

9= Pmin+H.

If L is a real algebraic group, then we denote by L, <L the connected normal sub-
group generated by all unipotent elements.

According to the local structure theorem of [22], there exists a unique parabolic
subgroup @D Py (called Z-adapted), with a Levi decomposition Q=LU such that

® Puin-20=Q" 20,

o L, <QNH<L.

We let K, Ap N =L be an Iwasawa decomposition of L with Ny <Py, set A:=Ap,
and obtain a Levi decomposition Ppnin=MAN=MAxX N, where M=Zf, (A) and N=
NpU. We set Ag:=ANH, and further

AZ = A/AH

The dimension of Az is an invariant of the real spherical space, called its real rank; in
symbols rankg(Z). Observe that it follows from the fact that [, Ch that

a=ang(l)+anh,

where 3(I) denotes the center of [. In particular, it follows that [Nk is Ad(A)-invariant.

We extend K to a maximal compact subgroup K of G and denote by 6 the corre-
sponding Cartan involution. Further we put n:=60(n) and u:=60(u). Later in this article
it will be convenient to replace K by K%:=aKa~! for a suitable element a€A. Then @
becomes replaced by 6%:=Ad(a)of>Ad(a)~!, and for this reason it is important to mon-
itor the dependence of our definitions on 8. For example, we note that M, n and u are
unaltered by such a change.
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We fix an invariant non-degenerate bilinear form s on g. Associated with that, we
have the inner product (X,Y):=»(X,0Y) on g, called the Cartan—Killing form. Note
that it depends on the Cartan involution.

We write ¥=3%(g,a)Ca*\{0} for the restricted root system attached to the pair

(g,a). For a€X we denote by g the corresponding root space and write

g=admd @ g“
a€EX

for the decomposition of g into root spaces. Here, as usual, m is the Lie algebra of M.

2.1. Examples of real spherical spaces

If h<g is a subalgebra such that there exists a minimal parabolic subalgebra pni, such
that g=h+pmin, then we call (g,b) a real spherical pair and b a real spherical subalgebra
of g. A subalgebra h<g is called symmetric if there exists an involutive automorphism
T:g—¢g with fixed-point set ). We recall that every symmetric subalgebra is reductive
and that every symmetric subalgebra is real spherical. Symmetric subalgebras have been
classified by Cartan and Berger.

A pair (g,h) of a complex Lie algebra and a complex subalgebra is called complex
spherical or simply spherical if it is real spherical when regarded as a pair of real Lie
algebras. Note that in this case the minimal parabolic subalgebras of g are precisely the

Borel subalgebras.

LEMMA 2.1. Let h<g be a subalgebra such that (gc,be) is a complex spherical pair.
Then (g,h) is a real spherical pair.

Proof. Let bc be a Borel subalgebra of gc which is contained in pmin,c. We claim
that there exists a g€G such that hc+Ad(g)bc=gc. This follows immediately from
the fact that (gc,bhc) is a spherical pair, since the set of elements geGc for which
be+Ad(g)bc=gc is then non-empty, Zariski open and defined over R.

Let geG be such an element. It follows that hc+Ad(g)pmin,c=0c, and taking real
points this implies that h+Ad(g)pmin=9- O

We note that the converse of the lemma is not true if g is not quasi-split. For
example (g,n) is a real spherical pair, but the complexification (gc,n¢) is not spherical
unless g is quasi-split. The real spherical pairs (g, h) obtained from complex spherical

pairs (gc, he) are called absolutely spherical or real forms.
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gc be
sl(n,C) sl(p, C)®sl(n—p, C), 2p#n
sl(2n+1,C) sp(n,C)@C
sl(2n+1,C) sp(n,C)
s50(2n+1,C) gl(n,C)
50(9,C) spin(7,C)
s0(7,C) Gy
sp(2n,C) sp(n—1,C)aC
50(2n,C) sl(n,C), n odd
50(10,C) s0(2, C)@spin(7,C)
50(8,C) G2
Gs s1(3,C)
Eg 50(10,C)

Table 1. The non-symmetric cases of Kramer’s list.

2.1.1. Examples of absolutely spherical pairs with h reductive

Complex spherical pairs (gc, he) with he reductive have been classified. For g¢ simple
this goes back to Kramer [23], and it was extended to the semi-simple case by Brion [7]
and Mikityuk [32]. For convenience, we recall the non-symmetric cases of Kramer’s list
in Table 1.

The pairs in the table feature plenty of non-compact real forms, classified in [18]
and [19]. For example, the pairs (sl(2n+1,C),sp(n,C)), (so(2n+1,C), gl(n,C)) and
(s0(7,C), G3) have the following non-compact real forms:

(su(2p,2¢+1),8p(p,q)) and (sl(2n+1,R),sp(n,R)), (2.1)
(so(n,n+1),gl(n,R)), (2:2)
(50(3,4),G3), where G} is the split real form of Gs. (2.3)

From the list of irreducible complex spherical pairs (gc, hc) with gc non-simple (see
[7], [32]), we highlight the Gross—Prasad cases:

(sl(n+1,C)®sl(n,C), gl(n,C)),
(so(n+1,C)@so(n,C),s0(n,C)),

which are ubiquitous in automorphic forms [15].
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2.1.2. Real spherical pairs which are not absolutely spherical

Prominent examples are constituted by the triple spaces

(g,h)=(hxphxbh,diagh) for h=s0(1,n),

which are real spherical for n>2 but not absolutely spherical when n>4 (see [5], [11]).
This example will be discussed later in the context of Levi-induced spaces in §4.2.2.
Other interesting examples for g simple are (see [18]) the following:
o (E2,ER), (E2,ED), (EL,sl(3, HD):
e (sl(n,H),sl(n—1,H)), (so(2p,2q),su(p, q)) for p#g;
e (50(6,3),50(2)DGL) and (s50(7,4), spin(4,3)+s0(3)).

2.1.3. Non-reductive examples

We begin with a general fact (see [7, Proposition 1.1] for a slightly weaker statement in

the complex case).

PROPOSITION 2.2. Let P<G be a parabolic subgroup and H<P be an algebraic
subgroup. Let P=LpxUp be a Levi decomposition of P. Then the following statements
are equivalent:

(1) Z=G/H is real spherical;

(2) P/H is an Lp-spherical variety, i.e. the action of a minimal parabolic subgroup

of Lp admits an open orbit on P/H.

Proof. Let P°PP <G be the parabolic subgroup of G with P°°°PNP=Lp, and let
Ppin <P°PP be a minimal parabolic subgroup of G. By the Bruhat decomposition, we
have that P, P is the only open double (P, X P)-coset in G. Moreover, S:= P, NP
is a minimal parabolic subgroup of Lp.

Assume (1) and let geG be such that PyingH is open in G. Then PingP is also
open in G, and hence g€ Py, P. We may thus assume g€ P. Then Pj,gHNP=SgH is
open in P, proving (2).

Assume (2) and let p€ P be such that SpH is open in P. Then PyinpH=PuninSpH
is open in Py, P and in G, proving (1). O

Ezample 2.3. We consider the group G=SU(p,q) with 3<p<q. This group has
real rank p with restricted root system BC), or C, (if p=¢). Let P=Pnin=MAN be a
minimal subgroup. Let Ny<N be the subgroup with Lie algebra

— «
Np 1= @ g .
aedt
ag{e1—e2,c2—€3}
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Let Z(M) be the center of M. Then the proposition shows that H:=Z(M)ANj is a real
spherical subgroup. In case g—p>1, it is not absolutely spherical.

3. Degenerations of a real spherical subalgebra

3.1. The compression cone

We recall that the local structure theorem (see [22]) implies that g=h+q, and hence
g=he(INb) " @u. (3.1)

Here we use the Cartan—Killing form of g restricted to [ to define 1 ;. Note that since
INh is Ad(A)-invariant, then so is its orthocomplement. In particular, the decomposition
(3.1) will not be affected by our later conjugation of the Cartan involution by an element
from A.

We define the linear operator T ﬁ—>([ﬂf))h GUCPmin as minus the restriction of the
projection along b, according to (3.1). Then

h=INbBG(T)=INhP{X+T(X): X €ii}. (3.2)

Write X, for the space of a-weights of the a-module u. Let a€X¥, and let X_, €
g~ “Cu. Then

T(X-a)= Y. Xagp (3.3)
pex, U{0}

where X, g€g”Cu is a root vector for S0, with the convention that X, ¢€(INh)Lr.
Let MCNy[X,] be the monoid (additive semi-group with zero) generated by

{a+8:aeX,, feX,U{0} with X, g5#0 for some X_, €g~*}.

Note that elements of M vanish on ag, so that M is naturally a subset of a,.

We define the compression cone of Z to be
ay,:={X €az:a(X)<0 for all a e M},

which is a closed convex cone in az with non-empty interior.

3.1.1. Limits in the Grassmannian

We recall from [20, Lemma 5.9] the following property of the compression cone. Let a,~
be the interior of a,, and let
hlim = [ﬂh+ﬁ
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Note that d:=dim h=dim bi;;, and that by, is a real spherical subalgebra. Then X €a,~
if and only if
lim e X = by (3.4)

t—o0

holds in the Grassmannian Gry(g) of d-dimensional subspaces of g.

3.1.2. Limits in a representation

We recall another description of a, which was used as its definition in [20, Definition 5.1
and Lemma 5.10].

Consider an irreducible finite-dimensional real representation (7, V) with H-semi-
spherical vector 0#vy €V, that is there is an algebraic character x of H such that
m(h)vg=x(h)vy for all he H. Let R*vy be a lowest weight ray which is stabilized by Q.
Let a, " be the open cone in az defined by the following property: X €a_ " if and only if

Jim [r(exp(tX)) -vp1] = [vo] (3.5)

holds in the projective space P(V'). We denote by a_ , the closure of a;~ and record

that a; Ca, ,. Moreover, we have
ay=a,, ifandonly if 7 is regular.

Here 7 is called regular if @ is the stabilizer of R*wg; in particular, the lowest weight is

strictly anti-dominant with respect to the roots of u.

3.2. Spherical roots

Let C be the convex cone spanned by M. Then, according to [17, Corollaries 12.5

and 10.9], C' is simplicial, i.e., there exists a linearly independent set SCa?}, such that

C:®R>Ua. (36)

ceSs

In particular, we record
ay,={X€az:0(X)<0 for all 0 € S}.

The elements of S, suitably normalized (see [35] for an overview on some commonly used
normalizations), are referred to as spherical roots for Z. In this paper we are not very

specific about the normalization of S and just request that

M C No[S] (3.7)
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is satisfied. We note that, by [17, Theorem 11.6], there exists such a normalization of S;
see [17, equation (11.4)]. We also note that (3.7) implies

S C (@20[2”]. (38)

To see this, let 0€S. Then the ray Ry o is extreme in C, hence spanned by some y&€ M.
Thus o=cy for some ¢>0. It now follows from (3.7) that 1/c is an integer, and hence
(3.8) holds.

By slight abuse of common terminology, we will henceforth call any set S which
satisfies (3.6) and (3.7) a set of spherical roots for Z. Let us now fix such a choice.

Given a closed convex cone C in a finite-dimensional real vector space, we call
E(C):=CnN(—C) the edge of C; it is the largest vector subspace of V' which is contained
in C.

We are now concerned with the edge az g:=E(ay) of a;. By our definition of a,
we have

azp={X€caz:a(X)=0 for all a € S}.

It is immediate from (3.3) that az g is contained in Ny(h), the normalizer of h in g. In
this context, it is good to keep in mind that Ng(h)/H Az g is a compact group (see [20]).
Let e:=dimayz g, r:=rankg(Z)=dimaz and s:=#5. Then a,/az g is a simplicial

cone with s=r—e generators.

Example 3.1. Let H=N. This is a spherical subgroup. In this case by, =h, M={0},
S=g, and ay=az g=a.

3.3. Boundary degenerations

For each subset IC.S we choose an element X =X;€a, with a(X)=0 for all a€l and
a(X)<0 for all e S\I. Then we define

b= lim 24Xy, (3.9)

t—o00

with the limit taken in the Grassmannian Grg(g) as in (3.4). In particular, hz=hy, and
hs=h.

To see that the limit exists, we recall the explicit description of § in (3.3). Let (I)C
Ny[S] be the monoid generated by I. Within the notation of (3.3), we set Xéﬂ::)(aﬁ7
if a+p€(I), and zero otherwise. Let u;Cu be the subspace spanned by all XOI“B, and
define a linear operator

Tr:i— (INh) - Buy
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by

Ti(X_o)= Y Xl (3.10)
pex, uU{0}

In particular, T =0 and Ts=T. Now observe that

et adX(X_a+T(X_a)) — e—t(l(X) (X—a+z et(a(X)+ﬁ(X))Xa7ﬁ>, (311)
B

from which we infer that the limit in (3.9) is given by
hr =INh+G(T7) =INh+{X+Tr(X): X €u} (3.12)

and, in particular, it is thus independent of the choice of the element X;.
Let H; <G be the connected subgroup of G corresponding to ;. We call Z;:=G/H;
the boundary degeneration of Z attached to I CS, and summarize its basic properties as

follows.

PROPOSITION 3.2. Let ICS. Then

(1) Z; is a real spherical space;

(2) Q is a Zi-adapted parabolic subgroup;

(3) anbhy=anh and rankg Z;=rankg Z;

(4) T is a set of spherical roots for Zr;

(5) az,=az and ay ={X€az:a(X)<0 for all a€l}.

Proof. Tt follows from (3.9) that b; is algebraic, and from (3.12) that §;+pmin=9g.
Thus (1) holds. Statements (2)—(4) all follow easily from (3.12), and (5) is a consequence
of (3) and (4). O

The boundary degeneration Z; admits non-trivial automorphisms when I'#S. Set
ar:={X €az:a(X)=0 for all € I}.

Then we see that A; acts by G-automorphisms of Z; from the right.
In the sequel we realize az as a subspace of a via the identification az :a};. Likewise
we view Az as a subgroup of A.

It is then immediate from the definitions that
as=azpCar=az, g Cag=20ayz (3.13)

and
l[ar+apm, bl Chr. (3.14)
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Remark 3.3. If Z is absolutely spherical, then so are all the Z;’s. Indeed, let (g, bh)
be absolutely spherical with complex spherical complexification (gc, hc). Then the com-
pression cones for (g,h) and (gc, he) are compatible (see [17, Proposition 5.5 (ii)]) in the

obvious sense. From that the assertion follows.

Ezample 3.4. If G/H is a symmetric space for an involution o, that is, H is the
connected component of the fixed-point group of an involution 7 on G (which we may

assume commutes with ), then
1 :G/(L[ﬁH)er

where Py=L; Ny is a 70-stable parabolic subgroup with 7- and #-stable Levi part L;.

3.4. Polar decomposition

The compression cone a, of Z determines the large scale behaviour of Z. In [20] we
obtained a polar decomposition of a real spherical space. Our concern here is to obtain
polar decompositions for all spaces Z; in a uniform way. For that, it is more convenient to
use standard compactifications of Z (see [17]), rather then the simple compactifications
from [20].

For a real spherical subalgebra h<g we set fA)::h—i—aZyE. Note that b<16 is an ideal.
We denote by I/i\'QO the connected algebraic subgroup of G¢ with Lie algebra 6@ and set
I?TO::I?C,O NG. More generally, let ﬁc be some complex algebraic subgroup of G¢ with
Lie algebra 6@, and let I/{f:GﬂfAfc. Then ﬁo and H both have Lie algebra 6, and ﬁodﬁ
is a normal subgroup.

Further, we set 61:h1+a1 for each ICS, and note that 65:6 and 6g:h]im+az.
Recall the element X;ca;Nay,, and set for s€R

as,1:=exp(sXy) €A

Let Z=G / H. We first describe the basic structure of a standard compactification
Z for Z. There exists a finite-dimensional real representation V' of G with an H-fixed

vector vz such that

Z—P(V),
g'é()'__> [gvﬁ]u
is an embedding and Z is the closure of Z in the projective space P(V). Moreover, Z
has the following properties:
(i) the limit 2 y=lims o0 as, 1+ 20 exists for every IC S, and the stabilizer ﬁ; of 2o 1
is an algebraic group with Lie algebra br;
(ii) Z contains the unique closed orbit Y =G"%g .
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Note that ﬁl DfILO. The inclusion can be proper, also if we choose I;T:PAIO. This is
the reason why in the first place we need to consider algebraic subgroups H more general
than ﬁo.

In the next step we explain the polar decomposition for Z and derive from that a
polar decomposition for Z.

In order to do that we recall the description of the open Pyin x H double cosets of
G from [20, §2.4]. We first treat the case of ﬁo. Every open double coset of Pminxﬁo
has a representative of the form

w=th, teTz=exp(iaz) and heffcyo. (3.15)

This presentation is unique in the sense that if #’h’ is another such representative of
the same double coset, then there exist feTy ﬂf[@o and h”eﬁo such that #'=tf and
h'=f"thh". We let

F=A{wiy,...,wx} CG

be a minimal set of representatives of the open P, xﬁo—cosets which are of the form
(3.15).
The map wHPminwﬁ is surjective from JF onto the set of open Py X H cosets in G.
We let
F={iy,....,0m} CF

be a minimal set of representatives of these cosets. Note that every @ eF allows a
presentation w=th as in (3.15), which is then unique in the sense that if t'h € Poin@WH is
another such representative, then ¢ =t f and h'=f~'hh" for some f€T, NHe and K€ H.

We observe the following relations on the Tz-parts:
{tAlv ey tAm}(TZmﬁC) = {tla ey tk}(TZOI/_\[C)

With that notation, the polar decomposition for 2=G/ﬁ is obtained as in [20,
Theorem 5.13]:
Z=QA,F 4. (3.16)

Here A, =exp(ay), and QCG is a compact subset which is of the form Q=F"K with
F"CG a finite set.
For G/ﬁo the polar decomposition (3.16) can be rephrased as G:QAg]:fIO. From

the fact that ﬁ@,O is connected, we infer

Hy < Ng(H). (3.17)
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Let F'C Hy be a minimal set of representatives of the finite group Ho/H Az g (observe
that HAyz g is the identity component of ﬁo). Note that F' is in the normalizer of H
by (3.17). We then record the obvious decomposition

Ho= Ay pF'H. (3.18)

Note that, since Az g is connected, the open P, X H double cosets in G are iden-
tical to the open Pyin X Az gH double cosets. Hence W:=FF'CG is a (not necessarily
minimal) set of representatives for all open P, x H-double cosets in G.

The next lemma guarantees that we can slide Az g past W.

LEMMA 3.5. Let weW. Then there exist for all a€ Az g an element h,€H such
that a~‘wa=whg. In particular, WAz rCAz pWH.

Proof. Let w=theW, with t€T; and heﬁ'@,o. For a€ Az i the element o twa
represents the same open double Py X ﬁo coset as w. Further note that a~wa=ta"'ha.
We infer from the uniqueness of the presentation w=th (as a representative of an open
Prin X ﬁo double coset) that there exists an element haeﬁo such that a~‘ha=hh,.
Note that li:f(g’o:AZ’E’CH(C7 and therefore we can decompose h=>bh,, with be Az g ¢ and
hi€Hg. Tt follows that a~'hia=h; h,. Hence haeﬁoﬂHC and, as h, varies continuously
with a, we deduce that it belongs to H. O

Observe that Az g CA,. Thus, putting (3.16), (3.18) and Lemma 3.5 together, we

arrive at the following polar decomposition for Z:
Z=QA, W 2. (3.19)

Remark 3.6. Consider the case where Z=G/H is a symmetric space as in Exam-
ple 3.4. We choose a such that it is 7-stable and such that the (—1)-eigenspace a,4 of 7 on
a is maximal. Then azzaﬁlzam and the set of Py, X H open double cosets is naturally
identified with the quotient of Weyl groups Wpq/Wrnk, where Wy =Ng (ape)/Zk (apq)
and Wynx=Nunk (0pq)/Zunk (a,q) (see [33, Corollary 17]). Moreover, in this case
(3.19) is valid with Q=K (see [14, Theorem 4.1]).

For geG we set h,:=Ad(g9)h and H,=gHg~ ', and note that if PyingH is open then
Z,=G/H, is a real spherical space. In particular this applies when geW.

LEMMA 3.7. Let w=theW, with teTy and heﬁgo. Then
bw = [ﬂf)—l—g(Tw),
where T,,: u—su+(INH)* is a linear map with

Tw(X_a)=) cap(w)Xas (3.20)
B

in the notation from (3.3), and where e, g(w)=t*tPe{-1,1}.
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Proof. We first observe that
bw =Ad(t)bcNg. (3.21)

Now, by (3.2), an arbitrary element X €h¢ can be uniquely written as

X:X0+ Z ca(Xa+ Z Xa,5)>

a€eX, Bex, u{0}

with Xo€(INh)c and with coefficients ¢, €C. Hence

Ad()X =Xo+ Yt %, <Xa+ > t“*ﬁxa,g)

a€X, pex, U{0}
We conclude that Ad(t)X €g if and only if Xo€INh, cot " €R for all @ and t*TBP€R for
all « and 3, that is, t*TFc{—1,1}. O

COROLLARY 3.8. Let weW. Then
(1) Q is the Zy-adapted parabolic subgroup;

(2) ay is the compression cone for Z,,.

Proof. Immediate from Lemma 3.7. O

3.4.1. The sets F and W for the boundary degenerations
Let ICS. We define H; as in (i), with the assumption ﬁ:ﬁo, and set
Z\] I:G/ﬁ[:Gw‘g’oJ.
We wish to construct a set F; of representatives of open P, x H 1 double cosets in G,
analogous to the previous set F for Ppip xﬁo. Recall that possibly H I,Ogﬁ I
Notice that the El—adapted parabolic subgroup is @ and that LnCLﬂﬁI. The local
structure theorem for 21 then implies that QXL(L/LHI?I)—)Z\I is an open immersion

Z and

onto the Pyin-orbit Puin-Z0,7. Moreover Az, =Az/A;. Realize azCayz via aIL“
set Tz, =exp(iagz,). Let j-:[ be a minimal set of representatives of the open Ppin xﬁf
double cosets which are of the form ﬁlzt}iu 6.7?1, with ; €Ty, and iL[ Eﬁm;. As before,
we also have a minimal set F; of representatives for the open cosets for the smaller group
Poin X I/{TI’O, such that
FiCcF = {wi,r, ..y we, 1},

where w; r=t; rh; 1 with t; €T, and hj,16ﬁ17C70.

Finally, in analogy to F’, we choose F; as a minimal set of representatives for
ﬁLO/H]A[, and set Wy:=F1F;. Then the polar decomposition of Z; is given by

Z[ :QA%IW['ZO,],

with QCG being a compact subset of the form F/ K for a finite set F/ CG.
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3.5. Relating Wy to W
We start with a general lemma.

LEMMA 3.9. Let Z=G/H be a real spherical space and g€G be such that PuingH
is open in G. Then there exists so>0 such that PyingasH is open and equal to

PmingasU,IH fO’l" all $2=5g.

Proof. If there were a sequence s, >0 tending to infinity with p+Ad(gas, 1)hGg for
all n, then lim,_,o(p+Ad(g) Ad(as, 1)h)=p+Ad(g)h; would be a subspace of g with
positive codimension, which contradicts the assumption on g. Hence Ppingas 1 H is open

for all s>sg, for some sg. By continuity, this implies that the sets are equal. O

Fix an element w; €W; and observe that Py wyHy is open in G. Lemma 3.9 then
gives an element we€)V and an so>0 such that Ppizwras 1 H=PninwH for all s>s75. We

say that w corresponds to wy, but note that w is not necessarily unique.

LEMMA 3.10. Let wreWr and let weW correspond to wy. With so>0 as above,
there exist for each s>sg elements us€U, bs€Az, mgseM and hs€H, each depending
continuously on s>sg, such that

(1) wras,r=usbsmswhs.

Moreover,

(2) the elements us and b are unique and depend analytically on s;

3)

(4) limg o0 us=1;
5)

(

Proof. By Corollary 3.8, the map
(UXAZ XM)/(Mme) ——)Pmin’IU'Z(),

lim 00 (as,lbs_l):]-;

ms can be chosen such that limg ,. m, exists in M.

(u, a,m) — uamw- zo,

is a diffeomorphism (local structure theorem for Z,,). As wras 1€ Puinw-zo for s>sq,
this gives (1) and (2).

After enlarging G to G xR* we can, via the affine cone construction (see [22, Corol-
lary 3.8]), assume that Z=G/H is quasi-affine.

Let us denote by T the set (of equivalence classes) of finite-dimensional irreducible
H-spherical and K-spherical representations. To begin with, we recall a few facts from
§3.1.2 and from [20].

For a representation (7, V)€l we denote its highest weight by A\ €a*. Let (m, V)el
and 0#vy €V be an H-fixed vector which we expand into a-eigenvectors:

Vg = Z V_\p4v-

vEA,
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Here A, CNgX, is such that —A;+ A, is the a-weight spectrum of vy. Note that v_)_
is a lowest-weight vector which is fixed by M.
As Ar|,- <0 (see [20, Lemma 5.3]), we deduce that the limit

U A
VE, = 8151010 as717r(as71)vH
exists. Moreover, with Ar r:={v€A:v(X;)=0}, we obtain that vy 1=>",c V) 10
Note that vy ; is H-fixed.

Let w=th and wy=trhy, with our previous notation. From (1) we obtain
a?:}w(t;h;asﬁl)v}q = ai"’}ﬁ(usmsbst)uH, (3.22)
and hence, by passing to the limit s— o0,
w(tr)vegr = SILI?O ag\ﬁw(usm‘;bst)v;{. (3.23)

Let v*€V™* be a highest-weight vector in the dual representation, and apply it to
(3.23). Since v*(vg)=v*(vg,1)=v*(v_x,)#0, we get

A = A Sgrolo(asts s
and therefore lim; oo (as ;1) =1. Since Z is quasi-affine, it follows that {\,:7€T}
spans a (see [22, Lemma 3.4], and hence (3).
We move on to the fourth assertion. We first show that (us)s is bounded in U
when s—o00. For that, let X1, ..., X,, be a basis for u consisting of root vectors X; with
associated roots a;. The map

R" — U,

(1, ., @) —> exp(x, Xp)-...-exp(x1 X7),

is a diffeomorphism. Let (x1(s),...,z,(s)) be the coordinate vector of us€U, which we
claim is bounded.

We fix an ordering of ¥, with the property that if a root o can be expressed as a
sum of other roots 3, then only roots S<« will occur. It suffices to show, for any given
index j, that if x;(s) is bounded for all ¢ with a; <a;, then so is x;(s) for each i with
o=y,

We now fix m such that it is regular, that is, the highest weight A=\, satisfies
AaV)>0 for all €Y. Then the map X —dn(X)v_j, is injective from u into V.
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We compare vectors of weight —A+a; on both sides of (3.23). On the left side we
have tl_’\—mj V_xta, if aj€AL 1, and 0 otherwise. By applying the Taylor expansion of

exp, we find on the other side

SILTEO ai‘,I ( Z(bst)_ﬂ”’% dm(Xp)™ ... d?T(Xl)mlﬂ(ms)U_)\+y>,
where the sum extends over all multi-indices m=(my,...,m,,) and all v€A, for which
aj =y mioy+u.

Notice that by (3) the product a;‘}l(bs)_’\“‘”:(asvjbs_l)k_”agﬁl remains bounded
when s—o00. Likewise, by our assumption on the index j, all the terms with m;#0 for
some ¢ with o;#a; (and hence m;=0 for all ¢ with a;=cq;) are bounded. The remaining

terms are those of the form
A -\
ag 1 (bst) " "ai(s)dm(Xy)v_y,

where a;=a;. It follows by linear independence that z;(s) is bounded for each of these
i as claimed, i.e. (us)s is bounded.

Finally, we show that us converges to 1. Otherwise there exists u#1 and a sequence
sk of positive numbers tending to infinity such that uy:=us, —u. We may assume in

addition that my:=my, is convergent with a limit m. We apply (1) to 2062 :
wras,, 120 = upmybit- 2o,

and take the limit
t['fz'oJ = Umt‘ﬁoJ. (324)

The local structure theorem for Z 1=G/ H 7 then implies u=1, which completes the proof
of (4).

The proof of (4) shows as well that the limit m of every converging subsequence
of m, satisfies t1-29 ;=mt-Zo 1, and hence determines a unique element in M/(Mﬂﬁ;)
Thus lim,_ e mS(MﬂfII) exists. Notice that (M NH,). has finite index in MNH;, as
the Lie algebras of the two groups coincide. By continuity with respect to s, it follows
that mg(MNH, ). converges in M/(MNH,).. Now (5) follows by trivializing this bundle
in a neighborhood of the limit point. O

Remark 3.11. With the assumption and notation of the preceding lemma, let m:=

limg_,00o ms. Then (3.24) implies the relation

(hI)UII = Ad(m)(ﬁw)b
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where (61‘,)1::(hqu)1+a1. To see this, first note that alc(ﬁj)wl by Lemma 3.5, and

hence (by dimension) it suffices to show that

Ad(m)(hw)1 C (h1)w, - (3.25)

Let X €(bhy)r and choose X (s)€Ad(as,1)bw with X (s)—X for s—oo. The fundamental

vector field on Z,, corresponding to Ad(m)X (s) has a zero at mas jw-Z, and from
t-Zo,r =t lim as -2 = lim a, rw-Zo
S§—00 5—00

we deduce that the fundamental vector field corresponding to Ad(m)X then has a zero

at mt-2p,7. Now, (3.25) follows from (3.24) and the fact that (Hj),, is the stabilizer of

tr-2o,1=wr-Zo,1.

3.6. Unimodularity

For a moment, let G be a an arbitrary Lie group and H <G be a closed subgroup. We
call the homogeneous space Z=G/H unimodular provided that Z carries a G-invariant

positive Borel measure, and recall that this is the case if and only if the attached modular

character
Ay H —>R,
|det Ady (h)| . (3.26)
h — 2 —|det Ad h
T et Adg(y] 19t Adors (T
is trivial.

After these preliminaries, we return to our initial set-up of a real spherical space

Z=G/H and its boundary degenerations. In this context, we record the following result.

LEMMA 3.12. Let Z be a real spherical space which is unimodular. Then all boundary

degenerations Z are unimodular.

Proof. The fact that the map X—tr(ad X) is trivial in h* is a closed condition on
d-dimensional Lie subalgebras in g. Now apply (3.9). O

4. Levi-induced spherical spaces

Let Z=G/H be a real spherical space. Let P<G be a parabolic subgroup and P=GpUp
a Levi decomposition. Then Gp~P/Up. We write

prp: P—Gp
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for the projection homomorphism. Define Hp:=prp(HNP) and set
Zp = GP/HP-

Note that Hp <Gp is an algebraic subgroup.
PROPOSITION 4.1. The space Zp is real spherical.

Proof. Let Qmin<P be a minimal parabolic subgroup of G. According to [26], we
have that the number of Q,i,-orbits in Z is finite. In particular, we have that the number
of Qmin-orbits in P/(PNH)CZ is finite. Observe that Qumin,p:=prp(Qmin) is a minimal
parabolic subgroup of Gp. It follows that the number of Qmin, p-orbits in Zp is finite.

In particular, there exist open orbits, i.e. Zp is real spherical. O

We call Zp the Levi-induced real spherical space attached to P.

4.1. Induced parabolics with respect to open P-orbits

In the sequel we are only interested in parabolic subgroups containing the fixed min-
imal parabolic subgroup Ppui,. We recall the parametrization of these. Recall that
Y=%(g,a)Ca* is the root system attached to the pair (g,a). Let ©*CX be the positive
system attached to N, and IICX™ be the associated set of simple roots. The para-
bolic subgroups PD Py, are in one-to-one correspondence with the subsets F'CII. The
parabolic subgroup Ppr attached to F'CII has Levi decomposition Pr=GrUp, where
Gr=Zg(ap) with
ap:={X€a:a(X)=0for all a€ F},

and

Up = @ ga.

aeXtT\(F)

In these formulas g* Cg is the root space attached to a€¥ and (F)CX denotes the root
system generated by F'.
The space a decomposes orthogonally as a=ap®af’, with

af:=span{a’ :a €I\ F},

where oY €a is the coroot associated with or. Observe that A is a maximal split torus of
the semi-simple commutator group [Gr, Gr], and that Pyin r:=PninNGr is a minimal
parabolic subgroup of G with unipotent radical U¥, where

uf = @ g

a€(F)*
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Denote prp=prp, , Hr=Hp, and
ZF = ZPF :GF/HF,

the Levi-induced homogeneous space attached to Pp.
We write Fig CII for the set which corresponds to @. In the sequel we are particularly
interested in those parabolic subgroups Pr which contain @, that is, for which F'D Fg.

For later reference, we note that

g*Ch, ae(Fp). (4.1)

4.2. Examples of induced spaces
4.2.1. Symmetric spaces

Assume, as in Example 3.4, that Z is a symmetric space. The Z-adapted parabolic
subgroup @ is T76-stable, and so are also all parabolic subgroups Pr2O(@). In particular,
we have

PrNH=GrNH=Hp

and Zp=Gp/Hp is a symmetric space, which embeds into Z.

4.2.2. Triple spaces

For a general real spherical space it is an unfortunate fact that basic properties of Z
are typically not inherited by Zp. For example, if Z is affine/unimodular/has trivial
automorphism group, then one cannot expect the same for the induced space Zp. This
is all well illustrated in the basic example of triple spaces. Let G:=SO.(1,n) for n>2
and set

G:=GxGxga.

Then
H:=2A3(9):={(9,9,9):9€G}

is a real spherical subgroup of G. Let
Pmin = 7)1 X PQ X 733

be a minimal parabolic subgroup of G, that is, each P; <G is a minimal (and maximal)
parabolic subgroup of G. The condition that H Py, CG is open means that all P; are
pairwise different (see [11]). Note that Q= Py in this case. Note that ¥=A4; x A; x Ay,
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and thus II={a1, as,as}. There are six proper parabolic subgroups Pr containing Q.

For example if |F|=1, say F'={«as3}, one has
Pioyy =P1xP2Xxg,
whereas for |F|=2, say F'={as, a3}, one has
Pray,as) =P1xXG%xG.

Let A< Py, be a maximal split torus. Then A=A x As x A3. Further, we let M;<P;
be a maximal compact subgroup which commutes with A;. Denote by p;: P;—M;A; the
projection along A;. The real spherical subgroups Hp for our above choices of I are

given by

Hiogy ={(p1(9):p2(9),9) : g € P1NP2} =P1NPo,
H{ay a5 = {(m1a1,miaing, miaing) :miaing € My AN} = Az (M1 A1) Ag(Np) ~Pr.

Of special interest is the case G=SO.(1,2)~PSL(2,R). Here, in the three cases
with |F|=1, one has that Hp is reductive (a split torus), while this is not the case for
|F|=2. Even more, for |F|=2 the spaces Zr are not even unimodular and have non-
trivial automorphism groups. We remark that the fine polar geometry of this example is
described in [11], and that trilinear functionals related to Z were studied by Bernstein
and Reznikov [5].

One might think that there is always a Levi decomposition Pr=G’UF for which one
has PrNH <G’;. The triple cases with |F|=2 show that this is not the case in general.
Hence, unlike to the symmetric situation, we cannot expect to have embeddings Zp<— Z

in general.

4.3. Induced adapted parabolics

For F'OFg we let
Qr=0QNGr=prp(Q),

which is a parabolic subgroup of Gr. It has the Levi decomposition Q r=LrUg r, where
Lrp=L and UQ’FZUQGF.

LEMMA 4.2. The following assertions hold:

(1) QrHp=PninrHr is open in Gp;

(2) INh=qrNbr;

(3) QF is the Zp-adapted parabolic subgroup of Gp containing Puyin F.
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Proof. As QCPr and prp: Pr—Gp is a homomorphism, we obtain
QrHp =prp((QH)NPr) =prp((Pmin H)NPp) = Prinp HF.

This is an open set, since prp: Pr—Gp is an open map. Further we note that the Lie
algebra of Qg is given by
ar =qNgr = [+u”, (4.2)

We recall (3.2). It follows that
hpr =INh+H{X+T(X): X cu’}.
This in turn gives that
b =prp(hnpr) = Nh+{X+(PrpT)(X): X €u}. (4.3)

The combination of (4.2) and (4.3) results in the second assertion. The last assertion
now follows, as Lp , =L, CH (see §2). O

Observe that the lemma implies that anh=aNpp, and hence that there is an equality
of real ranks
rankg (Z) =rankg(ZF). (4.4)

Furthermore, Az, =Az.

4.4. Induced compression cones

We are interested in the behaviour of the compression cone under induction. Note that

there is a natural action of A on Az=A/Ag.

PROPOSITION 4.3. Let FDFg. Then
Ap-Ay=Ar-Ag,

for the induced spherical space Zp=Gp/Hp.

Proof. We shall prove that
Ay CAy, CAp-Ay. (4.5)

Let (7, V) be a regular irreducible real H-semi-spherical representation as considered in
(3.5). This induces a natural H p-semi-spherical representation (7wy,Y) of G as follows.



342 F. KNOP, B. KROTZ AND H. SCHLICHTKRULL

Set Y:=V/upV. Clearly Y is a Gp-module. Note that wg:=vo+urpV €Y is a lowest

weight vector, and hence generates an irreducible submodule, say Yy of Y. As
V =Uuw)vo =UWUup)vo CUWT) (Yo +upV),

we conclude that Yo=Y is irreducible. As 7 is regular with respect to @, we infer that wq
is regular with respect to Q. Likewise wg:=vy+urV is an Hp-semi-spherical vector
inY. As

V=U(g)vuw =U(q)vm,
we conclude that vy ¢uV. Since upCu, it follows that wg #0.
Now, if X €a,_~, then by (3.5)
Jim [y (exp(tX))wr] = [wo].

This shows the first inclusion in (4.5).

In the construction from above, we realized Y in a quotient of V, but it is also
possible to realize it as a subspace. Set Y:=U (gF)vo. Then Y is an irreducible lowest
weight module for Gp with lowest weight vy, and hence Y ~Y. Let us describe an explicit
isomorphism. Write p: V=Y for the G p-equivariant projection. Then the restriction of
p:=ply establishes an isomorphism of p: Y —Y. Then @H::;ﬁ_l(wH)E? is a non-zero
Hp-semi-spherical vector in Y. Then Vg=WH +{17]J;,, with @IJ; ckerp=upV. Let now
X€ay,,_ . By adding a suitable element X'€ar to X, we obtain that (X +X')<0 for all

roots « of up. Hence
Tim [(exp(t(X+ X'))ozr] = lim [rw(exp(t(X+X')))i] = [vo],

and the second inclusion in (4.5) is established. O

4.5. Unimodularity issues under induction
Let P<@G be a parabolic subgroup for which PH is open.
LEMMA 4.4. If Z is unimodular then so is P/(PNH).
Proof. As PH is open, we can identify P/(PNH) as an open subset of Z. The

G-invariant measure on Z then induces a P-invariant measure on P/(PNH). O
Next we observe the basic isomorphism
Zp:Gp/Hp:’P/(PﬂH)UP,

which together with Lemma 4.4 allows us to compute the associated modular character
Ap=Agz, (see (3.26)).
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LEMMA 4.5. Suppose that Z is unimodular. Then
(1) The modular function for Zp=Gp/Hp is given by

Ap(hu) =|det Ady, jupnp(h)], he€PNH and ueUp.
(2) In particular, if UpNH={1}, then
Ap(h)=|det Ady,(h)|, heHp.

Proof. Since the modular function is trivial on the nilpotent group Up, this follows

from the exact sequence
0—up/(upnh) —p/(pNbh) — p/(pNh+up) — 0

of (PNH)-modules. O

5. Wave-front spaces and interlaced spherical subgroups

The following notation will be used throughout. Recall the set of spherical roots
S:={o1,..,0.} Cay

such that
ay={X€az:0;(X)<0for 1<j<s}.

We let w1, ...,ws€az be the dual basis to 5, i.e. we require the following conditions:
o 0;(w;j)=0d;;, 1<4,j<s;
[ wiLaz,E.

This gives us the following coordinates of az:

RSXC(Z,E —az,

(t, X) l—>Zs:thJj+X, (5:1)

j=1

with a, corresponding to pairs (¢, X) with ¢;<0. Moreover,

ar=span{w;:j¢I}+az e, ICS. (5.2)
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5.1. Wave-front spaces

Let
a ={X€a:a(X)<O0 for all a€Il}

be the closure of the negative Weyl chamber. Then the projection to az along ay maps
a” into ay. We recall that Z is called wave-front provided the projection is onto, that
is, provided ay=(a"+ag)/ag.

Ezample 5.1. (a) All symmetric spaces are wave-front.

(b) The Gross—Prasad spaces (2.4) and (2.5) are wave-front.
(c) The triple space (see §4.2.2)

G/H = (SL(2,R) xSL(2, R) x SL(2, R))/ SL(2, R)

is wave-front.
(d) (s0(3,4),G2(R)) is wave-front.

(e) The series (2.1) and (2.2) are not wave-front.

A simple, but important feature of wave-front spaces is the fact which we record in

the next lemma.
LEMMA 5.2. If G/H is wave-front then so is G/HA; for all ICS.

Proof. Tt follows from Proposition 3.2 (3) and (5) and from equation (5.2) that the
wave-front-ness of G/HrA; amounts to a,+a;+ag=a" +a;+agy. O

We continue by collecting a few but important facts of wave-front spaces. Recall
from (3.8) that S CQx¢[II], and thus every o €S has a unique presentation =3 nqa
with n, €Q>¢. Accordingly, we define the support of o by

supp(o) :={a€ll:ny >0}.

We denote by {wj}sen the basis of a dual to II, i.e. a(wj)=0da,5. For every €S we let
I1, CII be the set of a for which R*w/ +apy=R*w,. The following is then a reformulation

of the definition of wave-front.

LEMMA 5.3. For a real spherical space Z the following conditions are equivalent:
(1) Z is wave-front;
(2) U,#£2 for all c€S.

Furthermore, for each o€,

I, =supp(o)\ U supp(a’). (5.3)
o'F#o
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Proof. Tt follows from the assumption of wave-front that the extremal rays of the
compression cone a, are generated by extremal rays of a~. Hence I, #@. Together with
(a"4apg)/agCay, we thus obtain the equivalence of (1) and (2). Let o€S. It follows
from the definition that a€Il, if and only if o(w/,)>0 and ¢’ (w),)=0 for all ¢'#0. Since
aesupp(o’) if and only if ¢’ (w!,) >0, we obtain (5.3). O

LEMMA 5.4. Suppose that Z is wave-front. Then I, ¢ Fg for all 0€S.

Proof. (Cf. [34, Proof of Lemma 2.7.2].) We argue by contradiction and assume
there exists o€S with II, CF. Let a€ll,. Then a€Fy, and hence a¥e€ay by (4.1).
Thus (@, 0’)=0 for all 6’€S. Moreover, for ¢’#c and all f€supp(c’) we have £« by
(5.3), and hence (a, 5)<0. Hence

a Lsupp(c’), a€ll, and ¢’ € S\{c}. (5.4)

Let o=>"

noaa=01+09, where

o1:= E neex and og:= E N Q.

a€ll, aesupp(o)\Il,

acll

With (5.3) and (5.4) we conclude now («,02)=0 for all a€ll,. As (a,0)=0, we thus
have {a,01)=0 for all a€Il,. Hence (o1,01)=0, which contradicts II,#@. This proves

the lemma. m

5.2. Interlaced subgroups

Let P<G be a parabolic subgroup. We say that H is interlaced by P if
UpCHCP,

where Up is the unipotent radical of P. Note that, with P=0(P), it follows that PH is
open if H is interlaced by P.

Observe also that, if H is interlaced by P, then Hp=GpNH and the Levi induced
spherical space is Zp=Gp/Hp~P/H.

We now show that H; is non-trivially interlaced for all ¢ S in case Z is wave-front.

With notation from above, we observe that we can use

Xr=—) w (5.5)

J¢l

for the element X in (3.9).
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Assume that Z is wave-front. To I CS we now attach a minimal set F'=FjCII such
that Fo CF and H is interlaced by Pr. We define F; to be the complement of J;CII,

where

Jr= | (I,\ Fp).

ol

PROPOSITION 5.5. Assume that Z is wave-front. Let ICS and F=F} be as defined
above. Then there exists an element Yr€ap such that Yr+ag=Xr and «(Y7)<O0 for all
a€X \(F). In particular,

pr=m+a+ @ g”
acld
a(Y1)<0

and GF:ZG(Y[).

Proof. Tt follows from Lemma 5.4 and the definition of II, that the coset

Z w;—kaH

a€ll;\Fg

is a positive multiple of w, for each o ¢ 1. Thus, for suitable constants ¢, >0, the element

Yr=—>_qcy, Cawy, has the desired property. O

COROLLARY 5.6. Let F=F;CII be as above. Then (I)=Qxo[F|N(S), aj=ap+ay
and
(GFQH)eUFCH]CFF. (56)

In particular, Hy is interlaced by Pp.

Proof. The first two statements follow immediately from Proposition 5.5. It also
follows that
a+pe{l) ifandonlyif a,3€(F) (5.7)

for all a€X,, and f€%,U{0} with a+5€Ny[S].
As FoCF, we have [NhCgp. It then follows from (5.7) and the descriptions of h
and h; by means of the maps T and T that

grNb+ur Ch; Chr.

This implies (5.6). O

Remark 5.7. The property of being interlaced may also hold in cases where Z is not
wave-front. For example, the spherical subgroup N is interlaced by Py, but Z=G/N

is not wave-front.
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6. Power series expansions of generalized matrix coefficients

on the compression cone

Given a Harish-Chandra module V for the pair (g, K), we write V' for its unique smooth
moderate growth Fréchet completion, and V~°° for the strong dual of V*°. Both V*°
and V> are G-modules. With a pair (v,7)€V > xV > we associate the generalized

matrix coefficient

mvm(g) ::77(971'”)7 ger

which is a smooth function on G.
Let Z=G/H be a real spherical space. We say that V is H-spherical provided that
(V=) £{0}. We recall (see [27, Theorem 3.2]) that

dim(V =) < dim(V/(Inh+1)V) < oo.

The group Az g naturally acts on the vector space (V~>°). Note, however, that the
action need not be semi-simple. In the sequel we only consider n€ (V=) which are
eigenvectors of Az k.

In this case, we call (V,n) an H-spherical pair. We then regard m,, , as an element

of C°(G/H).

Remark 6.1. For our objective, namely to understand tempered representations, the
assumption that 7 is an Az g-eigenvector is no loss of generality. In order to justify that
we recall the abstract Plancherel theorem for the left regular action L of G on L?(Z):

D
12(2)~ /G Mo @M, du(r) (6.1)

with M, C(H,>)H, the multiplicity space equipped with some inner product (see [21,
§5.1] for the notation). Our interest lies in those linear forms 7 which belong to M, and
the corresponding matrix coefficients m,, ,, € L?(Z) obtained from (6.1) with veH2°.

If iz denotes the Haar-measure on Z, then there exists a positive character ¢ of
Az g, the restriction of the modular function A of (3.26) for 2:G/HA27E, such that
pz(Ea)=y(a)uz(FE) for all measurable sets ECZ and a€ Az . Hence, we obtain a

unitary representation R of Az g by

(R(a)f)(2) = /¥(a)f(za), feL*(Z), 26 Zand a€ Az p.

As the representations R and L commute, we obtain from (6.1) for p-almost all 7 that
the natural action of Az on (V ~°°)H restricts to a unitary action on M. In particular,
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this action on M, is semi-simple. Moreover, if n€ M is an eigenvector with eigenvalue

1/2

aX, then f=m, , is an eigenvector for R(a) with eigenvalue ¥ (a)'/“aX. Hence,

efeX = A(a)~1/? (6.2)

for all x€a7, p ¢ appearing in the spectrum of the az g-module M.

Recall the set W=FF', where F’ C}AIO is a set of representatives of the component
group ﬁO/HAzyE. For weW we set 1, :=w-n=n(w~!-), and observe that 7, is H,-fixed.
We thus have an isomorphism

(V—oo)H SN (V_oo)Hw7

nN—>"w-
We recall that LNH < H,, for all weW. Observe the obvious identity

Moy (gW-20) =My, (9-2w), gEG, (6.3)

where z,, denotes the origin of the homogeneous space Z,,=G/H,,.

LEMMA 6.2. Let ne(V=) be an Az g-eigenvector corresponding to a character
XEay g ¢, t-e. an=aXn for a€Az . Then, for all weW,

a'nw:axnwy aeAZ,E-

Proof. Recall from Lemma 3.5 that aw=wah for some h€ H. From this, the asser-
tion follows. O

From this lemma, we obtain the identity
My p(abw-2p) = a*my, ,(bw-2p) (6.4)

for all a€c Az g, b€ Az and weW.
In the sequel, we realize az inside of a as uﬁ. Let ag€ A be such that ag Ay lies in
the interior of A. It follows from [27, Lemma 5.1] that we can choose this element a
such that, in addition, there is a relatively compact open neighbourhood U4 of 1 in Az,
with
t+Ad(a)hy,+az=g (6.5)
for all acagUa-A, and weW. What we have fixed so far are the tori A and Az. These

are invariant under conjugation by ag, and hence we are free to replace K by Ad(a; ') K.
We may thus assume that (6.5) holds for all acUy4-A,. We note that such a change
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leaves the neighborhood U4 unchanged. Moreover, we still have the freedom of making
further replacements of this type, but now only by elements from A7 .

What we actually use is the conjugated form
Ad(a)ile+az+bw =6 (66)

and we express elements from the Lie algebra (and via Poincaré-Birkhoff-Witt also
elements from U(g)) via this decomposition. We then let (g) act on smooth functions
on G via right differentiation. Functions on Z,=G/H,, will be considered as functions
on GG which are right H,-invariant. The functions of our concern are the smooth matrix

coefficients g—m,, ,,, (g) when restricted to functions on Us-Aj.

6.1. Holomorphic decompositions of the universal enveloping algebra

The fact that matrix coefficients m,, , admit power series expansions when restricted to
A~ Ay /Ag CA7 rests on several decomposition theorems for the universal algebra U(g)
of g. These results were in provided in [27, §5], and are parallel to the special case where
Z is a group (see [16, Chapter VIII, §7 and §8]).

We develop here the framework for a theory, which extends the results from [27] by
allowing the expansions to take place on the full compression cone A .

Recall the coordinates (5.1) of az and fix a basis v, ..., V. of ay - We write D for the
open unit disc in C and write D*=D\{0}. Let D=D*x(C*)¢ and D*=(D*)" x (C*)e.

For r>1 we realize A, in rD* via the map

Ay — DX,

Os 141 v,

a— (a’,...,a%,a",...,a"°).

It is no loss of generality to assume that U4 and r are chosen such that
TDO(R>0)R - UA'AE

We write O(D) for the ring of holomorphic functions on D and O, (D) for the subring
of functions which are independent of the variable from (C*)¢.

Let (W)); be a basis for by, =I[Nh+u such that either W;elnh or W;=X_,€g™¢
for some a€X,. Further, let (Vi) be a basis for az and (Uj), be a linear independent
set in € which complements (W, Vi), to a basis for g.

For ae Az we set Wi(a):=W, if W;ehNl, and, with the notation of (3.3),

wi (CL) = X—(X+Z anrﬁXa,ﬁ =a” Ad(a) (X—a +T(X—a))
B
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if W;=X_,. Then (W;(a)); is a basis of Ad(a)h for all a€ Az, and the transition be-
tween (Wi (ab)); and (Ad(b)W;(a)); is by a diagonal matrix depending only on b€ Az. In
particular, Wi(a)=W;(ab) for be Az k.

Now note the following, as a consequence of our normalization (3.7) of S: The set of
vectors (Wi(a), Vi, U;)1k,; is expressable in terms of the basis (Wi, Vi, U;); 5, ; through a
transition matrix of the form 1+ P(a), where each entry of P(a) extends to a polynomial
in O1(rD) without constant term. It follows that there exists ap€ A, such that this
matrix is invertible for all acaoUas Ay, and such that the entries of the inverse matrix
again belong to Oy (rD) as functions of a; ‘a.

LEMMA 6.3. There exists ag€ Ay with the following property. For every X €g there
exist functions f;, gx, i €O1(rD) such that

X= Zf] )U; +ng Vk+2hl YW (aga)
for all acUy4-Ay. Moreover, the values at zero of these functions are given by

X = ij U +ng Vk"‘zhl

In particular, g, (0)=0 for all k if Xeu.

Proof. This is clear by the preceeding remarks. The statement for X €u follows from
the fact that uC€+bhym=span{U;, W;}. O

Using induction on the degree, an immediate consequence of the preceding lemma

is the following.

COROLLARY 6.4. (See [27, Lemma 5.3]) For every ucl(g) there exist U;€U(t),
VieU(az), Wj(a)eU(Ad(a)h) and f;€O:1(rD) such that

U—Zf] agta)U,;V;Wj(a), a€aoUa-Ay. (6.7)

Moreover, each W is a product of W;’s, as a function of a, and
deg(U;)+deg(V;)+deg(W;(a)) < deg(u).

For every n€Ny we denote by U(g), the subspace of U(g) consisting of elements of
degree at most n.
We use Z(g), the center of U(g), to replace the V;’s in the decomposition (6.7). The

formal statement is as follows.
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LEMMA 6.5. There exists a finite-dimensional subspace Y CU(az) with the following

property: For all n€Ny there exists an element a, €A, such that for every ueld(g)n
there exist U;eU(®), Y, €Y, z;€Z(g), W,(a)eU(Ad(a)h) and f;€O1(rD) such that

p
u=Y_fila,'a)U;Y;W;(a)z;, aca,Ua Ay (6.8)
j=1

Moreover, each W is a product of W;’s, as a function of a.

Proof. The proof, which goes by induction on the index n, is analogous to that of
[27, Lemma 5.5]. As explained there, we can reduce to the case where u=Xv, with X cu
and veU(g),—1 (note that, by [27, equation (5.9)], we have T,,,» €hNl for the element
denoted like that, and hence this element is a fixed linear combination of the W;(a)’s

for all a). In fact, it is more convenient to consider u=vX, which is equivalent as the

induction hypothesis applies to [X, v]. We use Lemma 6.3 and obtain, for acaoUa-A7,
u= Z filagta) ’uUj+Z gr(agta) ka+Z hi(ag ta) vWi(a).
j k 1

The terms with W; obtain the desired form (for any a,, €a,—1A4,) immediately from the
induction hypothesis applied to v. By replacing vU; with U;v, which we are allowed to
do by the induction hypothesis, we can say the same for the terms with U;. Finally,
since X €u, we have from Lemma 6.3 that ¢ (0)=0 for all k. This allows us to use the
argument in the final lines of the proof of [27, Lemma 5.5], and obtain (6.8) with an
appropriate a,. O

The main conclusion then is the following.

PROPOSITION 6.6. Let ucl(az), and let a,€A, be as in the preceding lemma.
Then, there exist U;eU(Ad(a,) "), Y,€Y, 2;€Z(g) and fj€0:1(rD) such that

p
u=> fi(a)(Ad(a)"'U;)Y;z; mod U(g)h, acUas-Ay. (6.9)
j=1
Proof. Let acUs-A; . Then
p
u=>Y_fi(a)U;Y;W;(ana)z;,
j=1

by (6.8). Apply Ad(ana)~! and observe that Ad(a,a) tu=u. O

Remark 6.7. It is clear that Proposition 6.6 holds as well if § is replaced by b,, for
wew.
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By a hypersurface in Az we understand a level set of a non-zero real analytic function
on Az. Notice that a hypersurface is a closed subset of measure zero.
Then there is the following counterpart of Proposition 6.6 which does not depend

on the filtration degree n but carries no information on the coefficients.

LEMMA 6.8. There exists a countable union of hypersurfaces SC Az such that
U(g) =U(Ad(a) 'OV Z(g)U(h), acAz\S. (6.10)

Proof. The proof of [27, Lemma 5.5] shows that for every n€N there exists a finite
union of hypersurfaces S,, C Az such that

U(g)n CUAA(@)'YZ(a)U(h) acAz\S,. O

We let now ng:=14+max{degY:Y €Y}. As described in (6.5), we are free to replace
K by Ad(ay ') K without disturbing other choices. We do this with the above element a,,, .
Then we obtain that (6.9) holds for all uelf(a),, with U;€l/(t). Further, Lemma 6.8

allows us to request in addition that

U(g) =U®)YZ(g)U((hw)1) (6.11)

for all ICS and weWw.

We recapitulate that we have shown that there exists a Cartan involution for which
(6.5) holds for all acU4- A7, for which (6.9) is valid for uelf(a),,, with U; €U/ (¥), and for
which (6.11) holds for all ICS and weW. We shall refer to the corresponding maximal
compact subgroup K as regular.

We recall that, in case h=n, the decomposition (6.11) reduces to the Casselman—
Osborne lemma ([36, Proposition 3.7.1]), and that it implies the following finiteness result

(see [1, Proposition 4.2]).

LEMMA 6.9. With a reqular choice of K, every Harish-Chandra module V' is finitely
generated as U((hy)1)-module, for all weW and ICS. In particular, Ho(V, (bw)r)=
V/(bw)1V is finite-dimensional.

We now fix once and for all a Cartan involution for which K is regular.

6.2. Power series expansions for K-finite vectors

Following [10] and [2], we developed in [27, §5] a theory of power series expansions for K-
finite matrix coeflicients m,, ,,,, which we briefly summarize. Attached to an H-spherical
pair (V,n), there exists a number deN and for each v€V a finite set

£ = {A17 ...7Al} C a*Z,(C
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such that for every weWV one has an expansion

!
mvm(aw-zo)zz Z ati g, ;. (loga) (6.12)

J=1 aeNg[S]

with absolute convergence for all acU4Ay. The expansion (6.12) is derived in analogy
to [27, Corollary 5.7] when we use Proposition 6.6 (with the regular choice of €), and
Remark 6.7 instead of [27, Lemma 5.5]. Here we also used that 1 is an Az g-eigenvector

to separate off the Az g-behavior of m, ,, in advance (see (6.4)), i.e.
Ajlaye=x, 1<j<L (6.13)

We can arrange that no mutual difference between two elements from £ belongs to
Z[S]. The individual terms in (6.12) are then unique.
The set of exponents of v along A is then the set

Ey,={{€ayc:{=A;j+a for some o, j and w with g4 jw 70}
and the set of leading exponents is
Eleadw ={6€E,:{—a ¢ E, for all a e Ng[S]\{0}}.

Let a®bCg be a full Cartan subalgebra, and let W denote the corresponding Weyl
group for the root system of (a®b)c in gc. As in [16, Theorem 8.33] (see also [2,
Theorem 2.4 and Proposition 4.1]) we find, in case V' admits an infinitesimal character,
that

5lead,v C {UA|az :UGWC}"_QPa (614)

where A€ (adb)g is the infinitesimal character of V. As every Harish-Chandra module
has a finite composition series, we conclude that Eieaq,, is finite.
Notice that the set on the right side of the inclusion (6.14) is independent of v. We
define
==\ |z, (6.15)

and
Elead :={£€E:{—a ¢ = for all @ e Np[S]\{0}}. (6.16)

It follows that
Eleaa C {uA|aZ ue WC}+QP7
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and in particular it is a finite set. Now
EC glcad+N0[S]v

and the expansion (6.12) reads

Moy (aw-29) = Zagqn’v’gﬁw(log a), (6.17)
(eE

with polynomials gy ¢, of degree <d which depend linearly on n and v. To simplify
notation, we shall write g¢ ., instead of ¢, . ¢, Whenever it is clear from the context that

7 and v have been fixed. From (6.3) we see that
q"lw=U7€71 = q”],U,f,’w (618)
for all weW. Note that all €S vanish on az g, and hence, by (6.13),

§|UZ‘E =X SGE (619)

To the pair (V,n) we attach now an element Ay, €a?, as follows. Recalling (5.1), we let

Ay (wj) == rérgél Reé(w;) = )\Ierg]gd Re A(wj) (6.20)
and define
AV7"7|aZ,E =Re X- (621)

Remark 6.10. The exponent Ay defined in [24, Theorem 5.8] does not depend on
the particular 7). The exponent Ay, defined here is an invariant of the pair (V,n).

6.3. Upper and lower bounds on matrix coefficients

We regard Ay, as an element in a* trivial on ay. Hence (6.17) yields, after possibly
shrinking U4, for all veV a constant C, >0 such that

|My n(aw-2o)| < Cy(1+||log aH)daAV”'7 acUy-Ay, (6.22)

for all weW.
A sharper upper bound is possible along rays in A,. By (5.1) and (6.19)-(6.21), we
find for a€ A}, that

wy(a):= rglax a®e <alvn, ae Ay (6.23)
€E
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Let S(a) be the intersection of the unit sphere with a, then
w,(exp(tX)) =ex, ¢>0,

where

Ax ::glea:XReg(X), X €8S(ay).

Observe also that w,, is continuous and a weight on A, that is, for all compact subsets
C4CAj there exists a constant ¢>0 such that

1
-w,(a) <wy(ba) <cw,(a), a€Ay and beCa.
c

Furthermore, let
EX:{geE:Re§(X):)\X},

and define
dx = rvnea‘3< deg(t— qu.e.0w(tX))
£EEX
wew
and

d, (exp(tX)):=t?, t>0.

LEMMA 6.11. Let XES(a}). For each veV there exists a constant C=C, x>0
such that

My n(exp(tX)w-2o)| < Cwy(exp(tX))d,(exp(tX)) (6.24)
for all t21 and weW.

Proof. With (6.17) we write

mvn atw:- ZO Z atqvﬁw tX Z at‘]v,{w tX)
EEEX EEE\EX

where a;=exp(tX). The polynomials ¢, ¢ ., in the first sum have degree at most dx, and
hence the asserted bound follows for this part. In the second sum the polynomials may
have higher degrees (up to d), but as the exponentials are bounded by e*xt for some
Ny <Ay, this term is in fact of the form o(e!*x) for t—oo. O

The bound in (6.24) is essentially optimal. The formal statement will be given in
Proposition 6.13. However, we first need a lemma.
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LEMMA 6.12. Let X€S(ay) and let Ax and dx be defined as above. Then the set
A={(X):(€Ex}CAx+iR
is finite. Then for each Yg€ayz we have
deg(t— que,w(Yo+tX)) <dx (6.25)

for all veV, E€=x and weW, and there exist A\e A, veV and weW such that

d%GH Z:é%@%MmHXOQz (6.26)
£es
E(X)=X
Proof. We start with a general remark. Given Y €az and a differentiable function f
on az, we let Y f be the derivative of f with respect to Y. Then the coefficients of m,,

and my,, are related by
4y o w= Y[ Gueul- (6.27)

Let (£€=x and weW. For each veV we consider
eg(Y)QU,S,w (Y +tX)

as an analytic function of Y €ay into the space of polynomials in ¢ of degree <d. The
value of this function at Y'=0 belongs to the subspace of polynomials of degree <dx,
and by (6.27) the same is valid for all its derivatives at zero. It follows that it has degree
<dx for all Y. This proves (6.25).

Likewise, for A€ A and weW we consider for each veV

e~ tAX) Z eé(Y+tX)qU,§,w(Y+tX) (6.28)
ez

£(X)=A
as an analytic function of Y €az into the space of polynomials in ¢ of degree <dx. If
(6.26) fails to hold, then (6.28) is a polynomial in ¢ of degree <dx for every A, v and w,
and for Y =Y.

Then, again by (6.27), this will be the case also for the derivatives at Y=Y}, and
hence (6.28) has degree <dx at every Y. By the linear independence of the involved
exponential polynomials of Y, this implies that the individual terms g, ¢ .,(Y +tX) also
must have degree <dx at every Y, and hence in particular at Y=0. A contradiction
with the definition of dx is then reached. O
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PROPOSITION 6.13. Assume that n#0. Let Yo€a, and X €S(ay). Then, there exist
weW, veV, a constant C=Cy, x>0, an €>0 and a sequence t; <ta<... with t,—00
such that

[0 ., (exp(Yo+1X) - 24 )| = Cwy (exp(tX)) dyy (exp(tX)) (6.29)

for all te(t,—e,t,+¢) and all neN.

Proof. Consider the function
Fyw(t):= Z o.c.0(Yo+1X)ef Vo HtX),
EEEX

As in the proof of Lemma 6.11, we have
My (exp(Yo+tX)w-2o) = Fv’w(t)—i—o(et/\x) (6.30)
as t—o00
Let ACAx+iR be as in Lemma 6.12. Then

Fouw(t)=e?x Y et 3 7 ef00)g, ¢ (Yo +tX).
AEA ge=

£(X)=x
For a one-variable polynomial p(t):Z;-VZO a;t? we denote by p(t);=a; the jth coefficient.
With v and w as in the final conclusion of Lemma 6.12, we set
ey = Z S0 gy 60 (Yo+X )ay

€EE
£(X)=A

for A€ A, and note that then c¢)#0 for some A. If we let
ngg(t) ::6t/\xtdx Z C)\eitlm)\’
AEA

then it follows from Lemma 6.14 below that

lim sup |e~tAx ¢~ dx Fyob(t) 12 #£0.

t—o0

it Im A\

Moreover, since the derivative of D, cxe is bounded above, we deduce the exis-

tence of positive constants C and ¢, and a sequence t; <ty <... with ¢, — 00 such that
[FL8(8)] > Ce i
for all [t—t,|<e. Now (6.29) follows from (6.30). O
The following lemma is shown in [36, Appendix 4.A.1.2 (1)].

LEMMA 6.14. Let uq,...,un, €ER be distinct real numbers and let cq,...,c¢, EC. Then

m m 2
2 : AR

E lc;]* <limsup g c;e

. S§—00 .

Jj=1 Jj=1
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7. Quantitative upper bounds for generalized matrix coefficients

The goal of this section is to achieve more quantitative versions of (6.22) and (6.24) in
which the v-dependent constant C' is replaced by a continuous norm on V. For this, we
shall need to impose on G/H that it is either absolutely spherical or wave-front.

A norm p on the Harish-Chandra module V' is called G-continuous, provided that the
Banach completion V), of V' defines a Banach representation of G' with VpK -fin ~g k' V (see
[4, §2.2]). It is a consequence of the Casselman embedding theorem that G-continuous
norms exist.

Fix a basis X, ..., X,, of g. Given a G-continuous norm p on V', we define the kth
Sobolev norm py, of p by

p(v) = Z p(X7* - X)), weV,
mit.tmn <k
and note that py is G-continuous as well. The following two statements are variants of
the Casselman—Wallach globalization theorem (see [4]):

e For any two (G-continuous norms p and g one has V>~V >.

e For any two G-continuous norms p and ¢ there exist k€N and C'>0 such that
p<Cqy.

We use the notation V°°:=V>, for any G-continuous norm p, and call V> the

Casselman—Wallach globalization of V.

7.1. The absolutely spherical case

In the following lemma we assume that the orbit set Pp,;n c\Gc/Hc is finite. The con-
dition that Ppin \G/H is finite is equivalent to G/H being real spherical (see [26]), but
finiteness of Pyin.c\Gc/Hc is known to be a stronger condition (see [31, Remark 7]). It
is fulfilled for absolutely spherical spaces, since then Bc\Ge/Hg is finite for every Borel
subgroup Bc.

LEMMA 7.1. Suppose that Pyinc\Gc/Hc is finite. Then the space hV>° is closed

in V>° for every Harish-Chandra module V. In particular, if Z is absolutely spherical,

then bV is closed in V°° for each boundary degeneration by of .

Proof. The first statement is a result from [1]. For the second statement, we observe

that Z; is absolutely spherical whenever Z is (see Remark 3.3). O

THEOREM 7.2. Assume that Z is absolutely spherical. Let (V,n) be a spherical pair
and QCG be a compact subset.

1) For every X e€S(a,) there exists a G-continuous norm q such that
Y Z

|Myn(wexp(tX)w-20)| < q(v)e”‘xtd’(, t>1,
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for every veV>, we and weW.
(2) Let p:=)_  cgo€ay. Then for all >0 there exists a G-continuous norm q
such that

[ (waw-20)| < g(v)a 2, ac Ay,
or every ve 5 we ana we .
Ve Q and w

Proof. For a G-continuous norm and a compact subset 2 CG, there exists a constant
C>0 such that p(wv)<Cp(v) holds for all we) and all veV*>. In view of mgyy ,(2)=
my,(g~12) for g€G, this reduces the statements in (1) and (2) to w=1. Likewise, with
(6.18) and Corollary 3.8, we can reduce to w=1 by applying that case to 1.

(1) Let XeS(ay,) be given and let I:={c€S:0(X)=0}. Recall then that X ea;
and that a; normalizes h;. We infer from Lemma 7.1 that h;V>°CV> is closed. In
particular, the dual of U:=V>°/h; V> is (V~>°)H1 and hence finite-dimensional. Thus
U is a finite-dimensional ar-module.

To simplify the exposition, we pretend that all root spaces g* are 1-dimensional. Fix
a basis of root vectors (X_, ), of Ui, and set Y_,:=X_,+T7(X_,)€b;. Further, let Y;
be a basis for [Nh. Then, the Y_, together with the Y; form a basis for the real spherical
subalgebra h;. Note that

Ad(a)Y_o=a""Y_,, a€As. (7.1)

From the fact that h;V > is closed in V°°, we also infer the following. Let p be
a G-continuous norm on V. Then, by the open mapping theorem, there exists a G-

continuous norm ¢ such that every veh;V>° admits a presentation
D=3Vt Y Vi
o J

where uj, u, € V> and

3 )+ 3 plus) <alo) (72)

After these preliminaries, we now begin the proof. As in the beginning of the proof
of [24, Theorem 3.2], we begin with a crude estimate. There exist a G-continuous norm

p and a constant p€R such that
[ (exp(tX)-20)| < e"'p(v), veV> and t>0. (7.3)

Let A\op=Xo(X) be the infimum of the set of all y for which such an estimate is valid for

some G-continuous norm p.
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In the first step we consider vectors veb; V> and let v=3)"_ Y_juq+>_ Yju; be a

presentation as above. Then we compute with (7.1), for all a€ Ay,

My p(a-2o) Zn a Y. alla) :Z n(Y,acflua).

[e%

Note that Y,a+za+ﬁ¢(1> Xa,p€h. Hence
My p(a-2o) Z Z Xapa~ Z Z O‘+5 a X, BUa). (7.4)
o a+B¢(l a a+B¢(I)

Notice that a®*#<1 if a€ A,. We now specialize to a=exp(tX) with ¢>0. Let

c=c(X) :ZQFB%¢)<(I>(Q+5)(X)’ (7.5)

and note that ¢<0, as X determines I.
Let p; be a first order Sobolev norm of p, and let ¢; be related to p; as in (7.2).
Then, by (7.3) and (7.4),

1100,y (exp(£X)-20)| < H) 3" p(Xo pra) < Cef P+ 3™ pi(ug) < CetvH9g; (v),
a,f «

where C'>0 is a constant determined from the coordinates of X, g in terms of the basis
for g used in the Sobolev norm.
This brings us to the following improved estimate for elements from h;V>°. For each

p and p satisfying (7.3) there exists a G-continuous norm p’ such that
Moy (exp(tX))| < ety (v),  t>0and veh V™. (7.6)

Let £=Ex be the spectrum of X on U. We write U=, o U[A] for the decom-
position into generalized X-eigenspaces, and correspondingly u=Y_, uy for ucU. For
veV> let [v]=v+h; V> be its equivalence class in U. Let

VN = {veV™:[v] € U]}

for Xe&.
Let Ae& and veV>[)]. Define

vor=v and v;:=(X—-Nvi1, i=1,2,....

Let d be the last value of 4 for which [v;]#0. Then X is represented by a lower triangular
Jordan matrix on the invariant subspace C4*!~spanc{[vo], ..., [va]} CU[A]. We denote
by B the transpose of that matrix. It follows from the definition of v; that

p(UL)gclh(U)v 7':071” (77)
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for all ve V>, with a constant C'>0 which depends on the coordinates of X —\ in terms
of the basis for g used in the Sobolev norm p;.

Now consider the C%*1-valued functions

F(t) = (mugn(exp(tX)), ..., My, n(exp(tX)))
and
R(t)=—(0,...,0,my (exp(tX)),

where w=vg441€h;V>°. Then F satisfies the ordinary differential equation
F'(t)=—BF(t)+R(t).

The general solution formula then gives
t
F(t)=e "PF(0)+e ' / e*PR(s) ds. (7.8)
0

From (7.6) and (7.7) we infer that for each p> M\ there exists a G-continuous norm p,

independent of v, such that
|F'(t)| < p(v) max{(1+t)de— Re At e(#+a/2)t}.

In particular, this estimate applies to m, ;.
We conclude that for each pair (p, ) satisfying (7.3), there exists a G-continuous

norm p” such that
(1100, (exp(tX))|  max{e™ A (148) 7, MDY (), 120, (7.9)

for all AeEx and all veV*>°[)]. Here d+1 is determined as the maximal possible length
of a Jordan block of X on U[)].

Before we move on, we recall the following standard fact from functional analy-
sis. Let E be a Fréchet space and FFCFE be a closed subspace, then E/F is a Fréchet
space. Moreover, if {p™},, is a sequence of semi-norms which define the topology on E,
then [p"](v+F):=inf,cp p"(v+w) is a family of semi-norms which defines the topology
on E/F.

Our previous discussion shows that for every G-continuous norm p on V there is a
G-continuous norm ¢ such that for all ve V> we find vy € V>°[A] with [vy]=[v]x and

p(vyn) <q(v), A€eE. (7.10)
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The continuity expressed by this will be used to combine estimates for v€V>°[\] with
different A€€& into an estimate for all veV*°.

We shall now split € into the disjoint union
E=E _UEUE,

of elements A\ with — Re A<\, — Re A=)y and — Re A> )\, respectively.

For Ae&_ we obtain from (7.9) that there exists a G-continuous norm p such that
[ (exp(tX))| < e’'p(v), t>0and ve V>[N, (7.11)

for some v<\g.
Let Ae&,U& and let u+%c<>\0<u. Then it follows from (7.6) that the integral

fooo e*BR(s) ds is absolutely convergent. Hence,

¢ =c>®(v):= lim P F(t) = F(O)+/ e*BR(s)ds € CIH1
0

t—o0

exists and satisfies |¢>°(v)|<p(v) for a G-continuous norm p. The solution formula (7.8)

can then be rewritten as

F(t)=e Be>®—etB / e*BR(s) ds. (7.12)

t

Moreover, we also obtain from (7.6) that

< COp(v)elrte/2t (7.13)

o0
e_tB/ e*BR(s)ds
t

o)
/ e*PR(s+t)ds
0

for a constant C'>0.
In particular, the estimate (7.13) applies to |m, ,(exp(tX)| when ¢>*°=0 and yields

[y (exp(tX)| < eWF/2p(v),  ¢20. (7.14)

It follows that ¢ cannot be zero for all A€e&yUE, and all veV°[)], as in that case we
would reach from (7.11) and (7.14) a contradiction with the definition of A.

Let now veV>®[\] be such that ¢*#0, say ¢*=(c§°,....c°,0,...,0) with ¢°#0.
Then

_ _tReal”
tBCOO|NCEO€ tRCAE

for ¢ large. Hence, with (7.12) and (7.13), for all v€V*°[\] we obtain

le

|y, (exp(tX))| < eftRC)‘(l—H)d*p(v), t>0. (7.15)
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Here d) is the maximal possible value of k among all veV>°[)\]. In addition, we have for

some v€V [\ a non-trivial lower bound
(1120, (exp(tX))| = Cot™ e~ 1o (7.16)

for Cy>0 and t sufficiently large. It follows that — Re A<\, and hence A€&;. In
particular, we conclude that (7.14) applies to all A€&,.

By combining (7.11) for Ae&_, (7.14) or (7.15) for Ae&y and (7.14) for Ae&,, and
using (7.10), we see that

[my, (exp(tX))| e (1+4t)dop(v), t>0. (7.17)
for all veV>°, where dj is the maximal value of dy for Ae&,. Moreover, by (7.16),
|myn(exp(tX))] > Cotdoetro

for some v€V>. We conclude from (6.24) that Cytdoet*o <Ctdxe!*x | and thus (7.17)
implies the statement in (1). Note that then \g=Ax by Proposition 6.13.

(2) Recall that |m, , (abw-zp)|=|m, ., (aw-2)|bAVn for all b€ Ay g, a€ Az and weW.
Hence we may assume that az =0 for our purpose.

For 6>0 and I& S we set

Ss(azNar):={X eS(ay)Na;: —a(X) =6 for all « € S\I)}.

Then, for each I#S and each 6>0, we obtain an estimate as in (1) with a G-continuous
norm g=gs which is uniform for all X €Ss(a;Na;). This is because in the proof of (1) only
the constant ¢ from (7.5) enters in the quantification of ¢q. Indeed, g was constructed
from the initial estimate (7.3), which is valid for all X, in a number of steps each of
which lowered the exponent p by %c. In each step a new norm p’ was constructed from
a previous one p, and this construction can be done independently of X, as long as it
remains in the bounded set S(a;). Since the constant g in the initial estimate (7.3)
can be chosen independently of X, and since Ao(X)=M\x is uniformly bounded below by
continuity, the maximal number of steps depends only on c.

Further, for |S\I|=1, i.e. ar is 1-dimensional, we note that Ss(a,Na;)=S(a;)Nas
if § is small enough. Hence, in this case, we have a-priori estimates which are uniform
for all XeS(a;)Na;. The proof then proceeds by induction on dima;. We explain the
proof for the final step where X €S(ay)Nay for ay=az. By the induction hypothesis, we
then have uniform estimates for all X €S(a;)Na; with |I|>1.

Let §>0 be fixed. It will be described at the end of the proof how it is chosen from
the given . As explained above, we have a uniform estimate for X €Ss(ay). For the
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remaining X €S(ay), we have —0 <a(X) <0 for at least one o€ S, and hence we can write
X=X1+X, where X; €S5(a;)Nay for some I CS with |I|>1 and Xs€az is small relative
to ¢, i.e. || Xa||<Cd with a constant C' independent of 4.

Observe that m., ,(exp(tX)-20) =Mexp(tx,)v,n(€xp(tX1) 20), and thus from (1) we
obtain that, for t>1,

|y (exp(tX) - 20)| < q(exp(tXQ)v)et’\Xl tixa
It follows from (6.23) that Ax, <Av,,,(X1). Since ¢ is G-continuous, we have
q(exp(tXz)v) < efl¥2lcag(v)
where ¢,>0 is a constant depending on ¢. Hence (2) follows if
[Avn (Xo) | +¢q[[ Xl < —en(X),

and this can be attained uniformly with a proper choice of §, since —p is bounded below
on S(ay). O

Remark 7.3. The proof of (1) shows that Ax is minus the real part of an eigenvalue
of X on the finite-dimensional a;-module U=V*/(h;),, V> for some weW.

Remark 7.4. In the group case Z=(GxG)/G~G, the existence of the norm ¢ in
Theorem 7.2 (2) makes the statement considerably stronger than the corresponding result
in [36, Theorem 4.3.5], because it implies a bound for matrix coefficients ms, on G,
which is simultaneously uniform with respect to the two smooth vectors v and v. We
refer to [24, Theorem 5.8], where the generalization is obtained for symmetric spaces and

subsequently explicated for the group case.

7.2. The wave-front case

For this case, we replace the smooth globalization V> by the analytic globalization
V@ CcV®>. We briefly recall its construction (see [21, Remark 6.6]). Let p be any G-
continuous norm on V. Then there is a family of analytic norms (not necessarily G-
continuous) {p:}eso on V, such that V‘*’:li_n; Ve with V¢ the completion of V' with
respect to p.. These norms feature the following properties:

(a) for e<e’ one has p. <p. and continuous inclusion Ve Sve:

(b) for each compact set QCG and >0 there exist 0<e’<e and a constant C' such
that p.s (g-v)<Cpe(v) for all veV and ge;

(¢) for each G-continuous norm ¢ and £>0, there exists a constant C such that

ngpa
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Let FCII and let Pr=GprUp be the associated parabolic subgroup as described
in §4. For any Harish-Chandra module V' we recall that V/iipV is a Harish-Chandra
module for the pair (gr, Kr), and as such has an analytic globalization (V/upV)* as

G p-representation.

LEMMA 7.5. Let V be a Harish-Chandra module. Then upV* is closed in V¥. In
particular, V¥ JupVY=(V/upV)«.

Proof. Since the analytic globalization V* coincides with the minimal globalization
of Kashiwara—Schmid, this follows from the version of the Casselman comparison theorem
established in [6, Theorem 1] or [9, Theorem 1.3]. O

THEOREM 7.6. Assume that Z is wave-front. Let V be a Harish-Chandra module,
(V,n) be a spherical pair, and p be a G-continuous norm on V. Then there exists a
constant dEN such that the following holds for each compact subset QCG and each
X eS(ay): for every e>0 there exists a constant C>0 such that

Mo (wa exp(tX)w-2z0)| < Cpe (v)e** 19X a™vn (14 log a)*
for all veV,t>1, ac Ay, weQ and weW.

Proof. By using the property (b) for the norms p., we reduce to w=1 as in the proof
of Theorem 7.2. Likewise we can assume that w=1.

Each element X €S(a;) determines a set I:={c€S|c(X)=0}. As we assume that
Z is wave-front we obtain a parabolic pr=pp, from Proposition 5.5. In particular, there
exists an element Y €a~ such that Y+ag=X and F={a€ll|a(Y)=0}. Moreover, for
every o=a+feM with a€X,\ (F) we record

(a+8)(X) = (a+8)(Y) <0. (7.18)

The proof is quite analogous to the one for Theorem 7.2 (1). We confine ourselves
to the steps where it differs. The main difference consists of replacing U=V>/h;V >
by U:=V¥/upV*%, and applying Lemma 7.5 in place of Lemma 7.1. We observe that as
U is a Harish-Chandra module for gp, it admits a finite decomposition into generalized
eigenspaces for ap.

As before, we pretend that all root spaces g* are 1-dimensional and fix a basis of
root vectors (X_, ), of iip. The expression (7.1) is just replaced by the corresponding
expression for Ad(a)X_,, where a€ A.

The inequality (7.2) has the following analytic counterpart. For all e >0 there exist
¢’>0 and a constant C. >0 such that every v€tipV admits a presentation v=>3_ X_,ua,
with u, €V and

> per(ua) < Cepe(v). (7.19)
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This follows from Lemma 7.5, by the argument of [21, Remark 6.6] (note that ¢ and &’
need to be interchanged in (6.5) of that remark).

We replace the initial estimate (7.3) by the following, which is derived from it with
property (c) for the norms p.. For some A€a¥, some p€R and all ¢’>0 there exist a
constant C' such that

My ,(aexp(tX)-20)| < Ce*aper(v), t>0and a€ Ay, (7.20)
Let veupV. With (3.3) and the above presentation of v we obtain, as in (7.4),

My p(a-2o) Z Z a®Pn(a™ X, pia) (7.21)

for all a€ Az. Here a+B€M, and hence a®#<1 if a€A,. In addition a¢(F), and
hence, by (7.18), there exists ¢<0 such that (a+3)(X)<c for all terms in (7.21).

From the crude estimate (7.20) we then obtain

My (aexp(tX)-20)| < Catet ) Zpg w,Bla), t=0andacAy.

Since p.s is analytic, there exists C'>0 such that p./ (X, gu) <C'pes (u) for all ueV, and
from (7.19) we finally derive the following improved estimate, analoguous to (7.6).

For each p satisfying (7.20) and for each £>0 there exists a constant C' such that
My (aexp(tX)-z0)| < Ca*e! " 9p_(v), t>0and ac Ay (7.22)

for all veugV.
Following the previous proof, with £=Ex now denoting the spectrum of X on the

ap-finite module U=V/upV, we arrive at the bound
Moy (aexp(tX)-z0)| < Cp:(v)aext4x

for all £>1, weQ), weW and ac€A,. Using the coordinates from (5.1) for a, we can
now iterate with the sequence X=-ws, ..., —w, and optimize X to Ay, at the cost of a

possible logarithmic term. O

8. Discrete series

All n€(V=>°)" t0 be considered in the sequel are requested to be A z,E-eigenvectors, say
a-n=aXn. Recall from (6.21) that then Ay |, , =Rex.
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For Z unimodular and for an irreducible Harish-Chandra module V' we introduced
in [21, Definition 5.3] the notion of a Z-tempered pair (V,n), and showed in [21, Propo-
sition 5.5] that this condition is satisfied by almost all pairs that contribute to the
Plancherel decomposition of Z. With [21] Remark 5.4 (V,n) is Z-tempered if and only
if for all v€V there exists a constant C,>0 and an m€N such that

[y g (waw- 20)| < Cra®? (1+||log al|)™ (8.1)

for all weQ), weW and a€ A;. Here pg:=p,€a’; is defined by 209 (X)=trad,(X), and
Q denotes a compact set for which (3.16) is valid.

Remark 8.1. In (8.1) we can replace the constant C, by ¢(v), where ¢ is a G-
continuous norm (see [21, Definition 5.3]). Hence the notion of a tempered pair (V, n) only

depends on V°° and not on the particular choice of the maximal compact subgroup K.

We now give a criterion for temperedness in terms of Ay,,. Let us first note that,
by (6.4) and (6.21), the temperedness (8.1) implies

(Avn—0Q)lazr =0 (8.2)

THEOREM 8.2. Let Z be a unimodular real spherical space and (V,n) be an H-
spherical pair. Then (1) implies (2) for the following assertions:

(1) (V,n) is tempered;

(2) (Avip—e0)|, <0

Moreover, if Z is wave-front, (1) and (2) are equivalent.

Proof. Tt is immediate from Theorem 7.6 that (2) implies (1) when Z is wave-front.

For the converse we use the lower bound in Proposition 6.13 with Yp=0 and X =—wjy,
together with (8.2) and

Aw; =Avy(—w;), 1<j<s. O

Recall the coordinates (5.1) of az. In the context of Theorem 8.2, we shall say that
the pair (V,n) satisfies the strong inequality if

(Aviy—0Q)(w;) >0, 1<j<s, (8.3)

holds, together with (8.2). This terminology is motivated by the relation of (8.3) to
square integrability, which will be shown in Theorem 8.5. For that we need to recall

some results on half-densities.

Remark 8.3. The strong inequality implies temperedness for spaces which are ab-
solutely spherical or wave-front. In the latter case this is part of Theorem 8.2. Using
Theorem 7.2 instead of Theorem 7.6 in the above proof, the assertion follows in the
absolutely spherical case as well.
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8.1. Densities on a homogeneous space

In this section we consider a closed subgroup H of a Lie group G and the associated
homogeneous space Z=G/H. In (3.26) we attached to Z the modular character Az =
|det Adgp|~* on H.

Let p=dim Z, fix 0#£Q€ A\”(g/h)* and observe that

Ad*(h)|2 = Az (R)I€].
We view A”(g/h)* as a subspace of A’ g* and extend Q to a G-invariant differential
p-form on G via
Q) (g (1) X1, ey dAg (1)X,) = AKX, s X)

for Xy,..., Xp€g and with \y(z)=gx for £€G, the left displacement by g on G.
Given a character £ of H, we set

Co(G3€)i= {f €C(G): f(-h) =€(h) " f(-) for he H}.
We write C°(G;€) for the subspace of C*°(G;¢) which consists of functions which are
compactly supported modulo H.
Now observe that, if f€C°(G;Az), then the density
€25 (9)(dAg(1) X1, ..., dAg (1) X)) = F(9) QU (X1, .., Xp)
factors to a smooth density on Z and every smooth density on Z is of this type. In other
words there is a natural identification
C*(G;Az) — Dens™(Z),
fr—19ly,
with the space Dens™(Z) of smooth densities of Z. This identification is observed to be
(G-equivariant.
In a moment we shall need certain spaces of smooth half-densities, which are defined
as follows. A character £: H—C* for which
gl=a/" (8.4)
will be called a normalized unitary character. For such characters we define on C°(G;¢€)

by
()= /Z 5

an inner product, which is preserved by the left regular action of G. We denote by
L?(Z;¢) the Hilbert completion of C2°(G; &) with respect to this inner product, and note
that it is a unitary G-module for the left regular representation. With the terminology
of [29], it is the representation induced by the unitary character A}l/ %¢ of H.

With that, we can define the &-twisted discrete series for G/H as the set of (equiv-
alence classes of) irreducible representations of G which embed into L?(Z;¢).
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8.2. A criterion for discrete series

Let us return to the set-up from before §8.1, with Z=G/H being real spherical and
unimodular. By a slight change from previous notation, we denote in this section by H
the connected Lie subgroup of G with Lie algebra 6 Likewise we set Z=G / H. Unlike

Z, the space 7 is not necessarily unimodular. We write A for the modular function of Z.

LEMMA 8.4. Let haEfL with a€Az g and he H. Then

A(ha)=a"2<.

Proof. Since Z is unimodular and H is a normal subgroup of H , we deduce that

HCker A. Hence
A(ha) = \detAdg/ﬁ(a)rl.

Finally observe that h is isomorphic to (INh)+u as an Az g-module. The assertion
follows. O

We extend the character e X of Az g to a character £ of H , which is trivial on H, and
note that it then follows from a-n=eXn that mw,ECOO(E; §). It follows from Lemma 8.4
that £ is normalized unitary if and only if Re x=g¢ (compare also (6.2)).

THEOREM 8.5. Let Z be unimodular, V be a Harish-Chandra module and ne(V—>)H
be an element with eigencharacter eX on Az g. Let {=e~X. Then (i) implies (ii) for the
following assertions:

(i) & is normalized unitary and mvmeLQ(Z;f) for all veV;

(ii) (V,n) satisfies the strong inequality (see (8.3)),

Moreover, if Z is absolutely spherical or wave-front, (i) and (ii) are equivalent.

It is a consequence of (i) that (the completion of) V' belongs to the &-twisted discrete

series of Z.

Proof. Assume (ii). It follows from (8.2) that Re x=Avy,,=0q on az g. Hence £ is
normalized unitary and [Q|,:=|Q|},, |2 is a density on 7 for each veV. We need to
show that it is integrable. Recall from (3.19), applied to Z:G/ﬁ, that

Z=F"KA W -z, (8.5)
where F"' is a finite set. Keep in mind that A%:AE/AZE and that we realize A5 CAz.
Let My=[Zknu(Aj)]e and note that MHWCWﬁ. Hence, the the polar map

@:F”XK/MHXAEXW—)E

associated with (8.5) is defined. We note that
e & has generically invertible differential;
e & has generically finite fibers,
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and that the second item follows from the first, as ® is, up to finite cover, the restriction
of a dominant algebraic map between complex varieties of the same dimension. Let
|w]y:=@*(|2],) be the pull-back of the density |Q],. It follows from the observations
above that |wl|, is integrable if and only if ||, is. Let us now compute this pull-back
explicitely. For a subspace UCg we fix a basis ui, ..., u, and set wy=ujA...Au, € A" g.
Let U be the orthogonal complement of my in €. Define a function J on Az by

J(a)|wg| = |wu Away A[Ad(a)wg]]- (8.6)

Then there exists a constant C'>0 (depending on the normalization of measures) such
that
|wlo (W', kM, a,w) = Clmy ,(w'kaw- o) |* J (a) |d|(a) |d| (kM)

for w' e F" and weW, where |d|(kMy) and |d|(a) are the Haar densities on K/Mpy and
A, respectively. We deduce from (8.6) and (3.11) that J(a)<Ca™2¢< for all acAz.

If Z is absolutely spherical or wave-front, the integrability of |w|, now follows from
Theorem 7.2 (2) and Theorem 7.6. Hence (i) is valid in that case. Assume (i). We argue

by contradiction and assume that (8.3) fails, i.e. there exists w; such that
(Aviy—0q)(w;) <O

It suffices to show that ||, is not integrable for some v, when pulled back to K x A~ as
in the first part of the proof. Suppose that v€V generates an irreducible K-module V;

with dimension d,. Then Schur-orthogonality implies that
1
[ a0 d(eMin) > - awe20) P
K/Mpy d.

and therefore o
/|wv| > d—/ My, (aw-20)[*J (a) da. (8.7)
T JAZ
z
Next, we need a lower bound on the Jacobian function J(a). We employ again (8.6) and
(3.11), and deduce for age Ag sufficiently far from walls that

J(ag exp(—tw;)) > Ce?te(«s)
for all £>0 and a positive constant C. Hence it follows from (8.7), Proposition 6.13 and
the Fubini theorem that ||, is not square integrable for some v. O

Remark 8.6. In case Z is wave-front or absolutely spherical, the above theorem
shows that if (V,n) satisfies the strong inequality, then this is also the case if we replace
V' by the space of K-fixed vectors in V*° for any other regular choice of K.
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8.3. The interlaced case

Recall that H is said to be interlaced by P if UpCHCP, and that in this case Zp=
Gp/Hp~P/H for the Levi-induced spherical space.

LEMMA 8.7. If H is interlaced by P and V embeds into L*(Z,€) for some normal-
ized unitary character £ with trivial restriction to Up, then there exists a twisted discrete
series o of Zp such that V embeds into the representation of G unitarily induced from
o®1 of P=GpUp.

Proof. We may assume that V is irreducible. Note that L?(Z,£) is unitary equivalent
with the induced representation Ind% (¢ ®A21/ ?). Induction by stages (see [29]) implies
that this is unitary equivalent with Ind% IndZ(ﬁ@A;m). Since & is trivial on Up, the
representations IndZ(§®A;/2) and Indgl’; (§|HP®A;/2)®1 of P=GpUp are unitary
equivalent. Let

tp=Elm, 00, P00,

P

Then L2(Zp,§p)'zlndg’; (§®A;/2). Hence V' embeds into the unitary representation
Ind$(L2(Zp,£p)®1), and this implies that it embeds in Ind%(c®1) for some irreducible
subrepresentation o of L?(Zp,£&p). O

9. The tempered spectrum of Z

Let (V,n) be a spherical pair. In this section we use the power series expansions of m,, ,

from §6 to define maps

(V7o) — (o),

\ M, w
77 77[ 9

where ;1 runs through certain elements of £, the leading exponents of the m, ,. These
maps can be thought of as Radon transforms for a single spherical representation—
analytically a Radon transform would be the map which takes a rapidly decaying func-
tion on G/H to a function on G/(H,)s by integrating out fibers (Hy)r/(HN(Hy)r).
The coefficients of the power series expansion of m, , are indexed by £ xNy[S]. Roughly
speaking, discarding all the coefficients not belonging to {u} xNg[I] and evaluating the
partial expansion at weW produces an (h,,)-invariant linear functional 7" on V' (see
Lemma 9.2). The difficult part is then to see that " is continuous, i.e. extends contin-
uously to V°°. Under the assumption that Z is wave-front or absolutely spherical, this
is achieved in Lemma 9.4 using the sharp bounds from §7. Since A; acts on the finite-
dimensional space (V~°°)()1 we obtain a finite-dimensional A;-module W-generated
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by ny"*. Appropriate Aj-eigenvectors which we call 7-optimal, then give the tempered
embedding theorem (Theorem 9.11) for a tempered pair (V, 7).

9.1. Leading coeflicient maps
Let (V,7n) be an H-spherical pair as considered in §6, and let ECaj ¢ be the associated
set of exponents (see (6.15)). We shall attach a set of leading coefficient maps

Lr: V—%COO(UAAE),

to each subset 1CS.

Let Er={¢]q,:£€E} be the set of exponents along A;. In analogy with &jeaq, we let
Elead,r consist of those exponents pe=; for which p—olq, ¢=; for all ceNg[S]\(I) (see
(6.16)).

Then

%) 7é glead,[ C glead|a1 (91)

and
EI C glead,I"'NO [S] |u1 = glead,l"'NO[(S\I)‘uI]-

For each ;1€&eaq,r and each weWW we define
LY (v)(a) = Z Qv w(loga)a®
geE
E‘aI:H
for veV and acUs Ay, where ¢, ¢ ., is defined by (6.17).

LEMMA 9.1. Let p€&ead,r and weW. The linear map LYV —C>(UasAy) is

az-equivariant.

Proof. This follows from the uniqueness of the coefficients in the asymptotic expan-
sions of m,, ,(aw-zp) and L5 (v)(a) (see also (6.27)). O

Denote by V* the algebraic dual of V and define LY"": A;—V* by
L7*(a)(v) ==L} (v)(a).

Notice that
L7 (a)(v) =a"py pw(loga), a€ A,
for a polynomial p, ,, « on a.

LEMMA 9.2. Let p€&icaa,r and weW. Then im L‘I"“’C(V*)(hwh_
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Proof. For the proof we assume first that w=1 is trivial. Recall that, for the linear
operator Tr:ii—(INh)L du given by (3.10),

hr= ([ﬂf))—l—{X-i—T[(X) :XGﬁ}.

First, it is clear that mXU»”]‘A; =0 for all Xehnl=h;NI. This readily implies that
LY (a)e(V*)' for all a€ A;. Next, for a€X, and X_,€g~%, we note that

T(Xfa)_TI(Xfa) = Z Xa,8 (9.2)
a+pBE(I)
with the notation of (3.3) and (3.10).
Let X=X_,+T1(X_o)€br and note that, since T7(X_,,) is a sum of root vectors
X, 5€0” with a+Be(I), we have Ad(a)X=a"*X for a€ A;. Hence, for veV,

MX.pn(a 20) =nla - X-v)=a"n(Xa '-v).
Let Y=T(X_,)—Ti(X_o)€u. Then X+Y €h, and for a€ A; we obtain from above
Mx.vn(a-zo) = —a®n(Ya ') = —a“M(Ad(a)Y)-v,n(0"20)-

Inserting the root vector expansion (9.2), we obtain

Mx.vy(a-20) =— Z aa'*'ﬂmxa,ﬁ.vm(a-zo). (9.3)

a+BE(I)
By inserting for the matrix coefficients on the right-hand side of (9.3) their expan-
sions according to (6.17), we see that on A;NUAA, the function mx.,,(a-29) allows
an expansion with exponents which are of the form ¢|,, with £=¢+0, where ¢’ €E and
o=a+FeNg[S]\(I). By the definition of Eead,r We get &|q, #u, and hence we conclude
that L?’l(a)(Xv)zo for a€ A;. Finally, the case of an arbitrary w proceeds along the

same lines in view of the description of b,, in (3.20). O

Let W be a finite-dimensional vector space and p€(ar)g. Then we call f: A;—W a
p-polynomial map provided that for all A€ W™ there exists a polynomial py on a; such
that (Ae f)(a)=a*px(loga) for all ac A;. Notice that there is a natural action of A; on
the space of all u-polynomial maps, and accordingly we obtain an action of U (ay). The

following lemma is then straightforward from the definitions.

LEMMA 9.3. Let f: A;—W be a p-polynomial map.

(1) If f#0, then there exists u€U(ay) such that u-f#0 and (u-f)(a)=a*(u-f)(1)
for all acAy.

(2) If in addition WoCW is a subspace with im fCWy, then im(u-f)CWy for all
uel(ay).
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We now apply this to the specific situation where W =(V*)=)1 Observe that W~
(V/(bw)1V)* is a finite-dimensional Aj-module by Lemma 6.9, and that in Lemmas 9.1
and 9.2 we have established that L7™": A;—W is an Aj-equivariant p-polynomial map.
There are two invariant subspaces which are in our interest: (V—°°)0w)r c(y—«)w)r,
We already know from Lemma 9.3 that there exists an element u€lf(ay) such that u-L;""
transforms as a character. Since we want to keep track of certain symmetries, we need to
explicitly construct u via an iterative procedure. This will be done in (9.12). To prepare
for that, let X €ay be such that o(X)<0 for all c€S\I and sufficiently generic such that
Im A(X)#Im N (X) for all pairs A#N in Ejeaq,r with Re A(X)=Re N (X). Recall from
86.3 the constants Ax and dx. Then Re&(X)<Ax for all £€Z, and for each £€Z with
Re&(X)=Ax we have &|q; €&lead,r- By Lemma 6.12, the polynomial ¢+ g, ¢, (Y +tX)
has degree at most dx for all Y €a;. Hence, for each p€&eaa,r with Re u(X)=>Ax, an
assignment

Ly Ar— (V*)(bw)r

is defined by
Ly x(a)(v) = lim eI = dX LY (g exp(tX)) (v). (9.4)

LEMMA 9.4. Let X €ay be as above and p€Eeaa,r be such that Re p(X)=Ax. Sup-
pose that Z is either absolutely spherical or wave-front. Then, the following assertions
hold for the u-polynomial map L™ Ap— (V*) (w1,

(1) imLf‘)’)“éC(V_oo)(bw)’ for all w and p as above;

(2) Ly (1)#0 for some w and p.

Proof. (1) Suppose first that Z is absolutely spherical. Fix a€A; and veV. It
follows from (6.30) that

My (exp(tX)aw-zp) = Z LY (aexp(tX))(v)+o(e**?).
HEElead, 1
Re pu(X)=Ax

With 7,,:=L}¥ (a), we then deduce from Theorem 7.2 (1) and (9.4) that

| Z oilm ”(X)tﬁu(?})‘f'Rv(t) <q(v) (9.5)

pEEead, 1
Re p(X)=Ax

for all t>1, with remainder R, (t)—0 for t—o00 and with a G-continuous norm ¢ on V.
As we have chosen X generic enough, we can use the oscillatory argument from [36,
Lemma 4A.1.2; fact (1)] to deduce that

2

)

Z 1, (v)]? < lim sup
o t—00

Z ei Im,u(X)tT]M(U)
n
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and hence |7, (v)|<q(v) for each p. This proves (1) for Z absolutely spherical.

If Z is wave-front, then we proceed similarly as above, but use Theorem 7.6 instead of
Theorem 7.2(1) while carrying an additional Az-variable along: We first obtain as above
for be Ay that my:=L{"Y (b)€ (V) O»)r. Let W, (V%)) be the finite-dimensional
space generated by im L‘I‘)“é Observe that the action of A; on W, is by a single Jordan
block corresponding to p. Hence, with the notions of Theorem 7.6, we find a deN such
that

70 (@010 2,1)] < Cope (0)0a (11 [log al + [log b))

for all veV, a€Ay, be A, weQ, w'€W and all €>0. It follows from [21, Lemma 3.1
and Proposition 3.4] that there exists a weight w: Z,, ; —R* such that

w(abwz,,1) > ba™n (1+ [log af| + [log b]])?

for all ac A, be Ar and w’€W. Note that Aéw,I:AIA}' In particular, employing the
polar decomposition for Z,, s, it follows that
q(v) = sup |my,, (2)|wH(z)<oo, veEVY.
2€Zw 1
We claim that ¢ is a G-continuous norm on V. To see that, we first note that the
G-action on the Banach space E=L>(Z,w~'dz) is by locally equicontinuous operators
(see [4, Lemma 2.3]), and hence the G-continuous vectors E.C E form a G-stable closed
subspace of F, i.e. the action of G on E. defines a Banach representation. Now VCE.,
as V consists even of smooth vectors. Hence, ¢ is a GG-continuous norm on V. Since
7 (V)| <W(2.1)q(v) for all vEV, we deduce that n,€ (V=) w)r,
To establish (2), we note that for each A€\ x +iR,

e M Z LY (exp(tX))(v) = Z Qo0 (tX).

HEEead, 1 £eE
pn(X)=A §(X)=A

It follows from Lemma 6.12 that this polynomial in ¢ has degree dx for some A€ Ax +iR

and some v and w. Hence, L7 (exp(tX))(v) has degree dx for some p€&ead,; with
p(X)=A\. This implies that L7’y (1)#0. 0

We can equally implement L7’y by a differential operator. To see that, we define

for Y €a; and a differentiable function f on Ay,

Oy f(a):=(Y-f)(a) flaexp(tY)).

dt|,_q

Further, for y€aj ¢, we define a first-order operator
Dy = e7108() 0 gy 0 e=7(108()) — gy, —~ ().

The following lemma is then immediate.
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LEMMA 9.5. Let p and w be as in (9.4). Then
(O VXL AT,

For the rest of this article we assume that Z is either absolutely spherical or wave-

front.

LEMMA 9.6. Let wreWy, let weW correspond to wy as in Lemma 3.10, and let
WEEleaa,r with Re u(X)=Ax. There exists m, €M such that

MpW] -L’;:)l((a) = L*;;;g(a), acAj.

Proof. We give the proof for Z absolutely spherical—the proof for Z wave-front is
analogous.

At first, let weW be arbitrary and as=exp(sX). Let C;CA; be a compact subset.
Then (9.5) implies that

1
Z es(V—H)(X)L;ﬂ;é(a) =S_anS_“(aas'77w)+0<)- (9.6)
’ S

v€&€icad,1
Rev(X)=Re pu(X)
The o(1/s) has to be understood in the following way: Let g=¢(X) be the G-continuous

norm from Theorem 7.2 (1) and ¢* be its dual norm. Then (9.6) means that

lim ¢* <sdxas“(aas~?7w)— > 68(”“)(X)L?j§(a)> =0 (9.7)
vEEiead, 1
Rev(X)=Re u(X)
uniformly for a€Cf.

Moreover, note that Lemma 9.4 implies that

sup ¢* ( Z es(”_”)(X)L?:}”((a)> < o0. (9.8)

a€Cy vE€Eiead, T
seR Re v(X)=Re u(X)

Now let w correspond to wy. From Lemma 3.10 we obtain that wras=usmsbswhg
with us€U, mseM, bs€ Az and hs€ H such that us—1 and bsa; ! —1 for s—o00. More-

over, we may assume that {ms}s>s, is convergent, say with limit mg '€ M. Then

1, -1
Uy WGs 7).

asw-n =asb; *my
If we thus set gs:=asb; 'm; u; !, then {gs}s>s, is convergent to m,, and

AW = GsWiag-T]. (9.9)
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From (9.7) we have

(- ¥ )
vEEicad, 1
Rev(X)=Re p(X)

uniformly for a€Cy. As ¢* is G-continuous and LLI’}( (a) is H-invariant, we hence obtain

; * [ —dx —p n— s(r=—p)(X) vt —
slggoq (s a;*(wrhaag)n Z e [LI,X(a>]w1> =0
vEEcad, 1
Rev(X)=Re pu(X)

uniformly for A in compact subsets of Hy and a€Cy. Now note that there exists h, € Hy,
depending continuously on a€ Ay, such that wih,a=aw; (see Lemma 3.5). Hence, we
get

lim ¢* (S—dx a;*(awras)-n— Z es(”_“)(X))[L?&(a)]wI) =0

S— 00
vE€E&ead, 1
Rev(X)=Re p(X)

uniformly for a€Cj. Further by applying g, which in the limit commutes with a, we
deduce, with (9.8) and the G-continuity of ¢*, that

lim ¢* <s‘an;“(agswzas>~n— > es(”‘“’“”mw[L?:;(a)}wI) =0 (9.10)
el V€& ead, 1
Rev(X)=Re pu(X)

uniformly for a€Cy. If we combine (9.10) with (9.9) and (9.7), we arrive at

lim q*( > es<”ﬂ><X><L§;§<a>mw[L?;Ma)}wI)) (9.11)

vE&icad, 1
Re v(X)=Re u(X)
uniformly for a€Cf.

We are now in the position to apply Lemma 6.14. For that, note that it is no
loss of generality to assume that the G-continuous norm ¢ from Theorem 7.2 is Her-
mitian (see [4]). Let Ho be the Hilbert completion of the Harish-Chandra module
(Vo) K-fin with respect to ¢*. With H:=L?(Cr,Ho) the lemma follows now from (9.11)
and Lemma 6.14, which is easily extended to a Hilbert-space-valued setting. O

In the next step we produce out of L‘I‘)ué a continuous functional which transforms

under the action of A; as a character. Note that

LlIL:g() (a’) (U) = DPv,p,w,X (10g a)a'u,
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where py w0, x i a polynomial on ay which is constant along all affine rays t—Y +tX
in a;. Now, if all p, , ., x are constant, then we set nﬁ"w::nﬁ’;. Otherwise we set
X;1:=X, choose 0# Xz €a; orthogonal to X; and let dy be the maximum of the degrees
of the polynomials t—=p, ,, w, x, (Y +tX2) for Y €a; and veV. Then define, for a€ Ay and
veV,

L%, x, (@) (v) = Jim ¢~ EDLER (aexp(tX2))(v).
As in Lemma 9.5, we have

1
H,w — d2 H,w
LI,X17X2 _@(aﬂax2) LI,Xl'

With Lemmas 9.3 and 9.4, we thus get L}y« (a)€ (V=o)(bw)r We iterate this process,
and arrive at an element 74" € (V=°°)(«)1 defined by

B =T (D), (9.12)
with the additional property that it transforms under A; as a character:
nt (av) =a'n}"" (v), a€ArandveV. (9.13)

Note that 7} #0 if and only if L\ (1)#0. In particular, there exists p€&eaa,r

and weW such that the functional n}"" is non-zero. Further we note that

My gyt (aw-zo,1) = Z Co,,w(log a)a®, ac€AyA;andveV, (9.14)
e
fluI:l‘

with polynomials ¢, ¢, which do not depend on a;.

LEMMA 9.7. Let wreWr and let weW correspond to wy as in Lemma 3.10. There
exists my, €M such that

Moy (), = (9.15)
Proof. In view of the construction of """, this is now immediate from Lemmas 9.6
and 9.5. O

9.2. The tempered embedding theorem

Let (V,n) be an H-spherical tempered pair. Then gg(w;)<Av,(w;) for i=1,...;s, by
Theorem 8.2. For each leading exponent A we have Ay, (w;) <Re A(w;) by definition, and
hence

00(wi) <Ay (w;) <Re A(w;). (9.16)

We attach to A the following set of spherical roots:
In,k = {aiES:gQ(wi)<Re/\(wi)}. (917)
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LEMMA 9.8. For A€&caq and I=1, 5 the following assertions hold:
(1) QQ|UI:AV77]|UI:R6>\|UI;

(2) for all N €& aa and o;¢ 1 one has Re(N —\)(w;)=0;

(3) >‘|u1€‘slead,l;

(4) if N€&eaa and ReXN|q;=Re Aq,, then I, x CI, x.

Proof. (1) follows from (9.16) and (9.17), since ay is spanned by the w; for o;¢1.
Next, (2) follows from (1) together with (9.16). Moving on to (3), we argue by contradic-
tion and assume that A|q, € Elead,s- Then there exist an Y€ Eeaq,r and a 0 €Ny[S]\No[!]
such that (A—o)|s,; =7. Since ol,4, #0, this contradicts (2). Finally, (4) is obvious from
the definition. O

Let min, :=min{#1I, »:A€&cad }-

LEMMA 9.9. Let (V,n) be an H-spherical tempered pair. Then there exists a A€ Ejead
such that, for I=1I, x and p=A»\|q,, the following assertions hold:

(1) #I=min,;

(2) nf"#£0 for some weW.

Proof. Let y€&eaa be such that assertion (1) holds for I:=I,,. According to
Lemma 9.8 (3), we have |q; €&ieaq,r- For all X €S(a,) we have Rey(X)<Ax <Ay, (X).
If in addition X €ay, then Lemma 9.8 (1) implies Rey(X)=Ax=Ay,(X).

Let X €a; be the sufficiently generic element used in the construction of L{"* (above
Lemma 9.4). By this construction and the one above Lemma 9.7, we infer that there exists
a AE&ead With Re A(X)=Ax such that for some weW we have 7} 0, where pi:=\|q,.
It follows from (1) and Lemma 9.8 (4) that Iy, =1I. Hence the assertion follows. O

Pairs (A, w)€E€&eaqa X W which satisfy the conditions of Lemma 9.9 will be called
n-optimal.

Recall that az,=az and az, g=a;. For 0 €l we define w, r€az by

o 0/ (W, 1)=00c for o’ €l;

e w,rlar.

We note that w, g coincides with the previously defined w,. In general,
Wer—Wwe €ar, o€l (9.18)

Let now (A, w) €Eleaa X W be n-optimal, I=1, \ and p=A»\|,,. We then define a linear
functional Ay, ;€a’, by the following requirements:

i (AV,n,I_QQ)|a1 =0;

o Ay 1(we,r)=min{Rey(wy,1):7EEad and Rey|q, =p} for oel.
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LEMMA 9.10. Let (V,n) be a Z-tempered and (A, w)EEeaa xW be an associated
n-optimal pair. Then
(Avig,r—0Q)(wo,1) >0, o€l (9.19)

Proof. In view of the definition of Ay, ; and (9.18), it is sufficient to check that
(Avp,1—00)(ws)>0 for all €. Let now €& ead be such that Revy|q, =p. Then I, =1
by Lemma 9.8 (4) and the minimality of #1. Hence, (Rey—0¢g)(ws)>0 by the definition
of I . O

THEOREM 9.11. Suppose that Z is either absolutely spherical or of wave-front type.
Let (V,n) be an H-spherical tempered pair with V irreducible. Then, for every n-
optimal pair (A, w)€Elead X W, there exist a boundary degeneration Z, =G/(Hy)r of
Zw=G/Hy, a normalized unitary character & of (Hy,)rAr and a (g, K)-embedding

Vs L2(Zu 1),

where ZwJ::G/(Hw)IAI. In particular, V is unitarizable.
Proof. Let (A, w)€Eleaa X W be n-optimal, and let I=1,  and p=>A|,,. Then n;:=

n7""#0, and recall that it is a continuous (H, ) -invariant functional. Hence, after
replacing H by H,,, we may assume that w=1.
As V is irreducible, the map

. V> — C>(Z)),
V> My ;5

defines a G-equivariant injection. Notice that, by (9.13), all elements in im ® transform
under the normalized unitary character a* by the right A;-action.

Recall the set Wy={w1 1,...,wp }. For 1<i<p let w; €W correspond to w; 1 as in
Lemma 3.10. From (9.15) we get m;-(nr)w, ,=n}""’ for j=1,...,p and some m;€M.
Hence,

My v(QW5 1-20,1) = m, o(ma-20.0,,1) (9.20)

for all a€ Az. Here 2¢,4,,,1 denotes the origin of G/(H,,;)r. It follows from (9.14), applied
to the matrix coefficient on the right-hand side of (9.20), that all exponents belong to
= and restrict to g on ay. This being the case for all j=1, ..., p, we then infer from the

definition of AV,n,I that
Av, (Wor) 2 Avin1(wo,r), o€,

for the exponent defined by (6.20) for 7;.
The theorem now follows by applying Theorem 8.5 to Z; (see also Lemma 3.12),
together with inequality (9.19). O
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Remark 9.12. After a change of Py, (and A) it is possible to get an optimal pair
(A, w) such that w=1. In order to see that, note that

mvvnw (CL'Zw) = mwfly’n(wilaU/'ZO).

We are allowed to change (A, K, Pyuin) to Ad(w™!)(A, K, Ppin) without effect on the
developed theory of power series expansions. The asserted reduction to w=1 follows.

COROLLARY 9.13. Assume that Z is wave-front and let (V,n), (A, w) be as above.
Then there exist

(1) a parabolic subgroup PDQ,

(2) a Levi decomposition P=GpUp,

(3) a real spherical subgroup HpCGp containing (GpNHy)e,

(4) a twisted discrete series representation o of Gp/Hp
such that V' embeds equivariantly into the parabolically induced unitary representation
md%(oc®1).

Proof. Let I be as in Theorem 9.11, and let P=Pp be as in Corollary 5.6, that
is, Us CH;C Pp. In view of Lemma 3.7, we have UFC(HM)ICFF as well. Hence, the
assertion follows with Hp=(GpN(Hy)s)e from Lemma 8.7. O

Ezample 9.14. Let G/H be a symmetric space as in Example 3.4. Then Z is wave-
front.

After possible change of P to w™!Pw (see Remark 9.12), we may assume that there
is a AE&eaq such that (), 1) is an n-optimal pair. After a further change of P to hPh~!
for some he H (see [30, Theorem 1]), we may assume that P is a of-stable parabolic
subgroup. Then Hp=(G%). is a symmetric subgroup in Gp. Hence, Corollary 9.13
implies Delorme’s result from [12] (up to components of G%). The result of Langlands

cited in the introduction then also follows.
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