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Abstract
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Lie algebra. The cohomology of such a coalgebra is isomorphic to the cohomology of its linear
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1 Introduction

Operads are mathematical devices that encode algebraic structures. They were originally
introduced by May [24] to study iterated loop spaces in algebraic topology. Operads have since
been used with great success in many other fields, including algebra, mathematical physics, and
computer science. See [23] for a general survey of generalities and applications of operads. In par-
ticular, familiar structures such as associative algebras, Lie algebras, commutative algebras, and
Gerstenhaber algebras are all algebras over some corresponding operads.

Let A be an associative algebra, and let C be a coassociative coalgebra. The structure
of the Hochschild cohomology [11] Hj (A, A) of A with self-coefficients is well known; it is
a Gerstenhaber algebra [6]. The same is true for the Hochschild coalgebra cohomology H(C, C)
[12], which can be proved by basically the same arguments as in [6]. If, in addition, A is finite-
dimensional, then H; (A, A) and H (A%, A%) are isomorphic as graded vector spaces [26], where
A# is the dual coalgebra of A.

In this paper, we generalize this duality isomorphism to finite-dimensional (co)algebras over
any finitely generated quadratic operad P. In particular, we will do the following:

(1) Define cohomology Hp(V) with self-coefficients for finite-dimensional P-coalgebras V.

(2) Observe that F;;(V) is a graded Lie algebra, whose graded Lie bracket is induced by one
on the defining cochain complex Cp(V).

(3) Show that Hp(V) and H%(V#) are isomorphic as graded Lie algebras, and vice versa,
where H3(V#) is the cohomology (as defined in [2]) of the dual P-algebra V# of V.

We note that the differential graded Lie algebra 6;;(1/) controls the deformations of V' as a P-
coalgebra in the sense of Gerstenhaber [7].

When P is the associative algebra operad As, the cohomology Has(V) (resp., Hi (V)
coincides with H}(V,V) (resp., H;(V,V)). In this case, we recover the duality isomorphism
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in the Hochschild case discussed above, strengthened with the graded Lie brackets. Taking
other finitely generated quadratic operads P, the above statements apply to other classical
(co)algebras, including commutative [10], Lie [4], Poisson, and Gerstenhaber (co)algebras. They
also cover, for example, the cases of Leibniz (co)algebras [14, 15, 16, 18], Loday-type (co)algebras
[1, 5, 17, 19, 20, 21, 27, 28], and ennea-(co)algebras [13].

1.1 Organization

In the next section, we recall from [2, 3] the constructions and some properties of the cochain
complex C}(A) that defines the cohomology H}(A) with self-coefficients of a P-algebra A.

In Section 3, we study properties of P-coalgebras. In particular, it is observed (Theorem 3.3)
that a P-coalgebra structure is equivalent to a degree 1 differential derivation on the free graded
P'-algebra generated by V', where P' denotes the Koszul dual operad of P.

In Section 4, the cochain complex Cp(V) that defines the cohomology Hp(V) of a finite-
dimensional P-coalgebra V' is defined. It is first shown to be a graded Lie algebra (Corollary 4.3).
A "P-coalgebra structure can be characterized as a square-zero element in this graded Lie algebra
(Corollary 4.5). The differential &, on 6;;(V) is then defined as, up to a nonzero scalar multiple,
the inner derivation [—, 7] with respect to the square-zero element 7 that defines the P-coalgebra
structure on V' (4.3). This makes Cp(V) into a differential graded Lie algebra (Corollary 4.6),
which implies that Hp(V) is a graded Lie algebra (Corollary 4.7). Example 4.8 makes this
explicit in the case of the Hochschild coalgebra cochain complex Cpq(V) = Hom(V, V®*).

In Section b5, it is shown that, for a finite-dimensional P-coalgebra V', the differential graded
Lie algebras C'p(V) and C5(V#) are isomorphic (Corollary 5.3). The duality isomorphism be-
tween Hp(V) and H3(V#) is then an immediate consequence after passing to cohomology
(Corollary 5.4). The special case involving Hochschild (coalgebra) cohomology is explained in
Example 5.5.

In Section 6, an explicit description of the differential &, in 5;;(1/) is given in terms of the
elementary operations o; in the operad P' (Theorems 6.1 and 6.2).

2 Algebras over an operad

In this section, we recall some basic definitions and results about operads and the cohomology
of an algebra over a quadratic operad with coefficients in itself.

2.1 Conventions

The symbol N* denotes the set of positive integers. Throughout this paper, we work over a fixed
field k of characteristic zero. Vector spaces, ®, Hom, and End (endomorphisms) are all meant
over k. For any positive integer n, 3,, will denote the group of permutations on n elements. For
o€ X, €e(0) € {—1,1} will stand for the sign of o, and sgn,, will denote the sign representation
of ¥,,.

2.2 Operads
An operad [22, 23, 24, 25] P consists of a right k[X,,]-module P(n), one for each n € N*. For
positive integers n, ji,..., jn, there is a structure map

7 P(n) @P() @ - @P3n) = P(1 + -+ jn)
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These structure maps satisfy some associativity, equivariance, and unity conditions, which can
be found in [24]. Using the operad structure maps, one defines the o; operations as

foig=~((f;1,...,1,¢9,1,...,1) e P(n+m —1) (2.1)

for f € P(n) and g € P(m), where there are (i — 1) copies of 1’s in front of g. Conversely, the
structure maps v can be recovered from the o; operations as

Y(f5915-59n) = (- (((f o1 91) 04141 92) ©j14jot1 93) ) (2.2)

for f € P(n) and ¢; € P(ji) (1 < ¢ < n). In the presence of the unit 1 € P(1), the operad
structure maps -y are completely determined by the o; operations (see [22] or [23, Section 1.7.1,
p. 66]). In what follows, by using (2.1) and (2.2), we will use these two equivalent definitions of
an operad interchangeably.

2.3 Non-X operads

From the definition of an operad, if we omit the parts concerning the symmetric groups X,
(n > 1), then we obtain the definition of a non-X operad.

2.4 Operad morphisms

Let P and Q be two operads. A morphism of operads from P to Q is a sequence a = {a(n),n €
N*} of k[¥,]-linear maps a(n): P(n) — Q(n) satisfying the conditions a(1)(1) = 1 and a(n +
m —1)(uo;v) =a(n)(u) oja(m)(v) for n,m € N*, 1 <i <n, p € P(n), and v € P(m).

2.5 Endomorphism operad

Let V be a vector space over k. For n € N*, let End(V)(n) = Hom(V®", V). Then End(V) =
{End(V')(n), n € N*} is naturally an operad under composition, called the endomorphism operad
of V. Indeed, fo; 9= f(1,...,g,...,1), where g is in the ith place, and 1 is the identity map
on V. The ¥,-action on End(V)(n) comes from composition with the left ¥,-action on V&,

2.6 Algebras over an operad

Let P be an operad. A P-algebra or an algebra over P is a vector space V over k along with
a morphism of operads m: P — End(V). Using adjunctions, a P-algebra structure on V can
be expressed in terms of maps m,: P(n) @y, V" — V that satisfy the obvious associativity,
equivariant, and unity conditions.

Proposition 2.1 (see [9]). Let E be a right k[Xs]-module. Then there exists an operad F(E)
with F(E)(1) = k and F(E)(2) = E such that the following property holds: for any operad Q

and for any morphism of right k[Xs]-modules a: E — Q(2), there exists a unique morphism of
operads, a: F(E) — Q, such that a(2) = a.

2.7 Free operad

The operad F(F) is called the free operad generated by E. By the usual arguments, the free
operad F(F) is unique up to operad isomorphisms.
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2.8 Free graded P-algebra

For an operad P and a vector space V, define the free graded P-algebra generated by V as
FH (V) = @p>1P(n) @y, (V" ®sgn,,)

where o(v1 ®@ - ® vp) = €(0)Vg-1(1) @+ @ Vg-1(y) for o € ¥, and v; € V. The homogeneous
degree n component of F (V) is denoted by F3™ (V). The P-algebra structure on F3' (V) is
the natural one defined by the operad structure on P and concatenation on V®* [3, 1.6.2].

2.9 Graded derivations

Let A = @jzoAj be a graded algebra over an operad P with structure maps 7m,,: P(m) ®x,,
A®™ — A, A degree n derivation of A is a homogeneous degree n linear map d: A — A such
that

m

d(mm (a1, ... am)) = Z(—l)"‘”wm(u; aty ..y Qim1,d(a), Qig1, .y Q)

=1

for m € N*, u € P(m), and a; € A. Here s; = |a1]| + -+ + |a;—1| with s; = 0, and |a| = j if
a € A7 [3, Definition 2.3.1]. The set of degree n derivations of A is denoted by Der"(A). Denote
by Der(A) the graded vector space @p>0Der"(A) of all derivations of A.

2.10 Operadic ideals

Let P be an operad. An ideal of P is a sequence I = {I(n), n € N*}, in which I(n) is a k[X,]-
submodule of P(n), such that for p € P(n), v € P(m), x € I(m), y € I(n), and 1 <i,j < n,
one has that po;z € I(n+m —1)and yo;v € I(n+m —1).

When [ is an ideal of P, the quotient P/I = {(P/I)(n) = P(n)/I(n)} inherits an operad
structure from P.

2.11 Quadratic operads

Let E be a right k[¥s]-module and let R be a right k[¥s]-submodule of F(F)(3). Let (R) be
the ideal generated by R. Then the quotient operad F(E)/(R) is called the quadratic operad
generated by E with relations R, denoted by P(k, E, R) [9]. A quadratic operad P(k, E, R) is
said to be finitely generated if E is a finite-dimensional vector space.

Proposition 2.2 (see [3, Proposition 1.5.5]). Let P = P(k, E, R) be a quadratic operad. Then
a P-algebra structure on a vector space V is determined by a morphism of right k[3s]-modules
m: P(2) = E — End(V)(2) such that #(3)(R) = 0.

In this case, the morphism 7: P(2) — End(V)(2), or equivalently its adjoint 7: P(2) ®x,
V®2 5 V. is called the structural morphism of the P-algebra V.

2.12 Quadratic duality

Let F be a right k[%,]-module. By F# we mean the right k[%,,]-module F# = Hom(F, k)®sgn,,,
where the right Y,-action is given by (¢ - 0)(z) = €(0)d(x - 0~ 1) for ¢ € Hom(F,k) and z € F.
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Let E be a right k[Xs]-module. Then as right k[¥3]-modules, one has that [9] F(E#)(3) =
(F(E)(3))*. Let R C F(E)(3) be a right k[Y3]-submodule, and let R+ C F(E#)(3) be the
annihilator of R in (F(E)(3))* = F(E#)(3). The Koszul dual of the quadratic operad P =
P(k, E, R) is defined as the quadratic operad P' = P(k, E# R').

2.13 The graded Lie algebra Lp(V)

We briefly recall the cohomology of an algebra over a finitely generated quadratic operad, due
to Balavoine [2, 3].
For the rest of this section, let P = P(k, E, R) be a finitely generated quadratic operad,

and let V be a finite-dimensional vector space. To simplify notations, let (P")#(n) stand for

(P'(n))*. Define the vector spaces

LA(V)=P(n+1)@x,,, End(V)(n+1) (n>0)
CR(V) = Hom((P)#(n) ®x, VE", V) (n>1)

where End(V')(n) = End(V)(n) ® sgn,,, with the natural structure of a left k[¥,]-module. Let
Lp(V) denote the graded vector space Lp(V) = €D, Lp(V). Using the elementary operations
o; in the operad P' and the non-¥ operad End(V) = @,>1 End(V)(n), one defines the operations
2, 3]

n+1

(oo ©g) =Y ()" 0iv) @ (foig)

=1
R fr@g=Wof)ow ®g) +(-1)"" (1 ®g)o (1 @ f)

(2.3)

for p* @ f € Lx(V) and v* ® g € LB(V). These two operations are indeed well defined, i.e.,
independent of the choice of representing elements p* ® f and v* ® g. However, the individual
o; operations are not well defined on Lp(V') [3, Remark 2.4.4].

Proposition 2.3 (see [3, Proposition 2.4.4]). The bracket [—,—| defined above makes Lp(V)
into a graded Lie algebra.

Indeed, once one establishes that o and [—, —| are well defined, this result follows from [8, (3)],
since P' ® End(V) is a non-% operad.

Proposition 2.4 (see [2, Proposition 3.1.4]). There is an isomorphism of vector spaces
T: (V) = CEL(V)

With the obvious notations, the isomorphism I' is given by

D @ o) = 3 o) uo) o) (2.4)

’ UGZn
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2.14 The graded Lie algebra C;(V)

Using the isomorphism I', the graded Lie bracket on Lp (V') can be transported to C%(V'), which
makes C% (V') into a graded Lie algebra of degree —1. More precisely, the graded Lie bracket on
C% (V) is defined as

[f,9] =T(T7H():. T (g)])
The same can be said of the operation o, from which the graded Lie bracket is defined.

Proposition 2.5 (see [3, Proposition 2.3.3]). There is an isomorphism of vector spaces

o

w: Der"(]-"g,"(v#)) — C%H(V)

The space Der(}"g(v#)) of derivations has a natural graded Lie bracket, namely, the commu-
tator bracket. Using the isomorphism w, this gives rise to another graded Lie bracket of degree
—1 on C%(V). These two graded Lie brackets on C5(V') are equal 3, 2.4.4].

Theorem 2.6 (see [3, Theorem 2.4.1 and Corollary 2.4.2]). The following three sets are in
bijection with each other:

(1) The set of P-algebra structures on V.
(2) The set of degree 1 derivations d € Der'(FZ,(V#)) that satisfy d* = 0.
(3) The set of elements m € C3(V) that satisfy [m, 7] = 0.

When one of these equivalent conditions is satisfied, we say that (V,m) is a P-algebra.

Note that [, 7] = 0 is equivalent to the condition 7(3)(R) = 0 in Proposition 2.2.

2.15 Cohomology of a P-algebra
Let (A, 7) be a P-algebra. Define the map 67 : C1(A) — CT(A) by setting

n+1

0r(f) = ——5—[f,7] (2.5)

By [2, Proposition 3.1.7], the map 07 is a differential. The homology of the cochain complex
(C3(A),d7) is denoted by Hp(A) or H (A, ), and it is called the cohomology of the P-algebra A
with coefficients in itself or simply the operadic cohomology of A. With the induced Lie bracket,
HZ,(A) becomes a graded Lie algebra. Also, note that (C5(V), dx, [—, —]) is a differential graded
Lie algebra, which controls the deformations of V' as a P-algebra [3, Section 4] in the sense of
Gerstenhaber [7].

3 Coalgebras over an operad

The purpose of this section is to give alternative characterizations of P-coalgebra structures
on a finite-dimensional vector space in terms of differential derivations when P is a finitely
generated quadratic operad.
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3.1 Coendomorphism operad

Let V be a vector space. Let Coend(V) = {Hom(V,V®")} be the coendomorphism operad of
V' with the obvious structure maps, dual to those in End(V). For an operad P, a P-coalgebra
structure on V' is a morphism P — Coend(V') of operads.

For example, a coassociative coalgebra structure is equivalent to an As-coalgebra structure,
where As is the associative algebra operad.

Proposition 3.1. Let P = P(k, E,R) be a finitely generated quadratic operad, and let V be
a finite-dimensional vector space. Then a P-coalgebra structure on 'V is determined by a k[Xs]-
equivariant morphism 7: E = P(2) — Coend(V')(2), such that #(3)(R) = 0, where 7: F(E) —
Coend(V) is the unique operad morphism associated to .

Proof. The same proof as Proposition 2.2 works here. Indeed, if 7 is as stated, then the mor-
phism 7 must factor through the quotient P = F(FE)/(R). This is because & commutes with
the o, operations and every element in the ideal (R) is a sum of elements that are iterated o;
products with at least one entry in R. O

The condition 7(3)(R) = 0 can be expressed as [r, 7] = 0 (Corollary 4.5).

3.2 Duality isomorphism

Let V be a finite-dimensional vector space. Denote by V# its linear dual Hom(V, k). Then for
each n > 1, there is a linear isomorphism (see [26, Proposition 2.8])

¢": Coend(V)(n) = End(V#)(n) (3.1)
given by ¢"(f) = f#, where
Al ® - @ay)(a) = Z (H Oéi(f(a)i)>
=1

for a; € V# and a € V. The notations on the right-hand side of the previous line is given by

fla)=>Y"fla)p @ ® fla), € V"
Theorem 3.2. Let V' be a finite-dimensional vector space. Then the maps " (n > 1) assemble
to form an isomorphism ¢: Coend(V) = End(V#) of operads.

Proof. The maps (" are linear isomorphisms, and it is clear that ¢!(Idy ) = Idy#. It remains to
check that they are compatible with the operad structure maps v and that " is X,,-equivariant.
For f € Coend(V)(k) and g; € Coend(V)(n;) (1 <i < k), we have
¢ (Y (fi g1, g0) = (1@ @ gi) o )T
= fFo(gf ®---04f)
= () ¢ (g1)s - ¢ (gr))

where o denotes composition of functions. This shows that ( is compatible with the operad
structure maps.
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One can see that the map (" is ¥,,-equivariant because the ¥,-action on Coend(V)(n) (resp.,
End(V#)(n)) comes from composition with the right (resp., left) ¥,-action on V®" (resp.,
(V#)®n), Indeed, pick f € Coend(V)(n), 0 € ¥, a; € V# (1 <i < n), and a € V. Then we
have

(C"(f- o) (@ @an)(a) = {Hai <f<a>g<z->)}

© > {H Qp1(3) (f(a)i)}
=1
= (C"(N) (@g-1(1) @ -+ @ ag-1(n))(a)

= ("(f)-0) (a1 ®--- @ an)(a)

The equality () comes from the fact that the two sets of elements in k, {c;(f(a)s()) }1<i<n and
{ag—15)(f(a)i) }1<i<n, are equal. This shows that (" is X,-equivariant. O

This result leads to the following alternative characterizations of a P-coalgebra structure.

Theorem 3.3. Let P = P(k, E, R) be a finitely generated quadratic operad, and let V be a finite-
dimensional vector space. Then the following three sets are in bijection with each other:

(1) The set of P-coalgebra structures on V.

(2) The set of k[Xa]-equivariant morphisms w: E — Coend(V)(2) such that 7(3)(r) = 0 for
r e R.

(8) The set of degree 1 derivations d € Der(F2,(V)) that satisfy d* = 0.

Proof. The bijection between (1) and (2) is Proposition 3.1. By Theorem 2.6, a derivation d as
stated corresponds to a P-algebra structure on V#, i.e., an operad morphism ¢: P — End(V#).
Therefore, it follows from Theorem 3.2 that the composition (“l¢: P — Coend(V) is also
a morphism of operads. This is by definition a P-coalgebra structure on V. The argument can
be reversed to prove the converse, thereby giving a bijection between (1) and (3). O

4 Cohomology of P-coalgebras

In this section, we give another characterization of a P-coalgebra structure in terms of a graded
Lie bracket and define cohomology of P-coalgebras.

Throughout this section, let V' be a finite-dimensional vector space, and let P = P(k, E, R)
be a finitely generated quadratic operad.

4.1 The graded Lie algebra Lp(V)
Define the vector spaces

Lp(V) =P(n+1)®s,,, Coend(V)(n+1), n>0
Cp(V) = Hom(V,P'(n) ®x, (VE" ®@sgn,)), n>1
= Hom(V, .7:79;!" (V)
Here Coend(V)(n) = Hom(V, V®") @ sgn,,, which is the same as Hom(V, V®") as a vector space
and has the natural left X, -action.
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Theorem 4.1. For eachn > 1, there is an isomorphism T : f;;_l(V) =N U%(V) of vector spaces.

Proof. The isomorphism I is the composition of the following isomorphisms:
Ly (V) = {P'(n) @ (Hom(V, V") @ sgn,,) }
~ {P'(n) ® (Hom(V,V®") @ sgn,) } "

= Homyy,,| ((P')#(n) Hom(V,V®") @ sgn,,)
= Hom (V, Homys, ) ((P')* (n), VE" ® sgn,,))

=~ Hom (V, (P!(n) ® (Ve ® sgnn))E")
~ Hom (V, P\(n) @s, (V" @ sgn,)) = Op(V)

The isomorphisms (1) and (4) use the fact that |X,,| = n! is invertible in k, which implies that

there is a canonical isomorphism Xy, =, X whenever X is a right 3,,-module (see, e.g., [23,
(3.60)]). The isomorphisms (2) and (3) rely on the fact that P'(n) is finite-dimensional. O

Tracing through the various isomorphisms above, I' can be described more explicitly as

D(p®¢)(v ,Z )o@ (o6, v) (4.1)

’ 0'6271,

where p € P'(n), ¢ € Coend(V)(n), and v € V.
Using the o; operations on the operad P' and the non-X operad Coend(V), one defines the
operations o and [—, —] on Lp(V) exactly as in (2.3).

Proposition 4.2. (Lp(V),[—,—]) is a graded Lie algebra.

Proof. The same argument as in [3, Proposition 2.4.4] shows that the operations o and [—, —]
are well defined on Lp(V). Since P' @ Coend(V) is a non-X operad, the result follows from
8, (3)]- O

4.2 The graded Lie algebra C,(V)

Define the operations o and [—, —] on C'p(V) via T. Namely, define

-1 -1 -1 1

fog:=T( (ol (9)), [fgl:=T(T (/T (9)]), f9€CTp(V) (4.2)

The following result is an immediate consequence of Theorem 4.1 and Proposition 4.2.
Corollary 4.3. (Cp(V),[—, —]) is a graded Lie algebra of degree —1.

There is another graded Lie bracket on 6;(1/) defined in terms of differential derivations
using the following result.

Proposition 4.4. There is an isomorphism w: Der™ 1 (FI (V) =N Cn(V) of vector spaces.
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Proof. Applying Proposition 2.5 to V instead of V#, we obtain the first isomorphism:
Der"}(F%(V)) £ Hom((P)#(n) @5, (VF)®", V#)
= Hom(V, P'(n) ®z, (V" @ sgn,)) = Cp(V)
The second isomorphism is simply dualization. O

The natural graded Lie algebra structure on the space Der(FZ;(V)) of derivations induces
a graded Lie bracket of degree —1 on Cp(V) via w (Proposition 4.4). Exactly as in the case of

P-algebra [3, p. 221], this graded Lie bracket is equal to the one defined before (Corollary 4.3).
4.3 Square-zero characterization of P-coalgebras

Using the graded Lie bracket on 6;;(1/), we can give another characterization of a P-coalgebra
structure, adding to the list in Theorem 3.3.

Corollary 4.5. There is a one-to-one correspondence between the P-coalgebra structures on V
2 .
and elements ¢ € C(V) satisfying [, ¢] = 0.

Proof. As in [3, Corollary 2.4.2], under the isomorphism w in Proposition 4.4, an element

de Derl(}'g(V)) corresponds to an element ¢ € 63;(‘/) such that [, p] = 2d%. The result now
follows from Theorem 3.3. O

4.4 Coboundary in 6;;(‘/)

Now let V be a finite-dimensional P-coalgebra with structural morphism 7 € 53;(‘/), ie.,
[7, 7] = 0. Following Balavoine [3], define a map &, : Cp(V) — 6%“(1/) by setting

Ox(f) = ———[f,7] (4.3)
for f € Cp(V). Note that this has the exact same formula as the differential in C5 (V) (2.5).
Corollary 4.6. The map 65 is a differential on Cp(V). In particular, (Cp(V),dx,[—, —]) is
a differential graded Lie algebra.
Proof. The map o, = —"T‘H[—,W] is a differential because [—, —| is a graded Lie bracket and
[, 7] = 0. O

4.5 Cohomology of P-coalgebras

The cohomology of the cochain complex (Cp(V),d,) is denoted by Hp(V) or Hp(V,w) and is
called the cohomology of V' with coefficients in itself.

Essentially the same discussion as in [3, Section 4] also applies here, showing that the dif-
ferential graded Lie algebra (Cp(V),dx,[—,—]) controls the deformations of the P-coalgebra
(V, 7).

The following result is an immediate consequence of Corollary 4.6.

Corollary 4.7. The graded vector space ﬁ;;(V) inherits the structure of a graded Lie algebra
from Cp(V).
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Example 4.8 (Hochschild coalgebra cohomology). Let V' be a finite-dimensional As-coalgebra
(i.e., a finite-dimensional coassociative coalgebra) with comultiplication A: V — V®2. Using
the fact [9] As = As' = {k[¥,]}, we deduce that C'xg(V) = Hom(V,VE") and H (V) =
H!V,V) (n > 2), where H}(V,V) denotes the Hochschild coalgebra cohomology of V' with
self—coefﬁments [12, 26]. The last equality comes from the fact (see Theorems 6.1 and 6.2)
that 5 = b, where b. is the Hochschild coalgebra coboundary on the cochain complex
{Hom(V V®")} More precisely, it is defined as the alternating sum

br(f) = (Idv ®f)o A+ (-1 (f®Idy)o A

+ Z (Id® i—1) QA ®Id®(n z)) of (4.4)

for f € Hom(V,V®"), where o denotes composition of functions. B
Using (2.3), one observes that the graded Lie bracket on C'y (V') (and hence also on H 5, (V)
= H}(V,V)) is given by

m

[F,0) = 3 (=1)@ DD (1050 g @105 ) o
B (4.5)

n

_( mlnlz (ml] 1(Id®(J 1)®f®1d®(n ]))
Jj=1
for f € C'yo(V) and g € C'xs(V).

5 Cohomological duality

Throughout this section, let V' be a finite-dimensional vector space, and let P = P(k, E, R) be
a finitely generated quadratic operad. Recall that V# = Hom(V, k) denotes the linear dual of
V. The purpose of this section is to show that Hp(V) and H3(V#) are isomorphic as graded
Lie algebras.

5.1 Cochain level isomorphism

Consider the map
n def me—1 AN n
€ I D (Tdps ) &C)T 2 Tp(V) = Cp(VH)

for n > 1. It is clear that £™ is a linear isomorphism, since each of the three maps that define it
is an isomorphism (Proposition 2.4, (3.1), and Theorem 4.1).

Using the formulas for I' (2.4), T' (4.1), and ¢™ (3.1), one infers that &" is, in fact, the
dualization isomorphism

Cp(V) =Hom(V,P'(n) ®x, (V" @ sgn,))
=, Hom((P)#(n) @5, (V#)E", V#) = OB(V#)

More explicitly, given ¢ € Cp(V), p € (PY#(n), a € (V#)® = (VE)# and x € V, we have

(") @ a)(w) =Y (u (@) m){a, o(@) @) (5.1)
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where
=> o@)q) ® p(x)2) € P'(n) @z, VO

Theorem 5.1. The maps £" assemble to form an isomorphism &: 6;;(1/) = C’;‘;(V#) of graded
Lie algebras.

Proof. It remains to show that £ commutes with the graded Lie brackets. It suffices to show that
each of the three maps that define £ commutes with the graded Lie brackets. Both isomorphisms
[ and T ' commute with the graded Lie brackets by definition.

On the other hand, the operations o and [—, —] on Lp (V) and Lp (V) are defined in terms of
the o; operations in P', End(V), and Coend (V). It follows from the fact that the o; operations can
be written in terms of the operad structure map 7 (2.1) and Theorem 3.2 that the isomorphism
in the middle, (Idp:(,) ®("), commutes with the operation o and hence also the graded Lie
bracket. O

Corollary 5.2. Let m be an element in 63;(1/). Then m defines a P-coalgebra structure on V if
and only if €7 € C%(V#) defines a P-algebra structure on V7,

Proof. From Theorem 5.1, it follows that &3([x, 71]) = [¢27, £27]. The result now follows from
the fact that €2 is an isomorphism, Theorem 2.6, and Corollary 4.5. 0

Corollary 5.3. Let (V,7) be a finite-dimensional P-coalgebra. Then the map

£ (Cp(V),0r,[= =) = (CH(VF). 8¢z, [, )
is an isomorphism of differential graded Lie algebras.

Proof. In view of Theorem 5.1 and Corollary 5.2, it remains to show that £ commutes with the
differentials. Pick an element f € Cp(V). Then we have that

n+1 n+1

> 5[ F, 6] = 0 (€7 ) O

0 (f)) = —— =" ([ fm]) =

Passing to cohomology, we obtain the following result.

Corollary 5.4. The map £ induces an isomorphism &*: F;;(V,w) =N H}’;(V#,gﬂ) of graded
Lie algebras.

Example 5.5 (= Example 4.8, continued). Let V be a finite-dimensional coassociative coalge-
bra (i.e., a finite-dimensional As-coalgebra) with comultiplication A € éis(V) = Hom(V, V®2).
Then £2A € C3,(V#) = Hom((V#)®2, V#) is the usual multiplication of the linear dual V#. In
this case, Corollary 5.4 says that there is a duality isomorphism &*: H}(V,V) =N H; (V#, V#)
of graded Lie algebras, where H ;;(V#, V#) denotes the Hochschild cohomology [11] of the asso-
ciative algebra V# with self-coefficients. The graded Lie bracket in H*(V,V) is as described in
(4.5). The graded Lie bracket in H; (V#,V#) is the Gerstenhaber bracket [6].
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5.2 Duality isomorphism: From P-algebra to P-coalgebra

There are also the obvious counterparts of the results above that relate the cohomology of a finite-
dimensional P-algebra (V,7) with that of the finite-dimensional P-coalgebra (V#, (£2)~!7).

Theorem 5.6. Let (V,m) be a finite-dimensional P-algebra. Then the map
5_1 : (07*3(‘/)7 Ors [_7 _]) — (6;3(‘/#)’3({2)—1777 [_7 _])

is an isomorphism of differential graded Lie algebras. Passing to cohomology, it induces an iso-
morphism

(€71 Hp(Vom) = Hp(V#,(6%) ')
of graded Lie algebras.

Since the arguments are essentially the same as the ones given above, we will omit them.

6 The differential §,

In this section, we give an explicit description of the differential 3, (4.3) in Cp(V) for a finite-
dimensional P-coalgebra (V, ), where P = P(k, E, R) is a finitely generated quadratic operad.

6.1 The component maps 371;” and gi’n
Pick elements f € Cp(V) and v € V. Write
T '(f) =Y v ® Fs € P'(n) ©s, Coend(V)(n)
B

and

T () =Y ui @, € P'(2) @5, Coend(V)(2)

Using (4.1), (4.2), (4.3), and the definition of the graded Lie bracket in Lp (V) (2.3), one infers
that

1,n <2,n

0 (f)(0)=0;"(F)(v) + 0z (f)(v) (6.1)

7r |
n+1 =1 a,f3 (7’L +1 Ti€EXn41
and
2 =2,n 2 (n+1)i 1 * * —1
——5."(Hw) =Y (-1) © Y em) (i vp)Ti @ (17 (T 0i Fg), v)
n+1 P " (n+1)’7»62
) (3 n+1

In view of (6.1), in order to understand the differential 5:, it suffices to describe the component

<1,n <2,n
maps 6, and 0, .
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6.2 Explicit formula for S;’n

In order to describe Sjrn( f)(v) more explicitly using f itself, we use the notations

f)=>"21)® 22 € P'(n) @s, (V¥" @ sgn,,)
(2)

0, = 15V eI, @ 2" (1<) <n) (6.3)
/ n .
DRI C DD
@ (z) j=1 0j€8n+1

The following result is the P-coalgebra analogue of [2, Theorem 3.2.3], and it corresponds to the
term

S -1iad Y oA e1dp ") o f
=1

in (4.4).

Theorem 6.1. We have that

~1,n 1 I N B .

o (f)(v) = ol > (zq) 05 1)o@ e(oy)o; T (2(2)
where the notations are as in (6.3).

The proof will be given below. Notice that the second component in the sum in Theorem 6.1
has an alternative description as follows. If z(9) = 21 ® - - - @ ,, € V", then I3 (2(2)) € y e+l
has the form

T, (2(3) = 129V @I, @ 12" ) (@1 © - - @ )
:xl®"'®1‘j71®ﬂa(x]’)®$]~+1®...®xn
::Zy1®"'®yn+l

It follows that

f(Uj)Uj_lﬂé(Z(z)) = Zyaj(l) @ @ Yoy (nt1)

6.3 Explicit formula for 372Tn

To deal with Sin( f)(v), we use the notations

o (v) = Zw(l) ®wg) € Y2
(w)

Flww) = Y Flwp) ® flwe)e, =12
(F(w)

SAYY Y Y i

@ (w) (f(wey)) o€8n+1

(6.4)
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The following result is the P-coalgebra analogue of [2, Theorem 3.2.4], and it corresponds to the
sum

(Idy ©f) o A+ (=1)""(f @ Idy) 0 A
in (4.4).
Theorem 6.2. We have that

5" ()w) = % S el0) (s 02 Flwg) ) 0 ® 0 (wa) @ Flug)m)

1 ! . _
+ (—1)n+127d e(0) (15, 01 f(weay) 1)) o @ 0~ (Fway) @) ® w))
where the notations are as in (6.4).

Proof of Theorem 6.1. We follow the notations and parts of the arguments in [2, 3.2.2]. For
a fixed element 7 € ¥,,, we set

i = (170 15,)7] € Sy
for 7/ € ¥,,41. According to [3, (7)], the signature of 7; is given by

e(ri) = (=17 Oe(r)e(r))

7

It follows that

(—1)%e(ms) (v 05 piy) 7 = (—1)T:(@:)6(T)e(n’)(y; 0; 1) (T 03 15,,)7! o)
= (=17 Oe()e() Wi o1 1)

Likewise, we have
7 (FpoiTla) = (7)1 (7 Fp op1sy Ia) (6.6)

Now set j = 771(i) and o; = 7/. Substituting (6.5) and (6.6) back into (6.2), it follows that

n

208, (H0) =3 (-1 3" e(m)e(oy) S (im0 i) 0y @ (07 (7 Fz 05 ), v) (6.7)

Jj=1 0j€Xn+1 a,B

Since (6.7) holds for any 7 € ¥,,, we can average it over %, which gives rise to

B () = Y (—Leoy) 3 [E(Tf:“ ojuz}oj®<a;1<f1FﬁojHa>,v> (6.8)
1<j<n €S,
0 €Xn+1

Since the second o; is in Coend(V'), the last component in (6.8) can be rewritten as

<0'j_1(7'71F5 0jIIy),v) = Jj_lﬂjo.t(TilF,g, v) (6.9)
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To finish the proof, note that by using the explicit formula for T' (4.1), we can also write

f(v) as

f0) =TT (M) =Y T(vj© Fp)(v)
B
(6.10)
W T
- Z >4 @ ) =3 e @2
TESN (2)
The proof of Theorem 6.1 now finishes by combining (6.8), (6.9), and (6.10). O

Theorem 6.2 can be proved by modifying the proof of Theorem 6.1 slightly.

6.4 Example: gjr

As an example, we compute 5 +(f)(v) explicitly using Theorems 6.1 and 6.2. Given f € 6;;(‘/)
and v € V, we have that f(v) = _ 2(1) ® z(2), which can be considered as an element in V'

because z(1) € P'(1) =k, Z(p) €V, and ®k[21] = ®x. Since 10y p, = p, it follows that

— 1
5 (F)(0) = =5 D () o1 #2)o @ e(0)o Ma((z)
s (6.11)

=330 3 who @ o) M f(0) = —7(f(0)

a og€Xoy

The last equality follows from the formula for T (4.1).
Likewise, since u} o; 1 = p* for ¢ € {1,2}, a similar analysis as above shows that

57 (F)() = (dpray @ 1dy @) (7(0)) + (Idpi(z) @ f @ 1dy)(m(v)) (6.12)

Combining (6.11) and (6.12), we have that

5,(f) = (dpioy ®1dy @f) o — 70 f + (Idpi(z) ®f @ Idy) 0 (6.13)

in which o denotes composition of functions.

6.5 F;;(V) as coderivations

Recall that for a coassociative coalgebra (C,A), a coderivation on C' is a linear map f: C' — C
such that

Af(x) =Dz ® fle) + flra) ® ze) (6.14)
(z)

for z € C, where A(z) = 32,y x(1) ® ¥(2) € C ® C. The condition (6.14) can also be stated in
the element-free form as

Aof=(lde®f+ f®ldc)oA
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We generalize this to P-coalgebras. For a finite-dimensional P-coalgebra (V,7), we define
a coderivation on (V,m) to be a linear map f: V' — V such that

rof= (Idp!@) ©Idy @f + Idpio) Of © Idv) om
Here o denotes composition of functions, and we regard 7 as an element of
Cp(V) = Hom(V, P'(2) @z, (V? @ sgny))

Denote by Coderp (V') the vector space of all coderivations on (V, 7).
The formula (6.13) for E}T( f) shows that f € U;;(V) is annihilated by gjr if and only if f is
a coderivation on (V, ). This leads to the following result.

Corollary 6.3. There is an equality ﬁ;;(V) = Coderp(V) of vector spaces.
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