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Abstract

We use the general method of quantization by Drinfel’d twist element to quantize
explicitly the Lie bialgebra structures on the g-analog Virasoro-like algebras studied in
Comm. Algebra, 37 (2009), 1264-1274.
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1 Introduction

The study of Lie bialgebras [1, 2] is now well established as an infinitesimalization of the
notion of a quantum group or Hopf algebra. A Lie bialgebra is a Lie algebra g provided
with a Lie cobracket which is related to the Lie bracket by a certain compatibility condition.
According to quantum groups theory, a quantum group is essentially a formal deformation
of the universal enveloping algebra of a Lie algebra g, the semiclassical structure associated
with such a deformation is a Lie bialgebra structure on g. Constructing quantizations of
Lie bialgebras is an important method to produce new quantum groups. Using the method
twisting the coproduct by a Drinfel’d twist element but keeping the product unchanged,
Grunspan [3] presented the quantization of a class of infinite dimensional Lie algebras con-
taining Virasoro algebras studied in [4] (see also [5, 6]). Using the same technique, Hu and
Wang [7] quantized some Lie algebras presented in [8]. In a recent paper [9], the Lie bialgebra
structures of g-analog Virasoro-like algebras £ with the basis {Lq,d1,ds2 | o € Z*\{(0,0)}}
and brackets

(Lo, Lg) = (¢*2P — ¢®P)Loyp,  [diyLa] = @iLa, i=1,2, (1.1)

for a = (a1,2), B = (B1,32) € Z*\{(0,0)}, were considered, where 0 # ¢ € C is a fixed
non-root of unity. Here we treat Lgg as zero. Obviously, the Lie algebra £ is Z2-graded
(however its structural constant q@2P1 — 182 ig not linearly dependent on the gradings o, 3;
in this case, the Lie algebra £ is called non-linear). This Lie algebra is closely related to
the Virasoro and Virasoro-like algebras and the Lie algebras of Cartan type S and H (cf.
[15, 16]), which is probably why this type of Lie algebras has attracted some attentions in
the literature (cf. [10, 11, 12, 13, 14, 17, 18]).

In this paper, we will use the techniques developed in [3, 7] to construct the quantization
of this type of bialgebra. However, since in our case the Lie algebra is non-linear, some of
our arguments may render rather technical.
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We fix a field F of characteristic zero. Let A be a unitary R-algebra (R is a ring). For
ze€ A, n€Z, we set

2= 2(z41)-(z4n—1), 2M=z:z-1)-(z—n+1)

and set 20 =1 and 2[% = 1. If € R is any scalar, set 2 = (z4a){™ and P (z4a)",
that is

20 = (z4a)(z+a+1)---(z+a+n—1), (1.2)
2l = Gz+a)z+a—-1)-- (z+a—n+1). (1.3)

Obviously z™ = zén>, 2l = z([)n].

The following lemma can be found in [3].

Lemma 1.1. Let z be any element of a unitary F-algebras A. For a,d € F, and m,n,r € Z,
one has

Y X Y N U R i
(=1)" ) ) _ (a—d
; minl 7@ Fd T r )’
m-rn=r (1‘5)
zoMz, = ,
i m!n! T

where in general () is the binomial coefficient.

Denote by (U(£), i, 7, Ao, So, €0) the natural Hopf algebra structure on U(£) (the univer-
sal enveloping algebra of the Lie algebra £), that is, the coproduct Ap, the antipode Sy and
the counit ¢y are respectively defined by

Ao(Lg) =Lg®1+1®@Lg, Ao(di)) =di®1+1®d;,
So(Lg) = —Lg, So(di) = —di,
c0(Lg) =0, e(d;) =0 for Bez?\{(0,0)}, i=1,2.

The following definition and well-known result can be found in [2].

Definition 1.2. Let (H,p, 7, Ao, So,€9) be a Hopf algebra over a commutative ring. An
element % € H ® H is called Drinfel’d twist element, if it is invertible such that

(Z @ 1)(Ag@1d)(F) = (1®.F)(Id® Ay)(F), (1.6)
(o®Id)(F)=1®1= (Id® o) (F). (1.7)

IR

Lemma 1.3. Let (H, u, 7, Ao, So, €0) be a Hopf algebra over a commutative ring, and let .F
be a Drinfel’d twist element of H ® H, then

(1) % = p(Id ® So)(F) is an invertible element of H with % ~! = (S ® Id)(F~1);

(2) the algebra (H,p,7,A,S,€) is a new Hopf algebra if we keep the counit undeformed
(i.e., € = €9) and define A - H—-HQH, S:H—H by

A(h) = FAo(h)F ', S(h) =uSo(h)u™".
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Let (U(g), p, 7, Ao, So, €9) be the natural Hopf algebra structure, where g is a triangular
Lie bialgebra, and denote by U(g)[[t]] an associative F-algebra of formal power series with
coefficients in U(g). Naturally, U(g)[[t]] is equipped with an induced Hopf algebra structure
arising from that on U(g).

Definition 1.4. For a triangular Lie bialgebra g over I, the Hopf algebra (U (g)[[t]], i, T, Ar,
Sy, €0) is called a quantization of (U(g), u, T, Ao, So, €9) by a Drinfel’d twist element .%#, if
U(g)[[t]]/tU(g)[[t]] = U(g) and .Z is determined by its r-matrix r.

We will fix the following notations, for x1,zo € Z,

T = z1dy + zads € span {dl, dg}, (1 8)
E =L, for a € Z*\ (0,0) satisfying [T, E] = E. '
The following result is obtained in [9].

Lemma 1.5. There is a triangular Lie bialgebra structure on the Lie algebras £ given by
the r-matric T @ E — E®T, where T and E are defined in (1.8).

The main result of this paper is the following theorem.

Theorem 1.6. Let £ be the g-analog Virasoro-like algebras with [T, E] = E (cf. (1.8)), then
there exists a noncommutative and noncocommutative Hopf algebra structure (U (L)[[t]], u, T,
A, S e) on U(L)[[t]], such that U(L)[[t]]/tU(L)[[t]] = U(L), which preserves the product and
the counit of U(L)][[t]], but the coproduct and antipode are defined by

A(Lg) =Lg® (1 — Et)° + i(—n’mm’@ ® (1 — Et) "L pat”, (1.9)
k=0
Ald)=d;i®1+1®d; + ;T ® (1 — Et) 'Et, (1.10)
S(Lg) =—(1— Et)~ ZakLﬂﬂm : (1.11)
S(d;) = sT(1— Et)~! (Et — E*?) — d;, (1.12)
where

c=z101 + 2202, ap = ge2Prtle=hen) _ gealBotlp=loa)) = g =1, i=1,2.

||’:]w

1
CE

In fact, we can introduce the operator Z,,) (n € N) on U(£) defined by Z,,) := 1 (ad E)™;
it is easy to check that

Din)(Lg) = anLgina- (1.13)

Thus, (1.9) and (1.11) in Theorem 1.6 can be rewritten as

A(Lg) =Lg® (1-Et)°+ ) (-1 (1 — Et) PP, (Lg)tP, (1.14)
=0

pi
S(Lg) =—(1=Et)"Y_ Dy ( 2. (1.15)
p=0
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2 Proof of the main results

From above, in order to quantize the Lie bialgebra structures on g-analog Virasoro-like
algebras, the key is to construct the Drinfel’d twisting, thus we have to do some necessary
computation.

Lemma 2.1. Let £ be the q-analog Virasoro-like algebras. The following equations hold in

U(L):
LeTm =T Ly Lamim =T L, (2.1)
grrm = 7im e propim — 7m g, (2.2)
Ayt =Tlmay, Ayt = Ty, (2:3)
m S ifm i - - m—i
LgL = Z(_l) (z) H (q72(51+(P Dy1) _ q'Yl(,BZ-F(p 1)72))[’7 Lgtiy, (2.4)
=0 p=1
dnL;” = m’yan1 + Lgndn7 (2.5)

where T = x1dy + xods € span{dy,ds}, E = L satisfying [T, E] = E (cf. (1.8)), 3,7 €
72\ {(0,0)}, c =181 + 1202, a € C and n = 1,2.

Proof. Since [T, Lg] = cLg, we have LgT = (T —c)Lg. It is easy to see that (2.1) is true for
m = 1. We can suppose that the first equation of (2.1) is true for m, then for m + 1, we have

LTt = LyTm (T + 0 — m) = T L(T + a — m)
— T (T +a—c—m)Lg=T" VL,

Thus we get (2.1) by induction on m. The second equation in (2.1), (2.2) and (2.3) can be
verified in a similar way. Since

(ad Ly)iLﬁ = ﬁ (q72(51+(13—1)71) _ q71(52+(p—1)72))L5+m, (2.6)
p=1

for any Lg, L, € £, then for (2.4), we have

Loty = Y0 (1) 25 (e 1) (2)
= i(_l)i (m) ﬁ (q72(61+(p71)71) — qw(ﬁﬁ(pfl)w))Lz%iLﬁm.
: o1

Similarly, we can obtain (2.5). O

For a € F, we set

(D i) o iy N P
- T e B Fa:_z;i!Ta ® E't,
K3 1=

p- (So@1d)(Fa), Vo= p- (Id® So)(Fa),

N
Il

I
o

U,
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where t denotes a formal variable. Denote % = %y, F = Fy, % = %, ¥V = V. Since

So(T) = (—1)iT | So(E?) = (~1)'E', we have

—a)

8

Ua = p1(So ® 1d) (Z %,T ® E%’) => (_i‘l)lTELEiti,

=0

) z] ® E2t2> _ Z g [Z]Eztz

1=0

Mg I

Yo =p(Id® So) (

Lemma 2.2. For a,d € C, one has

FFyg=1®(1- Et)(“_d), Voly = (1 — Et)_(a+d).

Therefore the elements %, Fy,, U,, Vo are invertible elements with

Proof. Using the formula (1.5), we have

yaFd _ Z(_l)m Z (Z‘j‘) [z]T< J) ® Emgm

m=0 i+j=m
=Y -y <a N d) ® E™™
m

m
=1® (1 - Et)* 4.

(2.7)

FA=F, U ' =7 ..

(2.8)
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Proof. In order to get the result, we want to use induction. Since Ag(T) =T ® 1+ 1T,
it is easy to see that the result is true for m = 1; suppose that it is true for m, then it is
enough to consider the condition for m + 1,

AQ (T[erl}) = Ao (T[m])Ao(T — m)

- (Z (?) T @ Tgm—ﬂ)
=0

x (T—a-m)®1+1®(T+a—m)+m(l®1))

m—1
— 1T+ T g1 4 (Z <m> T ® TCEm—ﬂ>
(3

=1

m—1
tT-aeT+ T e (T+a)+ Y <m> Tl g gim-i
=1

m—1 m—1
4 ( )T[Z ®T[m 1] + <m> T[l] ®T0£m7i+l]
z:l i=1 !
m—1
' ( )T[Z & T
z:l

— 1@t JrT[m+1 14 Z << 1) N <m>> TEL & Tim+1-i]
=1
m+1
_ Z (m:r 1) T@a & TIm+1-1]
i—0

Therefore, the result is proved by induction. ]

Proposition 2.4. . =) 2 0 T CV'7l @ Eiti is a Drinfel’d twist element of (U(L)[[t]], u, T,
Ao, So, €0), that is F satisfies (1.6) and (1.7).

Proof. The proof of (1.7) is easy, we just need to check (1.6). Since

(F @ 1)(Ag ® Id)(F) = (i <‘i!1>iTm ® Bt @ 1)

1=0

Ry J
Z( 1) Z(k> TH @ T o iy

3 (i) T o gigi—H g pig+
0

a1
,7=0 vy =
o0 . . j )
B (—1)"*I I\ litk] o =k i o o it
_Z T ZkT QT ME' @ B/t
4,7=0 k=0
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and on the other hand,

(1® F)(Id® A)(F) = (i ( :')T 19T e EW)
r=0 :
Elg B8
(S50

o ( T+8 S s
Z Z T[s} ® T[T}Eq ® Er+s—qtr+s
— r's' = \4 ’

thus, to verify (1.6), it suffices to show for a fixed m that

1 I/ . 4 . .
> o <i> Tl @ 7K i o i
k=0

i+j=m
= Z 1 <8> Tl @ TN R @ pr+s—a.
q

r4+s=m " q=0

Now, fix r, s, g such that r+s=m, 0 < q < s,set i = q, i+ k = s, then we have j = m —q,
j —k = r. We see that the coefficients of T @ TI"/E4 @ E™~4 in both sides are equal. So
the result follows. O

Lemma 2.5. One has for any a € F and Lg € £

(Lg®1)F, = Fye(Lg® 1), (2.9)
(1®Lg)Foa =Y (-1 arFapt (T @ Lpiat'), (2.10)
=0
Lg% = Uare Y aiLpiaT 1!, (2.11)
=0

(d; @ 1)F, = F,(d; ® 1), (2.12)
(1®d)Fy = For (TV @ oy Bt) + Fu (1@ d;), (2.13)
&% = —o TV Uy Bt + Uod;, (2.14)

E%Uy = Wy E, (2.15)

% o e LRy DE/ o7 (2.16)

where

1 k

=3 H az2(Bi+(p—1ea) _ qal(ﬂ2+(p—1)a2))7 c=x101 + 202, i =1,2.
Proof. By the second equation of (2.1) we have

[e.9]
1 A .
(Ls @ 1) Fo =) —LsT\" @ E't!
i=0
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o0
1
Z i1 acLs © B
(Lﬁ & 1)5
this prove (2.12). For (2.10), using (2.4), we have

[e.9]

(1® Lg)F, Z )@ LBt

s 1 A . ,

= Z Z(_l)l (i —1)! a/T{ @ B Lyt
X 1 4 . .

=> Z(—l)lﬁalTéwn ® E'Lgyiat™

=S (DY ﬂTéil ® BT @ Ly ot
1=0 i=0

=D (V'aFou(T" ® Lgiat');

this proves (2.10). The following two equations give the proofs of (2.11) and (2.12):

Lo = Z U LgETt
o 1 ol
_ r l . r—I r
- Z T CZ(—1) (T_l)!alE Lgyiat
r=0 =0
o
-1 ,
= 7( S T L
=0 r

-y (—r Vot ) prp e

7(107&67‘

r,l 0
= Z ( ETtT>T[l] Lg.,.latl
=0 r=0

= UYarec Z alTL]a CL,BJrlatl
=0
2

aLgpin TV

1—a” >

oo
= %a+c
=0

o0
(di@1)F,= (o1 Z%T ® Bt

<1
- —'diT<T>®E"tT
e

1
d ® E"t"

r'a

tnqg
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= <Z %Tﬁ ® E?‘t’“) (di ®1)
!
= F, (dl & 1)
Using (1.4) and (2.5), we have

1

' Tér) ® ET+
T

(1®d)F,=(1®d;) i

=> lT,§’”> @ (rey E" + E"d)t"

|
—0 T
= 1 =1
=3 e 1)'Ta<’”> ® o Et+ Y ﬁTﬁ ® E"d;t"
r=0 ’ r=0 "

o
1 (r—1) v
- Z::0 (r— 1)!T‘I<1>Ta+1 ® o 't + Fy (1 ® di)
= For1 (TV ® i Et) + F,(1® d;),

which gives (2.12). The equations (2.14) and (2.15) follow from the following computations:

ditla = d; (=1) T prer

— r!
-y U0 g e
7!
r=0
e.9] _1 r .
:Z( ') TV (rosE" + Ed;)t"
T
r=0
=3 it ((—1))' =1l pryr +Z D ] gy,
r=0 !

o0 ;
1) L
=5 OVl gt = g m
Finally,

%TE{L . Z T[z] EztzT[l]
= 0

= Z 5Ty] (T —a—i)E't
i=0
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1—1] i
[y, — Z o T+a)T(£ e

1
Ty, - TE%,lEt,
which proves the last equation of the lemma. O
Now we can prove our main theorem in this paper.

Proof of Theorem 1.6. For arbitrary elements, Lg € £, i = 1, 2. First, using (2.7), (2.12)
and (2.10), we have

A(Lg) = FAo(Lg) 7™
(L@ 1).F '+ Z(1@ Lg)F !

(e 9]

=FF (Lg@ 1)+ 7Y (-D)'aF(TV @ Lpat')
=0

=(1®(1-Et))(Lg®1)

F
F

+ Z Ya(1e1—-E)™) e (TV e Liat!)

(10T @ (1 - Bt) ' Lsiat'

NE

= Lz®(1—Et)° +

N
I
o

Using (2.7), (2.12) and (2.13), we have
A(d) = FA(d) F!
=Z(d;®1+10d)F
=7 (d;®1)F+Z(1od)F
=FF(d;®1) + 7 (F (T ® Bt) + F(1® d;))
=di®1+1®d;+1®(1-EBt)" (T ® o Et)
—di®1+1®d;+ TV @ (1 — Et)'Et.

Using (2.7) and (2.11), we have
S(Lg) = %~ "So(Lg)%
=YV LgU

— —yu, (Z ale,an”tl)

=0
—(1-Et)” (Z a1Layia Tt ) .
=0
Using (2.7), (2.14), (2.15) and (2.16), we have
S(di) = %' So(di)%
=—Vd;U
= —7/( — oziTm?/lEt + %dz)
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=o;(TY — TV Et) % Et — d,

= TV U Et — o TV U E*t* — d;

= a;T(1 — Et)"'Et — o;T(1 — Et) "' E*?* — q;
= o;T(1 — Et) ' (Et — E*t*) — d;.

This completes the proof of the theorem. O
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