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Introduction
But in special cases one can hope to say something. When the 

solutions are the points of an abelian variety, the Birch and Swinnerton-
Dyer conjecture asserts that the size of the group of rational points is 
related to the behavior of an associated zeta function ζ(s) near the point 
s=1. In particular this amazing conjecture asserts that if ζ(1) is equal to 
0, then there are an infinite number of rational points (solutions), and 
conversely, if ζ(1) is not equal to 0, then there is only a finite number 
of such points [1].

Explanation 
Equation of motion

From Verruijt, we know the equation of motion for a mass –spring- 
dashpod system is:

m∗d2u/dt2+c∗du/dt+ku=0

So, taking the resonant frequency into account, the equation from 
Verruijt becomes:

d2u/dt2+2zw0∗du/dt+w02u=0

Where w0=resonant frequency and z is a measure of the system 
damping [2].

At critical damping, the characteristic equation is the golden mean 
function:

x−=1/[x−1]

Or,

x2−x−1=0

The roots to this equation are, of course, -0.618 and 1.618.

Value for i-the imaginary number Now, before examining zeta z 
in equation form, we calculate a real value for the imaginary i= ( 1)−

[1−i]=1/[(1−i)−1]

1−i=1/−i

−i=1/[1−i]

i=1/[i−1]

x=1/[x−1]

x=-0.618, 1.618

So, ( 1)− = -0.618, 1.618

Damping ratio zeta z

Now, zeta=z=damping ratio=w/w0:

0 / 0 : / 0 1 2 2[ ]du dw w w z= = −

Algebraically:

du0/0=dw

0 1 ]2 2[w w z= ∗ −

Taking the derivative:

du0/0=dw=w′=[w0∗(1−2z2)1/2]′

w0/2∗(1−2z2)1.5]/1.5

In the Birch conjecture, there are two possibilities to consider [3]. 
They are:

z(1)=0 and z(1)(not=)0

In the first case:

0=w0/3[(1−2(1)2]1.5

0=w0/3(11.5)

W0=0

Z(1)=0,w0=0

Critical damping

In the second case, we have critical damping. z(1) (not=)m 0

Say z(1)=1

1=w0/3[(1−2(12)]1.5 w0=3

Or w0=C1 w0 is a real number. In case 1 again:

Z(1)=0,w0=0
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Abstract
This paper presents the solution to the Birch Swimmerton problem. It entails the use of critical damping of a 

Mass-Spring-Dash Pod system which, when modelled mathematically, provide the equation that allows the solution 
of the zeta problem to be solved.
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/ 0 / 0 [(1 2 2)]du dw w w z= = −

[(/ 0 1 ) )]2( 2w z= − w=0

w/w0=0/0 Dividing by zero has infinite solution. Now, finally, in 
the critical damping case:

/ 0 / 0 1 2 2  [( ( ))] [( ( ))]/ 1 1 2 12du dw w w z w C= = − = −

w= ( 1)(c1)−

We know ( 1)− =-0.618, 1.618. So, w=-0.618 0r 1.618 w/w0=0.618 
C1/C1=0.618. Therefore there is a real solution to z at critical damping 
[4,5].

Conclusion
Simple Mechanics combined with knowledge of the zeta function 

and the value of the imaginary number provides the ingredients to 
solve the Birch and Swinnerton-Dyer Conjecture.
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