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Introduction
The widespread interest in wavelets and their applications started 

in the 1980s after the breakthrough made by Daubechies [1,2] in 
constructing the first orthogonal compactly-supported wavelets with 
arbitrary regularity. Since then many researchers from different fields 
of science and engineering jumped into the world of wavelets with 
different intentions. Some were interested in ways to apply wavelets 
in their fields and others were interested in developing new theories 
and generalizations.In the engineering side, wavelets have found great 
success in signal processing such as in the analysis of sound patterns 
and image processing [3-6]. Wavelets have also found great success in 
the design and efficient implementation of numerical algorithms for 
the solution of differential equations [7-16].

Wavelet collocation based methods for solving different equations 
require knowledge of the values of the wavelet basis elements at 
collocation points. However, many of the available wavelets, such 
as the well-known Daubechies compactly-supported wavelets, do 
not have explicit formulas. Instead, they are defined recursively by 
refinement equations. In many applications having accurate values 
of the wavelet bases functions is very important in obtaining accurate 
solution to the problem. In [2] Daubechies described an algorithm 
known as the cascade algorithm for computing approximate values of 
the compactly-supported scaling and wavelet functions with arbitrary 
high precision. This algorithm works as a refinement scheme. At each 
step approximately twice as many values are computed, values at odd 
dyadic points 2-j(2k+1) are computed for the first time and values at 
even dyadic points 2-j(2k)  are refined from the previous step. In the 
long run, i.e., as j→∞, the cascade algorithm produces the exact values.
In this work, we propose an algorithm to calculate the exact values of 
Daubechies scaling and wavelet functions. The proposed algorithm 
avoids the refinement step in the cascade algorithm. Moreover, our 
algorithm, at each step computes only values at odd dyadic points 
2-j(2k+1). The values at even dyadic points 2-j(2k) have already been 
computed at the previous step and no need for refinement because the 
values are exact.

The paper is organized as follows. In section 2, we briefly review 
compactly-supported scaling and wavelets functions and some related 
properties. In section 3, we outline the cascade algorithm in [2]. In 
section 4, we describe the proposed algorithm. In section 5, we apply 

the proposed algorithm to Daubechies scaling functions and compare 
our results to those obtained by the cascade algorithm. Finally, we 
conclude by some remarks in section 6.

Preliminaries 
Wavelet basis is a doubly-index family of L2(R) functions, ψj,k, 

j,k∈Z, defined by  
/2

, ( ) = 2 (2 ),j j
j k x x kψ ψ − 				                    (1)

where ψ(x) is the mother wavelet defined in terms of a mother 
scaling function φ(x) via the refinement equation:  

( ) = 2 (2 ).k
k

x g x kψ φ −∑ 				                   (2)

The mother scaling function, φ(x), is itself defined recursively by 
the refinement equation:  

( ) = 2 (2 ).k
k

x h x kφ φ −∑ 				                       (3)

The coefficients hk and gk are known, in the language of signal 
processing, as the low- and high-pass filter coefficients, respectively. 
For orthogonal wavelets, they are related by 1= ( 1)k

k kg h −− .

The scaling function φ generates an orthogonal multiresolution 
analysis (MRA) [17] which is an increasing sequence of subspaces Vj of 
L2(R) (approximation spaces) with the following properties  

• = {0}jj
V



 and 2= ( )jj
V L R



. 

• 1( ) (2 )j jf x V f x V +∈ ⇐ ∈ . 

• ( ) ( 2 ) ,j
j jf x V f x k V k Z−∈ ⇐ − ∈ ∀ ∈ . 

• { ( ), }x n n Zφ − ∈  is an orthonormal basis of V0, where ( ) 0x dxφ ≠∫ . 

A consequence of the above MRA sructure are the following:  
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• The set of functions {j,k (x), k∈Z} is an orthonormal basis for Vj, 
where φj,k(x)=2j/2φ(2jx-k). 

• Associated with each Vj there is a  wavelet space Wj, its orthogonal 
complement in Vj+1, i.e., Vj⊕ Wj= Wj+1  . 

• An orthonormal basis for Wj is the set {ψj,k (x), k∈Z}. 

• 2= ( )jj ZW L R
∈⊕ . 

Let Pj  and Qj be the orthogonal projections onto Vj and Wj, 
respectively. Any function f ∈ L2(R) can be approximated by a function 
fj∈ Vj  through 

, , ,= ( ) = , = < , > = ( ) ( )j j
j j k j k k j k j k

k
f f P f s s f f x x dxφ φ φ

∞

−∞
≈ ∑ ∫

Similarly, the orthogonal projection of  f onto Wj gives 

, , ,( ) = , = < , > = ( ) ( )j j
j k j k k j k j kQ f d d f f x x dxψ ψ ψ

∞

−∞∑ ∫
By the structure of the MRA ( 1 1=j j jV V W− −⊕ ), we have 

1 1( ) = ( ) ( ).j j jP f P f Q f− −+

The coefficients 1j
ks −  and 1j

kd −  at a lower scale are computed from 
j

ks  via Mallat’s algorithm [17]:  
1

2= ,j j
k n k n

n
s h s−

−∑ 					                   (4)
1

2= ,j j
k n k n

n
d g s−

−∑ 					                      (5)

 and conversely j
ks  are reconstructed via  

1 1
2 2= .j j j

k k n n k n n
n n

s h s g d− −
− −+∑ ∑ 			                    (6)

For compactly-supported wavelets, the sums in (2) and (3) are 
finite:  

1

=0
( ) = 2 (2 ),

L

k
k

x h x kφ φ
−

−∑ 				                       (7)
1

=0
( ) = 2 (2 ),

L

k
k

x g x kψ φ
−

−∑ 				                      (8)

with 1= ( 1)k
k L kg h − −−  so that both   and ψ are supported in [0, L-1] 

.The integer L=2M where M is the number of vanishing moments of 
ψ:[2]

( ) = 0, 0 1.mx x dx m Mψ
∞

−∞
≤ ≤ −∫

The Cascade Algorithm
The cascade algorithm is an iterative scheme proposed by 

Daubechies explanied in [1-3] to calculate approximate values of the 
scaling and wavelet functions, φ and ψ, at rational dyadic points x=2-mk 
. In order to compare this algorithm to our proposed algorithm, it is 
worthwhile to describe it.

The cascade algorithm is based on the key fact that the scaling 
function φ is the unique function satisfying  

0,< ( ), ( ) > = ,nf x x nφ δ− 				                     (9)

,< ( ), ( ) > = 0, 0, .j kf x x j k Zψ ∀ ≥ ∈ 		               (10)

It is also based on the fact that 2jφ(2j x) is an approximate δ-function 
as j→∞   in the sense of the following proposition [2]. 

Proposition 1  If f is a continuous function. Then for any x∈R,  

( )2 (2 ) = ( ).lim j j

j
f x y y dy f xφ

∞

−∞→∞
+∫ 			                 (11)

Moreover if f is uniformly continuous, then the convergence in 
(11) is uniform as well, and If f is H o lder continuous with exponent a, 
i.e., | ( ) ( ) | | | , ,f x f y C x y x y Ra− ≤ − ∀ ∈ , then the convergence in (11) is 
exponentially fast in j, i.e.,  

| ( ) ( )2 (2 ) | 2 .j j jf x f x y y dy C aφ
∞ −

−∞
− + ≤∫ 		                (12)

A consequence of the above proposition is the following. 

Lemma 2  For any dyadic rational x=2-mk,  
/2

,2
(2 ) = 2 < , > .limm j

j mj kj
kφ φ φ−

−
→∞

			                  (13)

Moreover, if  j is sufficiently large, say 0>j j , we have the estimate  
/2

,2
| (2 ) 2 < , >| 2 ,m j j

j mj k
k C aφ φ φ− −

−− ≤ 			                  (14)

Where C and j0 depend on m and k. 

Proof  By Proposition 1, we have  

( 2 ) = (2 )2 (2 )limm m j j

j
k k y y dyφ φ φ

∞− −

−∞→∞
+∫

/2 /2= 2 ( )2 (2 2 )lim j j j j m

j
u u k duφ φ

∞ −

−∞→∞
−∫

/2

,2
= 2 < , >lim j

j mj kj
φ φ −

→∞

which proves (13). Estimate (14) follows from (12).             

Lemma 2 suggests that at any j -level, φ(2j x) can be approximated 
by  

/2
,(2 ) 2 < , >,j j

j kkφ φ φ− ≈ 				                    (15)

with the error /2
,| (2 ) 2 < , >| 2j j j

j kk C aφ φ φ− −− ≤  (see estimate (14)).

For j,k∈Z   , define the coefficients ,= < , >j
k j kc φ φ . Then by (15), 

we have  
/2(2 ) 2 .j j j

kk cφ − ≈ 					                   (16)

The coefficients j
kc  can be reconstructed recursively using Mallat’s 

algorithm (6) starting at the scale j=0. At scale j=0, by (9), we have  

0
0,

1, = 0
= =

0, .k k

if k
c

otherwise
δ





				                   (17)

Since ,j kφ ψ⊥  for all ,j k Z∈ , ,= < , >= 0j
k j kd φ ψ . It follows from (6) 

that j
nc  are given by  

1
2= .j j

k k n n
n

c h c −
−∑ 					                     (18)

The cascade algorithm summarizes as follows:  

• Start with the sequence 0
,0=n nc δ  which can be viewed as a first 

approximation of  at the integers. 

• For 1j ≥  compute j
kc  recursively via (18). The sequence j

kc  gives 
the approximation of φ at the j -level dyadics = / 2 jx k : /2( / 2 ) 2j j j

kk cφ ≈ . 

We note that if the length of the filter h is L then the length of 
the sequence j

kc  is 2 ( 1) ( 2)j L L− − − . At every step j , the algorithm 
computes for the first time approximations of φ at the odd dyadics 

= (2 1) / 2 jx k +  and refines the approximations at the even dyadics 
1= (2 ) / 2 = / 2j jx k k −  which were obtained at the previous j-1  step. To be 

more precise at step j, the algorithm computes a total of 2 ( 1) ( 2)j L L− − −  
values (the length j

kc ) of which 12 ( 1)j L− −  values comprise the new 
approximations (at the odd dyadics) and the rest ( 12 ( 1) ( 2)j L L− − − − ) 
values constitute refinements of the old approximations obtained at the 
previous j-1 step.

Before closing this section, we would like to mention that at 
any scale j the cascade algorithm does not cover all j -level dyadic 
points in the interval [0, 1]L − ; it only covers dyadics = 0,1, , 2 ( 1) ( 2)jk L L− − −

 for 
= 0,1, , 2 ( 1) ( 2)jk L L− − − . Since there are ( 2 ( 1) 1j L − + ) j-level 

dyadics in [0, 1]L − , the ( 3)L −  dyadic points = 1 / 2 jx L k− −  for 
= 0,1, , 4k L − , are not covered; some of them, but not all, will be 

covered at next step 1j + .
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The Proposed Algorithm 
The algorithm we propose in this paper covers all dyadics at any 

given scale j. It also yields the exact values of the scaling and wavelet 
functions φ and ψ at dyadic points = 2 , ,jx m j m Z− ∈ . Since ψ is given in 
terms of φ, it is suffices to describe the algorithm for . The algorithm is 
based on finding the exact values of φ at the integers = 1,2, , 2n L −  (the 
0 -level dyadics). These are found by solving an eigenvalue problem. 
Once the values of φ at the integers are obtained, at each subsequent 
step, the algorithm performs a single convolution operation to calculate 
the values of φ at only odd-dyadics. The algorithm is explained in the 
following.

Since φ is supported in [0, 1]L − , we have, by continuity, φ(x) =0 for 
0x ≤  and 1x L≥ − . Let  

(0)= [ (1) (1) (2) ( 2)]TLφ φ φ φΦ − 			               (19)

be the column vector containing the values of φ at the integers. 
Then, according to the refinement equation,  

1

=0
( ) = 2 (2 ),

L

k
k

x h x kφ φ
−

−∑ 				                    (20)

Φ(0) satisfies the linear system  

Φ(0)=AΦ(0)				     	                (21)

where A is an (L-2)×(L-2)  matrix with entries aij, 1 , 2i j L≤ ≤ − , 
given by  

22 , 0 (2 ) 1,=
0. .

i j
ij

h if i j La
otherwise

−
 ≤ − ≤ −



		                (22)

Equation (21) suggests that Φ(0) is an eigenvector of A corresponding 
to the eigenvalue =1 . The existence of the eigenvalue λ=1   is justified by 
the following proposition. 

Proposition 3  Suppose that there exists a continuous solution φ to 
(20). Then λ=1 is an eigenvalue of the matrix A  in (22) and Φ(0) is an 
associated eigenvector. 

Proof  Let Φ(0) be as in (19). Then by (20) Φ(0) satisfies (21). If Φ(0)=0 
(the zero vector), then φ(n)=0 for ,k l∈ ∈  . This implies, using 
(20), that φ (2-kl)=0 for all ,k l∈ ∈  . Then by continuity of φ, this 
would imply that φ=0 which is a contradiction. It follows that Φ(0)≠0 
and consequently Φ(0) is an eigenvector of A associated to the eigenvalue 
λ=1.             	

Since φ satisfies ( ) = 1
l

x lφ −∑  for any x , 
2

=1
( ) = 1

L

n
nφ

−

∑ . Then the 

vector Φ(0) is equal to the normalized eigenvector of A corresponding 
to λ=1 . Precisely, Φ(0) is the unique solution to the (L-1)×(L-2) 
nonhomogeneous system  

Bx=b	(23)

where 

( 2) 0

= = ,
0
111 1

LA I

B b

−−   
   
   
   
   
    





and I(L-2)  is the identity matrix of order (L-2)  .

Next, once the values of φ at the integers are known, we apply the 
refinement equation to find the values of φ  at the  odd half integers 

2 1= , = 1,2 , 1
2

nx n L−
−

,  

1

=0
((2 1) / 2) = 2 (2 1), = 1,2, , 1.

L

k
k

n h n k n Lφ φ
−

− − − −∑  	               (24)

Note that we do need to calculate φ at the  even half integers 2=
2
nx  

as they were computed in Φ(0). Let Φ(1) be the column vector containing 

the values of φ at the odd 1-level dyadics 2 1= , = 1,2 , 1
2

nx n L−
−

. Then (24) 

can be viewed as a convolution operation followed by downsampling 
by 2,  

(1) (0)= ( 2 , ) 2,conv hΦ Φ ↓ 				                 (25)

 where “conv” denotes convolution and ↓ denotes downsampling 
by 2.

Let Φ(j) 1j ≥ , be the vector of length 2j-1 (L-1) containing the values 
of φ at the odd j-level dyadics, i.e.,  

( )= [ (1 / 2 ) (3 / 2 ) ( 1 1/ 2 )].j j j jLφ φ φΦ − − 		               (26)

A careful examination of the refinement equation (7) gives  
( ) ( 1)= ( , ), 2,j j jconv h for j−Φ Φ ≥ 	                                      (27)

where jh  is an “upsampled” version of the vector 2 h , obtained 
by inserting (2j-2-1) zeros between every two successive entries in 2 h. 
Explicitly,  

22 , = 2 , 0 1,=
0, .

j
j m

k
h if k m m Lh

otherwise

− ≤ ≤ −



 	                                 (28)

The length of the vector jh  is equal to 2j-2(L-1)+1. Note that the 
length of (j) given by the convolution formula (27) is the sum of the lengths 
of jh  and Φ(j-1) less one, i.e., 2 2 1(2 ( 1) 1) (2 ( 1)) 1 = 2 ( 1)j j jL L L− − −− + + − − − , 
and it agrees with the length of Φ(j) given by formula (26).

Our proposed algorithm summarizes in the following steps:  

1.  Compute the values of φ at the integers(x=1, 2,…,L-2)given by 
the normalized eigenvector of A corresponding to the eigenvalue 1 and 
collect them in a vector Φ(0). 

2.  Convolve Φ(0) with the vector 2 h  and downsample by 
2 to get Φ(1). This gives the values of φ  at the odd 1-level dyadics 

2 1( = , = 1,2, , 1)
2

nx n L−
− . 

3.  For 2j ≥ , compute the values of φ  at the odd j-level dyadics by 
convolving of the vector jh  with the vector Φ(j-1) where, again, Φ(j-1) is 
the vector containing only the values of φ at the odd (j-1)-evel dyadics. 

The values of the wavelet function ψ(x) at the any j-level dyadics 
can be computed using the relation  

=0
( ) = 2 (2 )x g x kψ φ∑ 	  			                    (29)

All of the steps in the proposed algorithm are computationally 
trivial except perhaps for the first one, where an eigenvector of A 
needs to be found. The matrix A being sparse, however, this is not 

very difficult. Using the normalization of φ, 
2

=1
( ) = 1

L

n
nφ

−

∑ , the sought 

eigenvector Φ(0) can be obtained as the solution of (23).

As a comparison between the two algorithms we note the following:  

• Our proposed algorithm is similar to the well-known cascade 
algorithm in that the computations of both algorithms involve 
convolutions, except for the first step in our proposed algorithm, where 
an relatively small size linear system has to be solved. 

• The first step in our algorithm is the most expensive but it is the 
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crucial one because it yields the exact values at the integers from which 
everything else is derived. 

• The cascade algorithm begins by making an initial guess for φ(x) 
(a Dirac delta function), whereas our algorithm begins by computing 
φ(x) at the integers (0-level dyadics). 

• A clear advantage of our algorithm is that (i) it provides the 
exact values and (ii) once the initial step has been performed, at every 
subsequent step, only the values of φ(x)  at the odd dyadics need to be 
computed, the even dyadics at step j being the odd dyadics at step j-1. 
In contrast, the cascade algorithm requires refinement of φ(x) at the 
even dyadics.  

Numerical Results
We have implemented the proposed algorithm in Matlab and 

tested it to produce the values of Daubechies’ scaling functions as well 
as Daubechies’ coiflets. Plots of Daubechies scaling functions db4 and 

db6 (M=4 and M=6 ) as well as Daubechies’ coiflets coif2 and coif4 
(M=2 and M=3), obtained by our algorithm, are displayed in Figures 
1 and 2.

We compared our numerical values with the ones obtained using 
the cascade algorithm which is implemented in Matlab under the 
function “wavefun”. Samples of the numerical values obtained are 
displayed in Tables 1 and 2. Table 1 displays the values of db4 at the 
integers obtained by the cascade algorithm for j=5,10,15, 20 and the 
ones obtained by our algorithm using only j=0, i.e., the solution of 
the system (23). Table 2 displays selected values of db6 at the j=5 level 
dyadics obtained by the cascade algorithm for j=5,10,15, 20 and the 
ones obtained by our algorithm using  j=5. The results clearly show that 
the cascade algorithm results converge to ours as j tends to infinity.We 
remark that one has to iterate the cascade algorithm for larger value of 
j to obtain accurate results at a lower k level dyadics. For instance, from 
Table 2, we needed to iterate the cascade algorithm until j=20 to obtain 
as closer results to the ones obtained by our algorithm with only j=5.

Figure 1: A plot of Daubechies db4 and db6.
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Figure 2: A plot of Daubechies coiflets coif2 and coif4.

0 1 2 3 4 5 6 7
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Daubechies φ db4 at scale j=6

0 2 4 6 8 10 12
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Daubechies φ db6 at scale j=6

http://dx.doi.org/10.4172/2090-0902.1000157


Citation: Hajji MA (2016) On the Exact Values of Daubechies Wavelets. J Phys Math 7: 157. doi:10.4172/2090-0902.1000157

Page 5 of 6

Volume 7 • Issue 1 • 1000157
J Phys Math
ISSN: 2090-0902 JPM, an open access journal

Conclusion
In this paper, we have presented an efficient algorithm for the 

computation of the exact values of refinable functions, in particular 
Daubechies’ scaling and wavelet functions. Our motivation for this 
work stems from the need for more accurate point values of the widely 
used Daubechies wavelets. This certainly will be useful in the numerical 
solutions of differential equations where wavelets are being used.
Our proposed algorithm produces the exact values whereas the well-
known cascade algorithm produces approximate values. What is good 
about the proposed algorithm is that, at each step, it computes values 
only at odd dyadics. The cascade algorithm, however, at each step 
calculates new values and refines old ones. The only expensive step in 
our algorithm is the first one where we need to solve a relatively small 
size linear system. This first step is the crucial one in that it provides us 
with the exact values (to machine precision) at the integers from which 

the rest is derived.We believe that having exactly values of wavelet 
functions will give better results in wavelet based numerical schemes 
for the solution of differential equations.
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Values of Daubechies’ scaling function db4

* x The cascade algorithm Our algorithm

= 5j = 10j = 15j = 20j = 0j
1.00747364 1.00717932 1.00717027 1.00716998 1.00716997
-0.03432410 -0.03385159 -0.03383741 -0.03383696 -0.03383695
0.03983843 0.03961669 0.03961065 0.03961046 0.03961046
-0.01180456 -0.01176501 -0.01176437 -0.01176435 -0.01176435
-0.00120268 -0.00119824 -0.00119796 -0.00119795 -0.00119795
0.00001926 0.00001883 0.00001882 0.00001882 0.00001882

Table 1: Values of db4 at the integers.

Values of Daubechies’ scaling function db6 

* x   The cascade algorithm  Our algorithm 

 = 5j  = 10j   = 15j   = 20j   = 5j  

5
2
2

 
 0.0004331  0.0002749  0.0002707  0.0002705  0.0002705 

5
22
2  

 0.1696324  0.1623220  0.1620967  0.1620896  0.1620894

5
42
2  

 0.8333298  0.8208984  0.8205067  0.8204944  0.8204941

5
62
2  

 0.9002129  0.9135170  0.9139223  0.9139350  0.9139354

5
82
2  

-0.1721720 -0.1591060 -0.1586933  -0.1586804  -0.1586800

5
119
2  

 0.1241885  0.1214656  0.1213838  0.1213812  0.1213811

5
159
2  

 -0.0268479  -0.0277469  -0.0277748  -0.0277757  -0.0277757

5
199
2  

 0.0014295  0.0014226  0.0014213  0.0014212  0.0014212

5
209
2  

 -0.0022161  -0.0023020  -0.0023046  -0.0023047  -0.0023047

5
259
2  

 0.0000263 0.0000270 0.0000270 0.0000270  0.0000270

Table 2: Values of db6 at selected   level dyadic.
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