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Introduction
Recently, structured perturbations for linear systems have attracted 

much attention [1-3]. When solving linear systems of equations, 
it is important to analyze [4] how small perturbations of the matrix 
and right-hand side affect the solution. It is widely known that the 
solutions of linear systems of equations are sensitive [5] to round-off 
error and always ill-posed [6] to solve a linear system with Hilbert 
coefficient matrix due to its large condition number. Therefore, stable 
and efficient algorithms are needed to reduce the ill-posedness and get 
effective solutions for such kinds of Hilbert matrix equations. It is well 
known that for a system of equations with an ill-conditioned matrix, an 
erroneous solution can be obtained which seems to satisfy the system 
quite well. Various measures [7] of the ill-conditioning of a matrix have 
been proposed.

Related Works
The Generalized Minimal Residual (GMRES) method computes 

a sequence of orthogonal vectors with least-squares approach [4]. The 
Gmres method combines with preconditioning in the solutions of linear 
systems in order to speed up convergence. This method is useful for 
general nonsymmetric matrices and the most popular Krylov subspace 
method applicable to any invertible matrix A. The roster of standard 
matrix decompositions [8] includes the pivoted QR factorization, 
the eigenvalue decomposition, and the singular value decomposition 
(SVD), all of which expose the numerical range of a matrix. SVD and 
truncated SVD (TSVD) methods were utilized for solving discrete ill-
posed problems [9].

Regularization Method
The standard method to solve ill-conditioned systems known as 

Regularization has been studied [10]. Regularization methods use 
known information about the solution for solving ill-conditioned 
systems. The problem is highly sensitive to small perturbation in the 
sense that small perturbation in the data cause large changes in the 
solution.

Singular value decomposition

SVD is very powerful and useful matrix decomposition, particularly 
in the context of data analysis, reducing transformations of images, and 
satellite data and is the method of choice for solving most linear least–
squares problems. The SVD is intimately related to the familiar theory 

of diagonalizing a symmetric matrix. The SVD [11] is an extension 
of the diagonalization of a matrix. The diagonalization of a matrix is 
applicable only to square matrices and only to those that satisfy a quite 
demanding condition. SVD is a classical method [12] for extracting 
feature vectors in data.

QR factorisation

The QR decomposition (also called the QR factorization) of a 
matrix is a decomposition of the matrix into an orthogonal matrix 
and a triangular matrix. A QR decomposition of a real square matrix 
A is a decomposition of A as A=QR. The QR decomposition is valid 
for rectangular matrices as well square ones. This decomposition can 
be used for solving n × n linear systems but is also useful in solving 
overdetermined systems such as those in linear least squares. The 
decomposition will be used in a general algorithm for finding all 
eigenvalues and eigenvectors of a matrix. The two approaches [10], 
matrix and vector equations in QR factorization are powerful general 
tools and appeared to be applicable to the perturbation analysis of any 
matrix factorization.

Matlab backslash

To emphasize the distinction between solving linear equations and 
computing in- verses, Matlab has introduced nonstandard notation 
[13] using backward slash operator, “\” If A is a matrix of any size and 
shape and b (the right-hand side vector) is a matrix with as many rows 
as A, then the matlab backlash can be used to solved the solution vector 
x in Ax=B.

Generalized minimal residual (GMRES)

The Generalized Minimal Residual (GMRES) method computes 
a sequence of orthogonal vectors and combines these through least-
squares method. This method combines with preconditioning method 
to speed up convergence. However, CG requires storing the whole 
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sequence, so that a large amount of storage is needed. For this reason, 
restarted versions of this method are used. GMRES is the most popular 
Krylov subspace method applicable to any invertible matrix A.

Preconditioned conjugate gradient (PCG)

The performance of the conjugate gradient [4] method improves 
when the eigenvalues of matrix A are clustered about a point. This 
suggests the possibility of preconditioning A by a positive definite 
matrix M and solving M-1Ax=M-1b. If the eigenvalues of M-1A were 
clustered the conjugate gradient procedure may con verge at a faster 
rate. The preconditioned M, should be chosen to minimize the solution 
time. There are_ however competing priorities. Thus for example the 
optimal choice of M as far as clustering eigenvalues is concerned is 
M=A. This choice requires a direct solution of the original system and 
thus has an extreme cost. 

Numerical Experiments and Results
In this paper, we present some numerical results to show the 

performance of error and relative error=of ill-conditioned linear 
systems. We ran our algorithm using MATLAB software version 7.0.1 on 
Intel(R) Pentium (R) CPU P600 @ 1.87GHz 1.87 and Installed Memory 
(RAM): 4.00GB. With regard to Hilbert system of linear equations using 
the MATLAB command for the coefficient matrix A and RHS vector b 
where the exact solution is x=ones (n,1) for the discussion to test for ill-
conditioning of the system, varying sizes(n) of the Hilbert matrix were 
considered as shown in the Tables 1-5. We started with n=10, n=20, 
n=30, n=60 and n=120 and in each computation, the matlab backslash, 
QR, SVD,GMRES, PCG and their regularizations (RMatlab (“\”), RQR, 

RSVD,RGMRES, RPCG) were used to determine the error and relative 
error of each size of Hilbert matrix. The Hilbert matrix n nH R ×ò  with 

entries 
1

2

0

1
1

i j
ijh x dx

i j
+ −= =

+ −∫
Discussions 

The tables of the numerical experiments of the Hilbert linear system 
using varying sizes showed the error and relative error norm of each 
identified methods. Generally, the error and relative error norms of the 
regularizations of GMRES are equal in value. Again, from Table 1 the 
error and relative error norm of regularization of QR factorization has 
improved the Hilbert linear systems as compared to the other identified 

Methods 2ˆ−      || x x || 2

2

ˆ
ˆ
−      

     

|| x x ||
|| x ||

Matlab (“\”) 7.8918e-004 2.4956e-004
QR 6.5264 2.0638
SVD 1.7180e+013 5.4329e+012
GMRES 0.0345 0.0109
PCG 3.1623 1.0000
Regularization(R)
R Matlab(“\”) 8.9523 2.8310
RQR 0.2853 0.0902
R SVD 6.6621e+003 2.1068e+003
R GMRES 0.2856 0.0903
R PCG 0.2856 0.0903

Table 1: Hilbert System n=10.

Methods 2ˆ−      || x x || 2

2

ˆ
ˆ
−      

     

|| x x ||
|| x ||

Matlab(“\”) 66.2923 14.8234
QR 9.1309 2.0417
SVD 1.7847e+018 3.9906e+017
GMRES 0.0325 0.0073
PCG 4.4721 1.0000
Regularization (R)
R Matlab(“\”) 191.6066 42.8445
RQR 0.3890 0.0870
R SVD 1.1806e+004 2.6400e+003
R GMRES 0.3890 0.0870
R PCG 0.3890 0.0870

Table 2: Hilbert System n=20.

Methods 2ˆ−      || x x || 2

2

ˆ
ˆ
−      

     

|| x x ||
|| x ||

Matlab(“\”) 106.9835 19.5324
QR 11.1001 2.0266
SVD 2.7502e+018 5.0212e+017
GMRES 0.0203 0.0037
PCG 5.4772 1.0000
Regularization (R)
R Matlab(“\”) 7.5318e+003 1.3751e+003
RQR 0.5102 0.0932
R SVD 1.5385e+004 2.8090e+003
R GMRES 0.5103 0.0932
R PCG 0.5103 0.0932

Table 3: Hilbert System n=30.

Methods 2ˆ−      || x x || 2

2

ˆ
ˆ
−      

     

|| x x ||
|| x ||

Matlab(“\”) 212.1060 27.3828
QR 15.4956 2.0005
SVD 1.0164e+019 1.3121e+018
GMRES 0.0628 0.0081
PCG 7.7460 1.0000
Regularization (R)
R Matlab(“\”) 1.4314e+003 184.7867
RQR 0.7052 0.0910
R SVD 2.4649e+004 3.1821e+003
R GMRES 0.7090 0.0915
R PCG 0.7090 0.0915

Table 4: Hilbert System n=60.

Methods 2ˆ−      || x x || 2

2

ˆ
ˆ
−      

     

|| x x ||
|| x ||

Matlab(“\”) 5.3477e+003 488.1792
QR 21.1229 1.9282
SVD 4.3154e+019 3.9394e+018
GMRES 0.0665 0.0061
PCG 10.9545 1.0000
Regularization (R)
RMatlab(“\”) 3.0006e+003 273.9158
R QR 0.9843 0.0899
R SVD 3.0943e+004 2.8247e+003
R GMRES 0.9843 0.0899
R PCG 0.9843 0.0899

Table 5: Hilbert System n=120.
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methods. Finally, only QR regularization method is recommended for 
the solution of Hilbert linear system.

Conclusion and Future Work
The regularization methods of Hilbert linear systems has been 

presented using varying sizes to compare the performance of the 
identified methods in terms of error and relative error norm. The 
regularization methods of Matlab, GMRES, SVD and PCG did not 
improve the reduction of the error and relative error norm of the 
identified system. We therefore recommended the regularized QR 
factorization method when solving Hilbert linear system.

Future work to be considered is Vander monde linear system and 
compares it with the known Krylov sub space methods GMRES and 
PCG.

References

1.	 Rump SM (2003) Structured perturbations Part II: component-wise distances. 
SIAM Journal on Matrix Analysis and Applications 25: 31-56.

2.	 Higham DJ, Higham NJ (1992) Backward error and condition of structured 
linear systems. SIAM Journal on Matrix Analysis 13:162-176.

3.	 Gohberg I, Koltracht I (1993) Mixed, componentwise, and structured condition 
numbers.SIAM Journal on Matrix Analysis and Application 14: 688-704.

4.	 Castanon JA (2012) On𝑙1 Minimization for Ill-Conditioned Linear Systems with 
Piecewise Polynomial Solutions. Rice University, USA.

5.	 Fazlollah S (2013) A New Method For Solving Ill-Conditioned Linear System. 
Opuscula Mathematica. 33: 337-344.

6.	  Xinjie Li, Gongsheng Li (2012) A Note on Solving High-order Hilbert Matrix 
Equation by Tikhonov Regularization. Journal of Information & Computational 
Science 9: 1957-1966.

7.	 Zahra V, Behrouz D (2013) On the solution of ill-conditioned systems of Linear 
equations. Journal of Expert Systems 2: 15-36.

8.	  Halko N, Martinsson NPG, Tropp JA (2011) Finding Structure with Randomness: 
Probabilistic Algorithms for Constructing Approximate Matrix Decompositions. 
Society for Industrial and Applied Mathematics 53: 217-288

9.	 Mayo A (1984) The Fast Solution of Poisson’s and the Biharmonic Equations on 
Irregular Regions.SIAM J Numer Anal 21: 285-299.

10.	 Chang XW, Paige CC, Stewart GW (1997) Perturbation Analyses for the QR 
Factorization. SIAM J Matrix Anal & Appl 18: 775-791.

11.	Lathauwer LD, Moor B, Vandewalle J (2000) A Multilinear Singular Value 
DecompositionSIAM. J Matrix Anal & Appl 21: 1253-1278.

12.	Masafumi H, Hiroyuki K, Pan J, Faloutsos C (2005) A Comparative Study of 
Feature Vector-Based Topic Detection Schemes for Text Streams. Proceedings 
of the 2005 International Workshop on Challenges in Web Information Retrieval 
and Integration WIRI’05, Japan.

13.	Won YY, Wenwu C, Tae-Sang C(2005) Applied Numerical Method Using Matlab.

Citation: Azizu S (2016) On Regularisation and Comparison of Methods 
for Solving Hilbert Linear Systems. J Phys Math 7: 173. doi:10.4172/2090-
0902.1000173

OMICS International: Publication Benefits & Features 
Unique features:

•	 Increased global visibility of articles through worldwide distribution and indexing
•	 Showcasing recent research output in a timely and updated manner
•	 Special issues on the current trends of scientific research

Special features:

•	 700+ Open Access Journals
•	 50,000+ editorial team
•	 Rapid review process
•	 Quality and quick editorial, review and publication processing
•	 Indexing at major indexing services
•	 Sharing Option: Social Networking Enabled
•	 Authors, Reviewers and Editors rewarded with online Scientific Credits
•	 Better discount for your subsequent articles

Submit your manuscript at: http://omicsonline.com/open-access/physical-mathematics.php

http://dx.doi.org/10.4172/2090-0902.1000173
http://dx.doi.org/10.4172/2090-0902.1000173
http://epubs.siam.org/doi/abs/10.1137/S0895479802405744
http://epubs.siam.org/doi/abs/10.1137/S0895479802405744
http://epubs.siam.org/doi/abs/10.1137/0613014
http://epubs.siam.org/doi/abs/10.1137/0613014
http://epubs.siam.org/doi/abs/10.1137/0614049
http://epubs.siam.org/doi/abs/10.1137/0614049
https://scholarship.rice.edu/handle/1911/71134
https://scholarship.rice.edu/handle/1911/71134
http://www.opuscula.agh.edu.pl/vol33/2/art/opuscula_math_3322.pdf
http://www.opuscula.agh.edu.pl/vol33/2/art/opuscula_math_3322.pdf
http://www.joics.com/publishedpapers/2012_9_7_1957_1966.pdf
http://www.joics.com/publishedpapers/2012_9_7_1957_1966.pdf
http://www.joics.com/publishedpapers/2012_9_7_1957_1966.pdf
http://worldsciencepublisher.org/journals/index.php/JES/article/view/1176
http://worldsciencepublisher.org/journals/index.php/JES/article/view/1176
http://epubs.siam.org/doi/abs/10.1137/090771806
http://epubs.siam.org/doi/abs/10.1137/090771806
http://epubs.siam.org/doi/abs/10.1137/090771806
E:\TotalJournals\EME\JPM\VOLUME 7\Volume 7.2\Volume 7.2_W\jpm-16-343 (173)\Chang XW, Paige CC, Stewart GW (1997) Perturbation Analyses for the QR Factorization. SIAM J Matrix Anal & Appl 18: 775-791
E:\TotalJournals\EME\JPM\VOLUME 7\Volume 7.2\Volume 7.2_W\jpm-16-343 (173)\Chang XW, Paige CC, Stewart GW (1997) Perturbation Analyses for the QR Factorization. SIAM J Matrix Anal & Appl 18: 775-791
http://epubs.siam.org/doi/abs/10.1137/S0895479896305696
http://epubs.siam.org/doi/abs/10.1137/S0895479896305696
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10404
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10404
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10404
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10404
http://as.wiley.com/WileyCDA/WileyTitle/productCd-0471698334.html
http://dx.doi.org/10.4172/2090-0902.1000173
http://dx.doi.org/10.4172/2090-0902.1000173

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Related Works 
	Regularization Method 
	Singular value decomposition 
	QR factorisation 
	Matlab backslash 
	Generalized minimal residual (GMRES) 
	Preconditioned conjugate gradient (PCG) 

	Numerical Experiments and Results 
	Discussions
	Conclusion and Future Work 
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	References

