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1. Introduction

One of the earliest results in enumerative combinatorial geometry is the following theorem

of de Bruijn and Erdős [dBE]:

Every finite set of points E in a projective plane determines at least |E| lines, unless

E is contained in a line.

In other words, if E is not contained in a line, then the number of lines in the plane

containing at least two points in E is at least |E|. See [dW1] and [dW2] for an interesting

account of its history and a survey of known proofs.

The following more general statement, conjectured by Motzkin in [Mo1], was subse-

quently proved by many in various settings:

Every finite set of points E in a projective space determines at least |E| hyperplanes,

unless E is contained in a hyperplane.

Motzkin proved the above for E in real projective spaces [Mo2]. Basterfield and

Kelly [BK] showed the statement in general, and Greene [G] strengthened the result by

showing that there is a matching from E to the set of hyperplanes determined by E,

unless E is contained in a hyperplane:

For every point in E one can choose a hyperplane containing the point in such a

way that no hyperplane is chosen twice.

Mason [Ma] and Heron [He] obtained similar results by different methods.

Let P be the projectivization of an r-dimensional vector space over a field, E⊆P be

a finite subset not contained in any hyperplane, and L be the poset of subspaces of P
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spanned by the subsets of E. The poset L is a graded lattice, and its rank function

satisfies the submodular inequality

rank(F1)+rank(F2)> rank(F1∨F2)+rank(F1∧F2) for all F1, F2 ∈L .

For a non-negative integer p, we write L p for the set of rank-p elements in the lattice L .

Thus L 1 is the set of points in E, L 2 is the set of lines joining points in E, and L r is

the set with one element, P. Graded posets obtained in this way are standard examples

of geometric lattices [W]. These include the lattice of all subsets of a finite set (boolean

lattices), the lattice of all partitions of a finite set (partition lattices), and the lattice

of all subspaces of a finite vector space (projective geometries). In [DW2], Dowling and

Wilson further generalized the above results for geometric lattices:

For every non-negative integer p less than 1
2r, there is a matching from the set of

rank-at-most-p elements of L to the set of corank-at-most-p elements of L .

The matching can be chosen to match the minimum of L to the maximum of L , and

hence the above statement covers all the results introduced above. Kung gave another

proof of the same result from the point of view of Radon transformations in [Ku1] and

[Ku2].

In [DW1] and [DW2], Dowling and Wilson stated the following “top-heavy” conjec-

ture.

Conjecture 1. Let L be a geometric lattice of rank r.

(1) For every non-negative integer p less than 1
2r,

|L p|6 |L r−p|.

In fact, there is an injective map ι: L p
!L r−p satisfying x6ι(x) for all x.

(2) For every non-negative integer p less than 1
2r,

|L p|6 |L p+1|.

In fact, there is an injective map ι: L p
!L p+1 satisfying x6ι(x) for all x.

The conjecture was reproduced in [Stl2, Exercise 3.37] and [KRY, Exercise 3.5.7].

For an overview and related results, see [A]. When L is a boolean lattice or a projective

geometry, the validity of Conjecture 1 is a classical result. We refer to [HM+] and [Stl3]

for recent expositions. In these cases, Conjecture 1 implies that L has the Sperner

property :

The maximal number of incomparable elements in L is the maximum of |L p|
over p.
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Kung proved the second part of Conjecture 1 for partition lattices in [Ku3]. Later

he showed the second part of Conjecture 1 for p62 when every line contains the same

number of points [Ku4].

We now state our main result. As before, we write P for the projectivization of an

r-dimensional vector space over a field.

Theorem 2. Let E⊆P be a finite subset not contained in any hyperplane, and L

be the poset of subspaces of P spanned by subsets of E.

(1) For all non-negative integers p6q satisfying p+q6r,

|L p|6 |L r−q|.

In fact, there is an injective map ι: L p
!L r−q satisfying x6ι(x) for all x.

(2) For every positive integer p less than 1
2r,

06 |L p+1|−|L p|6 (|L p|−|L p−1|)〈p〉.

Equivalently, (|L 0|, |L 1|−|L 0|, ..., |L p+1|−|L p|) is the h-vector of a shellable simpli-

cial complex.

The first part of Theorem 2 settles Conjecture 1 for all L realizable over some field.

We believe this to be a good demonstration of the power of the main ingredient in the

proof, the decomposition theorem package for intersection complexes [BBD].

The expression n〈p〉 used in the second part of Theorems 2 is defined as follows:

For any positive integer p and non-negative integer n, write n1, ..., np for the unique

increasing sequence of non-negative integers satisfying

n=

p∑
k=1

(
nk
k

)
.

Then, by definition,

n〈p〉=

p∑
k=1

(
nk+1

k+1

)
.

For h-vectors of shellable simplicial complexes, we refer to [Stl1, Chapter II].

Example 3. Modular geometric lattices, such as boolean lattices or finite projective

geometries, satisfies a stronger matching property:

For every p, there is an injective or surjective map ι: L p
!L p+1 satisfying x6ι(x).

As noted before, this implies that modular geometric lattices have the Sperner prop-

erty.
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Dilworth and Greene constructed in [DG] a configuration of 21 points in any 10-

dimensional projective space over a field with the property that there is neither injective

nor surjective map

ι: L 6−!L 7, x6 ι(x).

Canfield [C] found such “no-matching” successive rank-level sets as above in partition

lattices with sufficiently many elements (exceeding 101020

). These geometric lattices

satisfy Conjecture 1 but do not have the Sperner property.

Rota conjectured [R], [RH] that the sizes of the rank-level sets of a geometric lattice

form a unimodal sequence

|L 0|6 ...6 |L p−1|6 |L p|> |L p+1|> ...> |L r| for some p.

Stronger versions of this conjecture were proposed by Mason [Ma]. The unimodality for

the “upper half” remains as an outstanding open problem.

Example 4. Let λ be a partition of a positive integer, which we view as a Young

diagram [F2]. For example, the partition (4, 2, 1) of 7 corresponds to the Young diagram

.

The Young’s lattice associated with λ is the graded poset Lλ of all partitions whose

Young diagram fit inside λ. The poset Lλ is usually not a geometric lattice, but Björner

and Ekedahl [BE] showed that Lλ satisfies both conclusions of Conjecture 1 when r is

the number of boxes in λ:

(1) For p less than 1
2r, there is an injective map ι: L p

!L r−p satisfying x6ι(x) for

all x.

(2) For p less than 1
2r, there is an injective map ι: L p

!L p+1 satisfying x6ι(x) for

all x.

However, according to Stanton [Stt], Young’s lattice for the partition (8, 8, 4, 4)

defines a non-unimodal sequence

(|L 0
λ |, |L 1

λ |, |L 2
λ |, ..., |L 24

λ |)

= (1, 1, 2, 3, 5, 6, 9, 11, 15, 17, 21, 23, 27, 28, 31, 30, 31, 27, 24, 18, 14, 8, 5, 2, 1).

Face lattices of simplicial polytopes behave similarly, starting from dimension 20 [BL], [B].

See [Z, Chapter 8] for a discussion of unimodality in the case of polytopes.
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2. The graded Möbius algebra

We use the language of matroids, and use [W] and [O] as basic references. Let r and n

be positive integers, and let M be a rank-r simple matroid on the ground set

E= {1, ..., n}.

Write L for the lattice of flats of M. We define a graded analogue of the Möbius algebra

for L .

Definition 5. Introduce symbols yF , one for each flat F of M, and construct vector

spaces

Bp(M) =
⊕
F∈L p

QyF and B∗(M) =
⊕
F∈L

QyF .

We equip B∗(M) with the structure of a commutative graded algebra over Q by setting

yF1
yF2

=

{
yF1∨F2 , if rank(F1)+rank(F2) = rank(F1∨F2),

0, if rank(F1)+rank(F2)> rank(F1∨F2).

For simplicity, we write y1, ..., yn instead of y{1}, ..., y{n}.

Maeno and Numata introduced this algebra in a slightly different form in [MN], and

used it to show that modular geometric lattices have the Sperner property. Note that

B∗(M) is generated by B1(M) as an algebra: If IF is any basis of a flat F of M, then

yF =
∏
i∈IF

yi.

Unlike its ungraded counterpart, which is isomorphic to the product of Q’s as a Q-algebra

[So], the graded Möbius algebra B∗(M) has a non-trivial algebra structure. Define

L=
∑
i∈E

yi.

We deduce Theorem 2 from the following algebraic statement. Similar injectivity prop-

erties have appeared in the context of Kac–Moody Schubert varieties [BE] and toric

hyperkähler varieties [Ha].

Theorem 6. For non-negative integer p less than 1
2r, the multiplication map

Bp(M)−!Br−p(M),

ξ 7−!Lr−2pξ,

is injective, when M is realizable over some field.
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It follows that, for non-negative integers p6q satisfying p+q6r, the multiplication

map

Bp(M)−!Br−q(M),

ξ 7−!Lr−p−qξ,

is injective, when M is realizable over some field. To deduce the first part of Theorem 2

from this, consider the matrix of the multiplication map with respect to the standard

bases of the source and the target. Entries of this matrix are labeled by pairs of elements

of L , and all the entries corresponding to incomparable pairs are zero. The matrix

has full rank, so there is a maximal square submatrix with non-zero determinant. In

the standard expansion of this determinant, there must be a non-zero term, and the

permutation corresponding to this term produces the injective map ι. The second part

of Theorem 2 also follows from Theorem 6. To see this, note that the algebra B∗(M)

is generated by its degree-1 elements, and apply Macaulay’s theorem to the quotient of

B∗(M) by the ideal generated by L [Stl1, Chapter II, Corollary 2.4].

Conjecture 7. Theorem 6 holds without the assumption of realizability.

Let M be as before, and let �M be a simple matroid on the ground set


E= {0, 1, ..., n}.

Let L̄ be the lattice of flats of �M. We suppose that M=�M/0, that is, M is obtained from
�M by contracting the element 0.

Definition 8. Introduce variables x
	F , one for each non-empty proper flat 
F of �M,

and set

S
�M =Q[x

	F ]
	F 6=∅,	F 6=
E,	F∈L̄ .

The Chow ring A∗(�M) is the quotient of S
�M by the ideal generated by the linear forms

∑
i1∈	F

x
	F−

∑
i2∈	F

x
	F ,

one for each pair of distinct elements i1 and i2 of 
E, and the quadratic monomials

x
	F1
x
	F2
,

one for each pair of incomparable non-empty proper flats of �M.



enumeration of points, lines, planes, etc. 303

The algebra A∗(�M) and its generalizations were studied by Feichtner and Yuzvinsky

in [FY]. For every i in E, we define an element of A1(�M) by setting

βi =
∑
	F

x
	F ,

where the sum is over all flats 
F of �M that contain 0 and do not contain i. The linear

relations show that we may equivalently define

βi =
∑
	F

x
	F ,

where the sum is over all flats 
F of �M that contain i and do not contain 0. We record

here three basic implications of the defining relations of A∗(�M):

(R1) When 
F is a non-empty proper flat of �M containing exactly one of i and 0,

βi ·x	F = 0.

This follows from the quadratic monomial relations.

(R2) For every element i in E,

βi ·βi = 0.

This follows from the previous statement.

(R3) For any two maximal chains of non-empty proper flats of �M, say {
Fk}16k and

{
Gk}16k,
r∏

k=1

x
	Fk

=

r∏
k=1

x
	Gk
6= 0.

The proofs of (R1) and (R2) are straightforward. The proof of (R3) can be found

in [AHK, §5].

Proposition 9. There is a unique injective graded Q-algebra homomorphism

ϕ:B∗(M)−!A∗(�M),

yi 7−!βi.

Proof. First, we show that there is a well-defined Q-linear map

ϕ:B∗(M)−!A∗(�M),

yF 7−!
∏
i∈IF

βi,
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where IF is any basis of a flat F of M. In other words, if JF is any other basis of F , then∏
i∈IF

βi =
∏
i∈JF

βi.

Since any basis of F can be obtained from any other basis of F by a sequence of elementary

exchanges, it is enough to check the equality in the special case when IF \JF ={1} and

JF \IF ={2}. Assuming that this is the case, we write the left-hand side of the claimed

equality by ( ∏
i∈IF∩JF

βi

)(∑
	G

x
	G

)
,

where the sum is over all non-empty proper flats 
G of �M that contain 0 and do not contain

1. The relation (R1) shows that we may take the sum only over those 
G satisfying

0∈ 
G, 1 /∈ 
G and IF ∩JF ⊆ 
G.

Since IF ∪{0} and JF ∪{0} are bases of the same flat of �M, the above condition is equiv-

alent to

0∈ 
G, 2 /∈ 
G and IF ∩JF ⊆ 
G.

This proves the claimed equality, which shows that ϕ is a well-defined linear map.

Second, we show that ϕ is a ring homomorphism. Given flats F1 and F2 of M, we

show that( ∏
i∈IF1

βi

)( ∏
i∈IF2

βi

)
= 0 when the rank of F1∨F2 is less than |IF1 |+|IF2 |.

If the independent sets IF1
and IF2

intersect, this follows from the relation (R2). If

otherwise, the condition on the rank of F1∨F2 implies that there are two distinct bases

of F1∨F2 contained in IF1
∪IF2

, say

IF1∨F2 ⊆ IF1∪IF2 and JF1∨F2 ⊆ IF1∪IF2 .

Using the first part of the proof, once again from the relation (R2), we deduce that( ∏
i∈IF1

βi

)( ∏
i∈IF2

βi

)
=

( ∏
i∈IF1∨F2

βi

)( ∏
i∈IF1

∪IF2
\IF1∨F2

βi

)

=

( ∏
i∈JF1∨F2

βi

)( ∏
i∈IF1

∪IF2
\IF1∨F2

βi

)
= 0.

This completes the proof that ϕ is a ring homomorphism.
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Third, we show that ϕ is injective in degree r. Choose any ordered basis {i1, ..., ir}
of M. For each q=1, ..., r, we let 
Gq be the closure of {0, i1, ..., iq−1} in �M. We deduce

from the relation (R1) that

(βi1 ... βir−1
)βir = (βi1 ... βir−1

)x
	Gr
.

Similarly, for any positive integer q6r, we have

(βi1 ... βiq−2βiq−1)x
	Gq

= (βi1 ... βiq−2)x
	Gq−1

x
	Gq

=x
	G1
... x

	Gq−1
x
	Gq
,

since 
Gq−1 is the only flat of �M containing 
Gq−1, comparable to 
Gq, and not containing

iq−1. Combining the above formulas, we deduce from the relation (R3) that

βi1 ... βir =x
	G1
... x

	Gr
6= 0.

This proves that ϕ is injective in degree r.

Last, we show that ϕ is injective in any degree q less than r. For this we analyze

the bilinear map given by the multiplication

ϕ(Bq(M))×
⊕
	G

Qx
	G−!Aq+1(�M),

where the sum is over all rank-(q+1) flats 
G of �M containing 0. For any independent set

{i1, ..., iq} of M, we claim that, for any 
G as in the previous sentence,

(βi1 ... βiq )x
	G 6= 0 if and only if 
G is the closure of {0, i1, ..., iq} in �M.

The “if” statement follows from the analysis made above. For the “only if” statement,

suppose that the product is non-zero. Since 
G contains 0, it must contain i1, ..., iq by the

relation (R1). Since 
G and the closure both have the same rank, we have that


G is the closure of {0, i1, ..., iq} in �M.

This proves the claimed equivalence, and it follows that the image of the basis {yF } of

Bq(M) under ϕ is linearly independent in Aq(�M).

3. The simplex, the cube, and the permutohedron

In this section, we give a toric preparation for the proof of our main result, Theorem 6.

For undefined terms in toric geometry and intersection theory, we refer to [F1] and [F3].

All the Chow groups and rings will have rational coefficients.
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As in the previous section, we fix a positive integer n and work with the sets

E= {1, ..., n} and 
E= {0, 1, ..., n}.

Let Z
E be the abelian group generated by the basis vectors ei corresponding to i∈
E.

For an arbitrary subset Ī⊆
E, we define

eĪ =
∑
i∈Ī

ei.

We associate with 
E the abelian group N

E=Z
E/Ze


E and the vector space

N

E,R =R
E/Re


E .

(1) Let Σ(Sn)⊆N

E,R be the image of the normal fan of the standard n-dimensional

simplex

Sn = conv{e0, e1, ..., en}⊆R
E .

There are n+1 maximal cones in Σ(Sn), one for each maximal proper subset Ī of 
E:

σĪ = cone{ei : i∈ Ī}⊆N

E,R.

This fan defines the n-dimensional projective space Pn, whose homogeneous coordinates

are labeled by i∈
E.

(2) Let Σ(Cn)⊆RE be the normal fan of the standard n-dimensional cube

Cn = conv{±e1, ...,±en}⊆RE .

There are 2n maximal cones in Σ(Cn), one for each subset I of E:

σI = cone{ei : i∈ I}−cone{ei : i /∈ I}⊆RE .

This fan defines the product of n projective lines (P1)n, whose multi-homogeneous coor-

dinates are labeled by i∈E.

(3) Let Σ(Pn)⊆N

E,R be the image of the normal fan of the n-dimensional permu-

tohedron

Pn = conv{(x0, ..., xn) :x0, ..., xn is a permutation of 0, ..., n}⊆R
E .

There are (n+1)! maximal cones in Σ(Pn), one for each maximal chain I in 2

E :

σI = cone{eĪ : Ī ∈I }⊆N

E,R.

This fan defines the n-dimensional permutohedral space, denoted XAn
. See [BB] for a

detailed study of XAn
and its analogues for other root systems.



enumeration of points, lines, planes, etc. 307

The inclusion ZE⊆Z
E induces an isomorphism

ψ−1:RE −!N

E,R.

This identifies the underlying vector spaces of the normal fans Σ(Sn), Σ(Pn) and Σ(Cn):

N

E,R

id

||

ψ

!!

N

E,R RE .

We observe that id and ψ induce morphisms between the fans and their toric varieties:

Σ(Pn)

p1

zz

p2

$$

Σ(Sn) Σ(Cn)

and

XAn

π1

}}

π2

##

Pn (P1)n.

The morphism p1 is the standard barycentric subdivision. We check that p2 is a subdi-

vision.

Proposition 10. The isomorphism ψ induces a morphism p2.

In other words, the image of a cone in Σ(Pn) under ψ is contained in a cone in

Σ(Cn).

Proof. For each i∈E, define ψi as the composition of ψ with the ith projection

ψi = proji �ψ, proji:RE −!R{i}'R.

For any subset Ī⊆
E, we have

ψi(eĪ) =


ei, if Ī contains i and does not contain 0,

−ei, if Ī contains 0 and does not contain i,

0, otherwise.

It is enough to check that ψi induces a morphism Σ(Pn)!Σ(C1).

Recall that any non-zero cone in the normal fan of Pn is of the form

σI = cone{eĪ : Ī ∈I },

where I is a non-empty chain in 2

E . Viewing I as an ordered collection of sets, we see

that ψi(σI ) is contained in the cone generated by{
ei, if i appears before 0 in I ,

−ei, if i appears after 0 in I .

Thus, the image of a cone in Σ(Pn) under ψi is contained in a cone in Σ(C1), for each

i∈E.
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Geometrically, π1 is the blow-up of all the torus-invariant points in Pn, all the strict

transforms of torus-invariant P1’s in Pn, all the strict transforms of torus-invariant P2’s in

Pn, and so on. The map π2 is the blow-up of points 0n and ∞n, all the strict transforms

of torus-invariant P1’s in (P1)n containing 0n or ∞n, all the strict transforms of torus-

invariant (P1)2’s in (P1)n containing 0n or ∞n, and so on.

Remark 11. For later use, we record here a combinatorial description of the pull-back

of piecewise linear functions under the linear map ψi=proji �ψ:

Let α be the piecewise linear function on Σ(C1) determined by its values

α(ei) = 1 and α(−ei) = 0.

Then ψ∗i (α) is the piecewise linear function on Σ(Pn) determined by its values

ψ∗i (α)(eĪ) =

{
1, if Ī contains i and does not contain 0,

0, otherwise.

Using the correspondence between piecewise linear functions on fans and torus-

invariant divisors on toric varieties [F1, Chapter 3], the above can be used to describe

the pull-back homomorphism between the Chow rings

π∗2 :A∗((P1)n)−!A∗(XAn
).

Explicitly, writing yi for the divisor of ei in (P1)n and xĪ for the divisor of eĪ in XAn
,

π∗2(yi) =
∑
Ī

xĪ ,

where the sum is over all subsets Ī⊆
E that contain i and do not contain 0.

4. Proof of Theorem 6

Let M be a simple matroid on E, and let �M be a simple matroid on 
E with M=�M/0.

For simplicity, we take �M to be the direct sum of M and the rank-1 matroid on {0}, so

that M and �M share the same set of circuits.

Suppose that M is realizable over some field. Then M is realizable over some finite

field [O, Corollary 6.8.13], and hence over the algebraically closed field Fp for some prime

number p. The matroid �M is realizable over the same field, say by a spanning set of

vectors

Ā = {f0, f1, ..., fn}⊆Fr+1

p .
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Dually, the realization Ā of �M corresponds to an injective linear map between projective

spaces

iĀ :Pr −!Pn, iĀ = [f0 : f1 : ... : fn].

The collection A ={f1, ..., fn} is a realization of the matroid M.

The restriction of the torus-invariant hyperplanes of Pn to Pr defines an arrangement

of hyperplanes in Pr, which we denote by the same symbol Ā . We use iĀ to construct

the commutative diagram

XĀ
� � jĀ //

πĀ
1

~~~~ !! !!

XAn

π2

"" ""

π1

}}}}

Pr �
� iĀ // Pn YA

� � // (P1)n,

where XĀ is the strict transform of Pr under π1 and YA is the image of XĀ under π2.

The induced map πĀ
1 is the blow-up of all the zero-dimensional flats of Ā , all the

strict transforms of 1-dimensional flats of Ā , all the strict transforms of 2-dimensional

flats of Ā , and so on. The variety XĀ is the wonderful model of Ā corresponding

to the maximal building set [dCP1]. The variety YA is studied in [AB], and its affine

part centered at ∞n is the reciprocal plane in [EPW], [PS]. To apply the decomposition

theorem of [BBD], we notice that all varieties, maps and sheaves under consideration

may be defined over some finite extension of Fp.
We know that the Chow ring of XĀ is determined by the matroid �M: There is an

isomorphism of graded algebras

A∗(�M)'A∗(XĀ ),

where x
	F is identified with the class of the strict transform of the exceptional divisor

produced when blowing up the flat of Ā corresponding to 
F . See [dCP2, §1.1], and also

[dCP1] and [FY]. When �M is the boolean matroid B on 
E, this describes the Chow ring

of the permutohedral space A∗(XAn). In general, the pull-back homomorphism

A∗(	B)'A∗(XAn
)

j∗Ā // // A∗(XĀ )'A∗(�M)

is determined by the assignment, for non-empty proper subsets Ī of 
E,

xĪ 7−!
{
xĪ , if Ī is a flat of �M,

0, if Ī is a not flat of �M.
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Fix a prime number ` different from p, and consider the `-adic étale cohomology

rings and the `-adic étale intersection cohomology groups of the varieties in the diagram

above. These are 
Q`-vector spaces of the form

H∗(X,
Q`) := H∗(X,
Q`,X) and IH∗(X,
Q`) := H∗(X, ICX),

where 
Q`,X and ICX are constructible complexes of 
Q` -sheaves on X as in [BBD]. The

blow-up construction of XĀ shows that the cycle class map induces an isomorphism of

commutative graded 
Q`-algebras

A∗(XĀ )⊗Q
Q`'H2∗(XĀ ,

Q`);

see [Ke, Appendix]. For the variety YA , which may be singular, we show in Theorem 14

that there is an isomorphism of commutative graded 
Q` -algebras

B∗(M)⊗Q
Q`'H2∗(YA ,
Q`).

In general, the intersection cohomology IH∗(X,
Q`) is a module over the cohomology

H∗(X,
Q`), satisfying the Poincaré duality and the hard Lefschetz theorems. See [dCM]

for an introduction and precise statements.

We obtain Theorem 6 from the following general observation. Let f be a proper

map from an r-dimensional smooth projective variety

f :X1−!X2,

and let L be a fixed ample line bundle on X2. Consider the pull-back homomorphism of

cohomology in even degrees

H2∗(X2,
Q`)−!H2∗(X1,
Q`).

The image of the pull-back is a commutative graded algebra over 
Q`, denoted B∗(f)
	Q`

:

B∗(f)
	Q`

= im(H2∗(X2,
Q`)!H2∗(X1,
Q`)).

B∗(f)
	Q`

is the cyclic H2∗(X2,
Q`)-submodule of H2∗(X1,
Q`) generated by the element 1.

Proposition 12. If f is birational onto its image, then the multiplication map

Bp(f)
	Q`
−!Br−p(f)

	Q`
,

ξ 7−!Lr−2p ξ,

is injective for every non-negative integer p less than 1
2r.
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Proof. We reduce to the case when f is surjective. For this consider the factorization

X1
g
// // f(X1) �

� h // X2, f =h�g.

Then B∗(f)
	Q`

is a subalgebra of B∗(g)
	Q`

, and hence the statement (f, L) follows from

(g, h∗L).

Suppose that f is surjective. The decomposition theorem [BBD, §4.3] says that

the intersection complex of X2 appears as a direct summand of the direct image of the

constant sheaf 
Q` on X1:

Rf∗
Q`,X1
' ICX2

⊕C .

Taking cohomology of both sides, we obtain a splitting injection of H∗(X2,
Q`)-modules

Φ: IH∗(X2,
Q`)−!H∗(X1,
Q`).

Since Φ is an isomorphism in degree zero, it restricts to an isomorphism of commutative

algebras

im(H2∗(X2,
Q`)! IH2∗(X2,
Q`))'B∗(f)
	Q`
.

The conclusion follows from the hard Lefschetz theorem for L on IH2∗(X2,
Q`).

Theorem 6 will be deduced from the case when f is the map XĀ!(P1)n. For each

i∈E, let fi be the composition of f with the ith projection:

fi = proji �f, proji: (P1)n−!P1.

As in Proposition 9, for each i∈E we write βi for the sum of x
	F over all flats 
F of �M

that contain i and do not contain 0. As mentioned before, the blow-up construction

of XĀ shows that the cycle class map induces an isomorphism of commutative graded

Q` -algebras

A∗(XĀ )⊗Q
Q`'H2∗(XĀ ,

Q`),

Let Ψ be the composition of isomorphisms

Ψ:A∗(�M)⊗Q
Q`'A∗(XĀ )⊗Q
Q`'H2∗(XĀ ,

Q`),

which maps x
	F to the class of the strict transform in XĀ of the exceptional divisor

produced when blowing up the flat of Ā in Pr corresponding to 
F .

Proposition 13. The element Ψ(βi) is the pull-back of the class of a point in P1

under fi.
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Proof. We factor f into the composition

XĀ
� � jĀ // XAn

π2 // // (P1)n.

As noted before, the pull-back map associated with the inclusion jĀ satisfies

xĪ 7−!
{
xĪ , if Ī is a flat of �M,

0, if Ī is a not flat of �M.

Thus, it is enough to prove the claim when XĀ =XAn
. This is the case when �M is the

boolean matroid on 
E, and the claim in this case was proved in Remark 11 at the level

of Chow rings.

Since the cohomology ring of (P1)n is generated by the pull-backs under fi, Proposi-

tions 9 and 13 together show that Ψ induces an isomorphism between B∗(M)⊗Q
Q` and

B∗(f)
	Q`

, which we denote by Ψ′. More precisely, there is a commutative diagram

A∗(�M)⊗Q
Q`
Ψ // H2∗(XĀ ,


Q`)

B∗(M)⊗Q
Q`
Ψ′ //

?�

ϕ⊗Q	Q`

OO

B∗(f)
	Q`
,

?�

OO

where ϕ is the injective ring homomorphism of Proposition 9.

Proof of Theorem 6. It is enough to show that the multiplication map

Bp(M)⊗Q
Q`−!Br−p(M)⊗Q
Q`,

ξ 7−!Lr−2pξ,

is injective. Under the isomorphism Ψ′, the statement to be proved translates to the

conclusion of Proposition 12 when f is the map XĀ!(P1)n.

With more work, we can show that the graded Möbius algebra of the matroid M is

isomorphic to the cohomology ring of the variety YA . Write Li for the first Chern class

of the pull-back of O(1) under the composition

YA
� � // (P1)n

proji // // P1.

Theorem 14. There is an isomorphism of commutative graded 
Q`-algebras

B∗(M)⊗Q
Q`
'−!H2∗(YA ,
Q`),

yi 7−!Li.
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In what follows, we write z0, z1, ..., zn for the homogeneous coordinates of Pn, and

write (z1, w1), ..., (zn, wn) for the multi-homogeneous coordinates of (P1)n.

Proof. Recall that M and �M share the same set of circuits. For every circuit C of

M, there are non-zero constants ac∈Fp, one for each element c∈C, such that∑
c∈C

aczc = 0 on the image of iĀ :Pr −!Pn.

The collection (ac)c∈C is uniquely determined by the circuit C, up to a common multiple.

A defining set of multi-homogeneous equations of YA is explicitly described by Ardila

and Boocher in [AB, Theorem 1.3]:

YA =

{
((z1, w1), ..., (zn, wn))∈ (P1)n :

∑
c∈C

aczc

( ∏
d∈C\{c}

wd

)
= 0 for all circuits C of M

}
.

This shows that YA has an algebraic cell decomposition, in the sense of [BE, §3],

YA =
∐
F

Arank(F ),

where the disjoint union is over all flats F of M, and Arank(F ) is the intersection of YA

with the affine space

A|F |= {((z1, w1), ..., (zn, wn))∈ (P1)n :wi = 0 if and only if i is not in F}⊆ (P1)n.

The existence of the cell decomposition has the following implications [BE, Theo-

rem 3.1]:

(CD1) The natural map H2∗(YA ,
Q`)−!IH2∗(YA ,
Q`) is injective.

(CD2) The dimension of H2k(YA ,
Q`) is the number of k-dimensional cells in YA

for all k.

All the odd-cohomology groups of YA are zero. When combined with the decomposi-

tion theorem forXĀ!YA , the statement (CD1) shows that the pull-back homomorphism

in cohomology

H2∗(YA ,
Q`)−!H2∗(XĀ ,

Q`)

is injective. According to Proposition 13, the pull-back of Li in the cohomology of XĀ

is Ψ(βi), and hence the previous sentence implies that there is an injective graded ring

homomorphism

B∗(f)
	Q`
−!H2∗(YA ,
Q`),

Ψ(βi) 7−!Li.
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Composing with the isomorphism Ψ′, we get the injective graded ring homomorphism

B∗(M)⊗Q
Q`−!H2∗(YA ,
Q`),

yi 7−!Li.

The statement (CD2) shows that the source and the target are 
Q` -vector spaces of the

same dimension, which is the number of flats of M. Therefore, the map must be an

isomorphism.

Remark 15. Let M be a simple matroid on E={1, ..., n} with rank r>2. We write

“deg” for the isomorphism

deg:Br(M)−!Q,

yE 7−! 1.

Let HR(M) be the symmetric n×n matrix with entries

HR(M)ij =

{
0, if i= j,

bij(M), if i 6= j,

where bij(M) is the number of bases of M containing i and j. The matrix HR(M)

represents the Hodge–Riemann form

B1(M)×B1(M)−!Q,

(ξ1, ξ2) 7−!deg(Lr−2ξ1ξ2),

with respect to the standard basis {y1, ..., yn}. It can be shown that the matrix HR(M)

has exactly one positive eigenvalue [HW].

Consider the restriction of HR(M) to the 3-dimensional subspace of B1(M) spanned

by yi, yj and L. The one-positive-eigenvalue condition says that the determinant of the

resulting symmetric 3×3 matrix is non-negative, and this implies

2>
b(M)bij(M)

bi(M)bj(M)
,

where b(M) is the number of bases of M and bi(M) is the number of bases of M contain-

ing i. More detailed arguments will be given in [HW].

Question. How large can the ratio b(M)bij(M)/bi(M)bj(M) be?

For graphic matroids, the work of Kirchhoff on electric circuits shows that the ratio

is bounded above by 1, see [FM]. In other words, for a randomly chosen spanning tree

of a graph, the presence of an edge can only make any other edge less likely. It was

once conjectured that this is the case for all matroids, but Seymour and Welsh found an

example with the ratio '1.02 [SW].
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We thank Petter Brändén, Jeff Kahn, Satoshi Murai, Yasuhide Numata, Nick Proudfoot,

Dave Wagner, and Geordie Williamson for helpful conversations. Special thanks go

to two anonymous referees, who made very useful suggestions. This research started

while Botong Wang was visiting Korea Institute for Advanced Study in summer 2016.

We thank KIAS for excellent working conditions. June Huh was supported by a Clay

Research Fellowship and NSF Grant DMS-1128155.

References

[AHK] Adiprasito, K., Huh, J. & Katz, E., Hodge theory for combinatorial geometries.
Preprint, 2015. arXiv:1511.02888 [math.CO].

[A] Aigner, M., Whitney numbers, in Combinatorial Geometries, Encyclopedia Math.
Appl., 29, pp. 139–160. Cambridge Univ. Press, Cambridge, 1987.

[AB] Ardila, F. & Boocher, A., The closure of a linear space in a product of lines. J.
Algebraic Combin., 43 (2016), 199–235.

[BK] Basterfield, J. G. & Kelly, L. M., A characterization of sets of n points which
determine n hyperplanes. Proc. Cambridge Philos. Soc., 64 (1968), 585–588.

[BB] Batyrev, V. & Blume, M., The functor of toric varieties associated with Weyl cham-
bers and Losev–Manin moduli spaces. Tohoku Math. J., 63 (2011), 581–604.
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