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The interest in positively curved manifolds goes back to the beginning of Riemannian

geometry or even to spherical and projective geometry. Likewise, the program of Tits

to provide an axiomatic description of geometries whose automorphism group is a non-

compact simple algebraic or Lie group goes back to projective geometry.

The presence of symmetries has played a significant role in the study of positively

curved manifolds during the past two decades; see, e.g., the surveys [Gr], [Wi3] and [Z].

Not only has this resulted in a number of classification type theorems, it has also lead

to new insights about structural properties, see, e.g., [VZ] and [Wi2], as well as to the

discovery and construction of a new example [De], [GVZ].

Unlike [GWZ], our work here is not motivated by the quest for new examples. On

the contrary, we wish to explore rigidity properties of special actions on positively curved

manifolds whose linear counterparts by work of Dadok [Dad], Cartan (see [He]), Tits [Ti1]

and Burns–Spatzier [BS] ultimately are described axiomatically via so-called compact

spherical buildings.

The special actions we investigate are the so-called polar actions, i.e., isometric

actions for which there is an (immersed) submanifold, a so-called section, that meets all

orbits orthogonally. Such actions form a particularly simple, yet very rich and interesting

class of manifolds and actions closely related to the transformation group itself. The
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concept goes back to isotropy representations of symmetric spaces. Also, as a special case,

the adjoint action of a compact Lie group on itself is polar with section a maximal torus.

Its extension to general manifolds was pioneered by Szenthe in [Sz] and independently

by Palais and Terng in [PTe], and has recently been further developed in [GZ]. Since the

action by the identity component of a polar action is itself polar, we assume throughout

without further comments that our group is connected. An exceptional but important

special case is that of cohomogeneity one actions and manifolds, i.e., actions with 1-

dimensional orbit space.

The exceptional case of positively curved cohomogeneity-1 manifolds was studied

in [GWZ] and [V]. Aside from the rank-1 symmetric spaces, this also includes infinite

families of other manifolds, most of which are not homogeneous even up to homotopy.

In contrast, our main result here is the following.

Theorem A. A polar action on a simply connected, compact, positively curved man-

ifold of cohomogeneity at least 2 is equivariantly diffeomorphic to a polar action on a

compact rank-1 symmetric space.

This is reminiscent of the situation for isoparametric submanifolds in euclidean

spheres, where many isoparametric hypersurfaces are not homogeneous (see [OT], [FKM]),

whereas in higher codimensions by [Th] they are the orbits of linear polar actions if they

are irreducible or equivalently the orbits of isotropy representations of compact symmet-

ric spaces by [Dad].

All polar actions on the simply connected, compact rank-1 symmetric spaces, i.e.,

the spheres and projective spaces, Sn,CPn,HPn and OP2 were classified in [Dad] (see

also [EH]), [PTh] and [GKo]. In all cases but OP2 they are either linear polar actions on

a sphere or they descend from such actions to a projective space. By the work mentioned

above by Dadok, Cartan, Tits and Burns–Spatzier, the (maximal) irreducible polar linear

actions are in one-to-one correspondence with irreducible compact spherical buildings. On

OP2 any polar action has either cohomogeneity 1 or 2, and in the second case all but

two have a fixed point. The latter are actions by SU(3)SU(3) [PTh] and SO(3)G2 [GKo],

both with a spherical triangle with angles
{

1
2π,

1
3π,

1
4π
}

as orbit space. We refer to these

as the exceptional (irreducible) actions on OP2.

We note that Theorem A is optimal. In fact, since the Berger–Cheeger deformation

[C] preserves polarity and lower curvature bounds, there are even invariant positively

curved polar metrics on any rank-1 symmetric space arbitrarily Gromov–Hausdorff close

to its orbit space.

There are different steps and strategies involved in the proof of Theorem A. To guide

the reader, we provide a short discussion of the key results needed in the proof.
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Our point of departure is the following description of sections and their (effective)

stabilizer groups, referred to as polar groups in [GZ] and generalized Weyl groups in [Sz]

and [PTe].

Theorem B. The polar group of a simply connected, positively curved polar manifold

of cohomogeneity at least 2 is a Coxeter group or a Z2 quotient thereof. Moreover, the

section with this action is equivariantly diffeomorphic to a sphere, or a real projective

space with a linear action, respectively.

If this linear action is irreducible, then we say that the polar G action is irreducible,

and reducible otherwise. The above result also allows us to associate a (connected)

chamber system C (M ;G) (cf. [Ti2], [R]) of type M (the Coxeter matrix of the associated

Coxeter group), with any simply connected, positively curved polar G-manifold M of

cohomogeneity at least 2. We point out that in this generality, the geometric realization

of C (M ;G) is not always a simplicial complex, so not a geometry of type M in the sense

of Tits. For this we prove the following result.

Theorem C. Let M be a simply connected, positively curved polar G-manifold with-

out fixed points, and not (equivalent to) an exceptional action on OP2. Then, the uni-

versal cover C̃ (M ;G) of C (M ;G) is a spherical building.

Moreover, the Hausdorff topology on compact subsets of M induces, in a natural

way, a topology on C̃ (M ;G) for which we prove the following result.

Theorem D. Whenever the universal cover C̃ (M ;G) of C (M ;G) is a building, it

is a compact spherical building.

When the Coxeter diagram for M is connected, or more generally has no isolated

nodes, the work of Burns and Spatzier [BS] as extended by Grundhöfer, Kramer, Van

Maldeghem and Weiss [GKMW] applies, and hence C̃ (M ;G) is the building of the sphere

at infinity of a non-compact symmetric space U/K of non-positive curvature, and the

action of K on the sphere at infinity is the linear polar action whose chamber system

is the building. In our case, the fundamental group π of the cover becomes a compact

normal subgroup of G̃⊂K, acting freely on the sphere with quotient our manifold with

the action by G=G̃/π. Moreover, the actions by G̃ and K on the sphere are orbit-

equivalent. This already proves our Theorem A up to equivariant homeomorphism in this

case (Theorem 4.10), and equivariant diffeomorphism follows, e.g., from the recognition

theorem in [GZ]. In particular, we note that in this case M is either a sphere or a quotient

thereof by a Hopf action, i.e., not the Cayley plane.

In the remaining (reducible) cases (including the case of fixed points), where isolated

nodes of the Coxeter diagram are present, the above mentioned extended Burns–Spatzier–
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Tits theory does not yield the desired result, and we also use more direct geometric

arguments that hinge on a characterization of Hopf fibrations in our context, Lemma 6.2.

We point out that the proof of Theorem C above has three distinct parts, a special

one of which is carried out in [FGT]. For all chamber systems of rank at least four, our

constructions combined with the work of Tits gives the result (cf. Theorem 3.13). In the

reducible rank three cases it follows from Theorem 7.1. In the irreducible rank-3 cases,

i.e., of type A3 and C3, corresponding to the orbit space being a spherical triangle with

angles
{

1
2π,

1
3π,

1
3π
}

and
{

1
2π,

1
3π,

1
4π
}

, respectively, the general theory breaks down. The

point of departure here (Theorem 5.1), is that in this case C (M ;G) is simplicial, thus

an A3 (resp. a C3) geometry. Since all An geometries are buildings by work of Tits, this

completes the case of A3. In the case of C3, one can use an axiomatic characterization of

buildings of type C3 due to Tits. This is carried out in [FGT] via reductions and the work

in [GWZ]. Unlike the higher-rank case, the strategy here is to construct suitable covers

and prove that they are buildings. Exactly two cases emerge (from the exceptional actions

on OP2) where this cannot be done due to Theorem D and the subsequent discussion

above. In fact, we conclude the following result.

Theorem E. The chamber system C (OP2,G) for an irreducible polar G action on

OP2 is a C3 geometry whose universal cover is not a building.

The existence of C3 geometries whose universal covers are not buildings are well

known in the “real estate community” (see [N]), but the examples C (OP2,G) with

G=SU(3)·SU(3) and G=SO(3)·G2, which arise naturally in our context, are new.

We conclude this outline by pointing out that positive curvature is used in the

general theory for two purposes: (1) To prove Theorem B (cf. §2), and (2) to establish

that the associated chamber system C (M ;G) is connected, or equivalently the G action

is primitive (cf. §3). In fact, we prove the conclusion of Theorem A for any polar action

with connected chamber system and whose orbit space has positive curvature, unless it

is of type C3. In the case of C3 (see [FGT]) we use positive curvature more extensively, in

particular relying on the work in [GWZ] (alternatively, due to Theorem 5.1, this case is

also covered by the classification of irreducible homogeneous geometries of finite Coxeter

type M of rank at least 2 in [KL]).

Unlike previous applications of buildings to geometry, what is essential for us is to

use Tits’s local approach to buildings, i.e., via chamber systems and their universal covers

[Ti2], [R]. We like to mention that this is the case also in independent simultaneous

work by Lytchak [L] describing the structure of polar singular foliations of codimension

at least 3 in compact symmetric spaces. In particular, in his context results similar to

Theorem D and its corollary, Theorem E, were obtained.
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We point out that a corresponding theory for polar actions on non-negatively curved

manifolds is significantly more involved. In particular, the concept of an “irreducible

action” is not as straightforward in this case, in part since the section is no longer just a

sphere or a real projective space with a reflection group (for a complete description see

[FG]). For example, the polar T2 action on CP2 with three fixed points induces a polar

T2 action on CP2#±CP2 with a metric of non-negative curvature and flat Klein bottle

as section (see [GZ]) that should be viewed as reducible, as should actions that are not

primitive.

With the appropriate notion of irreducibility we make the following conjecture.

Conjecture. An irreducible polar action on a simply connected, non-negatively curved

compact manifold is equivariantly diffeomorphic to a quotient of a polar action on a sym-

metric space.

Another interesting direction is based on part of our work here that generalizes to

curvature free settings. For example, the combinatorial content of our paper can be used

in the study of general polar actions on simply connected manifolds with finite polar

groups.

We have divided the paper into seven sections. Structurally, it consists of three

rather different moderately intertwined parts: §§1–4 constituting Part I, §5 (together with

[FGT]) Part II, and §§6–7 Part III. Here, Part I deals with the overall general approach

and theory leading to a proof of Theorem A for all irreducible actions of cohomogeneity at

least 3. Part II deals with the exceptional case of irreducibe actions of cohomogeneity 2,

where the key issue for the general theory breaks down. Finally, Part III deals with all

reducible cases including cohomogeneity 2. In particular, Parts I and III yield a proof of

Theorem A in cohomogeneity at least 3. In cohomogeneity 2 only the irreducible actions

of type C3 are not covered in this paper, and we refer to [FGT] (or [KL]).

The first two sections are devoted to preliminaries and an analysis of sections cul-

minating in Theorem B, which actually provides a complete classification of positively

curved manifolds with reflection groups. The chamber system associated with a polar

action in positive curvature is investigated in §3. The point of departure here is that this

chamber system is connected. The proof of this is based on a result about dual foliations

due to Wilking [Wi2]. We conclude §3 by proving Theorem C in all (irreducible) cases

but A3 and C3.

In §4 we equip the ingredients of Theorem C with a natural topology based on the

classical Hausdorff topology on closed sets in a compact metric space. Our main result

here is that with this topology the universal covers of our chamber systems are compact

spherical buildings in the sense of Burns and Spatzier. This then in particular leads to
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a proof of Theorem A for all irreducible actions but those of type A3 and C3.

As mentioned above, the general theory for compact spherical buildings breaks down

for reducible actions in general (the ones for whom the Coxeter diagram has isolated

nodes). The proof of Theorem A for such actions is carried out in §6 and §7. As a

key input, we provide in §6 a characterization of Hopf fibrations in our context which is

of independent interest. This immediately yields Theorem A for the special case where

fixed points are present. The reducible case where no fixed points are present is dealt

with in §7.

For basic facts and tools involving critical point theory for non-smooth distance

functions and convex sets in positive curvature that will be used freely we refer to [Pe,

Chapter 11].

It is our pleasure to thank Linus Kramer and Alexander Lytchak for constructive

discussions and comments. Likewise, we are grateful to an anonymous referee for con-

structive comments and a suggestion that lead to a significant simplification of the proof

of the Hopf lemma (Lemma 6.2), and subsequent ramifications.

1. Preliminaries

We will begin by giving a brief description of known facts for general polar manifolds

(cf. e.g. [GZ] and [HPTT] for further information). We observe that under fairly mild

restrictions, there is a general so-called chamber system naturally associated with such

actions. We will end the section with a description of such systems, and the special case

of Coxeter systems.

Throughout the paper, G will be a compact connected Lie group acting isometrically

on a connected compact Riemannian manifold M in a polar fashion. By definition, there

is a section Σ, i.e., an immersion σ: Σ!M of a connected manifold Σ, whose image

intersects all G-orbits orthogonally. Moreover, we demand that σ is a section without a

subcover section, i.e. σ does not factor through a covering Σ!Σ′!M . Obviously g σ is

a section for any g∈G, and Gσ(Σ)=M . Clearly, Σ has the same dimension as the orbit

space M∗ :=M/G, i.e., the cohomogeneity of the action, or the codimension of principal

orbits, G /H⊂M . If not otherwise stated, it is understood that 0<dimM∗<dimM . This

eliminates general actions by discrete groups, and general transitive actions. In addition,

we also assume that M is not a product where G acts trivially on one of the factors. In

general, we will denote the image of a subset X⊂M under the orbit map by X∗⊂M∗.
The following facts are simple and well known (cf. [Sz] and [PTe]):

• Any section is totally geodesic.

• The slice representation of any isotropy group K⊂G is a polar representation.
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Recall here that if K fixes p∈M , then the slice representation of K is the action of K by

differentials on the normal space in TpM to the tangent space Tp(G p) of its orbit G p.

We often restrict this further to the subspace T⊥p perpendicular also to the fixed-point

set TpM
K. This is also a polar representation.

Fix a section σ: Σ!M and a point p∈Σ corresponding to a principal G orbit, i.e.,

Gσ(p) is a principal orbit with isotropy group H=Gσ(p). The stabilizer subgroup Gσ(Σ)⊂G
of σ(Σ) induces an action on Σ. Clearly, H is the kernel of that action, and we refer to

Π:=Gσ(Σ) /H as the polar group associated with the section σ. Recall the following facts:

• For any q∈Σ, σ∗(TqΣ)⊂Tσ(q)M is a section of the polar representation, the slice

representation of Gσ(q), and the associated polar group is the isotropy group Πq.

• Π is a discrete subgroup of N(H)/H acting properly discontinuously on Σ with

trivial principal isotropy group.

• M∗=Σ∗ :=Σ/Π is an orbifold.

In complete generality, the structure of M and its G action is encoded in the section

Σ, the polar group Π and its actions on Σ and G /H, and the G-isotropy groups along Σ.

Although in general, Π can be any discrete subgroup of a Lie group, typically singular

orbits are present, in which case there is a non-trivial normal subgroup W⊂Π generated

by reflections ri associated with maximal singular isotropy groups Ki⊂G along Σ (cf.

[GZ]). We refer to any group generated by reflections as a reflection group. We stress

that here r: Σ!Σ is called a reflection if r has order 2, and at least one component

of the fixed-point set has codimension 1. The codimension-1 components Λr⊂Σ of the

fixed-point set Σr are referred to as the mirrors of r. A connected component c of the

complement of all mirrors is called an (open) chamber of Σ. We denote the closure of

an open chamber by C=c̄ and refer to it simply as a chamber. Again, we stress that

this kind of terminology is usually reserved to the situation where the complement of

a mirror has two connected components interchanged by the reflection. Note that the

latter is automatic for reflections on a simply connected manifold.

It is clear that W acts transitively on the set of open chambers of Σ, but the stabilizer

group Wc, which we will call the chamber group, may be non-trivial when the section

is not simply connected (cf. Example 1.1 and Theorem 1.2). Clearly, Σ/W=C/Wc.

Moreover, the boundary ∂C=C\c of a chamber C is the union of its chamber faces,

where a chamber face is an intersection C∩Λ with a mirror Λ such that C∩Λ is the

closure of a non-empty open subset of Λ. More generally, a face of a chamber C is an

intersection C∩Λ with a mirror Λ. Faces that are not chamber faces play no role in this

paper. We will therefore frequently simply write “faces” when we mean “chamber faces”.

The following examples illustrate these concepts and are relevant for our subsequent

discussion about positive curvature.
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Example 1.1. Consider the following groups W acting on S2 as well as on RP2.

(1) W=A1=〈r〉, where r is the reflection in the equator.

On S2 there is one mirror and two open chambers, the open upper and lower hemi-

spheres interchanged by r. Their closure is the orbit space S2/W. There is one face, its

boundary circle (and it coincides with the mirror of r).

On RP2 there is one mirror and one open chamber and it is preserved by r. Its

closure is all of RP2 and the orbit space RP2/W is the cone on its boundary circle, the

cone point corresponds to the isolated fixed point of r on RP2 (in the chamber). There

is one face, the whole boundary (and it coincides with the mirror of r).

Note that the action of W on RP2 lifts to the action of W on S2. If we extend this

action by −id, the extended group action induces the same action on the base, and now

has the same orbit space.

(2) W=A1×A1=〈r0, r2〉 where r0 and r2 are reflection in two great circles making

an angle 1
2π.

On S2 there are two mirrors and four open chambers. Their closure is the orbit

space S2/W, a spherical right-angled biangle. There are two faces, each of which is also

a chamber face. Their intersection is the intersection of mirrors and coincides with the

fixed-point set Fix(W).

On RP2 there are three mirrors and four open chambers. In fact, the “rotation” r0 r2

on S2 induces a reflection on RP2. The closure of an open chamber is the orbit space

RP2/W, a right-angled spherical triangle. There are three faces, each of which is also a

chamber face. The intersection of all mirrors is empty, but each vertex of the orbit space

triangle correspond in this case to a fixed point of W.

In this case, the lifted action of W on RP2 to S2 contains a rotation of angle π.

Again, the extended action by −id defines the same action on RP2, but on S2 the action

has three reflections, and of course the same orbit space. In other words, the reflection

group on S2 generated by the lift of all the reflections in RP2 contains the antipodal map

in this case as opposite to the first case.

(3) W=A2=〈r0, r3〉 where r0 and r3 are reflection in two great circles making an

angle 1
3π.

On S2 there are three mirrors and six open chambers. Their closure is the orbit

space S2/W, a spherical biangle with angle 1
3π. There are two faces, each of which is

also a chamber face. Their intersection is the intersection of mirrors and coincides with

the fixed-point set Fix(W).
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On RP2 there are three mirrors and three open chambers. The closure of an open

chamber is a spherical biangle with angle 1
3π, where the two vertices have been identified!

The stabilizer Wc of a chamber has order 2, fixes the “mid point” of C and rotates C

to itself, mapping one chamber face to the other. The orbit space has one face with

one singular point, the fixed point of W, and one interior singular point, the fixed point

of Wc.

In this case, the reflection group obtained by lifting the reflections in RP2 to reflec-

tions in S2 does not contain the antipodal map. If we extend it by the antipodal map we

get the same action on RP2 and the orbit spaces are, of course, the same as well.

(4) Consider a linear cohomogeneity-1 action on a sphere with orbit space of length

π/i, i=2, 3. The suspended action and its induced action on the real projective space

have sections and polar groups as presented in (2) and (3) above.

Note that if Π=W and the chamber group Wc is trivial, it follows that C is iso-

metrically identified with Σ/W=M/G, and that W acts simply transitively on the set

of closed chambers of a fixed section Σ. Moreover, G acts transitively on the set of all

chambers in all sections of M , i.e.

M =
⋃
g∈G

gC,

and this set of chambers is G /H as a set. The chamber faces Fi, i=1, ... k, of C correspond

to a set of generators ri for W. This way all faces of chambers gC, g∈G, of M get labeled

consistently, so that G is label-preserving. Now define two chambers g1C and g2C to

be i-adjacent if they have a common i face g1Fi=g2Fi. This relation among the set of

chambers in M , (resp. all chambers in a fixed section Σ) make both of these sets into a

chamber system C (M,G) (resp. C (Σ,W)) according to the following definition (see, e.g.,

[Ti2] and [R]).

An (abstract) chamber system over I={1, ..., k} is a set C together with an i-

partition of C for every i∈I. Elements C,C ′∈C in the same part of the i-partition,

are said to be i-adjacent which is written as C∼iC ′. The elements of C are called

chambers.

We will use the following standard terminology in the next sections.

A gallery in C is a sequence Γ=(C0, ..., Cm) in C such that Cj is ij-adjacent to Cj+1

for every 06j6m−1. Here the word f=i0i2 ... im−1 in I is referred to as the type of the

gallery. If we want to indicate this type, we write Γf rather than just Γ. If the ij ’s belong

to a subset J of I, we call Γ=(C0, ..., Cm) a J-gallery. A subset B of a chamber system

C is said to be connected (or J-connected) if any two chambers in it can be connected
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by a gallery (or a J-gallery). The J-connected components of C are called J-residues.

The rank of a J-residue is the cardinality of J and its corank is the cardinality of I\J .

Given residues R and S of types J and K respectively, we say that S is a face of R, if

R⊂S and J⊂K.

Note that for chamber systems C (M,G) as above, if two mirrors Λi and Λj in Σ

corresponding to two reflections ri and rj on Σ intersect, then (ri rj)
mij =1 for some finite

integer mij>1. In fact, ri, rj∈Wp the reflection group of the polar representation of

the isotropy group Gp for p∈Λi∩Λj=:Λij , so 〈ri, rj〉 is a dihedral group, and the angle

between Λi and Λj is π/mij . In fact, in our case mij is limited to 2, 3, 4, or 6, since

these are the possibilities for isotropy representations of symmetric spaces, and moreover

no exceptional orbits are present (Theorem 2.7).

Recall that a symmetric k×k matrix M=(mij) with entries from N∪{∞}, with

mii=1 for all i∈I, and mij>1 if i 6=j is called a Coxeter matrix.

Pictorially, M is given by its so-called diagram, which consists of one node for each

i∈I and mij−2 lines joining the i and j nodes.

The associated Coxeter group of type M is the group W(M) given by generators and

relations as

W(M) = 〈{r1, ..., rk} | (rirj)mij = 1 for all i, j ∈ I such that mij is finite〉.

The pair (W(M), S), where S={r1, ..., rk}, is called the Coxeter system of type M, and k

is referred to as its rank. The elements of W(M) that are conjugate to elements in S are

called reflections.

Associated with a Coxeter system (W(M), S), where S={r1, ..., rk} and I={1, ..., k},
there is a natural chamber system C (W): One defines i-adjacency for i∈I to be w∼iwri,
i.e., each part in the i-partition of W consists of two elements. Notice that W is connected

since S generates W. There is a partial order among residues defined by setting S6R

if S⊃R. The residues T for which S6T implies S=T are called the vertices of C (W).

Denote the set of vertices by V. With a residue S, one associates the subset S′⊂V defined

by S′={v∈V|v6S}, and call S′ an i-simplex if its cardinality is i+1. The set simplices

in V is denoted by ∆(W).

The Coxeter complex ∆(W) associated with a Coxeter system (W(M), S) also pro-

vides an example of an (abstract) simplicial complex:

Recall that an (abstract) simplicial complex is a non-empty family S of finite subsets

(called simplices) of a set V such that {v}∈S for every v∈V and every subset of a simplex

in S is a simplex in S (called a face). (The simplices consisting of one element are called

vertices.)
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One has the following general facts (see e.g. [Dav, p. 179, Theorem 10.1.5 and

Lemma 10.1.6]).

Theorem 1.2. For any reflection group W acting on a simply connected Riemannian

manifold Σ, (W, S) is a Coxeter system, where S are reflections in W corresponding to

the faces of a chamber C, and Wc is trivial. If Σ is compact, W is finite and isomorphic

to a spherical reflection group.

Remark 1.3. The Coxeter groups that we will deal with in this paper will all be finite.

By a theorem of Coxeter, Coxeter systems of rank k+1 are in one-to-one correspondence

with finite subgroups of O(k+1) that are generated by reflections in hyperplanes of Rk+1

and only fix the origin. Such groups have been classified. Let (W, S) be a Coxeter

system of rank k acting as a reflection group on Rk+1, and consider its restriction to Sk.

In this case mirrors are of course great spheres Sk−1, and the Coxeter group W acts

simply transitively on the set of chambers. Each chamber is a spherical k-simplex and

the corresponding triangulation of Sk is the geometric realization of the Coxeter complex

∆(W) associated with a Coxeter system (W, S).

The geometry of this representation is also reflected in the Coxeter diagram of M.

For example, this diagram is connected if and only if this action is irreducible. Each

node corresponds to a codimension-1 face simplex, i, and π/mij is the angle between the

corresponding i and j faces of the k-simplex Sk/W. The Coxeter diagram for the isotropy

group of W at the vertex opposite to face i is obtained from the Coxeter diagram of W

by removing the ith node.

We note that the chambers for the Coxeter system (W, S) in Theorem 1.2 when Σ

is a compact k manifold combinatorially are the same as the spherical k simplices of its

representation above. Geometrically, it follows in particular that all angles in a chamber

of Σ are the same as the corresponding angles in the spherical simplex.

Although A2 is an irreducible Coxeter group, we point out that all the linear 3-

dimensional representations presented in Example 1.1 above are reducible. We conclude

this section with important examples of irreducible Coxeter groups.

Example 1.4. Finite Coxeter groups that are isomorphic to finite and irreducible

reflection groups acting on R3 will play a special role in some of our proofs. There are

three such groups that in the classification of finite Coxeter (or reflection) groups are

given the symbols A3, C3, and H3.

The group A3 is isomorphic to the symmetric group on four letters. It is the group of

symmetries of a regular tetrahedron. Its order is 24. The 2-simplexes in the triangulation

explained above have angles 1
2π, 1

3π and 1
3π at the vertices.
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The group C3 is the symmetry group of a regular cube (or dually of a regular

octahedron). Its order is 48. The 2-simplices in the triangulation have angles 1
2π, 1

3π

and 1
4π at the vertices.

The group H3 is the symmetry group of a regular dodecahedron (or dually of a

regular icosahedron). Its order is 120. The 2-simplices in the triangulation have angles
1
2π, 1

3π and 1
5π at the vertices. Note that the occurrence of the angle 1

5π excludes H3 as

a Coxeter group of a polar action.

2. Sections and Coxeter groups

We assume from now on that M is a positively curved polar G-manifold of cohomogeneity

at least 2. This will yield strong restrictions on all of the basic items presented in §1. In

particular, we will prove that sections are either spheres or real projective spaces.

When M is simply connected, we show that the polar group is a Coxeter group

when the section is a sphere, and a Z2 quotient of such a group when the section is a

real projective space; in either case the action is linear, as stated in Theorem B of the

introduction.

The starting point is the following.

Lemma 2.1. (Singular Orbit) Any positively curved polar G-manifold has singular

orbits.

Proof. If all orbits have maximal dimension, the normal distribution is globally

defined and integrable with leaves the sections of M . Since, in particular, the sectional

curvature of M is non-negative, it now follows from [Wa, Theorem 1.3] that the orbits

of G are totally geodesic, and that the metric on M locally is a product metric. This is

a contradiction since the sectional curvature of M is actually positive.

Remark 2.2. For a non-negatively curved polar G-manifold, the same conclusion

holds unless M=Σ×ΠG /H is locally metrically a product. If in addition M is simply

connected, then M=Σ×G /H with a product metric.

From §1, we know in particular that the reflection group W⊂Π is non-trivial and

that ∂M∗=∂Σ∗ is non-empty. This is already sufficient to prove the following result.

Proposition 2.3. (Section) Let M be a compact, positively curved polar manifold.

Then, any section Σ is diffeomorphic to either a sphere Sk or a real projective space

RPk. In particular, the polar group Π is finite.

Proof. Let r be a reflection, with mirror Λ and a component E⊂Λ. Since the cur-

vature is positive, the (local) distance function to E is strictly concave. In particular,
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the complement Σ\Dε(E) of a small tubular neighborhood of E is a (locally) convex set

with boundary ∂Dε(E). This set either has one or two components corresponding to the

boundary having one or two components. In either case, each component is a disc by

the standard “soul argument”, and in fact E=Λ. The key fact here is that the distance

function to the boundary is strictly concave, and hence has a unique point at maximal

distance called the soul point. Moreover, the distance function to the soul point has no

critical points. For the arguments and constructions below it is also important that the

distance function is r invariant.

In the case where Σ\Dε(E) has two components, Λ=E separates Σ into two mani-

folds V+ and V−, each with Λ as a totally geodesic boundary. In this case, the isometry r

interchanges V+ and V−. Moreover, a diffeomorphism φ from the upper hemisphere Dk+
of Sk to V+ can be chosen so that the north pole of Dk+ goes to the soul point of V+, and

the image of the gradient lines to the north pole of Dk+ are “radial” near E and the soul

point. The map Φ:Sk!Σ defined by Φ=φ on Dk+ and Φ=r φ% on Dk− is a diffeomorphism

which is equivariant relative to the reflections % in the equator of Sk and r on Σ.

In the case where Σ\Dε(E) has one component, r fixes its soul point and acts

freely elsewhere. In fact, r clearly acts freely in Dε(E)\E, so by convexity, r can only

have isolated fixed points in Σ\Dε(E). Moreover, if there was an isolated fixed point

in addition to the soul point, a minimal geodesic between them would be reflected to

a closed geodesic which is impossible by convexity. In particular, Λ=E=RPk−1 and

Σ has fundamental group Z2. In the 2-fold universal cover Σ̃ of Σ, the lift Λ̃ splits

Σ̃ into two convex components V+ and V− with common totally geodesic boundary Λ̃,

as in the first part. The reflection r lifts to a reflection r̃ interchanging V+ and V−,

each being mapped isometrically by the projection map to Σ\Λ (see also Remark 2.4).

Choosing a diffeomorphism φ say from the upper hemisphere Dk+ of Sk to V+ as before,

the map Φ̃:Sk!Σ̃ defined by Φ̃=φ on Dk+ and Φ̃=r φ%̃ on Dk− is a diffeomorphism which

is equivariant relative to the reflection %̃ on Sk and r̃ on Σ̃. In addition, by construction,

equivariant relative to the antipodal map −id on Sk and the deck transformation a of Σ̃.

We conclude that Φ̃ induces a diffeomorphism Φ:RPk!Σ which is equivariant relative

to the reflections % on RPk induced from %̃ and r on Σ.

Remark 2.4. During the proof of the result above we note in particular that if r∈W
is a reflection of the section Σ with mirror Λ, then:

• If Σ is a sphere, Fix(r)=Λ and Λ is a codimension-1 sphere.

• If Σ is a projective space, Fix(r)=Λ∪{s}, where s is the soul point at maximal

distance to Λ, and Λ is a real projective space of codimension 1. Note in addition that r

also lifts to a map-preserving V±⊂M̃ and acting as a on Λ̃

In particular, mirrors are connected, and if Π=〈r〉, the result above gives a complete
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equivariant description of (Σ,Π).

The proof above also allows us to derive further information about the reflection

group W and the corresponding open chambers and orbit space Σ/W.

Lemma 2.5. (Sphere chamber) Let Σ be a k-dimensional sphere and c be an open

chamber. Then, the following statements hold.

• Intersections of mirrors are spheres, and the closure C of c is a convex set in Σ.

• There are at most k+1 chamber faces, and the intersection of all of them is

Fix(W).

• If there are k+1 chamber faces, then C is a k-simplex, and Fix(W)=∅.

• If there are `+1<k+1 chamber faces, then C is the join of Fix(W) with an

`-simplex.

Moreover, C is a fundamental domain for W and Σ/W=C.

Proof. If there is only one mirror Λ corresponding to one reflection r, then we have

W=〈r〉=Z2 and C is a closed convex disc with boundary Λ=Fix(W). In particular, C is

a join of Fix(W) with a 0-simplex, the soul point s of C.

Now consider any two reflections, ri, i=1, 2, with corresponding mirrors Λi. If p

belongs to Λ12 :=Λ1∩Λ2=Fix(〈r1, r2〉), clearly ri belongs to the reflection group Wp of

the polar representation of the isotropy group Gp. In particular, 〈r1, r2〉 is a dihedral

group, and the angle between Λ1 and Λ2 is π/k for some integer k. In particular, the

intersection Λ12 is a codimension-1 totally geodesic submanifold of either mirror Λi, and

hence again, by convexity, is a sphere (two points when the mirrors are 1-dimensional).

In general, consider ` mirrors Λ1, ...,Λ` such that the inclusions of iterated intersec-

tions Λ12⊃Λ123⊃...⊃Λ123...` are all strict. Then each intersection is a totally geodesic

submanifolds of codimension 1 in the previous intersection, and hence Λ123...` is a (k−`)-
sphere. Also Λ123...` is the set fixed by all reflections ri with corresponding mirror Λi.

This completes the proof of the first “bullet”.

Now suppose C has `+1 chamber faces, F0, ..., F`. Since the angle between any two

faces is at most 1
2π it follows as in the original Cheeger–Gromoll case of the distance

function to the full boundary [Pe], that the distance function on C to one face, say F0, is

strictly concave (cf. [Wi1, Theorem 7], [GKi, Theorem 1.3], and [Wö, Corollary 3.2] for

general Alexandrov spaces with boundary). In particular, there is a unique point s0 in C

at maximal distance to F0 (the soul point for F0). It follows that s0 is in the intersection

of the remaining chamber faces ([GKi, Theorem 1.3] and [Wö, Lemma 3.4] for general

Alexandrov spaces, noting that intersections of faces are extremal subsets). Moreover,

by convexity of super-level sets, the distance function to s0 on C has no critical points.

Using this and the basic fact that convex combination of “gradient-like vector fields” is
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“gradient like”, one constructs a gradient-like vector field (the angle between it and any

minimal geodesic to s0 is larger than 1
2π), which is radial near s0 and gradient like also

when restricted to the remaining faces intrinsically. In particular, C is the cone on F0

which in turn is isotopic to a small metric ball in C of radius ε centered at s0. This also

identifies F0 with the boundary of this ε ball, which via the exponential map is identified

with the closure of a chamber in the unit sphere at s0 corresponding to the reflections

r1, ..., r`. The proof of the remaining three bullets now follows from this and from the

corresponding fact for finite linear reflection groups applied to the unite sphere at s0.

We point out that this proof is a special case of a general result about orbit spaces

of positively curved manifolds due to Wilking [Wi1] (Theorem 7), related more directly

to Σ/W in our context. We have included it here not only to make the exposition more

self contained, but also because it illuminates the particular structure we have here.

We now turn to the case where the section Σ is a projective space. In this case,

we will analyze the situation in its universal cover Σ̃. Specifically, for each mirror Λ in

Σ corresponding to a reflection r, we consider its lift Λ̃ to Σ̃. As noted in the proof of

Proposition 2.3 and in Remark 2.4, r has two canonical lifts. One of them is a reflection

r̃ in Λ̃, the other has two isolated fixed points and restricts to a on Λ̃. Here we define

W̃ to be the reflection group on Σ̃ generated by all r̃, where we use all r from W. Note

that, by construction, any lifted mirror is preserved by a, and that a commutes with any

element from W̃. Combining this with the previous lemma one derives, whether M is

simply connected or not, the following lemma.

Lemma 2.6. (Projective chamber) Let Σ be a k-dimensional projective space and Σ̃

be the universal cover with deck transformation a. Then the following statements hold.

• Intersections of lifted mirrors are spheres invariant under a.

• The associated reflection group W̃ of W may or may not contain a, but in either

case W=〈W̃, a〉/〈a〉.
• Open chambers c in Σ are isometric to open chambers c̃ for W̃,

• The closure C̃ of an open chamber for W̃ is a convex set in Σ̃ having the union

of chamber faces as boundary. Moreover, C is obtained from C̃ by identifying a orbits in

the boundary.

• C̃ has at most k+1 chamber faces, and the intersection of them all is Fix(W̃).

• If C̃ has k+1 chamber faces it is a k-simplex and Fix(W̃)=∅.

• If C̃ has `+1<k+1 chamber faces it is a join of Fix(W̃) and an ` simplex.

Moreover, Σ/W=Σ̃/〈W̃, a〉=(Σ̃/〈W̃〉)/〈a〉=C̃/〈a〉.

We assume from now on that M is a positively curved simply connected polar G-

manifold, with G connected.
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The following result is proved more generally for singular polar foliations in [AT,

Theorem 1.5] and [A, Theorem 1.1].

Theorem 2.7. (Alexandrino and Töben) Any non-trivial polar action on a simply

connected manifold has no exceptional orbits, and its reflection group W is the whole

polar group Π.

In the case of polar actions, it was also recently proved in [GZ] that in addition the

chamber group is trivial. For the sake of the reader, we provide a simple direct proof in

the case of positive curvature. In fact, the following result is pivotal for us.

Proposition 2.8. (Chamber group) The chamber group Wc of a simply connected,

positively curved polar G-manifold M is trivial, and hence M∗=Σ∗=C. Moreover, the

following statements hold.

• If Σ is a sphere, C is a simplex and the fixed-point set ΣW=∅, or C is a join of

ΣW and a simplex.

• If Σ is a projective space, C is a simplex, a∈W̃ and ΣW is a subset of the vertices

(possibly empty).

In either case, W acts simply transitive on the set of chambers.

Proof. Consider an open chamber c and Wc acting on it. Note that, whether or

not Σ is a sphere or a projective space, c is the union of compact closed locally convex

subsets Cε (distance ε or more to C\c). By convexity, it is clear that the soul point (the

common soul point s for all Cε) is fixed by Wc (one can also use the description of c from

the lemmas above). Since there are no exceptional orbits when M is simply connected

(cf. Theorem 2.7), this already is impossible unless Wc is trivial. From §1 we then know

that M∗=Σ∗ is the closure C of a chamber c. If Σ is a sphere, Lemma 2.5 completes the

proof.

Now, suppose that Σ is a projective space. First note that a acts freely on the set

of open chambers for W̃. This follows from the simple fact that a interchanges the two

connected components of the complement of any lifted mirror, and commutes with W̃.

We now claim that ΣW̃=∅, and hence C̃ (defined in Lemma 2.6) is a simplex.

Indeed, if ΣW̃ is non-empty then clearly a /∈W̃. Moreover, the involution induced by a on

Σ̃/W̃=C̃ acts freely on ΣW̃ and preserves the boundary of C̃. In particular, C̃/〈a〉 will

have interior metric singular points contradicting that it is C by Lemma 2.6.

To complete the proof we now claim that a∈W̃, and in particular that

C = Σ/W= Σ̃/W̃= C̃.

If not, then |W|=|W̃| and a induces a non-trivial involution on C̃ with C=C̃/〈a〉. Such an

involution will preserve the boundary of the simplex C̃ taking faces to faces. As before,
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this will produce an interior metric singular point of C, unless the induced map by a is a

reflection of the simplex. This, however, cannot happen since the fixed-point set of this

involution would correspond to a chamber face of C and hence a reflection in W whose

lift to Σ̃ had been omitted from W̃.

Remark 2.9. Note that it follows from this that if MG 6=∅ and Σ is a sphere, then

MG=ΣW, since ΣW is the most singular stratum in the orbit space Σ/W=M/G. In the

next section we will see that conversely, if ΣW 6=∅ and Σ is a sphere, then MG 6=∅ as

well, and hence MG=ΣW (cf. (3.6)).

The Coxeter group W (resp. W̃) corresponding to the section being a sphere (resp.

a projective space) admits a canonical representation, i.e., acts isometrically on the unit

k-sphere Sk with orbit space C ′ having the same infinitesimal singularities (i.e., tangent

cones) as C. As a consequence, we have the following result.

Corollary 2.10. Let M be a simply connected, positively curved polar G-manifold.

Then M∗=Σ∗=C admits a metric of constant curvature, isometric to its linear model C ′.

Proof. From Proposition 2.8, we know that Σ∗ is the chamber C for a Coxeter group

W (resp. W̃) acting on the k-sphere Σ (resp. Σ̃, when Σ is a projective space). Moreover,

as stated above, the same Coxeter group acts linearly on Sk, with chambers C ′ having

labels as C and with the same tangent cones, determined by the corresponding isotropy

groups and actions.

We only consider the case where Σ is a sphere since the other case is analogous. Now

fix a chamber C with `+1 chamber faces, F0, ..., F` in Σ and the corresponding model

chamber C ′⊂Sk. As in the proof of Lemma 2.5, let s0 be the point in C at maximal

distance to the face F0. Now apply the isotropy group Ws0 of the Coxeter group at s0 to

C to obtain a Ws0 invariant convex subset Ws0(C) of Σ with s0 in the interior, the point

at maximal distance from the boundary ∂(Ws0(C))=Ws0(F0) of Ws0(C). As in the proof

of Lemma 2.5, it follows that there is a Ws0 invariant smooth vector field on an open

neighborhood of Ws0(C) in Σ, which is radial near s0 and gradient like on ∂(Ws0(C)).

The same construction based on C ′ in Sk yields a Ws0 invariant diffeomorphism of

a neighborhood of Ws0(C) in Σ to a neighborhood of Ws0(C ′) in Sk. After a suitable

reparametrization of one of the vector fields using transversality if needed, the restriction

yields the desired diffeomorphism from C to C ′.

We are now ready to establish the main result of this section.

Theorem 2.11. (Coxeter section) Let M be a simply connected, positively curved

polar manifold. Then the action of the polar group W of a section Σ is equivariantly
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diffeomorphic to a linear action of W. In fact, Σ admits a W invariant metric of constant

curvature.

Proof. Choose a constant curvature metric on Σ∗ as above. We now claim that this

metric comes from a W invariant metric on Σ with constant curvature. To see this, all

we have to do is to lift the metric locally near any point of the orbit space to any point

mapping to it by the orbit map. This however is clear. Since the lifted metrics obtained

in this way agree on overlaps, we are done.

Remark 2.12. We point out that our conclusions in the theorem above carry over to

the general context of a positively curved manifold with a non-trivial isometric reflection

group action. The manifold together with the action of the reflection group is then

equivariantly diffeomorphic to a sphere or a real projective space with a linear action by

a finite Coxeter group (Z2 ineffective in the latter case).

The following definition is now natural.

Definition 2.13. We say that a simply connected, positively curved polar G-manifold

M is reducible if the action by the Coxeter group W on Σ is reducible.

In particular it follows that W, or W̃, is an irreducible Coxeter system group when

(M,G) is irreducible; Example 1.1 (3) shows that the converse is false. Also an action

with a non-trivial fixed-point set is reducible. In the case of irreducible actions, all the

types An, Cn, Dn, E6, E7, E8 and F4 are of course possible when the section is a sphere,

but we note that due to the chamber group proposition above, not all of them are possible

when the section is a projective space.

We remark that in the literature the notion hyperpolar is used for a polar manifold

with flat sections. Following [GZ], we say that a polar manifold is a polar space form

if its sections have constant curvature. According to the sign of the curvature of the

sections, one then says that the polar space form has spherical, euclidean or hyperbolic

type. Using this language, a partition of unity argument as in [GZ, Theorem 3.3], or the

main result of [M], now yields the following corollary in our case.

Corollary 2.14. (Polar space form) A simply connected, positively curved polar G-

manifold M admits the structure of a polar spherical space form with the same sections.

It should be noted that M with such a polar space form structure typically has

curvatures of both signs. In general, a highly non-trivial result of [M] asserts that any

metric on a section of any polar G-manifold invariant under the polar group extends to

a G-invariant metric on the ambient manifold with the same section.
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3. The chamber system and primitivity

Based on the chamber group proposition (Proposition 2.8), recall from §1 that there are

two natural chamber systems C (Σ,W), (resp. C (M,G)) associated with any polar action

of a connected compact Lie group G on a simply connected, positively curved manifold

M with section Σ and polar group W. Throughout the rest of the paper (M,G) is such

a polar pair.

Our primary purpose in this section is to analyze C (M,G) further and thereby derive

essential properties about such general actions. In particular, we will show that it is a

connected chamber system (the crucial starting point for our subsequent investigation of

irreducible actions), and use this to show that G is generated by the face isotropy groups

of any fixed chamber C⊂Σ (an essential ingredient in our investigation of reducible

actions).

When the chambers are spherical simplices, we observe that all proper residues of

the chamber system can be described via slice representations of corresponding isotropy

groups. This allows us to invoke a celebrated result of Tits [Ti2], implying that in most

cases the so-called universal cover of our chamber system is a building.

From the description of the chamber system C (M,G)=
⋃
g∈G gC, we first note that

all chambers are isometric when equipped with the induced length-space metric from M .

This induces a natural length-space metric on each path-connected component of C (M,G).

A fundamental theorem due to Wilking [Wi2] asserts in particular that the dual foliation

associated with the orbits of an isometric group action on a positively curved manifold

has only one leaf. It is an immediate consequence of this result that

• C (M,G) has only one component.

There is an equivalent length metric on C (M,G) obtained by using a polar space

form metric on M (cf. Corollary 2.14) in the construction above. We will refer to the

corresponding topology as the thin topology on C (M,G). (Since M is the union of its

chambers, we can also think of it as M being equipped with this metric and topology.)

From now on, we will always use the thin length metric on C (M,G) induced from

a constant curvature-1 metric on a section. In particular, note that each chamber C is

either a (spherical) k-simplex ∆k, or else the spherical join Sk−`−1∗∆` of the (k−`−1)-

sphere and a spherical `-simplex. In either case, the chambers in a fixed section Σ tile the

section, which is either RPk or Sk. Moreover, by construction, G preserves the labeling

of all “vertices”, “edges”, ..., “faces”, i.e., of all 0-, 1-, ..., (k−1)-simplices, when C=∆k

is a simplex. In the special case where the chamber is not a simplex, i.e., C=Sk−`−1∗∆`,

by a vertex, or 0-simplex, of the chamber C we mean a set of the type Sk−`−1∗{v},
where v is a vertex of the simplex ∆`, and similarly for edges, ..., faces. We label the

set Sk−`−1⊂C as the (−1)-simplex of the chamber C. In either case, we note that the
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intersection of any two chambers in M is either empty or else a common “subsimplex”

in this sense, allowing in particular the intersection to be a “(−1)-simplex”.

From the fact that C (M,G), with the thin topology, is connected, we get the follow-

ing essential property.

Theorem 3.1. (Connectivity) Let M be a simply connected, positively curved polar

G-manifold. Then the associated chamber system C (M ;G) is connected, i.e., any two

chambers are connected by a gallery.

Proof. We will prove this by induction on dimM∗=k using that C (M ;G) is path

connected. For simplicity, we first present the proof in the typical case where the chamber

C is a simplex ∆k. A simple modification yields the general statement.

Let C and C ′ be two chambers of C (M ;G). Using [Wi2] join two interior points

of C and C ′ by a piecewise smooth horizontal curve, i.e., at any point both one-sided

derivatives of the curve are perpendicular to the G orbit at the point. In our case, it is

clear that we can choose a horizontal curve γ: [0, 1]!M , and 0=t0<t1<...<tk+1=1 such

that γ (ti, ti+1) is a geodesic, or a once-broken geodesic in the interior of a chamber Ci

relative to the thin metric on C (M ;G), where C0=C, Ck=C ′ and all Ci are different.

Moreover, γ can be chosen so that each of the possibly non-smooth points γ(ti), i=1, ..., k

are all vertices. In addition, the one-sided derivatives γ′+(ti) and −γ′−(ti) of γ at the

vertices γ(ti) are interior points of two (k−1)-chamber simplices for the chamber complex

C (S⊥γ(ti)
;Gγ(ti)) of the slice representation of the isotropy group Gγ(ti). By induction,

these simplices can be joined by a gallery in C (S⊥γ(ti)
;Gγ(ti)). Filling in the corresponding

gallery in C (M ;G) at each γ(ti) now yields a gallery from C to C ′.

To complete the proof, we need to establish the induction anchor in cohomogeneity 2.

By the same reasoning as above, this follows from the claim that the chamber complex of a

linear spherical cohomogeneity-1 action is connected. Since any horizontal curve provided

by Wilkings theorem in this case is a piecewise horizontal geodesic up to parametrization,

such a curve already constitutes the desired gallery.

The modification needed to cover the case where the chambers are joins with a

non-empty sphere can be explained as follows: As in the simplex case one may choose

a piecewise horizontal geodesic γ, so that each of the possibly non-smooth points points

γ(ti), i=1, ... k, are most singular, i.e., in this case (−1)-simplex points. The remaining

part of the proof follows the same path.

The Coxeter section theorem (Theorem 2.11) and the connectivity theorem above

are the two crucial properties derived using positive curvature. We note that there is no

reason for the chamber system of a simply connected polar space form of spherical type

to be connected. However, the manifolds we actually classify in higher cohomogeneities
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in this paper are the chamber connected polar spherical space forms, i.e.,

• simply connected polar space forms (M,G) of spherical type, with

• connected associated chamber system, C (M ;G).

In addition, this generality is important for the proof because G-invariant polar

submanifolds of a positively curved polar manifold are typically not positively curved

(cf. §6, proof of Hopf lemma).

The two assumptions above will be applied throughout the rest of the paper.

Using connectivity, we derive the following simple but powerful tool.

Theorem 3.2. (Primitivity) The group G is generated by the (identity components

of the) face isotropy groups of any fixed chamber.

Proof. Fix a chamber C0 and consider any other chamber gC0, g∈G. Using the

results above, let Γ=(C0, ...., Ck) be a gallery of type i1i2 ... ik, where Ck=gC0. By

definition, note that any Cn is obtained from Cn−1 by applying an element gin of the

isotropy group for the common face in of Cn and Cn−1 to Cn−1, i.e., Cn=ginCn−1.

From this it follows that Ck=gC0=gik gik−1
... gi1C0, and hence g=gik gik−1

... gi1 after

modifying gi1 with an element of the stabilizer of the chamber C0, if necessary.

Now each gin is a conjugate of an element of the isotropy group corresponding to the

face in by the previous element. So, in other words, gik =[gik−1
... gi1 ]hik [gik−1

... gi1 ]−1,

and hence g=[gik−1
... gi1 ] hik [gik−1

... gi1 ]−1 gik−1
... gi1 =[gik−1

... gi1 ] hik , where hik is in

the isotropy group with face ik of C0.

Proceeding in this way, we see that g=hi1 hi2 ..... hik , where also hi1 =gi1 , as claimed.

The claim about identity components of the face isotropy groups follows, since in fact

they act transitively on the normal spheres of their orbit strata (these spheres are con-

nected).

Remark 3.3. The description of galleries used in the proof above is very useful. In

fact, a gallery starting at C of type i1i2 ... ik is given by a word hi1 hi2 ... hik in elements

of the isotropy groups Gij corresponding to the ij-faces of C. Note that each Gij acts

transitively on the normal sphere to the corresponding orbit stratum, i.e., the ij residue

of C is in one-to-one correspondence with this normal sphere. For this reason, we say

that a gallery Γf=(C0, ...., Ck) of type f=i1i2 ... ik is obtained from C0 by repeatedly

folding it along the faces using the face isotropy groups Gi1 , Gi2 , ..., Gik .

Remark 3.4. Note that this also immediately implies that G is generated by any two

vertex isotropy groups.

Remark 3.5. We also observe that, in complete generality, our chamber system

C (M ;G) associated with a polar G action on a simply connected manifold M is a ho-
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mogeneous chamber system of a type described in Ronan’s book [R]. Specifically, the

following holds:

• the chamber system C (M ;G) is the left coset G /H (the principal orbit) with the

following adjacency relation;

• two chambers gH and g′ H are i-adjacent if and only if g Gi=g
′ Gi, where H is

the principal isotropy group, and the Gi for i∈I are the face isotropy groups of a fixed

chamber.

Note that C (M ;G) is connected if and only if the polar G-action is primitive, i.e.,

by definition, G is generated by the face isotropy groups.

As promised, we can use the above connectedness to prove the fixed-point claim

from the previous section.

Proposition 3.6. Let M be a simply connected, positively curved polar G-manifold

with spherical section Σ and polar group W. Then MG=ΣW, and in particular

rk(W) = dim Σ∗+1−dimMG.

Proof. As obviously MG⊂ΣW, and equality has been proved in the previous section

if MG is non-empty, it remains to prove that MG 6=∅ as long as ΣW is non-empty (cf.

Remark 2.9).

By assumption,

M∗= Σ∗=C = ΣW∗∆` =Sk−`−1∗∆`.

Since all G-orbits corresponding to ΣW=Sk−`−1, are of the same type (corresponding to

the most singular stratum of the orbit space) and are perpendicular to the section Σ, it

suffices to see that ΣW is preserved by G.

Pick any g∈G and join the chamber gC to C with a gallery. As any two consecutive

chambers in a gallery have a common “face” and thereby the same “(−1)-simplex”, i.e.,

the same fixed-point set for the respective Weyl groups, it follows that also gC has the

same “(−1)-simplex”, which however is gΣW.

Example 3.7. Here are examples showing that the conclusion above may fail in

cohomogeneity 1, as well as when the section is a projective space.

(1) Let M=CPn=SU(n+1)/U(n). Then G=U(n) acts by cohomogeneity 1 with

one fixed point. However, its polar group is Z2 acting on a section S1 with two fixed

points.

(2) The obvious polar G=U(1)×U(1)×U(n) representation on Cn+2=C+C+Cn de-

scends to a polar action on CPn+1 with two fixed points (corresponding to the two C
summands). Its section is RP2 with RP2/W=CPn+1/G a right-angled spherical triangle.

In particular, its Weyl group must necessarily have three fixed points.
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The case where the orbit space M∗=Σ∗=C is not a simplex, i.e., by Proposition 2.8

it is a join of a sphere with a simplex (in particular MG 6=∅), will be dealt with in §6.

We now point out some simple but crucial strong local properties of the chamber

system C (M,G) of a positively curved, simply connected polar manifold in all remaining

cases, i.e., when the orbit space is a simplex.

Say M=(mij)i,j∈I is the Coxeter matrix of the reflection group W of the section

Σ if it is a sphere, or else of the reflection group W̃ on the universal cover Σ̃. In the

latter case, any word in the generators ri of W whose lift is the antipodal map in W̃ is

a non-Coxeter relation in W, and must necessarily involve all generators of W. For any

fixed proper subset J⊂I, let MJ denote the submatrix of M with entries mij , i, j∈J .

Correspondingly, we let WJ denote the subgroup of W generated by ri, i∈J . It is well

known that the subgroup WJ of W, as well as of W̃, is a Coxeter group of type MJ .

Recall that, by definition, a chamber system C over I has type M if all {i, j} residues,

i, j∈I, are so-called generalized mij-gons (cf. [R]).

For any chamber C, consider CJ :=
⋂
i∈J Ci, where Ci is the i-face of C. For an

interior point p∈CJ , let S⊥p,J denote the unit sphere normal to the orbit stratum of

G p at p, i.e., S⊥p,J is the sphere in the normal space to the orbit perpendicular to the

fixed-point subspace of Gp. The following result is now evident (see, e.g., Remark 3.3).

Lemma 3.8. (Residue) The J-residue of C and C (S⊥p,J ,Gp), for any p∈CJ , are

isomorphic as chamber systems of type MJ .

Recall that a chamber system B over I is called a building of type M=(mij), i, j∈I,

if each chamber is i-adjacent to at least one other chamber, and there is a W(M)-valued

“distance function”

δ:B×B−!W,

with the property that δ(x, y)=w∈W if and only if the types of minimal galleries between

x and y coincide with the types of minimal galleries in the Coxeter complex C (Σ,W)=:W
from 1 to w.

The Coxeter complex W is itself a building with δ(u, v)=u−1 v. We call “isometric”

images of W in B apartments in B. Another example of central importance to us is the

following.

Example 3.9. (Polar representations) The chamber system, B=C (S,K) associated

with the restriction of a polar representation of a compact Lie group K to the unit sphere

S (without fixed points) is a fundamental example of a (spherical) Tits building (see [Ti1]

and [Dad]).



24 f. fang, k. grove and g. thorbergsson

Remark 3.10. (Basic building properties) In a building B, the following properties

are basic and used repeatedly in the next sections.

• (Connectedness) Any two chambers x and y are joined by a minimal gallery Γf ,

which in turn is contained in an apartment A.

• (Uniqueness) A minimal gallery from x to y is uniquely determined by its type.

• (Convexity) If x and y are chambers in an apartment A, every minimal gallery

from x to y is contained in A.

• (Homotopy) If Γ is a gallery from x to y of type f (not necessarily minimal), and

f'g (see below), then there is a gallery of type g from x to y.

• A gallery of type f is minimal if and only if f=i1 ... im is a so-called reduced word,

or equivalently w=rf :=ri1 ... rim cannot be expressed as rg for g a shorter word.

Since the slice representation of each isotropy group Gp is polar, Example 3.9 and

the residue lemma (Lemma 3.8) imply the following result.

Proposition 3.11. For any proper J⊂I, any J-residue in the chamber system

C (M,G) is a spherical building of type MJ .

By invoking the following corollary of a profound result of Tits [Ti2, Corollary 3 in

§5.3] (cf. also [R, Theorem 4.9]), we get the following theorem.

Theorem 3.12. (Tits) The universal Tits cover C̃ of a (gallery-)connected chamber

system C of (finite) type M over I is a building if and only if all residues of rank 3 are

covered by buildings.

We conclude the following result.

Theorem 3.13. (Building cover) Let M be a positively curved, simply connected

polar G-manifold with orbit space a simplex of dimension at least 3. Then the universal

Tits cover C̃ (M ;G) of the associated chamber system C (M ;G) is a spherical building.

Remark 3.14. The fact that all residues of rank at least 3 of the chamber system

C (M ;G) are buildings implies that the universal Tits cover C̃ (M ;G) can be viewed also

as the usual topological universal cover of C (M ;G) equipped with the thin topology. For

this reason we frequently simply refer to C̃ (M ;G) as the universal cover of C (M ;G).

In particular, the fundamental group π of C (M ;G) acts freely by deck transformations

on C̃ (M ;G) equipped with the thin topology. It is a startling consequence of our main

result Theorem 4.10 in §4 that π in fact is either S1 or S3 with discrete topology when M

has no isolated nodes and C̃ (M ;G) is a building. Note also that π acting freely on the

set C̃ (M ;G) of course is independent on topology.

Recall that the universal Tits cover is obtained via a notion of homotopies of galleries

in analogy with the usual construction of a topological universal cover.
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Here two galleries, Γ1Γ0Γ2 and Γ1Γ′0Γ2, in a chamber system C of type M over I are

said to be elementary homotopic if Γ0 and Γ′0 are galleries in a rank-2 residue with the

same extremities. A homotopy from a gallery Γ to another one Γ′ (with fixed extremities)

is a finite sequence of elementary homotopies which transforms Γ to Γ′. When such a

homotopy exists we write Γ'Γ′.

By construction, C̃ as a set is a union of chambers, each chamber C̃∈C̃ being a

homotopy class, [Γ]=[C0, ..., Cm] of galleries Γ=(C0, ..., Cm) from C starting at a fixed

chamber C0∈C and ending at Cm=C∈C , and where the covering map p: C̃!C takes C̃

to Cm. Also, the adjacency relation among chambers is defined as follows: C̃=[C0, ..., Cm]

is “i-adjacent” to C̃ ′=[C0, ..., Cm−1, C
′
m] when Cm and C ′m are “i-adjacent”, and to

C̃ ′′=[C0, ..., Cm, C
′′] for other i’s when Cm and C ′′ are “i-adjacent”. All other incidence

relations follow from this, and the covering map p preserves incidence relations. In this

fashion, the covering map p preserves faces, and hence all other types.

Note that, in a Coxeter complex, W galleries starting at 1 are in one-to-one corre-

spondence with their types. Here one also uses the notion of strict homotopy, denoted

f'g, where the notion of an elementary homotopy above is replaced by the stronger no-

tion of a strict elementary homotopy. Here a strict elementary homotopy is an alteration

of a word of the form f1p(i, j)f2 to a word f1p(j, i)f2, where p(i, j) is a word of the form

... ijij (with mij letters and ending in j); e.g., if mij=3, p(i, j)=jij; and p(j, i)=iji. In

particular, f and g have the same length if they are strictly homotopic (but not neces-

sarily if they are just homotopic). Also, rf=rg if f and g are strictly homotopic, but

the converse is false, since one may have redundant letters; e.g, the words f=f1iif2 and

g=f1f2 are not strictly homotopic but rf=rg. A word f is called reduced if it is not

strictly homotopic to a word of the form f1iif2.

Remark 3.15. Buildings are simplicial complexes, but our chambers systems C (M ;G)

are frequently not. This is illustrated for example with the standard T2 action on CP2.

Here all chambers are spherical right-angled 2-simplices, and they all have the same three

vertices, the fixed points of T2. As the building cover theorem above shows, we do not

need to assume C (M ;G) to be simplicial, when the rank of M is at least 4. However,

in the rank-3 case, where the building cover theorem says nothing, we do indeed need

C (M ;G) to be simplicial in the irreducible cases, i.e., the cases of types A3 and C3.

This will be proved in Theorem 5.1 and will allow us to use work of Tits on so-called

geometries, i.e., chamber systems of type M whose underlying geometric realization is

simplicial.

Remark 3.16. Equipped with the thin metric, our chamber system C (M,G) has the

local structure of a CAT(1) space. This is of course true for its universal cover C̃ (M,G)
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as well. In fact, when its dimension is at least 3 (corresponding to rank at least 4), it

follows by work of Charney and Lytchak [CL], that in fact C̃ (M,G) is a CAT(1) space

and in fact a spherical building by their geometric characterization of buildings.

4. Compact spherical buildings

Throughout this section, we assume that the orbit space M∗=C is a simplex, and that

the universal cover C̃ :=C̃ (M,G) of our base chamber system C :=C (M,G) is a spherical

building of rank at least 3. In particular, C̃ is also a simplicial complex and we use

p: C̃!C to denote the covering map.

Our primary objective is to endow C̃ with a natural topology inherited from the

topology of M , in such a way that it becomes a compact spherical building in the sense

of Burns and Spatzier [BS], where the extension by Grundhöfer, Kramer, Van Maldeghem

and Weiss in [GKMW] is crucial for us. Our second objective is to analyze the fundamen-

tal group π of C (M,G) and its action on the cover when C̃ (M,G) is a compact spherical

building. This in fact will imply Theorem A in the introduction in all cases except where

G has fixed points, or where the Coxeter diagram for M either has isolated nodes or is of

type A3 or C3.

§5 and [FGT] are devoted to the case where the Coxeter diagram of M is of type

A3 or C3. In the special reducible cases where isolated nodes are present in the Coxeter

diagram of M or MG 6=∅, rather different arguments will be employed in §6 and §7.

We will write the set of vertices Vert(C̃ ) of a Tits building C̃ as a disjoint union

Vert(C̃ )=Ṽ1∪...∪Ṽk+1 over the vertices of the same cotype, where k+1 is the rank of M.

The set of r-simplices of type (i1, ..., ir+1) for r6k will be denoted by C̃i1,...,ir+1
.

Recall that a compact (spherical) building, according to [BS], is a Tits building C̃

with a Hausdorff topology on the set Vert(C̃ )=Ṽ1∪...∪Ṽk+1 of all vertices such that the

set C̃i1,...,ir+1
of all simplices of type (i1, ..., ir+1) is closed in the product Ṽi1×...×Ṽir+1

.

With the induced topology on the k-simplices C̃1,...,k+1, C̃ is called compact, locally

connected, infinite, metric if C̃1,...,k+1 has the appropriate property.

It is the main result of [BS] that an infinite, irreducible, locally connected, compact,

metric, topologically Moufang building of rank at least 2 is classical. Namely, it is a

Tits building associated with a non-compact real semisimple Lie group via the following

description (cf. also proof of Theorem 4.10).

Example 4.1. (Symmetric spaces and buildings) Let U be a connected non-compact

real semisimple Lie group without center and K⊂U a maximal compact subgroup (which

is unique up to conjugation). The isometric action of U on the symmetric space N=U/K

of non-positive curvature induces a continuous action on the boundary at infinity, S∞,
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with the same orbits as those of the subaction by K. Here the action by K is topologically

equivalent to the isotropy representation of K on the unit sphere Sp at p∈N with Up=K.

The isotropy representation of K=Up is polar with sections the tangent spaces of flats

through p∈N=U/K. These flats at infinity are apartments of a (topological) building

C (U) equivalent to C (Sp,Up). One gets all apartments in the building in this fashion

by letting p go through all points of N . The group U is the identity component of the

(topologiocal) automorphism group Auttop(C (U)) of the building.

An algebraic description of C (U) can be given via the set of all parabolic subgroups

of U. We think of C (U) as the set of parabolic subgroups of U with the following partial

order: If C1, C2∈C (U), we call C1 a face of C2 and write C1<C2 if C2⊂C1. The chambers

are the minimal parabolic subgroups. Let W denote the Weyl group of the symmetric

space U/K. We fix a minimal parabolic subgroup B. The W-valued metric δ in the

definition of a building is then defined as follows: Given chambers C=g B and C ′=g′ B,

there is by the Bruhat decomposition a unique w∈W such that Bg−1 g′ B=BwB. We

set δ(C,C ′)=w.

The correspondence between the geometric and algebraic description is that the

isotropy groups under U of the chambers and their subsimplices at infinity are exactly

the parabolic subgroups of U.

The topology on C̃ (M,G)

When considering C (M,G) as a set of chambers, each being a compact subset of the

metric space M , C (M,G) is a compact metric space with the classical Hausdorff metric.

Moreover, the same holds for the set of all galleries with any upper bound on the number

of chambers. Since C̃ (M,G) is a building of type M any two chambers can be connected

by a gallery of length at most 1
2 |W(M)|.

Let us fix a chamber C̃0∈C̃ . For any fixed large positive integer k> 1
2 |W(M)|, ε>0

and any chamber C̃∈C̃ , we let Bε,k(C̃) be the union of those chambers C̃ ′∈C̃ for which

there are (stuttering) galleries Γ and Γ′ of length at most k starting at C̃0 and ending at

C̃ and C̃ ′, respectively, so that the (stuttering) galleries p(Γ) and p(Γ′) in C are within

Hausdorff distance ε from one another in M . We will refer to the topology generated by

these sets as the chamber topology on the building C̃ .

The geometric realization of the building C̃ (M,G) is a simplicial complex S̃ (M,G).

We will show that this topology induces a topology on S̃ (M,G) making it into a compact

spherical building in the sense of Burns and Spatzier [BS].

The following lemma will be used repeatedly.
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Lemma 4.2. (Homotopy control) Let ∆ be a building of rank at least 3. Then, for

any k, there is a C(k) with the following property : Any galleries Γ and Γ′ of lengths

at most k with the same extremities are homotopic by a homotopy consisting of at most

C(k) chambers.

Proof. Since any building of rank at least 3 is simply connected, Γ and Γ′ are ho-

motopic. The remaining part of our claim is proved by induction on k, being trivially

true for k=1.

If Γ and Γ′ are both minimal, the claim is a direct consequence of the convexity

property in Remark 3.10. Similarly, if Γ=Γ1Γ0Γ2 and Γ′=Γ1Γ′0Γ2, where Γ0 and Γ′0 are

minimal (e.g., when there is a strict elementary homotopy from Γ to Γ′). In particular,

by induction, it suffices to prove that a non-minimal Γ is strictly homotopic to a Γ′ via

an a-priori bounded number of strict elementary homotopies and Γ′ is homotopic to a

shorter gallery within a uniformly bounded number of chambers.

Suppose that Γ is not minimal of type f . We claim that Γ is strictly homotopic

to a gallery Γ′ of type f1iif2 through at most `` strictly elementary homotopies, where

`=|I|k. Indeed, the number of words of length at most k is bounded above by |I|k.

Therefore, the non-circuit operations from a word of length at most k to another one of

length at most k is bounded above by ``.

Now, a gallery Γ′ of type f1iif2 from x to y is obviously homotopic to a shorter

gallery of type either f1if2 or f1f2, according to the chambers being Γ1C1C2C3Γ2 (where

C1∼iC2 and C2∼iC3) or Γ1C1C2C1Γ2 (where C1∼iC2). Moreover, the homotopy can

be realized in the longer gallery and so the number of chambers is bounded by the

length k.

Remark 4.3. The proof of the above lemma gives an algorithm to construct a con-

trolled homotopy between galleries with the same extremities in a building.

Proposition 4.4. With the chamber topology, C̃ is a compact, separable and metriz-

able space.

Proof. By the Uryson characterization theorem for metrizable spaces, all we need

to prove is that C̃ is sequentially compact, separable and regular.

• (Sequential compactness) Any sequence {C̃n} of chambers in C̃ has a convergent

subsequence.

For each n, let Γn be a gallery of length at most k joining C̃0 and C̃n. By compactness

of M , the sequence p(Γn) has a convergent subsequence in the Hausdorff metric topology

with, as limit, a gallery �Γ∞ starting at p(C̃0). By the unique homotopy lifting property

(see [R, Lemma 4.4]), �Γ∞ can be uniquely lifted to a gallery, say Γ∞, starting at C̃0. By
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the definition of the chamber topology, we know that the corresponding subsequence of

{C̃n} converges to the end chamber of Γ∞.

• (Separability) We may choose a countable dense subset Qi of each face isotropy

group Gi, e.g. the rational points. The set of galleries starting at C̃0 of length at most k

obtained by the folding process described in Remark 3.3 using only elements from Qi is

clearly dense in the set of all galleries starting at C̃0 of length at most k. By definition,

the last chamber of these lifted galleries in C̃ starting at C̃0 form a countable dense set

in the chamber topology.

• (Regularity) We need to prove that, for a chamber C̃1 and a closed subset B⊂C̃

in the complement of C̃1, there are two disjoint open sets U and V containing C̃1 and

B, respectively.

If this is not the case, we find, for arbitrary large integers n, a chamber C̃ ′n∈
B1/n,k(C̃1)∩B1/n,k(B). By the above, we know that the closed subset B is sequentially

compact. Therefore, a subsequence of C̃ ′n converges to some chamber C̃2∈B. Therefore,

there are two pairs of sequences of galleries Γi,n and Γ′i,n, i=1, 2, such that the following

holds: (a) Γi,n starts at C̃0 and ends at C̃i, i=1, 2; (b) Γ′i,n starts at C̃0 and ends at

C̃ ′n, i,=1, 2; (c) dH(p(Γi,n), p(Γ′i,n))<1/n. Since, for each n, Γ′1,n and Γ′2,n have the

same extremities in the building C̃ , we have Γ′1,n'Γ′2,n, and hence p(Γ′1,n)'p(Γ′2,n), by

a homotopy H ′n. By Lemma 4.2, we may assume that H ′n is composed of an a-priori

bounded number of chambers independent of n. Taking convergent subsequences, we

may assume that p(Γi,n), as well as p(Γ′i,n), converge to the same galleries �Γi,∞, and that

these are homotopic by a homotopy H ′∞. So, on the one hand, by the unique homotopy

lifting property, �Γi,∞, i=1, 2, lift to galleries with the same end chamber in C̃ . On the

other hand, they lift to galleries with end chamber C̃i, i=1, 2, respectively. This yields

a contradiction.

Lemma 4.5. (Independence) The chamber topology is independent of the choices of

C̃0 and the parameter k.

Proof. Let us first prove the independence of k. If k′>k, clearly Bε,k(C̃)⊂Bε,k′(C̃).

Consequently, it suffices to show that a k′-convergent sequence of chambers {C̃n} is also

k-convergent. By assumption, there are galleries Γn and Γn in C̃ of length at most k′

starting at C̃0 and ending at C̃n and C̃, respectively, such that the projected galleries

p(Γn) and p(Γn) Hausdorff converge to a gallery �Γ∞ (possibly stuttering) in C . Again

using Lemma 4.2, we see that the gallery Γn is homotopic to a gallery Γ′n of length at

most k by a homotopy Hn with an a-priori bounded number of chambers. Note that

p(Γ′n) subsequentially converges to a gallery �Γ′∞=p(Γ′∞), where Γ′∞ is the subsequence

limit of Γ′n. We may assume that the homotopies p(Hn) also converge, and therefore
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we get a limit homotopy between the two limit galleries �Γ∞ and �Γ′∞. By the homotopy

uniqueness lifting property, once again we get that Γ∞ and Γ′∞ have the same ending

chambers C̃. Therefore, {C̃n} also k-converges to C̃.

To see the independence of the choice of C̃0, join another chamber C̃ ′0 to C̃0 with

a fixed gallery Γ0, and the claim follows from the independence of k via concatenation

with Γ0 and its opposite.

We will now investigate the topology induced on the set of vertices from the chamber

topology. That topology will in turn induce a topology on the geometric realization

|S̃ (M,G)| of the simplicial complex S̃ (M,G) associated with the building referred to as

the thick topology on C̃ from now on. Assuming that our chamber system C̃ has rank

k+1, corresponding to cohomogeneity k, for any i∈I={0, ..., k} consider the set Ṽi of

cotype-i vertices in C̃ . Let πi: C̃!Ṽi denote the obvious projection map. For each i, we

equip Ṽi with the quotient topology.

Lemma 4.6. (Vertex space) For any i∈I, the projection πi: C̃!Ṽi is an open map,

and Ṽi is compact and Hausdorff. Moreover, for any x∈Ṽi, the fiber π−1
i (x)⊂C̃ is the

residue Res(x) in C̃ , which is compact, and the restriction of the covering map p: C̃!C

to this residue is a homeomorphism to the residue Res(p(x)) in C .

Proof. We begin with a proof of the last claim. By construction of C̃ , p provides

an isomorphism between the residues as sub-buildings. We need to show that the cham-

ber topology restricted to the residue Res(x) coincides with the Hausdorff topology of

Res(p(x)) in the manifold M .

Since C̃ and C are both compact and Hausdorff, and p: C̃!C obviously is contin-

uous, it remains to check that Res(x) is closed in C̃ . Let {C̃n}n>1 be a sequence of

chambers in Res(x) which converges in C̃ . Join a fixed chamber C̃0 to C̃1 by a gallery Γ.

Using that the residues are buildings, join each C̃1 to C̃n by a minimal gallery Γn within

the residue. A subsequence of the projections to C of the concatenated galleries clearly

converges in the Hausdorff topology, and the end chamber of the lift of the limiting

gallery is the limit of {C̃n}n>1, which as a consequence is in the residue.

To show that Ṽi is Hausdorff, it suffices to show that πi: C̃!Ṽi is an open map and

that the cotype-i adjacency is a closed relation, i.e. the subset

{(C̃, C̃ ′)∈ C̃×C̃ : C̃ and C̃ ′ have common cotype-i vertices}

is closed in the product topology. To show the latter, let (C̃n, C̃
′
n) be a sequence con-

verging to (C̃, C̃ ′), where πi(C̃n)=πi(C̃
′
n). In particular, Cn and C ′n share an i-vertex,

and (Cn, C
′
n) converges to (C,C ′) in the Hausdorff topology of M . Join C̃n to C̃ ′n by

a minimal gallery Γin in the i-residue and pick a subsequence if necessary so that the
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image galleries p(Γin) in the residues in M converge. Obviously, the limit gallery joins

C to C ′, and in particular, they share an i vertex. It follows that C̃ and C̃ ′ share the

type-i vertex.

Let us prove that πi is open. For this, we need to see that π−1
i (πi(U)) is open in

C̃ , where U is the intersection of a finite number of the Bεi,k(C̃i)’s. Pick a chamber

D̃′∈π−1
i (πi(U)), i.e. πi(D̃

′)=πi(C̃
′) for some C̃ ′∈U . We need to find a neighborhood U ′

of D̃′ such that for any D̃′′∈U ′, there is a C̃ ′′∈U with πi(D
′′)=πi(C

′′).

Let V be the intersection of a finite number of the Bεj ,k(C̃j)’s such that C̃ ′∈V ⊂U .

Since C̃ ′ and D̃′ are cotype-i adjacent, they are in the same cotype-i residue (of some

vertex), and they can be joined within this residue by a gallery Γ explicitly obtained by

folding (see Remark 3.3) C̃ ′ repeatedly along faces using face isotropy groups (fixing the

cotype-i vertex) in M via p: C̃!C . To complete the proof, the following observation

suffices: Consider the chamber C ′=p(C̃ ′) in C . Any chamber Hausdorff close to C ′ is

gC ′ for some g∈G close to 1∈G, and gΓ is thus close to Γ. Therefore, this process and

its inverse take a neighborhood of C̃ ′ to a neighborhood D̃′ and conversely, and the claim

follows.

Now we are ready to prove the first of our main results in this section.

Theorem 4.7. (Compact spherical building) The spherical building C̃ (M,G) with

the topology on the set of vertices induced by the thick topology on the chambers is a

compact spherical building if its rank is at least 3.

Proof. We have seen in Lemma 4.6 that the space V1∪...∪Vk+1 of vertices is Haus-

dorff. It is therefore left to show that the set C̃i1,...,ir+1 of all simplices of type (i1, ..., ir+1)

is closed in the product Ṽi1×...×Ṽir+1 . It follows from Proposition 4.4 and Lemma 4.6

that the product map
∏
j πij : C̃i1,...,ir+1

!Ṽi1×...×Ṽir+1
is continuous for any multi-index

i1, ..., ir+1, and its image is a closed subset, which finishes the proof.

It is clear from what we have proved so far that the compact spherical building in

Theorem 4.7 is an infinite compact metrizable building. We can now apply the main

results of [BS], or rather its generalization in [GKMW], to compact spherical buildings

that need not be locally connected.

Theorem 4.8. (Classical building) Assume the compact spherical building C̃ (M,G)

has rank at least 3 and its associated Coxeter diagram has no isolated nodes. Then it is the

building at infinity of a product N of irreducible symmetric spaces of non-compact type of

rank at least 2. The topological automorphism group Auttop(C̃ ) of the building C̃ (M,G)

is a real non-compact semisimple Lie group with finitely many connected components,

and its identity component is isomorphic to the identity component of the isometry group

of the symmetric space N .
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Proof. It follows from [GKMW, Theorem 1.2] that C̃ (M,G) is the building at infinity

of a product of irreducible symmetric spaces of rank at least 2 and a locally finite Bruhat–

Tits building of dimension at least 2. The building at infinity of the Bruhat–Tits building

is totally disconnected and can therefore be excluded, since by Lemma 4.6 the vertex

residues are locally connected compact spherical buildings. The claims about Auttop(C̃ )

follow from [BS].

We now prove a general theorem about the lifted G̃-action and the free subaction

of π (cf. Remark 3.14) on the simplicial complex C̃ (M,G) when equipped with the thick

topology.

Theorem 4.9. (Compact transformation group) Assume that the spherical building

C̃ (M,G) has rank at least 3 and is equipped with the thick topology. Then the deck

transformation group π with the compact open topology is a compact subgroup of the

topological automorphism group Auttop(C̃ ). Moreover, there is a compact subgroup G̃ of

Auttop(C̃ ), such that π⊂G̃ is a normal subgroup with quotient G̃/π=G, whose action

covers the G-action on C .

Proof. It is a simple consequence of the independence lemma (Lemma 4.5) that every

element of π is a homeomorphism with respect to the chamber and thick topologies. In

particular, π is a subgroup of the topological automorphism group Auttop(C̃ ). We now

prove that π is a closed subgroup of Auttop(C̃ ). Let fn be a sequence in π that converges

to f in Auttop(C̃ ) in the compact open topology. In particular, fn(C̃) converges to

f(C̃) in the chamber topology for every chamber C̃∈C̃ . Notice that p(fn(C̃))=p(C̃).

Therefore, p(f(C̃))=p(C̃), and it follows that f is in π. The compactness of π follows,

since the orbit of π is compact and the action of π is free.

It is well known that the G-action on C lifts to a covering group G̃-action on C̃ ,

where G̃ fits in an extension (see [R, Exercise 8 in Chapter 4])

1−!π−! G̃−!G−! 1.

Once again, by the independence lemma, we see that G̃ is a subgroup of Auttop(C̃ ),

and as above one can check that it is closed, and hence also compact, since both π and

G are.

Combining these results we have the following main result about polar manifolds of

positive curvature.

Theorem 4.10. Any polar action of a compact connected Lie group G on a simply

connected, positively curved manifold M , whose associated chamber system is covered

by a spherical building C̃ of rank at least 3 and whose diagram M contains no isolated
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nodes, is equivariantly diffeomorphic to a polar action on a compact rank-1 symmetric

space, other than the Cayley plane.

Proof. It follows from Theorem 4.8 that the simplicial complex S̃ as a set with

the thick topology is a sphere that we will denote by S. The compact subgroup π of

Auttop(C̃ ) is a Lie group, since Auttop(C̃ ) is a Lie group by Theorem 4.8.

We would like to show that π is connected. We denote the identity component of

π by π0. Clearly, π0 acts freely on the sphere S, and there is a covering S/π0!S/π=M

whose fiber has the same number of points as π/π0. This is a contradiction, since M

is simply connected. It follows that π=π0, and that both π and G̃ are compact and

connected subgroups, i.e., Lie subgroups of the identity component U of Auttop(C̃ ). As

a consequence, G̃ has a fixed point in the symmetric space U/K, where K is a maximal

compact subgroup of the semisimple Lie group U. Therefore, up to conjugation, we may

assume that G̃⊂K and it follows that the action by G̃ is topologically equivalent to a linear

polar action orbit equivalent to the isotropy representation of K on S. Since the action of

π on S is both linear and free, π is either {1}, S1 or S3 (cf. e.g. [Br]), and by representation

theory the action is the Hopf action. It follows that M is G-equivariantly homeomorphic

to the rank-1 symmetric space S/π with the linear polar action by G=G̃/π.

To complete the proof, we note that the induced linear polar action on S/π by

G=G̃/π has the same data, i.e., section, polar group, isotropy groups and their slice

representations as the polar G-action on M . From the reconstruction theorem of [GZ],

it follows that (M,G) is smoothly equivalent to (S/π,G).

In view of the building cover theorem (Theorem 3.13), this takes care of all cases

where G has no fixed points and M has no isolated nodes and rank at least 4.

We conclude this section with another application of Theorem 4.10. As mentioned

in the introduction, there are polar G-actions by SU(3) SU(3) and SO(3)G2 on OP2 (see

[PTh] and [GKo]) whose associated chamber systems C (OP2,G) are of type C3. In

particular we deduce from Theorem 4.10 the following result.

Corollary 4.11. (Not a building) The universal covers of the chamber systems

C (OP2,G) associated with the polar actions on OP2 by G=SU(3)·SU(3) or G=SO(3)·G2

are simply connected chamber systems of type C3 that are not buildings.

Examples of simply connected chamber systems of type C3 that are not buildings

were discovered by Neumaier, and later but independently by Aschbacher. The examples

of the chamber systems in Corollary 4.11 are new and follow also from [L] and [KL], as

noted by them. These intriguing examples motivate the following interesting problems.
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Problem 4.12. (Cayley plane chamber system) Let C̃ denote the universal cover of

the chamber system C :=C (OP2;G), where G is either SU(3)·SU(3) or SO(3)·G2.

(1) Is C itself simply connected?

(2) If C is not simply connected, does the section RP2 lift to S2 in C̃ ? What is its

fundamental group, and what is C̃ ?

5. Irreducible chamber systems and Tits geometries of rank 3

The purpose of this section is to develop and describe an alternative to the building cover

theorem (Theorem 3.13) for irreducible polar actions of cohomogeneity 2, i.e., for rank-3

chamber systems C =C (M,G), where M has no isolated nodes, or equivalently M is of

type A3 or C3. In this case, any closed chamber C of C , or equivalently the G-orbit space

of M , is the spherical triangle with angles
{

1
3π,

1
2π,

1
3π
}

in the A3 case, or
{

1
4π,

1
2π,

1
3π
}

in the C3 case.

Our method is based on a construction of chamber system covers (corresponding

to the principal bundle construction for polar manifolds in [GZ]), and on an axiomatic

characterization due to Tits of buildings of irreducible type M, when the geometric

realization |C | (C with the thin topology) of the associated chamber system C is a

simplicial complex. This characterization is given in terms of the incidence geometry

associated with C . Here, by definition,

• two vertices x, y∈|C | are incident, denoted by x∗y, if and only if x and y are

contained in a closed chamber of |C |.
Clearly, the incidence relation (not an equivalence relation) is preserved by the action

of G in our case.

To describe the needed characterization, and to prove that our chamber systems

C (M,G) of type A3 or C3 are simplicial, we will use the following standard terminology:

• The shadow of a vertex x on the set of vertices of type i∈I, denoted Shi(x), is

the union of all vertices of type i incident to x.

When M=C3, we will use q, r and t, respectively, to denote the vertices of a chamber

C at angles 1
4π, 1

2π and 1
3π, respectively, corresponding to the three nodes, from left to

right, of the following C3-diagram: b b b
The faces in C opposite to q, r and t will be denoted by `q, `r and `t, respectively.

Following Tits [Ti2], we call the vertices of type q, r and t, points, lines and planes,

respectively. We denote by Q,R and T the set of points, lines and planes in C (M ;G),

respectively. Notice that G acts transitively on Q, R and T .
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Using this terminology we prove the following key result.

Theorem 5.1. (Simplicial) The geometric realization |C (M,G)| of a chamber sys-

tem C (M,G) of type A3 or C3 associated with a simply connected polar G-manifold M

is simplicial.

Proof. Since the case of A3 follows directly from a part of the proof of the C3 case

(cf. case (i) below), we only discuss the latter.

We claim that all we need to show is that vertices of different types are joined by

at most one minimal geodesic. In particular, an edge is determined by its vertices. In

fact, given this, we only need to prove that any chamber C of |C (M,G)| is uniquely

determined by its vertices. So suppose C and C ′ are chambers with the same vertices.

From the claim, they have the same edges as well. Now, by transitivity, there is a g∈G
with gC=C ′. Since g fixes all vertices and edges of C, it is in the principal isotropy

group of C, and hence gC=C.

Case (i). One of the vertices is a plane.

For a plane t∈T , note that the shadow ShQ(t) (resp. ShR(t)) of t in Q (resp. R) is

the homogeneous space Gt q=Gt /(Gt ∩Gq), where q∈ShQ(t) (resp. q∈ShR(t)) . More-

over, the set of all edges containing t and q is the homogeneous space (Gt ∩Gq)`r=

(Gt ∩Gq)/G`r , where `r is a minimal reference geodesic connecting t and q. It suffices to

prove that G`r =Gt ∩Gq.
Consider the fibration

Gt ∩Gq
G`r

−! Gt
G`r
−! Gt

Gt ∩Gq

Note that the base cannot be a point, since otherwise Gt⊂Gq, and so, by the primitivity,

G=〈Gt,Gq〉=Gq, and hence G would have fixed points. On the other hand, Gt /G`r is the

set of points (resp. planes) in a type-A2 geometry, associated with the slice representation

at t, i.e., Gt /G`r =P2(k), where k is R, C, H or O. In particular, G`r is a maximal

subgroup of Gt, and thus G`r =Gt ∩Gq.

Case (ii). One of the vertices is a line.

Consider a chamber C with sides `t, `r, and `q, and suppose that `′t is another

minimal geodesic joining the vertices r and q of C. Since each singular isotropy group

of the reducible slice representation of Gr acts transitively on the other singular orbit,

there is a g∈G`q⊂Gr with g `t=`
′
t. By (i), gC is a chamber with sides `′t, `r and `q. But

as g fixes `r and `q, it is in the principal isotropy group of the slice representation of Gt

and hence gC=C. Thus `′t=`t.
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Since by work of Tits [Ti2] (cf. Proposition 6), any An-geometry is a building, we

conclude as in Theorem 4.10 (with π trivial) the following result.

Corollary 5.2. A simply connected, positively curved polar G-manifold of type A3

is equivariantly diffeomorphic to a polar G-representation on a sphere.

In the much more complicated and rich case where the chamber system C (M,G) is

of type C3, our classification carried out in [FGT] hinges on an axiomatic characterization

for a connected Tits geometry of type C3 to be a building [Ti2].

For all but two such chamber systems, this Tits axiom is verified for a suitable cover

of C (M,G), and the two exceptional cases are identified with the chamber systems for

the two exceptional polar actions of type C3 on the Cayley plane. As by Theorem 5.1

C (M,G) is simplicial, an alternative proof is offered in [KL].

6. Reduction input and fixed-point case

In the last two sections we will deal with reducible polar actions in positive curvature.

The key result in this section is a characterization of Hopf fibrations in our context,

that will also play an essential role in the next section. As a corollary we obtain a

classification when fixed points are present. We need the following lemma.

Lemma 6.1. (Extension) Let (Sn,G) be a fixed-point-free effective polar representa-

tion with associated chamber system (building) C (Sn;G). If G̃⊃G is a compact connected

subgroup of Auttop(C (Sn,G)), then G̃ is a Lie group acting linearly on Sn.

Proof. We first note that the induced action by G̃ on Sn is continuous and orbit-

equivalent to the G-action.

We begin by considering irreducible G representations. In the special case where G

acts transitively on Sn, a chamber of C (M ;G) is just a point in Sn and Auttop(C (Sn,G))

is the homeomorphism group of Sn with the compact open topology. Since all G̃-orbits

(there is only one) are locally connected and Sn is a manifold, by [MZ, p. 244, Theorem

1] we have that G̃ is a Lie group. In fact, by [Po], G̃ is a subgroup of SO(n+1).

In the case where G acts by cohomogeneity 1 or higher on Sn, it follows from [Dad]

that the action is orbit-equivalent to the isotropy representation of a symmetric space

U/K of non-compact type. Moreover, C (Sn;G) is the building at infinity of U/K whose

(topological) automorphism group is U, a Lie group. Thus, G̃ is a compact subgroup

acting isometrically on U/K, and hence with a fixed point, where the action is linear and

orbit-equivalent to the G-action.

In general, the G-action splits into a sum of irreducible subactions. From the above

considerations, we conclude that the restriction of G̃ to each subspace sphere is linear.
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Moreover, since G̃⊂Auttop(C (Sn,G)), it takes chambers to chambers, and hence maps

any minimal geodesic between G-invariant subspace spheres to a minimal geodesic be-

tween the same invariant spheres. Thus, G̃ acts linearly (in fact, isometrically) on Sn.

We are now ready to prove the following lemma.

Lemma 6.2. (Hopf fibration) Let (Sn,G) be a fixed-point-free linear polar action,

and (B,G) be a simply connected closed polar manifold. Suppose that p:Sn!B is a

smooth, G-equivariant, chamber-preserving map with the following property : For each

v∈Sn, the differential p∗ on the normal slice at v is a Gv-equivariant isomorphism onto

the normal slice at p(v), orbit-equivalent to the slice representation of Gp(v)⊃Gv. Then

p is either a diffeomorphism or a Hopf fibration, up to equivariant diffeomorphism of B

(in particular the fibers are great spheres). Moreover, if dimB<n and B is a sphere,

the cohomogeneity is at most 1.

Proof. Note that, by assumption, the chambers C in Sn and B are spherical k-

simplices, where k>0 is the cohomogeneity of the actions, and p is surjective. Moreover,

p is a submersion, since the differential p∗ on the tangent space to an orbit is surjective,

and by the assumption about slice representations p∗ is an isomorphism on the normal

space to the orbit. Furthermore p, when restricted to a section Σ in Sn, is a cover of a

section in B. This, in particular, proves our claim when dimB=n.

When dimB<n, we know from [Br] that the fiber of the submersion p is homeo-

morphic to Si, i∈{1, 3, 7}, where i=7 can only happen when n=15. Moreover, from the

Gysin exact sequence applied to the fibration p:Si!Sn!B, it follows that B has the

integral cohomology ring of a projective space FPm, with m>1 and F=C or F=H, if

i∈{1, 3}, and B is a homotopy 8-sphere if i=7.

Our proof for the case dimB<n is anchored at irreducible polar G-representations

and polar representations of cohomogeneity at most 1 (on Sn), in conjunction with the

above Lemma 6.1 and the compact transformation group theorem (Theorem 4.9).

• Cohomogeneity k=0.

From the list of G acting transitively and isometrically on Sn=G /H, it follows

directly (and is well known) that Sn=G /H!G /K, with fiber K/H=Si, i∈{1, 3, 7}, is a

Hopf fibration (cf., e.g., [GWZ, Table C]).

• Cohomogeneity k=1.

Recall that a cohomogeneity-1 manifold (M,G) is completely determined by its data,

i.e., G and its isotropy groups along a chamber C in M . Indeed, if K± are the isotropy

groups at the end points u± of C, and H is the principal isotropy group along the interior

of C, then K±/H=S`± are canonically identified with the normal spheres to the orbits
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at the end points of C, and, via the slice theorem and canonical gluing, we have

M =G×K−D`−∪G /HG×K+
D`+ .

In our case, let M=Sn, with data denoted as above. If K′± and H′ are the (local)

data for B along the chamber C ′=p(C) in B with end points u′±, then

B=G×K′−
D`−∪G /H′G×K′+

D`+ ,

where we have used our assumption K′±/H
′=S`± , and moreover K′±/K±=H′ /H=Si are

the fibers of p along C ′. It is important that p is determined by these data as well. We

will refer to the dimensions (`−, `+) of the normal spheres of the singular orbits as the

multiplicities of the action.

• Fiber dimensions i∈{1, 3}.
We point out that B is already known, up to equivariant diffeomorphism. Indeed,

note that in the classification of cohomogeneity-1 actions on manifolds with the rational

cohomology ring of FPm due to [I] and [Uch], G2 / SO(4) and the quadrics

SO(2m+1)/(SO(2)×SO(2m−1))

are excluded in our case, since they do not have the correct integral cohomology ring.

Thus, from [I] and [Uch] we conclude that the G-action on B modulo K0, the identity

component of its kernel, is equivariantly diffeomorphic to a linear action on FPm, i.e.,

there is an equivariant diffeomorphism f : (B;	G)!(FPm;	G), where the latter action is

F-linear, 	G is the connected normal subgroup of G such that G=K0 ·	G, a product up to

finite central quotient.

Consider first the case where the G-representation is irreducible. A classification

of these (including their data (corrected in [FGT])) is contained in [GWZ, Table E]. A

corresponding classification of those induced on FPm is contained in [GWZ, Table F].

When i=3, i.e., B∼=HPm, such actions have multiplicity pairs (1, 1) and (2, 2l+1),

where m=1 and m=l+1, l>1, respectively. In the first case there is only one such

action, while in the second one there are two orbit-equivalent actions. From the list of

possible G-actions on Sn with these multiplicity pairs, it necessary follows that K0=S3

acts freely in a linear fashion along the fibers of f �p as a subaction of G, and we are

done. The same argument works when i=1 and the multiplicity pair is (1, l), including

an “exceptional case” for each of (1, 5) and (1, 6). In the remaining cases corresponding

to the multiplicity pairs (2, 2l+1), (4, 5) and (9, 6), either K0=S1 and we are done, or K0

is trivial. In the latter case, it follows that G acts almost effectively on B∼=CPm. This,

on the other hand, determines all data, and hence f �p:S2m+1
!CPm is the Hopf map,

as claimed.
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Now assume that the G-representation is reducible with singular orbits S± and that

Sn=S−∗S+. From the homogeneous case it follows that the fibers of p restricted to S± are

the fibers of a Hopf fibration. We will show that any fiber of p is a fiber of the uniquely

determined Hopf fibration of S−∗S+ restricting to the given ones on S±. For any regular

point u′∈B, let C ′ be the unique chamber containing u′, and let K′± be the isotropy groups

at the end points u′± of C ′. Also let C be a chamber in Sn with p(C)=C ′ having isotropy

groups K± at its end points u±∈S±, and set K′ :=K′−∩K′+. From our assumption about

slice representations and the natural identifications of the normal spheres to the singular

orbits at say u′+ and u+ with S− (and vice verse with + and − swapped), it follows that

the exponential map from S⊥u′+ to p(S−)=B− is a submersion with fibers identified with

the fibers of p S−. As the same is true with the roles of + and − switched, it is not hard to

see that K′(C ′)∼=Si+1 is a cohomogeneity-1 K′-submanifold of B with a suspension action,

and p−1(K′(C ′))=K′(C)∼=Si∗Si is a cohomogeneity-1 K′-submanifold of Sn, where the

two Si in the join decomposition are the two Hopf fibers p−1(u′±). Therefore, it suffices to

establish our claim when p:S2i+1=Si∗Si!B∼=Si+1 and the action on B is a suspension

action.

When i=1, modulo kernel, the K′-action reduces to the reducible T2-action on S3,

and the suspension action on the base S2. Therefore, the kernel of T2 on the base is

S1⊂T2, acting freely and linearly along the fibers of p, and we are done.

When i=3, and if the kernel of the action on the base S4 acts transitively on the

fibers of p, the desired result follows as in the previous case. If not, one checks easily

that, modulo kernel, the K′-action contains the sum action of S3×S3 on S7 as a subaction

commuting with a Hopf action given by an H-structure. This determines all data and p

is a Hopf map, having as fibers the orbits of the diagonal subgroup ∆(S3)⊂S3× S3, the

principal isotropy group of the suspension action on the base S4.

• Fiber dimension i=7.

In analogy with our applications of [Uch] and [I], we begin by analyzing the action

on B, where p:S15
!B is an equivariant fibration with fiber diffeomorphic to S7.

We claim that the G action (modulo kernel) on the homotopy 8-sphere B is equivari-

antly diffeomorphic to the spherical join action by SO(2)SO(7), or by SO(3) SO(6), or to

the suspension action by SO(8) on S8. Note that, almost effectively, these are also actions

by Spin(2) Spin(7), Spin(3) Spin(6)=SU(2) SU(4) and Spin(8), all subgroups of Spin(9).

To see this, note that from [GWZ, Table E], the multiplicity pairs in B, coinciding

with those in S15, are (4, 3) (typo in [GWZ]), (2, 5), (1, 6), and (1, 7), for the potential

irreducible representations by Sp(2)Sp(2), SU(2) SU(4) (or U(2) SU(4)), SO(2)SO(8) and

SO(2) Spin(7), respectively. In addition, if the G-representation is reducible, the action

on B is necessarily a suspension action, and so the multiplicity pair is (7, 7). It follows
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G Representation K− K+ H (`−, `+)

SO(2)Spin(7) R2⊗R8 ∆(SO(2))SU(3) G2 SU(3) (1, 6)

SO(2)Spin(7) R2⊕R7 SO(2)SU(4) Spin(7) SU(4)=Spin(6) (1, 6)

SU(2)SU(4) C2⊗C4 ∆(SU(2)) SU(2) S1 · SU(3) S1 ·SU(2) (2, 5)

SU(2)SU(4) R3⊕R6 Sp(1)Sp(2) S1 SU(4)=S1 Spin(6) S1 ·Sp(2)=S1 Spin(5) (2, 5)

Spin(8) R8⊕R8 Spin(7) Spin(7) G2 (7, 7)

Spin(8) R8⊕R1 Spin(8) Spin(8) Spin(7) (7, 7)

Table 1. Fixed point isotropy representations of polar actions on CaP2.

that the most singular orbit in B has dimension 0, 1, 2 or 3. Thus it is either a point,

a circle or a sphere (in the latter cases, since by transversality it is simply connected).

Therefore, the dual singular orbit is also a homotopy sphere (or a point) since it has the

homotopy type of the complement of the orbit of codimension at least 3, again, e.g., using

transversality. Because the singular orbits in B are G-homogeneous spaces, for dimension

reasons it follows that G can neither be Sp(2)Sp(2), nor SO(2)SO(8) (the former cannot

act non-trivially on S3, the latter cannot act transitively on S6). Therefore, the singular

orbits of the G-actions on B are, respectively, (S2,S5), (S1,S6) or two points (p−, p+)

corresponding to a representation of SU(2)SU(4) (or its extension), SO(2)Spin(7) or

Spin(8) on S15. From isotropy groups data, it follows that the only possible way in which

these groups can act by cohomogeneity 1 on B, and in particular transitively on the

respective pairs of singular orbits, is by the sum action of SO(3) SO(6) and SO(2)SO(7),

and by the suspension action of SO(8), respectively.

Next, we want to prove that the G-representation on S15 must be one of the tensor

representations of SO(2)Spin(7), SU(2)SU(4) or the reducible Spin(8) representation on

S15. It remains to exclude the tensor representation of U(2)SU(4). To do this, note

that if the U(2) SU(4) representation descends via p to B, then its center S1 must be in

the kernel K0 of the G-action on B acting freely along the fibers of p. It follows that p

induces a fibration CP7
!B=S8 with fiber S7/S1∼=CP3. But such a fibration does not

exist according to [Ucc].

A set of compatible homomorphisms from the diagrams for the isotropy groups of

the tensor representations SO(2)Spin(7), SU(2)SU(4) and Spin(8) on S15 to the reducible

polar actions on B is exhibited in Table 1 above (cf. [FGT] for a correction of the isotropy

groups data for the SO(2) Spin(7) case in [GWZ]).

On the other hand, since Spin(3) Spin(6), SO(2)Spin(7) and Spin(8) are subgroups

of Spin(9), it follows that they do act on the Cayley plane F4/ Spin(9) in a polar fashion
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with isolated fixed points (cf. [PTh]), and hence act by isometries on the Hopf fibration

S15
!S8. It is straigtforward to see that, for each of the G-representations, the set of

compatible homomorphisms is unique up to conjugation. This proves the desired result.

• Cohomogeneity k>2.

Whether or not the G action is irreducible, note that p induces a G-equivariant

surjective map between the chamber systems C (Sn,G)!C (B,G) of the same type M.

Since C (Sn,G) is a building, it is both connected and simply connected. In particular,

C (B,G) is connected.

By our assumption on the slice representations, it follows that p yields an isomor-

phism between all proper residues of C (Sn,G) and C (B,G). In particular, we have that

p: C (Sn,G)!C (B,G) is a covering map between chamber systems of type M, and hence

C (Sn,G) is the universal cover of C (B,G).

By construction of the chamber topology of the universal cover C̃ (B,G)=C (Sn,G)

in the previous section, it is evident that it coincides with the topology on C (Sn,G)

defined using the Hausdorff metric on all compact subsets of Sn. The corresponding

thick topologies on C (B,G) and C (Sn,G) yield the original topologies on B and Sn,

respectively. Moreover, with this topology, C̃ (B,G)=C (Sn,G) is a compact spherical

building.

By Theorem 4.9, we also know that the fundamental group π of the cover C (Sn,G)!

C (B,G) is a compact subgroup of the topological automorphism group Auttop(C (Sn,G)),

and that there is an action by G̃⊂Auttop(C (Sn,G)) covering the 	G-action on C , where
	G is G modulo its kernel on B, and G̃ is an extension of 	G by π. Moreover, the actions

by G⊂G̃ on Sn are orbit-equivalent, and B is homeomorphic to Sn/π.

Although in complete generality we do not know much about the automorphism

group Auttop(C (Sn,G)), we claim that in our case π⊂G̃ is either S1 or S3 acting freely

on Sn by the Hopf action.

Indeed, when the Coxeter diagram for M has no isolated nodes, Auttop(C (Sn,G))

is a Lie group by [GKMW] (the rank being at least 3). Moreover, since its maximal

compact subgroup acts linearly on Sn, the compact group π acts linearly and freely on

Sn, and hence π is either trivial, S1 or S3, acting on Sn by the Hopf action. Notice that

G is either 	G or G̃, up to finite kernel.

In general, note that each connected component of the diagram for M corresponds to

a G-invariant linear subsphere, Si of Sn on which G (modulo its kernel) acts irreducibly

in a polar fashion. Moreover, for each i, C (Si,G) is a compact topological subbuilding

of C (Sn,G) invariant under G̃ covering the chamber subsystem C (p(Si),G). Applying

Lemma 6.1, we conclude that the compact group G̃ is a Lie group that acts isometrically

and is orbit-equivalent to the action by G on Sn. Thus also π is a compact Lie group



42 f. fang, k. grove and g. thorbergsson

acting isometrically on Sn, and the fibration p:Sn!B is the orbit map by the free action

of π.

We are now ready to prove the following theorem.

Theorem 6.4. Let M be a simply connected, compact, positively curved polar G-

manifold. If MG 6=∅ then (M,G) is equivariantly diffeomorphic to an isometric, polar

action of G on a compact rank-1 symmetric space.

Proof. We will see in particular that M is a sphere if and only if the section Σ is a

sphere.

Let us first deal with the case where

• Σ is a k-sphere, k>2.

Recall, by Proposition 3.6, that in this case MG=ΣW=:S⊂Σ=S∗S`, and C=M/G=

Σ/W=S∗∆, where ∆=S`/W and dim ∆=`>1.

The smooth spherical join description Σ=S∗S` yields a decomposition of Σ as a

union of tubular neighborhoods of S and of S`. Applying G gives a smooth decomposition

of M into a union of tubular neighborhoods of S=MG and the G-invariant manifold

GS`=:S′⊂M . (In the metric chosen, note that the cut locus of S in M is S′ and vice versa,

at distance 1
2π from one another.) Note that S′ is a polar G-manifold with section S`,

polar group W and S′/G=S`/W=∆. Moreover, if S0={p−∪p+}⊂S is a pair of antipodal

points in S, we see that GS`+1=G({p−∪p+}∗S`) is a G-invariant polar submanifold

N⊂M with two isolated fixed points p±, section Σ0 :={p−∪p+}∗S`⊂Σ and polar group

W. From this, it in particular follows that S′ is equivariantly diffeomorphic to the unit

sphere S⊥ at a fixed point, say p−, of G in N , and that N is equivariantly diffeomorphic

to the suspension of this. Of course S⊥ is the normal sphere of S=MG in M at p−, and

a similar argument now shows that M is equivariantly diffeomorphic to S∗S⊥, where G

acts trivially on S and, by the isotropy representation of G, on the normal sphere S⊥.

We now turn to the case where

• Σ is a projective k-space, k>2.

Since Σ∗=Σ/W is a spherical k-simplex ∆ and MG⊂ΣW, we know that MG is

contained in the vertices of any chamber C=∆=M/G=Σ/W by Proposition 2.8.

Let p0∈MG be such an isolated fixed point, and ∆0 be the chamber face opposite

p0 in a fixed chamber C=∆, i.e., C=∆=p0∗∆0. It follows that B :=G∆0⊂M is a polar

space form G-submanifold of M with section RPk−1⊂Σ=RPk and polar group induced

from W. Arguing as above, M is the union of a ball centered at p0 and a tubular

neighborhood of B. (In the chosen metric, B is the cut locus of p0 and vice versa at

distance 1
2π). In particular, we have an equivariant sphere fiber bundle p:S!B (with

non-trivial fiber) between polar G-manifolds with the same orbit space ∆0, where S is
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the unit sphere at p0. Note also that, for any 0<r< 1
2π, the metric r-sphere S(p0, r)

centered at p0 is a polar G-manifold equivariantly diffeomorphic to S via scaling and

expp0 . Moreover, S(p0, r) coincides with the boundary S
(
B; 1

2π−r
)

of the
(

1
2π−r

)
-tube

D
(
B; 1

2π−r
)

of B, and in this way p can also be viewed as the projection from the unit

normal sphere bundle S⊥(B) of B to B. By transversality, we see that B is simply

connected. From this description, it follows that M is equivariantly diffeomorphic to a

projective space, once it is established that p is a Hopf fibration. To see this, it remains

to check the assumption on the slice representations in Lemma 6.2.

Let γ be a geodesic in C from p0 to q∈∆0 which is perpendicular to ∆0. By the slice

theorem, G×Gq
V̂q is a G-equivariant tubular neighborhood of the orbit G(q), where V̂q is

the slice in M . Since B is G-invariant, we get a Gq-invariant decomposition V̂q=Vq⊕V ⊥q ,

where Vq is the slice in B, and V ⊥q is the normal space to B at q. Note that, from the slice

representation of Gq on Vq⊕V ⊥q , the slice V̂x for Gx at x∈γ different from q is naturally

identified with Vq⊕Txγ. Therefore, the slice of the orbit at x inside S
(
B; 1

2π−r
)

is

canonically identified with Vq. Moreover, the orbit space Vq/Gx=Vq/Gq is a cone over

the space of directions at q∈∆0. The desired result follows.

7. Fixed-point-free reducible actions

In all remaining cases, the orbit space M∗=Σ∗ is a simplex ∆ isometric to all chambers

in M . Moreover, ∆ is a spherical join ∆=∆−∗∆+=∆m− ∗∆m+ , corresponding to two

dual W-invariant subsections Σ− and Σ+, where Σ± are either Sm± or the projective

spaces RPm± .

Viewing ∆ also as a subset of a fixed section Σ, clearly B−=G∆m− and B+=G∆m+

are two polar G-submanifolds in M with sections Σ−,Σ+⊂Σ and Weyl group W (modulo

kernel). In particular, B± are polar space forms of spherical type. Moreover, just like ∆

can be viewed as the union of two tubular neighborhoods of the ∆m± , M is the union of

tubular neighborhoods of the G-submanifolds B±.

In the remaining cases where no fixed points are present, our first goal is to exhibit a

geometric description of M as a projective space in which B± is a dual pair of projective

subspaces. The pivotal steps are to show that these pairs are the cut loci of one another,

and that for each point p±∈B±, the exponential map (up to scaling) from the unit normal

sphere at p± to B± defines a map to B∓, which in turn is a Hopf fibration. This is in

spirit achieved by reducing it to the fixed-point case, where the groups in question are the

isotropy groups at p±. Analyzing and making full use of equivariant restrictions forced

by this description will then yield a proof of our main result in this section.
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Theorem 7.1. (Non-fixed point) A reducible fixed-point-free polar action on a sim-

ply connected, positively curved manifold is equivariantly diffeomorphic to an isometric

polar action on a rank-1 symmetric space, excluding the Cayley plane.

Note that, when m+>1, say, the slice representation at each vertex of ∆+⊂∆ is

reducible. In particular, all vertex representations are reducible except possibly the one

corresponding to ∆−, say, when it is a point.

The following is a key step based on the primitivity lemma (Lemma 3.2).

Lemma 7.2. (Dual generation) For any regular pair p±∈B±, the action of the

isotropy groups Gp± restricted to B∓ is orbit-equivalent to the action of G restricted

to B∓.

Proof. By the primitivity theorem, Gp− is generated by the face isotropy groups

Gv1 , ...,Gvm++1 of the faces ∆−∗∆m+−1
vi containing ∆−, and similarly Gp+ is generated

by the remaining face isotropy groups Gu1
, ...,Gum−+1

namely of the faces ∆
m−−1
uj ∗∆+

containing ∆+. Note that any face containing ∆− is perpendicular to any face containing

∆+. In particular, if Gv,u is the isotropy group at an intersection point of two such faces

with isotropy groups Gv and Gu, the slice representation of Gv,u restricted to the normal

sphere of its fixed-point set is a reducible cohomogeneity-1 action with singular isotropy

groups Gv and Gu. As a special case of the primitivity theorem, we already know that

Gv and Gu generate Gv,u. However, since the action is reducible, we have that actually

Gv Gu=Gu Gv=Gv,u as sets. Notice that this is equivalent to the fact that in the slice

representation of Gv,u, the isotropy group Gv is transitive on the opposite singular orbit

and vice versa.

We now claim that G=Gp−Gp+ . From the primitivity lemma, we know that any

g∈G can be written as a word of elements from Gv1 , ...,Gvm++1
,Gu1

, ...,Gum−+1
. Using

that GviGuj
=Guj

Gvi for all i=1, ...,m++1 and j=1, ...,m−+1, we can rewrite any such

word also as a word in the Gv’s times a word in the Gu’s, i.e., G=Gp−Gp+ . The same

reasoning shows that G=Gp+Gp− , and hence completes the proof of the lemma.

The above lemma will allow us to use the input from the previous section. For this,

we let Γ(p±) be the set consisting of all minimal geodesics from regular points p± to

B∓. In addition to viewing this as a set of geodesics, we will also view it as a subset of

M whose points are the points of all those geodesics. As such, it can also be described

as Γ(p±)=Gp±(p±∗∆∓)⊂M . Note that Γ(p−)∩Γ(p+) is the set of all minimal geodesics

joining p− and p+. Since Gp± is independent of p±, we will use the notation G± instead.

It will also be useful to let Γ(p±)(r) denote the subset of Γ(p±) made of all the points

at distance r from p±, and Γ̂(p±) denote the negative of the terminal directions of the

geodesics in Γ(p±).
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Remark 7.3. The following are immediate consequences of the dual generation lemma

(Lemma 7.2), and the decomposition of a section Σ⊃Σ± corresponding to ∆=∆−∗∆+.

• The cut locus C(B±)=B∓, and B± are at distance 1
2π from one another.

• Γ(p±)\B∓ is a smooth submanifold of M diffeomorphic to the open 1
2π-ball in the

normal space T⊥± to B± at p± via the exponential map.

• The map γp±:S⊥p±!B∓ taking a unit vector to the corresponding geodesic at time
1
2π is smooth, G± equivariant and takes chambers to chambers.

Moreover, we have the following lemma.

Lemma 7.4. The map γp± is a G±-equivariant Hopf fibration.

Proof. For the sake of simplicity, we will use x̄ to denote the image γp±(x) of x∈S⊥p± .

Since γp± is a smooth G± -equivariant map that takes chambers to chambers and with

the same orbit space, by the Hopf lemma (Lemma 6.2) it remains to verify that the slice

representations of G±,v and G±,v̄ are orbit equivalent. For this it suffices to show that the

dimensions of the corresponding slices agree, or equivalently that the corresponding prin-

cipal orbits of isotropy groups have the same dimension. So let x be a point of principal-

orbit type of the slice representation of G±,v. We claim that dim(G±,v(x))=dim(G±,v̄(x̄)).

Note that G±,v̄=G±,x̄ G±,v=G±,v G±,x̄, where the latter follows from the dual generation

lemma (Lemma 7.2). Therefore, the orbit G±,v̄(x̄)=G±,v̄ /G±,x̄=G±,v G±,x̄ /G±,x̄. In par-

ticular, G±,v acts transitively on this orbit with isotropy group G±,v ∩G±,x̄. However,

since clearly G±,v ∩G±,x̄=G±,x, this completes the proof.

The following plays a pivitol role in the geometric and equivariant description of M .

Lemma 7.5. (Reduction) For all regular p±∈B±, Γ(p±) are G±-invariant subman-

ifolds of M . Moreover, Γ(p±) is G±-equivariantly diffeomorphic to{
D⊥p± , if the section is a sphere,

a complex or quaternionic projective space, if the section is a projective space.

Proof. The key issue is to see that Γ(p±) are submanifolds, as claimed. From the

remark above, this is clear except along B∓⊂Γ(p±).

From the Hopf lemma and Lemma 7.4 above, we know that γp± :S⊥p±!B∓ is either

a diffeomorphism or a Hopf map. Clearly, Γ(p−)∩Γ(p+) is in bijective correspondence

with the fiber of γp− over p+ and the fiber of γp+ over p−, when viewing it as the set of

minimal geodesics between p− and p+. In particular, both maps are of the same type,

corresponding to Γ(p−)∩Γ(p+) being either one geodesic, an S1-, an S3- or an S7-family

of geodesics. Moreover, this description also shows that the linear span of the initial

vectors of the geodesics in Γ(p−)∩Γ(p+) at both p− and p+ are linear subspaces of the

corresponding normal spaces to B∓.
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Now consider the initial vectors of the geodesics in Γ(p−) starting at B+. This

subset Γ̂(p−) of the unit normal bundle T⊥1 B+ of B+ is canonically a smooth submanifold

diffeomorphic to S⊥p− via, say, Γ(p−)
(

1
2π−1

)
. In particular, it is a smooth section of the

unit normal bundle to B+ when each Γ(p−)∩Γ(p+) is just one geodesic, or equivalently

γp− :S⊥p−!B+ is a diffeomorphism. In the other cases, it is the unit sphere bundle of

a smooth linear subbundle of the normal bundle to B+ and γp− :S⊥p−!B+ is a Hopf

fibration. By equivariance then clearly each Γ(p∓) is G∓ -equivariantly diffeomorphic

to a complex or quaternionic space, or to the Cayley plane if Γ(p−)∩Γ(p+) is an S7-

family of geodesics. Since by assumption neither B± is a point, the latter case does

not appear. Indeed, if so, both B± would be homotopy 8-spheres. Moreover, from

the geometric decomposition and Poincaré duality, it follows that M would be a 24-

dimensional manifold having as integral cohomology algebra a truncated polynomial

algebra with generator in degree 8. This contradicts a well-known topological theorem

(cf. [Ha, p. 498, Corollary 4]).

Having dealt with all cases where the diagram for the Coxeter matrix has no isolated

nodes, and where the action has fixed points, we assume from now on that B− is an orbit

corresponding to an isolated node of the diagram. Thus, we will use a decomposition

∆ = ∆−∗∆+,

where ∆−=∆0=p− is a vertex corresponding to an isolated node, and ∆+ corresponds

to the rest of the diagram. In particular, G+ acts transitively on B−, as well as on each

normal sphere S⊥+ to B+ along ∆+.

We are now ready to complete the proof of Theorem 7.1.

Proof of Theorem 7.1. We first consider the case where the section Σ=Σ−∗Σ+ is a

sphere.

By Lemma 7.5, the G∓-action on B± is equivariantly equivalent to the slice repre-

sentation on the normal sphere S⊥p∓ , which we will denote by S(V±)=S±. Note that G,

as well as G+, acts transitively on B−, since ∆− is a point. In particular G acts linearly

on S− identified with B−. If also the G-action on B+ when identified with S+ is linear,

we claim that the induced sum action on S(V−⊕V+) is equivalently diffeomorphic to the

G-action on M . To see this, choose p∗−∈S− with Gp∗−=Gp−=G− and a G−-equivariant

diffeomorphism from Γ(p−) to the join p∗−∗S+⊂S−∗S+. This extends to a well-defined G-

equivariant diffeomorphism from M to S−∗S+ by invariance. The proof is completed now

by Lemma 6.1, since the polar G-action on B+ is linear-orbit equivalent to the G−-action.

Now suppose that Σ is a projective space.
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By Lemma 7.5, the Cayley plane cannot appear, and moreover B± are both projec-

tive spaces over F, with F=C or F=H. In fact, for each regular p±∈B±, the slice repre-

sentation of G± restricted to the normal space V± at p± to B± preserves an F-structure

and descends to a polar action on B∓ which is orbit-equivalent to the restriction of G

to B∓. This will guide us to the construction of a representation of G (or frequently

an extension of it) on V+⊕V− preserving an F-structure, which together with the scalar

multiplication of F∗ is polar, such that the induced G-action on the projective space

FP(V+⊕V−) is equivariantly equivalent to that of G on M .

We divide the proof into two cases corresponding to (a) dimB−>2 and (b) dimB−=2

(noting that dimB−<2 is covered by the fixed-point case).

Throughout, K±CG will denote the identity component of the kernel of the G-action

restricted to B±.

In case (a), we make the following claim: There is a normal subgroup HCK+ acting

transitively on the normal spheres to B+ such that K+=H ·K0, with K0∈{1,S1,S3}, is

the identity component of the kernel of the action by K+ on B−. We will see later on

that K0=1 when F=H, and that K0∈{1,S1} when F=C.

To prove the claim, note that dim ∆+>1. Choose a pair of vertices v1, v2∈∆+ and

consider the slice representations at the vertices. By Lemma 7.7 below, it follows by

assumption on dimB−, that up to a finite cover, there is a normal subgroup of rank

at least 2 (of simple type), say Hvi CGvi for i=1, 2, acting transitively on the normal

sphere to B+ at vi, but trivially on the slice tangent to B+. Clearly each Hvi is also

a normal (simple) subgroup in the principal isotropy group G+ of the G-action on B+.

As G+ (modulo kernel) has a unique normal simple subgroup (of rank at least 2) acting

transitively on the normal sphere, it follows that Hv1 =Hv2 CG+, and will be denoted

by H. By primitivity, G=〈Gv1 ,Gv2〉, and thus H is a normal subgroup in G. Therefore,

B+ is fixed pointwise by H. In particular, HCK+ acts transitively on B− with kernel K0,

and thus K+=H ·K0.

Since K+CG, we can write G=K+ ·L=H ·K0 ·L, where LCG is a connected normal

subgroup which clearly acts almost effectively on B+ in a polar fashion. Since B− is a

projective space over C or H of dimension at least 4, and therefore any almost effective

transitive action on it is the linear action by SU(k+1) or Sp(k) for some k>2 (cf. [O,

pp. 264–265]), we conclude that H=SU(k+1) or H=Sp(k). Thus, for the kernel of the

G=H ·K0 ·L action on B−, we get K−=K0 ·L. In particular, K0=K−∩K+ fixes both B±

pointwise, and acts almost effectively on the normal spheres to B± (when non trivial),

preserving all Γ(p−)∩Γ(p+).

In summary, the “face” isotropy groups G± and their kernels K± can be read off
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from the following group diagram:

G=H ·K0 ·Lii55

G−=H− ·K0 ·Lii G+ =H ·K0 ·L+
55

G− ∩G+ =H− ·K0 ·L+

OO

K−=K0 ·Lii

OO

K+ =H ·K055

OO

K−∩K+ =K0.

OO
(7.6)

Here H− (resp. L+) is the principal isotropy group of H on B− (resp. of L on B+).

Thus, corresponding to the possible H above, we have H−=U(k), H=Sp(k−1)S1 or

H=Sp(k−1)Sp(1). Let H0 CH− denote the normal factor S1 or Sp(1) of H−. Thus,

H0=S1 corresponds to F=C and H0=Sp(1) to F=H. For this we have:

• H0 acts freely on S(V−) along the Hopf fibers.

To see this, consider for any fixed p+∈B+, the Hopf map γp+ :S⊥p+!B−. From the

transitive actions by H on S⊥p+ descending to B−, we know that H0 acts freely along

the fibers of γp+ . Note that these fibers, for p−∈B−, are in one-to-one correspondence

with Γ(p−)∩Γ(p+). Turning things around, these are also in one-to-one correspondence

with the fibers of the Hopf map γp− :S⊥p−!B+, where now p− is fixed. This proves the

assertion and has the following consequence:

• K0 is trivial when F=H .

Indeed, since both K0 and H0=Sp(1) act (almost) effectively on S(V−), this follows

from Lemma 7.9 below, because the slice representation of G− on V− descends to a

fixed-point-free action on B+, with H0 ·K0CH− ·K0 in its kernel.

We now proceed to set up a projective model FP(V+⊕V−), with a linear polar G-

action with the field F=C or F=H, as indicated in our strategy above.

Consider the product representation on V+⊕V− by K+×K−=H ·K0×K0 ·L, which on

each summand preserves an F-structure, i.e., descends to a polar action on FP(V+) and

on FP(V−), respectively. When K0 is trivial, obviously the sum F-structure is preserved

as well, and the K+×K−=H×L action descends to a polar action on FP(V+⊕V−). When

K0=S1, and hence F=C, the action by the diagonal S1=∆(K0)CK0×K0 defines a C-

structure on the sum preserved by K+×K− descending to a polar action by G=H ·K0 ·L
on FP(V+⊕V−). These are the models.

Given such a model, fix p−∈B−, and choose a point p∗−∈FP(V+) so that Gp∗−=Gp− .

By Lemma 7.5, Γ(p−) is Gp− -equivariantly diffeomorphic to the linear projective subspace

of FP(V+⊕V−) containing p∗− and FP(V−). As in the spherical section case, this extends
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to a well-defined G-equivariant diffeomorphism from M to FP(V+⊕V−), by invariance,

and we are done.

Finally, let us consider the only remaining case (b), where B−=CP1 and B+ is a

complex projective space of real dimension at least 4, since the cases of dimB+62 reduce

to the fixed-point case, because dim ∆+>1.

Since G acts transitively on B−=CP1=S2, we can write G=K− ·S3, with K− being

the kernel of the action on B−. Hence, G−=K− ·S1, where S1⊂S3. By Lemma 7.2, the

subaction of G− is orbit-equivalent to the G-action on B+. It follows from Lemma 7.8

below that the factor S3 acts trivially on B+, that is S3 CK+, the kernel of the G-action

on B+. Thus, the slice subrepresentation of K+BS3 on V+
∼=C2 descends to the transitive

action on B−. This implies that K+=S3 or U(2), and accordingly K0=K+∩K− is either

1 or S1. We are now in a situation similar to case (a) with F=C, and hence M is G-

equivariantly diffeomorphic to the complex projective space P(V+⊕V−). This completes

the proof.

In conclusion, here are the facts that we used about representations in the proof of

Theorem 7.1.

Lemma 7.7. Let %:G!SO(V0⊕...⊕Vk), be a reducible polar representation, where

the Vi are irreducible G-modules (k>1). Suppose that the G-action on the unit sphere

S(V0⊕...⊕Vk) descends to a polar action on the projective space FP(V0⊕...⊕Vk) where

F=C or H. If dimV0>5 and dimV0/G=1, then there is a normal simple subgroup HCG

of rank at least 2 acting transitively on the unit sphere S(V0) but trivially on V1⊕...⊕Vk.

Proof. Since G is transitive on S(V0), by the list of transitive actions on the spheres

it follows that G=H ·G′, where H is a simple normal subgroup of G acting transitively on

S(V0), with principal isotropy group H0. For dimension reason, rankH>2. Moreover, H

is a special unitary group or a sympletic group, since it acts transitively on the projective

space FP(V0).

We argue by contradiction. Assume that H acts non-trivially on Vi for some i>1. For

the restricted reducible polar representation of G on V0⊕Vi, since the principal isotropy

group of G on V0 is H0 ·G′, by [Be, Theorem 2] it follows that G is orbit-equivalent to

H0 ·G′ on Vi, hence, by [Dad], orbit-equivalent to the isotropy representation of an irre-

ducible symmetric space. Note that H0 H is not a normal subgroup, and by assumption

H is non-trivial on Vi. By the list in [EH] it follows that, if dimVi/G>2, then H is

either Spin(8) or Spin(7), which is neither a unitary nor a symplectic group, yielding a

contradiction.

It remains to consider the case where dimVi/G=1, i.e., G acts transitively on S(Vi).

By the assumption that H acts non-trivially on Vi, from the list of transitive actions on
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spheres it follows that

• the simple group H, of rank at least 2, acts transitively on S(Vi). Furthermore,

by dividing the kernel of the G′-action, the transitive action of H ·G′ on S(Vi) reduces to

an almost effective action of H ·K0 where rankK061.

Note that dim S(Vi)>4, since a simple group of rank at least 2 can not act non-

trivially on a lower-dimensional sphere. Recall that H0 ·G′ is orbit-equivalent to the

H ·G′-action on Vi, i.e., transitive on S(Vi). For dimension reasons it follows that the

H0 action is also transitive on S(Vi), since the G′-action modulo kernel reduces to the

K0-action where rankK061.

In summary, H acts transitively on S(Vi) orbit-equivalent to the subaction of H0 H

on S(Vi) where H /H0
∼=S(V0). Recall that H is a special unitary group or a symplectic

group. From the list of transitive actions on spheres, it follows that H=SU(4) acts on

V0⊕Vi=R8⊕R6 via the standard complex representation and the real representation of

SU(4)=Spin(6) on the summands (cf. [Be]). Since the Spin(6) action on R6 does not

descend to the complex projective plane, a contradiction is reached.

In the proof of the following result, we will freely use the language and results about

chamber systems and their universal covers developed in §4, translated to the current

setting.

Lemma 7.8. Let %:G!SO(V ) be an almost effective C-linear polar representation,

descending to a polar action on the projective space CP(V ).

Suppose G=K·S1⊂G′=K·S3, and assume moreover that G′ acts on the projective

space extending the G-action with the same orbits. Then the factor S3 of G′ is in the

kernel of the action on CP(V ).

Proof. We first prove that the factor S3 action is trivial on CP(Vi) for each irreducible

summand Vi⊂V . This is clear for any rank-1 summand (summand Vi with dimVi/G=1),

since G′⊃G acts transitively on CP(Vi), hence modulo kernel it is either a unitary group

or a symplectic group. If the rank of a summand is 2, it follows immediately from

[Uch]. If the rank of a summand is at least 3, by §4, the action of G′⊃G lifts to a polar

representation by an extension by the deck transformation group S1, i.e., S1 ·G′, acting

on the universal cover, i.e., S(Vi), orbit-equivalent to the S1 ·G-representation. By the

classification in [EH], it follows that the S3 factor, as well as the factor S1⊂S3, must act

trivially on S(Vi). In general, suppose that S3 acts trivially on both CP(Vi) and CP(Vj);

then S3 acts on CP(Vi⊕Vj), with the disjoint union CP(Vi)tCP(Vj) as fixed-point set.

As the space of geodesics Γ(pi)∩Γ(pj) joining pi∈CP(Vi) and pj∈CP(Vj) is an S1-family

of geodesics, S3 must act trivially on that as well, for all pi and pj . Thus, S3 acts trivially

on CP(Vi⊕Vj). By induction, it follows that the S3-action is trivial on CP(V ).



tits geometry and positive curvature 51

The following is probably a well-known result.

Lemma 7.9. Let %:G!SO(V ) be an almost effective representation descending to

HP(V )=HPn. Then the kernel of the action on HP(V ) is contained in Sp(1).

Proof. Identify V with the tangent space at a point p∈HPn+1. The representation

gives rise to an isometric action on HPn+1 fixing p and with the induced action on HPn

identified as the cut locus of p in HPn+1. Since the subgroup of the isometry group of

HPn+1 that fixes HPn is Sp(1), the claim follows.
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