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Abstract
In this paper we focus on a certain self-distributive multiplication on coalgebras, which leads to so-called rack 

bialgebra. Inspired by semi-group theory (adapting the Suschkewitsch theorem), we do some structure theory for 
rack bialgebras and cocommutative Hopf dialgebras. We also construct canonical rack bialgebras (some kind of 
enveloping algebras) for any Leibniz algebra and compare to the existing constructions.

We are motivated by a differential geometric procedure which we call the Serre functor: To a pointed differentible 
manifold with multiplication is associated its distribution space supported in the chosen point. For Lie groups, it is well-
known that this leads to the universal enveloping algebra of the Lie algebra. For Lie racks, we get rack-bialgebras, for 
Lie digroups, we obtain cocommutative Hopf dialgebras.

Keywords: Coalgebras; Cocommutative Hopf dialgebras; Canonical 
rack bialgebras; Manifolds; Drinfeld center

Introduction
All manifolds considered in this manuscript are assumed to be 

Hausdorff and second countable. Basic Lie theory relies heavily on 
the fundamental links between associative algebras, Lie algebras and 
groups. Some of these links are the passage from an associative algebra 
A to its underlying Lie algebra ALie which is the vector space A with the 
bracket [a, b] :=ab−ba. On the other hand, to any Lie algebra g one may 
associate its universal enveloping algebra U(g) which is associative. 
Groups arise as groups of units in associative algebras. To any group G, 
one may associate its group algebra KG which is associative. The theme 
of the present article is to investigate links of this kind for more general 
objects than groups, namely for racks and digroups.

Recall that a pointed rack is a pointed set (X, e) together with a 
binary operation   :X × X × → X such that for all x ∈ X, the map y  x  
y is bijective and such that for all x, y, z ∈ X, the self-distributivity and 
unit relations

x(yz)=(xy)(xz), ex=x, and xe=e

are satisfied. Imitating the notion of a Lie group, the smooth version of 
a pointed rack is called Lie rack.

An important class of examples of racks are the so-called augmented 
racks [1]. An augmented rack is the data of a group G, a G – set X and 
a map p: X→G such that for all x∈ X and all g ∈ G,

p(g⋅x)=gp(x)g-1.

The set X becomes then a rack by setting x  y:=p(x) y . In fact, 
augmented racks are the Drinfeld center (or the Yetter-Drinfeld 
modules) in the monoidal category of G-sets over the (set-theoretical) 
Hopf algebra G, see for example [2]. Any rack may be augmented 
in many ways, for example by using the canonical morphism to 
its associated group or to its group of bijections or to its group of 
automorphisms.

In order to formalize the notion of a rack, one needs the diagonal 
map diagx : X →X × X given by x (x, x). Then the self-distributivity 
relation reads in terms of maps m ° (idM × m),

=m ° (m× m)°( idM  τM, M × idM) ° (diagM  idM  idM )

Axiomatizing this kind of structure, one may start with a coalgebra 
C and look for rack operations on this fixed coalgebra [3,4].

A natural framework where this kind of structure arises (as we 
show in Section 3) is by taking point-distributions (i.e. applying the 
Serre functor) over (resp. to) the pointed manifold given by a Lie rack. 
We dub the arising structure as rack bialgebra.

Lie racks are intimately related to Leibniz algebra h, i.e. a vector 
space h with a bilinear bracket [,]:h ⊗ h→ h such that for all X, Y, Z ∈ h, 
[X, −] acts as a derivation:

[X,[Y,Z]]=[[X,Y],Z] + [Y,[X,Z]]. 	       (1)

Indeed, Kinyon showed that the tangent space at e∈H of a Lie 
rack H carries a natural structure of a Leibniz algebra, generalizing the 
relation between a Lie group and its tangent Lie algebra [5]. Conversely, 
every (finite dimensional real or complex) Leibniz algebra h may be 
integrated into a Lie rack R

h
 (with underlying manifold h) using the 

rack product.
a:= ( ),dXX Y e Y 				                   (2)

noting that the exponential of the inner derivation adX for each X  h is 
an automorphism.

Another closely related algebraic structure is that of dialgebras. A 
dialgebra is a vector space D with two (bilinear) associative operations 
 :D × D → D and  :D × D → D which satisfy three compatibility 
relations, namely for a, b, c∈D:

 (ab)c=(a b)c, a(bc)=a(b c),(ab) c=a  (b c)
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A dialgebra D becomes a Leibniz algebras via the formula 
[a,b]=ab−b a.

In this sense  and  are two halves of a Leibniz bracket. Loday 
and Goichot have defined an enveloping dialgebra of a Leibniz algebra 
[6,7].

One main point of this paper is the link between rack bialgebras 
and cocommutative Hopf dialgebras. In Theorem 2.5, we adapt 
Suschkewitsch’s Theorem in semi-group theory to the present context. 
The classical result (see Appendix B) treats semi-groups with a left unit 
e and right inverses (analoguous results in the left-context), called right 
groups. Suschkewitsch shows that such a right group Γ decomposes as a 
product Γ=Γe × E where E is the set of all idempotent elements.

Its incarnation here shows that a cocommutative right Hopf algebra 
 decomposes as a tensor product 1⊗E where E is the subspace of 
generalized idempotents.

Furthermore, we will show in Theorem 2.6 how to associate to 
any augmented rack bialgebra an augmented cocommutative Hopf 
dialgebra. In Theorem 2.7, we investigate what Suschkewitsch’s 
decomposition gives for a cocommutative Hopf dialgebra A. It turns 
out that A decomposes as a tensor product EA ⊗ HA of EA with HA 
which may be identified to the associative quotient Aass of A. This result 
permits to show that the Leibniz algebra of primitives in A is a hemi-
semi-direct product, and thus always split. In this way we arrive once 
again at the result that Lie digroups may serve only to integrate split 
Leibniz algebras which has already been observed by Covez in his 
master thesis [8].

Let us comment on the content of the paper:

All our bialgebra notion are based on the standard theory of 
coalgebras, some features of which as well as our notions are recalled 
in Appendix A. Rack bialgebras and augmented rack bialgebras are 
studied in Section 2. Connected, cocommutative Hopf algebras give 
rise to a special case of rack bialgebras. In Section 2.2, we associate to 
any Leibniz algebra h an augmented rack bialgebra UAR ∞(h) and study 
the functorial properties of this association. This rack bialgebra plays 
the role of an enveloping algebra in our context. It turns out that a 
truncated, non-augmented version UR(h) is a left adjoint of the functor 
of primitives Prim.

We also study the “group-algebra” functor associating to a rack 
X its rack bialgebra K[X]. Like in the classical framework, K[−] is left 
adjoint to the functor Slike associating to a track bialgebra its rack of 
set-like elements. The relation between rack bialgebras and the other 
algebraic notion discussed in this paper is summarized in the diagram 
(see the end of Section 2.2) of categories and functors:

U ( ( P S [ ]

( UAR P S [ ]

L @ < 1 > [ ] @ > [ ] H @ > [ ] [ ] @ < 1 > [ ] G [ ]

@ > [ ]L @ < 1 > [ ] R [ ] @ < 1 > [ ] R [ ]

i j rim like K

rim like K

ie ex r d opf d l ex r rp l

d eib ex r ackBialg l ex r acks l

−

∞ −

− −

−

In Section 2.3, we develop the structure theory for rack bialgebras 
and cocommutative Hopf dialgebras, based on Suschkewitsch’s 
Theorem. Section 2.3 contains Theorem 2.5, Theorem 2.6 and Theorem 
2.7 whose content we have described above.

Recollecting basic knowledge about the Serre functor F is the 
subject of Section 3. In particular, we show in Section 3.2 that F is a 
strong monoidal functor from the category of pointed manifolds f * 
to the category of coalgebras, based on some standard material on 
coalgebras (Appendix A). In Section 3.3, we apply F to Lie groups, Lie 
semi-groups, Lie digroups, and to Lie racks and augmented Lie racks, 
and study the additional structure which we obtain on the coalgebra. 

The case of Lie racks motivates the notion of rack bialgebra.

Recall that for a Leibniz algebra h, the vector space h becomes a Lie 
rack R

h
 with the rack product.

a= ( ).dXX Y e Y

In Theorem 3.8, we show that the rack bialgebra UAR ∞(h) 
associated to h coincides with the rack bialgebra F(R

h
).

Several Bialgebras
In the following, let K be an associative commutative unital ring 

containing all the rational numbers. The symbol ⊗ will always denote 
the tensor product of K-modules over K. For any coalgebra (C, ∆) over 
K, we shall use Sweedler’s notation ∆(a)=∑(a)a

(1)⊗a(2) for any a∈A. See 
also Appendix 4 for a survey on definitions and notations in coalgebra 
theory.

The following sections will all deal with the following type of 
nonassociative bialgebra: Let (B, ∆,ε,1,µ) be a K-module such that 
(B, ∆,ε,1) is a coassociative counital coaugmented coalgebra (a C3-
coalgebra), and such that the linear map µ: B ⊗ B→B (the multiplication) 
is a morphism of C3-coalgebras (it satisfies in particular µ(1 ⊗ 1)=1). 
We shall call this situation a nonassociative C3I-bialgebra (where I 
stands for 1 being an idempotent for the multiplication µ). For another 
nonassociative C3I –bialgebra (B′, ∆′, ′, 1′, µ′ ) a K-linear map φ: B→ 
B′ will be called a morphism of nonassociative C3I-bialgebras iff it is 
a morphism of C3-coalgebras and is multiplicative in the usual sense 
φ(µ(a⊗b))=µ′(φ(a))⊗φ(b)) for all a, b ∈ B. The nonassociative C3I-
bialgebra (B, ∆,ε,1) is called left-unital (resp. right-unital) iff for all a ∈ 
B µ(1⊗a)=a (resp. µ(a⊗1)=a).

Moreover, consider the associative algebra A≔HomK(B,B) equipped 
with the composition of K-linear maps, and the identity map idB as 
the unit element. There is an associative convolution multiplication * 
in the K-module HomK(B,A) of all K-linear maps B→HomK(B,B), see 
Appendix 4, eqn (103) for a definition with idBε as the unit element. For 
a given nonassociative C3I-bialgebra (B, ∆,,1,µ) we can consider the map 
µ as a map B→HomK(B,B) in two ways: as left multiplication map Lµ: 
b(bµ(b⊗b′)) or as right multiplication map Rµ:b(b′µ(b′⊗b)). 
We call (B, ,ε,1,µ) a left-regular (resp. right-regular) nonassociative C3I-
bialgebra iff the map Lµ (resp. the map Rµ) has a convolution inverse, 
i.e. iff there is a K-linear map µ′: B⊗B→B (resp. µ′′: B⊗B→B) such that 
Lµ′=Lµ′=idBε=Lµ′∗Lµ (resp. Rµ ∗Rµ′′=idBε=Rµ′∗Rµ), or on elements a, b ∈ 
B for the left regular case:

(1) (2) (1) (2)

( )
( ( )) = ( ) = ( ( )).

a
a a b a b a a bµ µ ε µ µ′ ′⊗ ⊗ ⊗ ⊗∑                (3)

Note that every associative unital Hopf algebra(H, ∆,ε,1,µ, S) (where 
S denotes the antipode, i.e. the convolution inverse of the identity map 
in HomK(H,H)) is right- and left-regular by setting µ′=µ°(S⊗idH) and 
µ′′=µ°( idH ⊗ S).

Lemma 2.1: Let (B, ∆,ε,1,µ) be a nonassociative C3I-bialgebra.

1. If B is left-regular (resp. right-regular), then the corresponding 
K-linear map µ′: B⊗B→B is unique, and in case ∆ is cocommutative, µ′ 
is map of C3-coalgebras.

2. If (B, ∆,ε,1,µ) is left-unital (rep. right-unital) and its underlying 
C3-coalgebra is connected, then (B, ∆,ε,1,µ) is always left-regular (resp. 
right-regular).

Proof: 1. In any monoid (in particular in the convolution monoid) 
two-sided inverses are always unique. Moreover, as can easily be 
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checked, a K-linear map φ: B⊗B→B is a morphism of coalgebras iff for 
each b∈B.

(1) (2)

( )
( ( ) ( )) = ( ).

b
L b L b L bφ φ φ⊗ ∆ ∆∑   			                  (4)

(and analogously for right multiplications). Both sides of the preceding 
equation, seen as maps of b, are in HomK(B,HomK(B,B⊗B)). Since 
HomK(B,B⊗B) is an obvious right HomK(B,B)-module, the K-module 
HomK(B,HomK(B,B⊗B)) is a right HomK(B,HomK(B,B))-module with 
respect to the convolution. Define the K-linear map Fµ′: B→ Hom 
K(B,B⊗B) by:

(1) (2)

( )
( ) := ( ( ) ( )) ( ).

b
F b L b L b L bµ µ µ µ′ ′ ′ ′⊗ ∆ − ∆∑  

Using eqn (4), the fact that Lµ′ is a convolution inverse of Lµ, and 
the cocommutativity of ∆, we get:

* = 0,  hence  0 = * * = *(id ) =BF L F L L F Fµ µ µ µ µ µ µε′ ′ ′ ′ ′

and µ′ preserves comultiplications. A similar reasoning where B⊗B is 
replaced by K shows that µ′ preserves counits. Finally, it is obvious that 
Lµ′ (1) is the inverse of the K-linear map Lµ (1), and since the latter 
fixes 1 so does the former. The reasoning for right-regular bialgebras is 
completely analogous.

2. For left-unital bialgebras we get Lµ (1)=idB, and the generalized 
Takeuchi-Sweedler argument, see Appendix 4, shows that Lµ has a 
convolution inverse. Right-unital bialgebras are treated in an analogous 
manner.

Note that any C3-coalgebra (C, ∆,ε,1,) becomes a left-unital (resp. 
right-unital) associative C3I-bialgebra by equipping with the left-trivial 
(resp. right-trivial) multiplication.

µ0(a⊗b)≔ε(a)b (resp.µ0(a⊗b)≔ε(b)a).		                  (5)

We shall call an element c ⊗ B a generalized idempotent iff ∑(c) c
(1)

c(2)=c . Moreover c ∈ B will be called a generalized left (resp. right) unit 
element iff for all b ∈ B we have cb=ε(c)b (resp. bc=ε(c)b).

Rack bialgebras, augmented rack bialgebras and Leibniz 
algebras

Definition 2.1: A rack bialgebra (B, ∆,ε,1,µ) is a nonassociative C3I-
bialgebra (where we write for all a, b ∈ B µ(a⊗b)=:ab) such that the 
following identities hold for all a, b,c ∈ B

1a=a, 					                      (6)

a1=ε(a)1,					                   (7)
(1) (2)

( )
( ) = ( ) ( ).

a
a b c a b a c∑     			                 (8)

The last condition (8) is called the self-distributivity condition.

Note that we do not demand that the C3-coalgebra B should be 
cocommutative nor connected.

Example 2.1: Any C3 coalgebra (C, ∆,ε,1) carries a trivial rack 
bialgebra structure defined by the left-trivial multiplicaton

a0b≔ε(a)b 	        (9)

which in addition is easily seen to be associative and left-unital, but in 
general not unital.

Another method of constructing rack bialgebras is gauging: Let (B, 
∆,ε,1,µ) a rack bialgebra –where we write µ(a⊗b)=:ab for all a, b ∈ B 
–, and let f: B→B a morphism of C3-coalgebras such that for all a, b ∈ B

f (ab)=a(f (b)), 	        (10)

i.e. f is µ-equivariant. It is a routine check that (B, ∆,ε,1,µf) is a rack 
bialgebra where for all a, b ∈ B the multiplication is defined by

µf (a⊗b)=:a f b:=(f (a))b). 	         (11)

We shall call (B, ∆,ε,1,µf) the f-gauge of (B, ∆,ε,1,µ).

Example 2.2: Let (H, ∆ H,ε H,µ H,1H,S) be a cocommutative Hopf 
algebra over K. Then it is easy to see (cf. also the particular case B=H and 
Φ=id H of Proposition 2.1) that the new multiplication µ(H ⊗ H)→H, 
written µ( h⊗ h′)=hh′, defined by the usual adjoint representation

(1) (2)

( )
:= ad ( ) := ( ( )),h

h
h h h h h S h′ ′ ′∑ 			                (12)

equips the C4-coalgebra (H, ∆ H,ε H,1H) with a rack bialgebra structure.

In general, the adjoint representation does not seem to preserve the 
coalgebra structure if no cocommutativity is assumed.

Example 2.3: Recall that a pointed set (X, e) is a pointed rack in 
case there is a binary operation :X × X → X such that for all x∈X, 
the map y x  y is bijective and such that for all x,y,z∈X, the self-
distributivity and unit relations:

x(yz)=(xy)(xz), e x=x, and xe=e

are satisfied. Then there is a natural rack bialgebra structure on the 
vector space K[X] which has the elements of X as a basis. K[X] carries 
the usual coalgebra structure such that all x∈X are set-like: ∆(x)=x⊗x 
for all x∈X. The product µ is then induced by the rack product. By 
functoriality, µ is compatible with  and e.

Observe that this construction differs slightly from the construction, 
Section 3.1.

More generally there is the following structure:

Definition 2.2: An augmented rack bialgebra over K is a quadruple 
(B,Φ,H,l) consisting of a C3-coalgebra (B, ∆,ε, 1), of a cocommutative 
(!) Hopf algebra (H, ∆H,εH, 1H, µH, S), of a morphism of C3-coalgebras 
Φ: B→H, and of a left action l: H⊗B→B of H on B which is a morphism 
of C3-coalgebras (i.e. B is a H-module-coalgebra) such that for all h∈ 
H and a ∈ B

h.1=εH(h)1					                  (13)

(h.a)=adk(Φ(a))	                                                                                    (14)

Where ad denotes the usual adjoint representation for Hopf 
algebras, see e.g. eqn (12).

We shall define a morphism (B,Φ,H, l)→ (B′,Φ′,H′, l′) of 
augmented rack bialgebras to be a pair (φ,ψ) of K-linear maps where φ: 
(B,∆,ε,1)→(B′,∆′,ε′,1′) is a morphism of C3-coalgebras, and ψ: H→H′ is a 
morphism of Hopf algebras such that the obvious diagrams commute:

Φ′°φ=ψ°Φ, and l°(⊗φ)=φ° l 	 (15)

An immediate consequence of this definition is the following:

Proposition 2.1: Let (B,Φ,H, l) be an augmented rack bialgebra. 
Then the C3-coalgebra (B,ε,1) will become a left-regular rack bialgebra 
by means of the multiplication:

ab≔Φ(a).b 	        (16)

for all a,b∈B. In particular, each Hopf algebra H becomes an augmented 
rack bialgebra via (H,idH,H,ad). In general, for each augmented rack 
bialgebra the map Φ:B→ H is a morphism of rack bialgebras.

 Proof: For a proof of this proposition [9].
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Example 2.4: Exactly in the same way as a pointed rack gives rise to 
a rack bialgebra K[X], an augmented pointed rack p: X→G gives rise to 
an augmented rack bialgebra p: K[X]→ K[G].

Remark 2.1: Motivated by the fact that the augmented racks p: X→G 
are exactly the Yetter-Drinfeld modules over the (set-theoretical) Hopf 
algebra G, we may ask about the relation of augmented rack bialgebras 
to Yetter-Drinfeld modules, and more generally of rack bialgebras to 
the Yang-Baxter equation. For these subjects.

The link to Leibniz algebras is contained in the following:

Proposition 2.2: Let (B, ∆,ε, 1, µ) be a rack bialgebra over K.

1. Then its K-submodule of all primitive elements, Prim(B)=:h, 
(see eqn (101) of Appendix 4) is a subalgebra with respect to µ (written 
ab) satisfying the (left) Leibniz identity:

x(yz)=(xy)z+y(xz) 	        (17)

for all x, y, z∈h=Prim(B). Hence the pair (h,[,]) with [x, y]≔ xy for 
all x, y ∈h is a Leibniz algebra over K. Moreover, every morphism of 
rack bialgebras maps primitive elements to primitive elements and thus 
induces a morphism of Leibniz algebras.

 2. More generally, h and each subcoalgebra of order k∈, B(k), (see 
eqn (102)) is stable by left -multiplications with every a  B. In particular, 
each B(k) is a rack subbialgebra of (B, ∆,ε, 1, µ).

 Proof: 2. Let x∈h and a ∈ B. Since µ is a morphism of C3-coalgebras 
and x is primitive, we get:

(1) (2) (1) (2)

( ) ( )
( ) = ( ) ( ) ( ) ( )

a a
a x a x a a a x∆ ⊗ + ⊗∑ ∑1 1    

(7)
(1) (2) (1) (2)

( ) ( )
= (( ( )) ) (( ( ) ) )

a a
a a x a a xε ε⊗ + ⊗∑ ∑1 1 

=(ax)⊗1+1⊗(ax),

whence ax is primitive. For the statement on the B(k), we proceed by 
induction: For k=0, this is clear. Suppose the statement is true until k ∈ 
, and let x∈ B(k+1). Then:

(ax)− (ax)⊗1−1⊗(ax)
(1) (1) (2) (2) (1) (2)

( )( )
= (( ) ( ) ( ) ( )

a x
a x a x a x a⊗ − ⊗∑ 1   

− (a(1) 1)⊗(a(2)
x))

=(∆(a))(∆(x)−x⊗1−1⊗ x)
(1) (1) (2) (2)

( )( )
= ( ) ( )

a x
a x a x′ ′⊗∑  

where we have used the extended multiplication (still denoted ) 
:(B⊗B)⊗ (B⊗B)→ (B⊗B) and set:

(1) (2)
( ) ( )

( )
( ) =:    k k

x
x x x x x B B′ ′∆ − ⊗ − ⊗ ⊗ ∈ ⊗∑1 1

by the definition of B(k+1), see Appendix 4. By the induction hypothesis, 
all the terms a(1)  x(1)′ and a(2)  x(2)′ are in B(k), when ∆(ax)− 
(ax)⊗1−1⊗(ax) is in B(k)⊗ B(k), implying that ax is in B(k+1).

1. It follows from 2. that h is a subalgebra with respect to µ. Let x, y, 
z∈h. Then since x is primitive, it follows from (x)=x⊗1+1⊗ x and the 
self-distributivity identity (8) that:

(6)
( ) = ( ) ( ) ( ) ( ) =( ) ( ).x y z x y z y x z x y z y x z+ +1 1           

proving the left Leibniz identity. The morphism statement is clear, 
since each morphism of rack bialgebras is a morphism of C3-coalgebras 
and preserves primitives.

Leibniz algebras have been invented by A. M. Blokh in 1965, and 
then rediscovered by J.-L. Loday in 1992 in the search of an explanation 
for the absence of periodicity in algebraic K-Theory [10,11].

As an immediate consequence, we get that the functor Prim induces 
a functor from the category of all rack bialgebras over K to the category 
of all Leibniz algebras over K.

Remark 2.2: Define set-like elements to be elements a in a 
rack bialgebra B such that ∆(a)=a⊗a. Thanks to the fact that  is a 
morphism of coalgebras, the set of set-like elements Slike(B)is closed 
under . In fact, Slike(B) is a rack, and one obtains in this way a functor 
Slike: RackBialg→Racks.

Proposition 2.3: The functor of set-likes Slike: RackBialg→Racks 
has the functor K[−]: Racks→RackBialg (see Example 2.3) as its left-
adjoint.

Proof: This follows from the adjointness of the same functors, seen 
as functors between the categories of pointed sets and of C4-coalgebras, 
observing that the C4-coalgebra morphism induced by a morphism of 
racks respects the rack product.

Observe that the restriction of Slike: RackBialg→Racks to the 
subcategory of connected, cocommutative Hopf algebras Hopf (where 
the Hopf algebra is given the rack product defined in eqn (12)) gives the 
usual functor of group-like elements.

(Augmented) rack bialgebras for any Leibniz algebra

Let (h,[,]) be a Leibniz algebra over K, i.e. h is a K-module equipped 
with a K-linear map [,]:h⊗→h satisfying the (left) Leibniz identity (1).

Recall first that each Lie algebra over K is a Leibniz algebra giving 
rise to a functor from the category of all Lie algebras to the category of 
all Leibniz algebras.

Furthermore, recall that each Leibniz algebra has two canonical 
K-submodules:

Q(h)≔{x∈h|∃N∈\{0},∃λ1,…,λN∈K,∃x1,…, xN

=1
such that = [ , ]},

N

r r r
r

x x xλ∑ 				                  (18)

z(h) ≔{x∈h| ∀ y∈h:[x,y]=0}. 			                 (19)

It is well-known and not hard to deduce from the Leibniz identity 
that both Q(h) and z(h) are two-sided abelian ideals of (h,[,]), that Q(h) 
⊂ z(h), and that the quotient Leibniz algebras:

:= / ( )   and   ( ) := / ( )Qh h h g h h z h 			               (20)

are Lie algebras. Since the ideal Q(h) is clearly mapped into the ideal 
Q(h′) by any morphism of Leibniz algebras h→h′ (which is a priori not 
the case for z(h) !), there is an obvious functor →h h  from the category 
of all Leibniz algebras to the category of all Lie algebras.

In order to perform the following constructions of rack bialgebras 
for any given Leibniz algebra (h,[,]), choose first a two-sided ideal z⊂h 
such that:

Q(h) ⊂ z⊂ z(h),	      (21)

Let g denote the quotient Lie algebra h/z, and let p:h→g be the 
natural projection. The data of z⊂h, i.e. of a Leibniz algebra h together 
with an ideal z such that Q(h) ⊂ z⊂ z(h), could be called an augmented 
Leibniz algebra. Thus we are actually associating an augmented rack 
bialgebra to every augmented Leibniz algebra. In fact, we will see that 
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this augmented rack bialgebra does not depend on the choice of the 
ideal z and therefore refrain from introducing augmented Leibniz 
algebras in a more formal way.

The Lie algebra g naturally acts as derivations on h by means of (for 
all x, y∈h )

P(x).y≔[x, y]=:adx(y) 	       (22)

because z⊂ ⊂ z(h). Note that:

h/ z(h) ≅ {adx∈HomK(h,h)|x∈h}. 	          (23)

as Lie algebras.

Consider now the C5-coalgebra (B=S(h), ∆, , 1) which is actually a 
commutative cocommutative Hopf algebra over K with respect to the 
symmetric multiplication . The linear map p:h→g induces a unique 
morphism of Hopf algebras:

= S( ) :S( ) S( )pΦ → h g 				                   (24)

satisfying

1 1( ) = ( ) ( )k kx x p x p xΦ • • • •

 

			                 (25)

for any nonnegative integer k and x1,…,xk ∈ h. In other words, the 
association S:V→S(V) is a functor from the category of all K-modules 
to the category of all commutative unital C5-coalgebras. Consider now 
the universal enveloping algebra U(g) of the Lie algebra g. Since ⊂ K 
by assumption, the Poincaré-Birkhoff-Witt Theorem (in short: PBW) 
holds [12]. More precisely, the symmetrisation map ω: S(g)→ U(g), 
defined by:

S( ) U( ) 1 (1) ( )
1( ) = ,   and   ( ) = ,
!k k

Sk
k σ σ

σ

ω ω ξ ξ ξ ξ
∈

• • ∑1 1  g g
	             (26)

is an isomorphism of C5-coalgebras (in general not of associative 
algebras) [13]. We now need an action of the Hopf algebra H=U(g) on 
B, and an intertwining map Φ: B→ U(g). In order to get this, we first 
look at g-modules: The K-module h is a g-module by means of eqn (22), 
the Lie algebra g is a g-module via its adjoint representation, and the 
linear map p:h→g is a morphism of g-modules since p is a morphism of 
Leibniz algebras. Now S(h) and S(g) are g-modules in the usual way, i.e. 
for all k∈\{0},  ξ,ξ1,…, ξk∈ g, and x1,…,xk ∈ h

1 1
=1

.( ) := ( . ) ,
k

k r k
r

x x x x xξ ξ• • • • • •∑  

		                (27)

1 1
=1

.( ) := [ . ] ,
k

k r k
r

ξ ξ ξ ξ ξ ξ ξ• • • • • •∑  

		              (28)

and of course ξ.1S(h)=0 and ξ.1S(g)=0. Recall that U(g) is a g-module via 
the adjoint representation adξ(u)=ξ.u=ξu−uξ (for all ξ∈g and all u∈ 
U(g)).

It is easy to see that the map Φ  (25) is a morphism of g-modules, 
and it is well-known that the symmetrization map ω (26) is also a 
morphism of g-modules. Define the K-linear map Φ: S(g)→ U(g) by 
the composition:

:= .Φ Φ 					                   (29)

Then Φ is a map of C5-coalgebras and a map of g-modules. Thanks 
to the universal property of the universal enveloping algebra, it follows 
that S(h) and U(g) are left U(g)-modules, via (for all ξ1,…, k∈ g, and for 
all a∈S(h))

(ξ1…ξk).a=ξ1.(ξ2.(… ξk.a)…)	  		               (30)

and the usual adjoint representation (12) (for all u∈ U(g))

1 1
ad ( ) = (ad ad )( ),

k k
u uξ ξ ξ ξ



			               (31)

and that Φ intertwines the U(g)-action on C=S(h) with the adjoint 
action of U(g) on itself.

Finally it is a routine check using the above identities (27) and (12) 
that S(h) becomes a module coalgebra.

We can resume the preceding considerations in the following;

Theorem 2.1: Let (h,[,]) be a Leibniz algebra over K, let z be a two-
sided ideal of h such that Q(h) ⊂ z ⊂ z(h), let g denote the quotient Lie 
algebra h/z by g, and let p:h→g be the canonical projection.

1. Then there is a canonical U(g)-action l on the C5-coalgebra 
B:=S(h) (making it into a module coalgebra leaving invariant 1) and a 
canonical lift of p to a map of C5-coalgebras, Φ: S(h)→ U(g) such that 
eqn (14) holds.

Hence the quadruple (S(h), Φ, U(g), l) is an augmented rack 
bialgebra whose associated Leibniz algebra is equal to (h,[,]) 
(independently of the choice of z).

The resulting rack multiplication µ of S(h) (written µ(a⊗b)=a  b)) 
is also independent on the choice of z and is explicitly given as follows 
for all positive integers k,l and x1,…,xk, y1,…,y1∈h:

1 1 1(1) ( )

1( ) ( ) = (ad ad )( )
!

s s
k l x x lk

Sk

x x y y y y
k σ σ

σ∈

• • • • • •∑    
    (32)

where ads
x  denotes the action of the Lie algebra h/z(h) (see eqn (23)) on 

S(h) according to eqn (27).

2. In case z=Q(h), the construction mentioned in 1. is a functor 
h→UAR∞(h) from the category of all Leibniz algebras to the category of 
all augmented rack bialgebras associating to h the rack bialgebra:

UAR∞(h)≔(S(h), Φ, U(g), l)

and to each morphism f of Leibniz algebras the pair (S( ), U( ))f f  where 
f  is the induced Lie algebra morphism.

3. For each nonnegative integer k, the above construction 
restricts to each subcoalgebra of order k, ( ) =0S( ) = S ( )k r

k r⊕h h , to define 
an augmented rack bialgebra ( ) ( ) U( ) S( )( )

(S( ) , , U( ), | )k k k⊗Φ  g hh g  which in 
case z=Q(h) defines a functor h→UAR(k) (h)≔(UAR∞(h))(k) from the 
category of all Leibniz algebras to the category of all augmented rack 
bialgebras.

Remark 2.3: This theorem should be compared to Proposition 
3.5. [3]. In [3], the authors work with the vector space N≔K⊕h, while 
we work with the whole symmetric algebra on the Leibniz algebra. In 
some sense, we extend their Proposition 3.5 “to all orders”. However, 
as we shall see below, N is already enough to obtain a left-adjoint to the 
functor of primitives.

The above rack bialgebra associated to a Leibniz algebra h can be 
seen as one version of an enveloping algebra of h.

Definition 2.3: Let h be a Leibniz algebra. We will call the 
augmented rack bialgebra (S(h), Φ, U(g), l) the enveloping algebra of 
infinite order of h. As such, it will be denoted by UAR∞(h).

This terminology is justified, for example, by the fact that h is 
identified to the primitives in S(h) (cf Proposition 2.2). This is also 
justified by the following theorem the goal of which is to show that the 
enveloping algebra UAR∞(h) fits into the following diagram of functors:

Lie[r]U[d]i Hopf[d]jLeib[r] UAR∞RackBialg



Citation: Alexandre C, Bordemann M, Rivière S, Wagemann F (2016) Structure Theory of Rack-Bialgebras. J Generalized Lie Theory Appl 10: 244. 
doi:10.4172/1736-4337.1000244

Page 6 of 20

Volume 10 • Issue 1 • 1000244J Generalized Lie Theory Appl, an open access journal
ISSN: 1736-4337

Here, i is the embedding functor of Lie algebras into Leibniz 
algebras, and j is the embedding functor of the category of connected, 
cocommutative Hopf algebras into the category of rack bialgebras, 
using the adjoint action (see eqn (12)) as a rack product.

Theorem 2.2: Let g be a Lie algebra. The PBW isomorphism 
U(g)≅S(g) induces an isomorphism of functors:

j °U≅UAR∞°i.

Proof: The enveloping algebra UAR∞(h) is by definition the 
functorial version of the rack bialgebra S(h), i.e. associated to the ideal 
Q(h). But in case h is a Lie algebra, Q(h)={0}. Then the map p is simply 
the identity, and UAR∞(h)=j(U(h)).

As a relatively easy corollary we obtain from the preceding 
construction the computation of universal rack bialgebras. More 
precisely, we look for a left adjoint functor for the functo Prim, seen 
as a functor from the category of all rack bialgebras to the category 
of all Leibniz algebras. For a given Leibniz algebra (h,[,]) define the 
subcoalgebra of order 1 of the first component of UAR(1)(h) (see the 
third statement of Theorem 2.1), i.e.

UR(h)≔ UAR∞(h)(1):K⊕h 	 (33)

With 1≔1=1K which is rack subbialgebra according to Proposition 
2.2. Its structure reads for all λ,λ′∈K and for all x, y∈h

∆(λ1+x)=λ1⊗1+x⊗1+1⊗x,                                                            (34)

ε(λ1+x)=λ, 	                                                                                  (35)

µ((λ1+x)⊗(λ′1+x′))=λλ′1+λx′+[x, x′].                                                (36)

For the particular case of a Lie algebra (h,[,]), the above construction 
can be found in [3]. Moreover, for any other Leibniz algebra (h′,[,]′) 
and any morphism of Leibniz algebras f: h→h′ define the K-linear map 
UR(f):UR(h)→UR(h′) as the first component of UAR(1)(f) (cf. the third 
statement of Theorem 2.1) by

UR( )( Â¸ ) = Â¸ ( ),f x f xλ λ+ +1 1 			                  (37)

which is clearly is a morphism of rack bialgebras. Hence UR is a 
functor from the category of all Leibniz algebras to the category of all 
rack bialgebras. Now let (C, ∆C,εC,1C,µC) be a rack bialgebra, and let f: 
hPrim(C) be a morphism of Leibniz algebras. Define the K-linear map 
ˆ : UR( )f C→h  by

ˆ ( ) = ( ),Cf x f xλ λ+ +1 1 			                (38)

and it is again a routine check that it defines a morphism of rack 
bialgebras. Moreover, due to the almost trivial coalgebra structure of 
UR(h), it is clear that any morphism of rack bialgebras UR(h)→C is of 
the above form and is uniquely determined by ˆPrim( ) =f f . Hence we 
have shown the following:

Theorem 2.3: There is a left adjoint functor, UR, for the functor 
Prim (associating to each Rack bialgebra its Leibniz algebra of all 
primitive elements). For a given Leibniz algebra (h,[,]), the object 
UR(h) –which we shall call the Universal Rack Bialgebra of the Leibniz 
algebra (h,[,])– has the usual universal properties.

Next we can refine the above universal construction by taking 
into account the augmented rack bialgebra structure of UAR∞(h) to 
define another universal object. Consider the more detailed category of 
all augmented rack bialgebras. Again, the functor Prim applied to the 
coalgebra B (and not to the Hopf algebra H) gives a functor from the 

first category to the category of all Leibniz algebras, and we seek again 
a left adjoint of this functor, called UAR. Hence, a natural candidate 
for a universal augmented rack bialgebra associated to a given Leibniz 
algebra h is:

(1) (1) U( ) ( )UAR( ) := UAR ( ) = ( , , U( ),ad | ).s
h KK h

⊗ ⊕
⊕ Φ

h
h h h   (39)

The third statement of Theorem 2.1 tells us that this is a well-
defined augmented rack bialgebra, and that UAR is a functor from the 
category of all Leibniz algebras to the category of all augmented rack 
bialgebras. Now let (B′,Φ′,H′,l′) be an augmented rack bialgebra, and 
let f: h→Prim(B′) be a morphism of Leibniz algebras. Clearly, as has 
been shown in Theorem 2.3, the map ˆ : UR( )f B′→h  given by eqn 
(37) is a morphism of rack bialgebras. Observe that the morphism 
of C3-coalgebras Φ′ sends the Leibniz subalgebra Prim(B′) of B′ 
into K-submodule of all primitive elements of the Hopf algebra H′, 
Prim(H′), which is known to be a Lie subalgebra of H′ equipped 
with the commutator Lie bracket [,]H′. Moreover this restriction is a 
morphism of Leibniz algebras. Indeed, for any x′, y′∈Prim(B′) we have

 Φ′([x′,y′]′)=Φ′(x′y′)=Φ′((Φ′(x′)).y′)=adΦ′(x′)(Φ′(y′))

=Φ′(x′)Φ′(y′)−Φ′(y′)Φ′(x′)=[Φ′(x′),Φ′(y′)]H′.

It follows that the two-sided ideal Q(Prim(B′)) of the Leibniz 
algebra Prim(B′) is in the kernel of the restriction of Φ′ to Prim(B′), 
whence the map ′ induces a well-defined K-linear morphism of Lie 
algebras | : Prim( ) Prim( )B H′ ′ ′Φ → . It follows that the composition 

| : Prim( )f H H′ ′ ′Φ → ⊂ h  is a morphism of Lie algebras, and by the 
universal property of universal envelopping algebras there is a unique 
morphism of associative unital algebras := U( | ) : U( )f Hψ ′ ′Φ → h . 
But we have for all 1, , kξ ξ ∈ h

∆H′(ψ(ξ1…ξk))=∆ H′(ψ(ξ1)…ψ(ξk))=∆ H′(ξ1))…∆(ψ(ξk))

=(ψ((ξ1)⊗1H′+1H′⊗ψ(ξ1))… (ψ(ξk)⊗ 1H′+1H′⊗ψ(ξ k))

1 1U( ) U( ) U( ) U( )= ( )( ) ( )( )k kψ ψ ξ ξ ψ ψ ξ ξ⊗ ⊗ + ⊗ ⊗ ⊗ + ⊗1 1 1 1

h h h h

1U( ) U( )= ( )( ( )) ( )( ( ))kψ ψ ξ ψ ψ ξ⊗ ∆ ⊗ ∆

h h

1U( )= ( )( ( ))kψ ψ ξ ξ⊗ ∆ 

h

since ψ maps primitives to primitives whence ψ is a morphism of 
coalgebras. It is easy to check that ψ preserves counits, whence ψ is a 
morphism of C5-Hopf-algebras. For all λ∈K and x∈ h we get:

(1) U( )( )( ) = ( ( )) = ( | )( ( ))Hx p x f p xψ λ ψ λ λ ′ ′Φ + + + Φ1 1 1 

h

ˆ= ( ( )) = ( ( )),H f x f xλ λ′ ′ ′+ Φ Φ +1 1
showing the first equation (1)

ˆ= fψ ′Φ Φ   of the morphism equation 
(15). Moreover for all λ∈K, x∈h, and U( )u ∈ h  we get

U( ) U( )
ˆ ˆ( .( )) = ( ( ) . ) = ( ) ( . )Cf u x f u u x u f u xλ λε λε ′+ + +1 1 1

h h

Let x1,…,xk ∈h such that u=p(x1)…p(xk). Then

f(u.x)=f([x1,[x2,…[xk,x]…])=f(x1)(f(x2)…(f(xk)f(x))…)

=(Φ′(f(x1))…Φ′(f(xk))).(f(x))

=(ψ(p(x1))…(p(xk))).(f(x))=(ψ(u)).(f(x)),

and therefore
ˆ ˆ( .( )) = ( ( )).( ( ))f u x u f xλ ψ λ+ +1 1

showing the second equation (1)
ˆ= fψ ′Φ Φ 

 of the morphism equation 
(15). It follows that the pair ˆ( , )f ψ  is a morphism of augmented rack 
bialgebras. We therefore have the following
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Theorem 2.4: There is a left adjoint functor, UAR, for the functor 
Prim (associating to each augmented rack bialgebra its Leibniz algebra 
of all primitive elements). For a given Leibniz algebra (h,[,]), the object 
UAR(h) –which we shall call the Universal Augmented Rack Bialgebra 
of the Leibniz algebra (h,[,])– has the usual universal properties.

The relationship between the different notions (taking into account 
also Remark (2.2)) is resumed in the following diagram:

U ( ( P

S [ ] ( UAR

P S [ ]

L @ < 1 > [ ] @ > [ ] H @ > [ ] [ ] @ < 1 >

[ ] G [ ] @ > [ ]L @ < 1 > [ ]
R [ ] @ < 1 > [ ] R [ ]

i j rim

like K

rim like K

ie ex r d opf d l ex

r rp l d eib ex r
ackBialg l ex r acks l

∞−

−

− −

−

where UAR is not left-adjoint to Prim, while UR is, but does not render 
the square commutative. There is a similar diagram for augmented 
notions.

Relation with bar-unital di(co)algebras

In the beginning of the nineties the ‘enveloping structure’ associated 
to Leibniz algebras has been the structure of dialgebras. We shall show 
in this section that rack bialgebras and certain cocommutative Hopf 
dialgebras are strongly related.

Left-unital bialgebras and right Hopf algebras: Let (B, ∆,ε,1,µ) 
be a nonassociative left-unital C3-bialgebra. It will be called left-unital 
C3-bialgebra iff µ is associative. In general, (B, ,ε,1,) need not be unital, 
i.e. we do not have in general a1=a. However, it is easy to see that the 
sub-module B1 of B is a C3-subcoalgebra of (B, ∆,ε,1), and a subalgebra 
of (B, ) such that (B1, ∆′,ε′,1,µ ′) is a unital (i.e. left-unital and right-
unital) bialgebra. Here ∆′, ε′, and µ′ denote the obvious restrictions and 
corestrictions.

In a completely analogous way right-unital C3-bialgebras are 
defined.

A left-unital (resp. right unital) cocommutative C3-bialgebra (B, 
∆,ε,1,µ) will be called a cocommutative right Hopf algebra (resp. a 
cocommutative left Hopf algebra), (B, ∆,ε,1,µ, S), iff there is a right 
antipode S (resp. left antipode S), i.e. there is a K-linear map S: B→B 
which is a morphism of C3-coalgebras (B, ∆,ε,1) to itself such that

id*S=1ε (resp. S*id=1) 	        (40)

where * denotes the convolution product (see Appendix 4 for 
definitions). It will become clear a posteriori that right or left antipodes 
are always unique, see Lemma 2.2.

A first class of examples is of course the well-known class of all 
cocommutative Hopf algebras (H, ∆,ε,1,µ, S) for which 1 is a unit 
element, and S is a right and left antipode.

Secondly it is easy to check that every C4-coalgebra (C, ∆,ε,1) 
equipped with the left-trivial multiplication (resp. right trivial 
multiplication) µ0 (see eqn (5)) and trivial right antipode (resp. trivial 
left antipode) S0 defined by S0(x)=ε(x)1for all x∈C (in both cases) is 
a cocommutative right Hopf algebra (resp. cocommutative left Hopf 
algebra) called the cocommutative left-trivial right Hopf algebra (resp. 
right-trivial left Hopf algebra) defined by the C4-coalgebra (C, ∆,ε,1).

We have the following elementary properties showing in particular 
that each right (resp. left) antipode is unique:

Lemma 2.2: Let (, ∆,ε,1,µ, S) be a cocommutative right Hopf 
algebra.

1. S*(S°S)=1ε, S°(S°S)=id*1ε, S*1ε=S and S°S°S=S, which for each 

a∈ implies ∑(a)a
(1)S(a(2))=1ε(a)=∑(a)S(a(1))a(2)1. It follows that right 

antipodes are unique.

2. For all a,b∈:S(ab)=S(b)S(a).

3. For any element c∈, c is a generalized idempotent if and only 
if c=(c)S(c(1))c(2) iff there is x∈ with c=(x)S(x(1))x(2), and all these three 
statements imply that c is a generalized left unit element.

Proof: 1. Since S is a coalgebra morphism, it preserves convolutions 
when composing from the right. This gives the first equation from 
statement 2.2. Hence the elements id, S, and S°S satisfy the hypotheses 
of the elements a,b,c of Lemma 5.1 in the left-unital convolution 
semigroup (HomK(,),*,1ε), whence the second and third equations 
of statement 2.2. are immediate, and the fourth follows from composing 
the second from the right with S and using the third. Clearly S is unique 
according to Lemma 5.1.

2. Again the elements µ, S°µ and (id*1ε)°µ satisfy the hypotheses 
on the elements a,b,c of Lemma 5.1 in the left-unital convolution 
semigroup (HomK(⊗,),*,1(ε⊗ε)) (using the fact that µ is a 
morphism of coalgebras) whence S°µ is the unique right inverse of µ. A 
computation shows that also µ °τ ° (S⊗S) is a right inverse of µ, whence 
we get statement 2.2. by uniqueness of right inverses (Lemma 5.1).

3. The second statement obviously implies the third, and it is 
easy to see by straight-forward computations that the third statement 
implies the first and the second. Conversely, if c∈ is a generalized 
idempotent, i.e. c=(µ °∆)(c), we get –since  °∆ is a morphism of C3-
coalgebras– that

(1) (2) (1) (2) (1) (2)

( ) ( ) ( )
( ) = ( )(( )( )) = ( )( )( )

c c c
S c c S c c S c cµ µ∆ ∆∑ ∑ ∑ 

Lemma 2.2,1.
(1) (2) (3) (1) (2) (3)

( ) ( )
= ( ) = ( ) = ,

c c
S c c c S c c c c∑ ∑ 1

and all the three statements are equivalent. In order to see that every 
such element c is a generalized left unit element pick y∈ and

Lemma 2.2,1.
(1) (2) (1) (2)

( ) ( )
= ( ) = ( ) = ( ) = ( )

x x
cy S x x y S x x y x y c yε ε∑ ∑ 1

since obviously ε(c)=ε(x), so c is a generalized left unit element.

There is the following right Hopf algebra analogue of the 
Suschkewitsch decomposition theorem for right groups (see Appendix 5):

Theorem 2.5: Let (, ∆,ε,1,µ, S) a cocommutative right Hopf 
algebra. Then the following holds:

1. The K-submodule (1,∆| 1,ε| 1, µ 1⊗1, S| 1) is a unital Hopf 
subalgebra of (, ∆,ε,1,µ, S).

2. The K –submodule E≔{x∈|x is ageneralized idempotent} is a 
right Hopf subalgebra of  equal to the left-trivial right Hopf algebra 
defined by the C4-coalgebra ( , | , | , | )E E EE ε ε∆ 1   

.

3. The map
(1) (2) (3)

( )
: : ( )

x
E x x S x xΨ → ⊗ ⊗∑1 1 

is an isomorphism of right Hopf algebras whose inverse Ψ−1 is the 
restriction of the multiplication map.

 Proof: 1. It is easy to see that 1 equipped with all the restrictions 
is a unital bialgebra. Note that for all a∈

( | *id ))( ) = (( * id )( )) = ( * id * ( ))( )S a S a S aε1 1 1 1 1   
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Lemma 2.2
= ( )( ) = ( )( ) = ( | )( )a a aε ε ε 11 1 1 1 1

Whence S|1 is also a left antipode. It follows that 1 is a Hopf 
algebra.

2. Since the property of being an generalized idempotent is a 
K-linear condition, it follows that E is a K-submodule. Moreover since 
each c ∈ E is of the general form c=∑(x)S(x(1))x(2), x ∈ ι, and since the 
map ι:→ defined by ι (x)=∑(x)S(x(1))x(2) is an idempotent morphism 
of C3-coalgebras, we get

∆(c)=∆(ι(c))=(ι⊗ι)(∆(x))

showing that E is a C3-subcoalgebra of . Furthermore, since every 
element of E is a generalized left unit element (Lemma 2.2, 3.), the 
restriction of the multiplication of µ of  to E⊗ E is left trivial. 
Finally,

Lemma 2.2, 2.
(1) (2) (1) (2)

( ) ( )
( ) = ( ( )) = ( ( ) ) = ( ) ( ( ))

c c
S c S c S S c c S c S S cι ∑ ∑
Lemma 2.22.2, 1. Lemma 2.22.22.2, 1.

(1) (2)
0

( )
= ( ) = ( ) = ( ),

c
S c c c S cε∑ 1 1

showing that the the restriction of S to E is the trivial right antipode.

3. It is clear from the two preceding statements that Ψ is a well-
defined linear map into the tensor product of two cocommutative right 
Hopf algebras. We have for all x∈

Lemma 2.2, 1.
(1) (2) (3) (1) (2)

( ) ( )
( )( ) = ( ) = ( ) =

x x
x x S x x x x xµ εΨ ∑ ∑1

and for all a∈, c ∈ E the term (Ψ°µ)(a1⊗c) is equal to
(1) (1) (2) (2) (3) (3)

( )( )
( ) ( ( ) ( ) )

a c
a c S c S a a c⊗∑ 1

(1) (2) (3) (1) (2)

( ) ( )
= ( ) ( ( ) ) = ( ) ( ( ) ) = ( )

c c
ac S c c a S c c a c⊗ ⊗ ⊗∑ ∑1 1 1

because all the terms S(a(2))a(3) and the components c(1),… of iterated 
comultiplications of generalized idempotents can be chosen in E 
(since the latter has been shown to be a subcoalgebra), and are thus 
generalized left unit elements (Lemma 2.2, 3.). Hence Ψ is a K-linear 
isomorphism. Moreover, it is easy to see from its definition that Ψ is a 
morphism of C3-coalgebras.

Next we compute for all a, a′ ∈ and c, c′ ∈ E:

Ψ−1(((a1)⊗c)((a′1)⊗c′))=Ψ−1((a1a′1)⊗ε(c)c′)=(c)aa′c′,

and -since c is a generalized left unit element–

Ψ−1(((a1)⊗c) Ψ−1 ((a′1)⊗c′))=acac′=ε(c)aa′c′,

showing that Ψ−1 and hence Ψ is a morphism of left-unital algebras. 
Finally we obtain

(1) (2) (3)
0

( )
( | )( ( )) = ( ( ) ) ( ( ( ) ) ) = ( ) ,

x
S S x S x S x x S xε⊗ Ψ ⊗ ⊗∑1 1 1 1 1

(1) (2) (3)

( )
( ( )) = ( ( ) ) ( ( ( )) ( )) = ( ) ,

x
S x S x S S x S x S xΨ ⊗ ⊗∑ 1 1 1

thanks to Lemma 2.2, and  intertwines right antipodes.

Note that the K-submodule of all generalized left unit elements 
of a right Hopf algebra  is given by 1( ( ))K E− +⊕ Φ ⊗1 1   and thus 
in general much bigger than the submodule E of all generalized 
idempotents.

As it is easy to see that every tensor product H ⊗ C of a unital 
cocommutative Hopf algebra H and a C4-coalgebra C (equipped with 

the left-trivial multiplication and the trivial right antipode) is a right 
Hopf algebra, it is a fairly routine check –using the preceding Theorem 
2.5– that the category of all cocommutative right Hopf algebras is 
equivalent to the product category of all cocommutative Hopf algebras 
and of all C4-coalgebras.

In the sequel, we shall need the dual left Hopf algebra version where 
all the formulas have to be put in reverse order: Here every left Hopf 
algebra is isomorphic to C ⊗ H.

Dialgebras and Rack Bialgebras: Recall that a dialgebra over 
K is a K –module D equipped with two associative multiplications 
,:A⊗A→A (written ab ab and ab ab) satisfying for all a,b,c∈A:

(a  b) c=(a b)  c,                                                                         (41)

a  (b  c)=a  (b  c),                                                                        (42)

(a  b)  c=a (b  c).                                                                           (43)

An element 1 of A is called a bar-unit element of the dialgebra (A, 
,) and (A,1,,) is called a bar-unital dialgebra iff in addition the 
following holds

1a=a,	                                                                                      (44)

a 1=a, 	                                                                                    (45)

for all a∈A. Moreover, we shall call a bar-unital dialgebra (A,1,,) 
balanced iff in addition for all a∈A

a 1=1 a. 	                                                                                   (46)

Clearly each associative algebra is a dialgebra upon setting = 
equal to the given multiplication. The class of all (bar-unital and 
balanced) dialgebras forms a category where morphisms preserve both 
multiplications and map the initial bar-unit to the target bar-unit.

These algebras had been introduced to have a sort of ‘associative 
analogue’ for Leibniz algebras. More precisely, there is the following 
important fact, which can easily be checked:

Proposition 2.4: Let (A, ,) be a dialgebra. Then the K-module A 
equipped with the bracket [,]:A⊗A→A, written [a,b],

[a,b]≔ a b − b a                                                                               (47)

is a Leibniz algebra, denoted by A−.

In fact, this construction is well-known to give rise to a functor 
A→ A− from the category of all dialgebras to the category of all Leibniz 
algebras in complete analogy to the obvious functor from the category 
of all associative algebras to the category of all Lie algebras.

An important construction of (bar-unital) dialgebras is the 
following:

Example 2.5: Let (B,1B) be a unital associative algebra over K, 
and let A be a K-module which is a B-bimodule, i.e. there are K-linear 
maps B⊗A→A and A⊗B →A (written (b ⊗ x)  bx and (x ⊗ b)  xb) 
equipping A with the structure of a left B-module and a right B-module 
such that (bx)b′=b(xb′) for all b,b′∈B and for all x∈B. Suppose in 
addition that there is a bimodule map Φ: A→ B, i.e. Φ(bxb′)=bΦ(x) b′ 
for all b,b′∈B and for all x∈A. Then it is not hard to check that the two 
multiplications ,: A⊗A→A defined by

x y≔Φ(x)y and xy≔xΦ(y)                                                              (48)
equip A with the structure of a dialgebra. If in addition there is an 
element 1∈A such that Φ(1)=1B, then (A,1, ,) will be a bar-unital 
dialgebra. We shall call this structure (A, Φ, B) an augmented dialgebra.
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In fact, every dialgebra (A,,) arises in that fashion: Consider 
the K –submodule I ⊂ A whose elements are linear combinations of 
arbitrary product expressions

p(a1,….,ar−1,(arbr−arbr),ar+1,…,an)

(where all reasonable parentheses and symbols  and  are allowed) 
for any two strictly positive integer r ≤ n, and , , ,n ra a b A∈ . It 
follows that the quotient module A/I is equipped with an associative 
multiplication induced by both  and . Let 1

assA  be equal to A/I if A is 
bar-unital: In that case, the bar-unit 1 of A projects on the unit element 
of A/I; and let 1

assA  be equal to A/I ⊗ K (adjoining a unit element) in 
case A does not have a bar-unit. Thanks to the defining equations (41), 
(42), (43), it can be shown by induction that for any strictly positive 
integer n, any a1,…,an,a∈A, and any product expression made of the 
preceding elements upon using  or 

p(a1,…,an) a=a1…ana=(a1…an)a,

ap(a1,…an)=a a1…an=a(a1…an),

proving in particular that I acts trivially from the left (via ) and from 
the right (via ) on A such that there is a well-defined 1

assA -bimodule 
structure on A such that the natural map 1

ass:A A AΦ →  is a bimodule 
morphism. Hence 1

ass( , , )AA AΦ  is always an augmented dialgebra, and 
the assignment 1

ass( , , )AA A A→ Φ  is known to be a faithful functor.

Note also that this construction allows to adjoin a bar-unit to a 
dialgebra (A,,): Consider the K-module 1

ass:=A A A⊕  with the 
obvious 1

assA -bimodule structure  α.(b+β)=α.b+αβ and (b+β).α=b.α+βα 
for all 1

ass, Aα β ∈  and b∈A. Observe that the obvious map 1
ass:A A AΦ →



  
defined by ( ) = ( )AA b bβ βΦ + Φ +



 is an 1
assA -bimodule map, and that 

1
ass

=
A

1 1  is a bar-unit. The bar-unital augmented dialgebra 1
ass( , , )AA AΦ



  is 
easily seen to be balanced. There are nonbalanced bar-unital dialgebras 
as can be seen from the augmented bar-unital dialgebra example 
(B⊗B,1B⊗1B,µB,B) where (B,1,µB) is any unital associative algebra and 
the bimodule action is defined by b.(b1⊗b2).b′≔(bb1)⊗(b2b′) for all b, 
b′, b1, b2∈ B.

Again, in case the dialgebra (A,,,1) is bar-unital and balanced, 
note that A1=1 A is an associative unital subalgebra A′ of A 
whose multiplication is induced by both  and , i.e. a′b′=a′b′ for 
all a′, b′∈ A′. Since the K-linear map πA: A→A:aa1a descends 
to a surjective morphism of associative algebras 1

assA A′→  by the 
above, it is clear that the ideal I contains the kernel of πA. On the other 
hand, if a∈Ker(πA) then 0=π(a)=1a, and obviously a=1a−1a∈I, 
thus inducing a useful isomorphism 1

assA A′≅ , and thus a subalgebra 
injection 1

ass: : ( )A Ai A A a a→ Φ 1   which is a right inverse to the 

projection A, i.e. 1
ass

= idA A A
iΦ  .

In this work, we also have to take into account coalgebra structures 
and thus define the following:

Definition 2.4: Let (A,∆,ε,1) be cocommutative C3-coalgebra (a C4-
coalgebra) and two K-linear maps ,: A ⊗A→A. Then (A,∆,ε,1, ,) 
will be called a cocommutative bar-unital di-coalgebra if and only if

1. (A, 1,,) is a bar-unital balanced dialgebra.

2. Both  and  are morphisms of C3-coalgebras.

If in addition there is a morphism of C3-coalgebras S: A→A such 
that (A,∆,ε,1, , S) is a cocommutative right Hopf algebra and (A,∆,ε,1, 
, S) is a cocommutative left Hopf algebra, then (A,∆,ε,1,,, S) is 
called a cocommutative Hopf dialgebra.

 We have used a relatively simple notion of one single compatible 
coalgebra structure motivated from differential geometry, see Section 
3. In contrast to that, F. Goichot uses two a priori different coalgebra 
structures. Moreover, a slightly more general context would have 
been to demand the existence of two different antipodes, a right 
antipode S for , and a left antipode S′ for . The theory –including 
the classification in terms of ordinary Hopf algebras– could have been 
done as well, but we have refrained from doing so since it is not hard 
to see that such a more general Hopf dialgebra is balanced iff S=S′. This 
fact is crucial in the following refinement of Proposition 2.4:

Proposition 2.5: Let (A,∆,ε,1,,, S) be cocommutative Hopf 
dialgebra. Then the submodule of all primitive elements of A, Prime(A), 
is a Leibniz subalgebra of A equipped with the bracket (47).

Proof: Let x,y∈ A be primitive. Then, using that  and  are 
morphisms of coalgebras, we get

∆ (x  y − y  x)=1⊗( x  y − y  x)+(x  y − y  x)⊗1

+( x 1)⊗ y + y⊗( x 1)− y⊗(1 x)− (1 x)⊗ y

=1⊗(x  y − y  x)+( x  y − y  x)⊗1

because A is balanced, and therefore xy−yx is primitive.

The first relationship with rack bialgebras is the following simple 
generalization of a cocommutative Hopf algebra equipped with the 
adjoint representation:

Proposition 2.6: Let (A,∆,ε,1,,, S) be cocommutative Hopf 
dialgebra. Define the following multiplication

µ: A ⊗A→A by
(1) (2)

( )
( ) := := ( ) ( ( )).

a
a b a b a b S aµ ⊗ ∑   	                                (49)

Then we have the following:

1. The map  defines on the K-module A two left module structures, 
one with respect to the algebra (A, 1,), and one with respect to the 
algebra (A, 1,), making the Hopf-dialgebra (A,∆,ε,1,,, S) a module-
Hopf dialgebra, i.e.

a(bc)=(ab)c=(ab)c                                                            (50)
(1) (1) (2) (2)

( ),( )
( ) = ( ) ( )

a b
a b a b a b∆ ⊗∑   	                                 (51)

(1) (2)

( )
( ) = ( ) ( )

a
a b c a b a c∑    	                               (52)

(1) (2)

( )
( ) = ( ) ( )

a
a b c a b a c∑    	                                 (53)

2. (A,∆,ε,1,µ) is a cocommutative rack bialgebra.

Proof: 1. First of all we have

µ=µ°(µ⊗S)°(idA⊗τA,A)°(∆⊗idA)

where µ and µ stand for the multiplication maps  and , and this 
is clearly a composition of morphisms of C3-coalgebras whence µ is 
a morphism of C3-coalgebras proving eqn (51). Next, there is clearly 
1b=b for all b∈A, and, since the dialgebra is balanced, we get for all 
a∈A

(1) (2) (1) (2)

( ) ( )
= ( ) ( ( )) = ( ( ))

a a
a a S a a S a∑ ∑1 1 1    

(1) (2)

( )
= ( ( ( ))) = ( ) = ( ) .

a
a S a a aε ε∑1 1 1 1  

Next, let a,b,c∈A. Then
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(1) (1) (2) (2)

( ),( )
( ) = ( (( ) ( ))) ( )

a b
a b c a b c S b S a∑     

(1) (1) (2) (2)

( ),( )
= ((( ) ) ( ( ) ( )))

a b
a b c S b S a∑    

(1) (1) (2) (2)

( ),( )
= ((( ) ) ( ( ) ( )))

a b
a b c S b S a∑    

(1) (1) (2) (2)

( ),( )
= (((   ) ) ( (   )))

a b
a b c S a b∑  

  

= (   ) ,a b c


				     	             (54)

Proving eqs (50). Next, for all a, a′, a′′ ∈A, we get

(1) (2) (1) (2) (3) (4)

( ) ( )
( )  ( ) = (( ) ( ))  (( ) ( ))

a a
a a a a a a S a a a S a′ ′′ ′ ′′∑ ∑ 

 
    

(1) (2) (3) (4)

( )
= ( )  (( ( )  )  ( ( )))

a
a a S a a a S a′ ′′∑   

   

(1) (2) (3)

( )
= ( )  (( ( ) )  ( ( )))

a
a a a a S aε′ ′′∑ 1 

  

(1) (2)

( )
= ( (   )) ( ) = (   ),

a
a a a S a a a a′ ′′ ′ ′′∑ 

 
  

where –in the second to last equation– we have used the left antipode 
identity for the case  and the fact that (a)S(a(1)) a(2) is a generalized left 
unit element for the case . It follows that ( ,  )A 

  is an A-module-
algebra proving eqs (52) and (53).

2. It remains to prove self-distributivity: For all a,b,c∈A, we get
(50)

(1) (2) (1) (2)

( ) ( )
( ) ( ) = (( ) ) ,

a a
a b a c a b a c∑ ∑    

and in the end
(1) (2) (1) (2) (3)

( ) ( )
( ) = (( ) ( ))

a a
a b a a b S a a∑ ∑    

(1) (2) (3)

( )
= ( ) ( ( ) )

a
a b S a a∑   

(1) (2)

( )
= ( ) ( ( ) ) =

a
a b a a bε∑ 1  

proving the self-distributivity identity.

The next theorem relates augmented cocommutative rack 
bialgebras with cocommutative Hopf dialgebras:

Theorem 2.6: Let (B,ΦB,H,l) be a cocommutative augmented 
rack bialgebra. Then the K-module (B⊗H,∆B⊗H,εB⊗εH,1B⊗1H,Φ,H) 
will be an augmented cocommutative Hopf dialgebra by means of the 
following definitions. Here we use Example 2.5 and take h,h′∈H and bB:

 1. Φ:B⊗H→H:(b⊗h)Φ(b⊗h)≔ΦB(b)h .

 2. h′.(b⊗h)≔∑(h′)((h′)(1).b)⊗((h′)(2)h and (b⊗h).h′≔b⊗(hh′).

 3. S(b⊗h)≔1B⊗SH(ΦB(b)h).

Moreover, the Leibniz bracket on the K-module of all primitive 
elements of B⊗H, a≔Prim(B)⊗ Prim(H), is computed as follows for 
all x,y∈Prim(B) and all ξ,η in the Lie algebra Prim(H) (writing x and ξ 
for the more precise x⊗1H and 1B⊗ξ)

 [x+ξ,y+η]=([x,y]+ .y)+([ΦB(x),η]+[ ξ,η])	       (55)

where each bracket is of the form (47)1. Note that this Leibniz algebra 
is split over the Lie subalgebra Prim(H), the complementary two-sided 
ideal {x−ΦB(x)x∈ Prim(B)} being in the left center of a.

1 For an explicit formula, see the end of the proof of the theorem.

Proof: It is clear from the definitions that condition 2.6 defines a 
H-bimodule structure on C⊗ H making it into a module C3-coalgebra. 
Moreover, we compute for all h, h′, h′′ ∈H and b∈B

(1) (2) (1) (2)

( ) ( )
( .( ). ) = ((( ) . ) (( ) ) = (( ) . )( )B

h h
h b h h h b h hh h b h hh

′ ′

′ ′′ ′ ′ ′′ ′ ′ ′′Φ ⊗ Φ ⊗ Φ∑ ∑
(2) (1) (2) (3)

(1)( )
( ) ( )

= ad ( ( ))( ) = ( ) ( ) (( ) )( )B B Hh
h h

b h hh h b S h h hh
′

′ ′

′ ′′ ′ ′ ′ ′′Φ Φ∑ ∑
(1) (2)

( )
= ( ) ( ) (( ) ) = ( ) = ( ) ,B H B

h
h b h hh h b hh h b h hε

′

′ ′ ′′ ′ ′′ ′ ′′Φ Φ Φ ⊗∑

whence Φ is a morphism of H-bimodules. Next, we get for all b∈B and 
h∈H:

(1) (1) (2) (2)

( )( )
(id * )( ) = ( ) ( )B H

b h
S b h b h S b h⊗ ⊗ ⊗ ⊗∑ 

(1) (1) (2) (2)

( )( )
= ( ).( ( ( ) ))B H B

b h
b h S b hΦ ⊗ ⊗ Φ∑ 1

(1) (1) (2) (2)

( )( )
= ( ( ) ).( ( ( ) ))B B H B

b h
b h S b hΦ ⊗ Φ∑ 1

(1) (1) (2) (2) (3) (3)

( )( )
= ( ( ) ) ( ( ) ( ( ) ))H B B B H B

b h
b h b h S b hε Φ ⊗ Φ Φ∑ 1

=1B⊗(εB(b)εH(h))1H=(εB⊗εH)(b⊗h)(1B⊗H),

 proving the right antipode identity, and
(1) (1) (2) (2)

( )( )
( * id )( ) = ( ) ( )B H

b h
S b h S b h b h⊗ ⊗ ⊗ ⊗∑ 

(1) (1) (2) (2)

( )( )
= ( ( ( ) )). ( )B H B

b h
S b h b h⊗ Φ Φ ⊗∑ 1

(1) (1) (2) (2)

( )( )
= ( ( ( ) )).( ( ) )B H B B

b h
S b h b h⊗ Φ Φ∑ 1

(1) (1) (2) (2)

( )( )
= ( ( ( ) ) ( ) )B H B B

b h
S b h b h⊗ Φ Φ∑ 1

1B⊗(εB(b)εH(h))1H=(εBεH)(b⊗h)(1B⊗1H),

proving the left antipode identity. Finally for all h∈H we get
(1) (2)

( )
.( ) = ( ( ) ) = = ( ).B H H B B B H

h
h h h h hε⊗ ⊗ ⊗ ⊗∑1 1 1 1 1 1

implying that the bar-unital dialgebra is balanced.

Formula (55) is straight-forward:

 [x⊗1H+1B⊗ξ, y⊗1H+1B⊗η]

=(x⊗1H)(y⊗1H)−(y⊗1H)(x⊗1H)

+(x⊗1H) (1B⊗η)−(1B⊗η)(x⊗1H)

+(1B⊗ξ)(y⊗1H)−(y⊗1H)(1B⊗ξ)

+(1B⊗ξ)(1B⊗η)−(1B⊗η)(1B⊗ξ)

=(ΦB(x).y)⊗1H+y⊗ΦB(x)−y⊗ΦB(x)

+εB(x)1B⊗η+1B⊗(ΦB(x)η)−1B⊗(ηΦB(x))

+(ξ.y)⊗1H+y⊗ξ−y⊗ξ

εH(ξ)1B⊗η+1B⊗(ξη)−1B⊗(ηξ)

=[x,y]⊗1H+1B⊗[ΦB(x),η]+(ξ.y)⊗1H+1B⊗[ξ,η],
because primitives are killed by counits, and the formula is proved.

A lengthy, but straight-forward reasoning shows that the above 
construction assigning (B,ΦB,H,l)→(B⊗H,Φ,H) defines a covariant 
functor from the category of all cocommutative rack bialgebras to the 
category of all cocommutative Hopf dialgebras.
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A particular case of the preceding theorem is obtained by picking 
any C4 –coalgebra (B,∆B,εB,1B) such that there is any H-module 
coalgebra structure l on B (such that h.1B=εH(h)1B) and by choosing the 
trivial map ΦB(b)=εB(b)1H: It follows that (B,ΦB,H,l) is an augmented 
rack bialgebra with left-trivial multiplication. It turns out that the Hopf 
dialgebra B⊗H formed out of this is already isomorphic to the general 
cocommutative Hopf dialgebra:

Theorem 2.7: Let (A,∆,ε,1,,,S) be a cocommutative Hopf 
dialgebra. Let EA be the C3-subcoalgebra of all generalized idempotent 
elements2 with respect to , and let HA=1A be the Hopf subalgebra 
according to the Suschkewitsch decomposition of the left Hopf algebra 
(A,∆,ε,1,,S), see Theorem 2.5. Then we have:

1. By means of the Suschkewitsch isomorphism A→EA⊗HA for 
the left Hopf algebra (A,∆,ε,1,,S), we can transfer the cocommutative 
dialgebra structure of A to EA⊗HA: There is a well-defined left module-
coalgebra action l of HA on EA defined by (for all c∈EH, h∈HA, a∈A such 
that h=1a)

(1) (2)

( )
( ) ( ) = ( ) ( . ) ( ),

h
c h c h c h c h hε′ ′ ′ ′ ′⊗ ⊗ ⊗∑ 		                   (56)

and the transferred multiplications ′ and ′ and the antipode S′ on 
EA⊗HA read (for all c,c′∈EH, h,h′∈HA)

(1) (2)

( )
( ) ( ) = ( ) ( . ) ( ),

h
c h c h c h c h hε′ ′ ′ ′ ′⊗ ⊗ ⊗∑ 		                (57)

(c⊗h)′(c′⊗h′)=ε(c′)c(hh′), 			                (58)

( ) = ( )( ( ( )).E HA A
S c h c S hε′ ⊗ ⊗1 			                (59)

2. The K-linear map A→1 A:a 1 a descends to an isomorphism 
of associative algebras 1

ass AA H≅ .

3. S.Covez, 2006: The Leibniz subalgebra Prim(A) of A (equipped 
with the Leibniz bracket (47) is a split semidirect sum out of the two-
sided ideal Prim(EA)⊂ z(Prim(A)) and the Lie subalgebra Prim(HA), i.e. 
for all z,z′∈Prim(EA) and ξ,ξ′∈Prim(HA), we have

[z+ξ,z′+ξ′]=ξ.z+ [ξ,ξ′]. 				                  (60)

4. Let (B,ΦB,H,l) be a cocommutative augmented rack bialgebra. 
Then for the Hopf dialgebra B⊗H of Theorem 2.6, we get that the Hopf 
subalgebra HB⊗H equals 1B⊗ H ≅ H, and

(1) (2)

( )
= { ( ( ( )))  | B H H B

b
E b S b B H b B⊗

⊗ Φ ∈ ⊗ ∈ 


∑

which is isomorphic to B as a C4-coalgebra of BH.

Proof: 1. Note first that the right hand side of eqn (56) is just ac 
of Proposition 2.6 which had been shown to be a left module-Hopf 
dialgebra action of (A,) and of (A,) on A. Observe that for all a, a′∈ A

(50)
( ) = ( ) =a a a a a a′ ′ ′1 1   

whence the HA-action l is well-defined on A. Moreover we compute for 
all h∈ HA and all a, a′, a′′∈ A such that

h=1 a:
(1) (2) (1) (2)

( ) ( )
( . ) ( . ) = ( ) ( )

h a
h a h a a a a a′ ′′ ′ ′′∑ ∑   

(53)
= ( ) = .( )a a a h a a′ ′′ ′ ′′

  
whence (A,) is also a HA-module-algebra. Now let c∈ EH. By definition, 
c is a generalized idempotent (w.r.t. ), hence c=∑(c)c

(1)c(2), and thus for 
all h∈ H

2Recall that this means c=(°∆)(c).

(1) (2) (1) (1) (2) (2) (1) (2)

( ) ( ),( ) ( . )
. = . = ( . ) ( . ) = ( . ) ( . )

c h c h c
h c h c c h c h c h c h c∑ ∑ ∑  

Whence h.c is also in EA, and EA is a HA-submodule of A.

Recall the Suschkewitsch decomposition of the left Hopf algebra 
(A,∆,ε,1,,S) where one can use Theorem 2.5 and dualize all the 
formulas:

(1) (2) (3)

( )
: : ( ( )) ( ).A A

a
A E H a a S a aΨ → ⊗ ⊗∑ 1  

Ψ−1:EA⊗HA→A:(c⊗(1a))ca.

Formulas (58) and (59) consequences of Theorem 2.5. The only 
formula which remains to be shown is eqn (57). Note first that every 
generalized idempotent c∈E (w.r.t. ) is also a generalized idempotent 
with respect to . Indeed, since all the components c(1) and c(2) in 
∆(c)=∑(c)c

(1)⊗c(2) can be chosen in E, we get

(1) (2) (1) (2) (3) (1) (2) (3)

( ) ( ) ( )
= ( ( )) = ( ( ))

c c c
c c c S c c c S c c∑ ∑ ∑    

(1) (2)

( )
= ( ) = .

c
c c cε∑ 1

Next for all c,c′∈ E, h,h′∈ H, and a,a′∈A such that 1a=h and 
1a′=h′, we get –since c is a generalized left unit element (w.r.t. ) 
thanks to 3. in Lemma 2.2–

(c⊗ h)′(c′⊗h′)=Ψ(Ψ−1(c⊗h)Ψ−1(c′⊗h′))=Ψ((ca)(c′a′))

=Ψ((ca)(c′a′))=ε(c)Ψ(a(c′a′))

and this is equal to
(1) (1) (1) (2) (2) (2)

( ),( ),( )
( ) (( (( ) ( ) )) ( ( (( ) ( ) )))) 

a c a
c a c a S a c aε

′ ′

′ ′ ′ ′∑     

(3) (3) (3)( ( (( ) ( ) )))a c a′ ′⊗ 1  

(1) (1) (1) (2) (2) (2)

( ),( ),( )
= ( ) ( (( ) (( ) (( ) )) (( ) ) ( )))

a c a
c a c a S a S c S aε

′ ′

′ ′ ′ ′∑     

(3) (3) (3)( (( ( ) ) ( ) ))a c a′ ′⊗ 1  

(1) (1) (2) (2)

( ),( )
= ( ) ( ((( ) (( ) )) ( )))

a c
c a c S c S aε

′

′ ′∑   

(3)( ( ))a a′⊗ 1 

(1) (2) (3)

( )
= ( ) ( ( ( ))) ( ( ))

a
c a c S a a aε ′ ′⊗∑ 1   

(1) (2)

( )
= ( ) ( . ) ( )

h
c h c h hε ′ ′⊗∑

proving eqn (57).

2. Clear for any bar-unital balanced dialgebra.

3. Straight-forward computation using Prim()=Prim(E)⊗ 
Prim(H) where the latter is well-known to be a Lie algebra and the 
former is abelian.

4. For each b∈b and h∈H, we get

(1B⊗1H)(b⊗h)=(1B⊗(ΦB(b)h),

Proving the first statement. Moreover

(1) (1) (2) (2) (1) (1) (2) (2)

( ),( ) ( ),( )
( ) ( ( ))) = ( ) ( ( ))H H B

b h b h
b h S b h b h S h S b⊗ ⊗ ⊗ Φ∑ ∑

(1) (2)

( )
= ( ( )),H B

b
b S b⊗ Φ∑

Proving the form of the generalized idempotents, and since the 
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K-linear map B→B⊗H given by (idB⊗(SH°ΦB))°∆ is an injective 
morphism of C3-coalgebra, the statement is proved.

The third statement had been proved by Simon Covez in his Master 
thesis in the differential geometric context of digroups, compare with 
Section 3.

Example 2.6: As an example, let us compute the Suschkewitsch 
decomposition for the augmented rack bialgebra K[X] where p:X→G 
is an augmented pointed rack, see Example 2.4. By the above theorem, 
part 4., its associated cocommutative augmented Hopf dialgebra 
decomposes as B⊗H, where the Hopf algebra H=K[G] is the standard 
group algebra and B=K[X]. The generalized idempotents are in this 
case

EB⊗H={b⊗p(b)−1|b∈B}.

We finish this section with a formula relating universal algebras: 
The functor associating to any dialgebra A its Leibniz algebra A− via 
eqn (47) is well-known to have a left adjoint associating to any Leibniz 
algebra (h,[,]) its (in general non bar-unital) universal enveloping 
dialgebra Ud(h) associated to h defined by

Ud( ) = U( ).⊗h h h 				                   (61)

But also in the category of bar-unital balanced dialgebras, there 
is such a left adjoint: To any Leibniz algebra (h,[,]), we associate its 
universal balanced bar-unital enveloping dialgebra Ud( )h

Ud( ) = UAR( ) U( ).⊗h h h 				                   (62)

Before proving the theorem, we note that Ud( ) = Ud( ) U( )⊕h h h  is 
obtained by adjoining a balanced bar-unit to Ud(h).

Theorem 2.8: For any Leibniz algebra (h,[,]), the assignment 
Ud( )→h h  defines a left adjoint functor to the functor associating to 

any bar-unital balanced dialgebra its commutator Leibniz algebra.

Proof: Clearly, Ud( )h  is the cocommutative Hopf 
dialgebra associated to the universal augmented rack bialgebra 
(UAR( ), , U( ), )Φ hh h  (cf. Theorem 2.6) which in turn is associated to 
the Leibniz algebra (h,[,]) (cf. Theorem 2.4). Since both assignments 
are functorial, it follows that the assignment Ud( )→h h  is a functor. 
It remains to prove the universal property: Let (h,[,]) be a Leibniz 
algebra, let (A,1,,) a bar-unital balanced dialgebra, and let  ϕ:h→A− 
be a morphism of Leibniz algebras. It follows that the K-linear map 

1
ass:A AϕΦ → h  vanishes on the two-sided ideal Q(h) and descends to a 

morphism h  of the quotient Lie algebra h  to 1
assA  with its commutator 

Lie bracket such that = Apϕ ϕΦ  . Hence there is a unique morphism 
1
assU( ) : U( ) Aϕ →h  of unital associative algebras extending ϕ . Define 

the K-linear map ˆ : Ud( ) = U( ) Ud( ) Aϕ ⊕ →h h h  by (for all , U( )u v ∈ h  and 
x∈h):

ˆ ˆ( ) = (U( )( ))  and  ( ) = ( ) (U( )( ))A Au i u x v x i vϕ ϕ ϕ ϕ ϕ⊗ 

where we recall the natural injection of unital algebras 1
ass:Ai A A→  given 

by iA(ΦA(a))=1a for all a∈A. We shall show that ϕ̂  is a morphism of 
augmented dialgebras: We compute for all , , U( )u u u′ ′′∈ h , using that iA 
and U( )ϕ  are morphisms of unital associative algebras and that in the 
image of iA, we can use the multiplication symbols  and  arbitrarily:

ˆ ˆ ˆ ˆ( ) = (U( )( )) (U( )( )) (U( )( )) = ( ) ( ) ( )A A Au uu i u i u i u u u uϕ ϕ ϕ ϕ ϕ ϕ ϕ′ ′′ ′ ′′ ′ ′′   

Showing the fact that ϕ̂  preserves the bimodule structures on the 
first component of Ud( ) . Next we have for all x1, x∈h

 ϕ(p(x1).x)=ϕ(x1,x])=ϕ(x1)ϕ(x)−ϕ(x)−ϕ(x)ϕ(x1)

1 1= ( ( ( ))) ( ) ( ) ( ( ( )))A Ai p x x x i p xϕ ϕ ϕ ϕ− 

and by induction on k in 1= ( ) ( ) U( )ku p x p x′ ∈ h  and x1,…, xkh, we 
prove

(1) (2)

( )
( . ) = ( ( )) ( ) ( ( ( ))).A

u
u x i u x S uϕ ϕ ϕ ϕ

′

′ ′ ′∑  

Now, for all , , U( )u u v′ ′′ ∈ h  and x∈h, we get:
(1) (2)

( )
= (( ) . ) (U( )(( ) ))A

u
u x i u vuϕ ϕ

′

′ ′ ′′∑ 

(1) (2)

( )
= (( ) . ) (U( )(( ) ))A

u
u x i u vuϕ ϕ

′

′ ′ ′′∑ 

(1) (2) (3)

( )
= (U( )(( ) )) ( ) (U( )( (( ) )( ) ))A A

u
i u x i S u u vuϕ ϕ ϕ

′

′ ′ ′ ′′∑  

= (U( )( )) ( ) (U( )( )) (U( )( ))A A Ai u x i v i uϕ ϕ ϕ ϕ′ ′′  

ˆ= (U( )( )) ( ) (U( )( ))A Ai u x v i uϕ ϕ ϕ′ ′′⊗ 

Showing the fact that ϕ̂  preserves the bimodule structures on 
the second component of Ud( )h . Hence ϕ̂  is a morphism of bar-unital 
(augmented) dialgebras. The uniqueness of ϕ̂  follows from the 
universal property of U( )h

Coalgebra Structures for Pointed Manifolds with 
Multiplication

In this section, the symbol  denotes either the field of all real 
numbers, , or the field of all complex numbers, . We define here the 
monoidal category of pointed manifolds, and exhibit the Serre functor 
sending a pointed manifold to the coalgebra of point-distributions 
supported in the distiguished point. We recall further that this is a 
strong monoidal functor. Further down, we will study Lie (semi) 
groups, Lie racks, and Lie digroups as examples of this construction, 
motivating geometrically the notions of a rack bialgebra and of a Hopf 
dialgebra.

Pointed manifolds with multiplication(s)

Recall first the category of all pointed manifolds f * whose objects 
consist of pairs (M, e) where M is a non-empty differentiable manifold 
and e is an element of M and whose morphisms (M, e)→ (M′, e′) are 
given by all smooth maps φ: M→ M′ of the underlying manifolds such 
that φ(e)=e′. Recall that the cartesian product × makes f *  into a 
monoidal category by setting (M, e1)× (N, e2)≔ (M× N,(e1, e2)) with the 
one-point set ({pt},pt) as unit object and the usual associators, left-unit 
and right-unit identifications borrowed from the category of sets [14]. 
This monoidal category is symmetric by means of the usual (tensor) flip 
map τT=τT(M,N):M×N→N×M:(x,y)(y,x) where the pair of distinguished 
points is also interchanged.

By simply forgetting about the differentiable structure we get the 
category of pointed sets.

Recall that a pointed manifold with multiplication is a triple (M, 
e,m) where (M, e) is a pointed manifold, and m:(M,e)× (M, e) (M, e) is 
a smooth map of pointed manifolds, i.e. is a smooth map M× M→ M 
such that m(e,e)=e. Moreover, a pointed manifold with multiplication 
will be called left-regular (resp. right-regular) if all the left (resp. right) 
multiplication maps ym(x,y) (resp. ym(y, x) are diffeomorphisms. 
Morphisms of pointed manifolds with multiplication (M,e,m)→ 
(M′,e′,m′) are smooth maps of pointed manifolds φ:(M, e)→ (M′, e′) 
such that

φ°m=m °(φ×φ).	       (63)
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The obvious generalization are a finite number of maps M×n→M 
with n ≥ 1) arguments.

Again by forgetting about differentiable structures, we get the 
category of pointed sets with multiplication.

Coalgebra Structure for distributions supported in one point

For any pointed manifold (M, e) recall the -vector space

ε′e(M)≔

{T:C∞(M,)→|T is a continuous linear map and supp(T)={e}}  (64)

of all distributions supported in the singleton {e} [15]. Now let φ:M→ 
M′ be a smooth map such that φ:(e)→ e′. For any distribution S∈ε′e(M) 
and any smooth function f′∈∞(M′,) the well-known prescription

(φ*S)(f′)≔S(f′°φ)	  			                 (65)
gives a well-defined distribution φ*S on the target manifold M′ 
supported in e′=φ(e), and the map φ*:ε′e(M)→ε′e′(M′) is a -linear map 
(which is continuous). Clearly for three pointed manifolds (M, e), (M′, 
e′), and (M′′, e′′) with smooth maps φ:(M, e)→ (M′, e′) and Ψ:(M′, e′) → 
(M′′, e′′) we get

* * * * ' ( )( ) =    and   (id ) = id .M Me
ψ φ ψ φ   	 		                 (66)

This defines a covariant functor F:f*→ Vect to the category of 
all -vector spaces by associating to any pointed manifold (M, e) the 
-vector space F(M, e)≔ ε′e(M), and to any smooth map (M, e)→ (M, 
e′) the linear map F(φ)≔φ*:ε′e(M) ε′e′(M′). We call this functor Serre 
functor in tribute to the predominant role it plays in [16]. It is one of 
the main objects of this article.

There is, however, much more structure in this functor: First 
any distribution space ε′e(M) contains a canonical linear form ε=εe: 
ε′e(M)→ defined by

 εe(T)≔T(1), 					                  (67)
Where 1 denotes the constant function M→ whose only value is 

equal to 1∈ . Moreover each space ′e(M) contains a canonical element 
1=1e defined by the well-known delta distribution

1e= δe:f f(e), 					                   (68)
and we clearly have

εe(1e)=1. 		         (69)

Moreover, both εe and 1e are natural in the following sense: let φ:(M, 
e)→ (M′, e′) be a smooth map of pointed differentiable manifolds. Then 
it is straight-forward to check that

εe′°φ*εe and φ*(1e)=1e′.	       (70)

Recall the well-known tensor product or direct product of two 
distributions: More generally, let M and N be two differentiable 
manifolds, and let S∈′(M) and T∈′(N) be two distributions (where 
the symbol ′(M) denotes the continuous dual space of the test 
function space (M) of all smooth -valued functions with compact 
support) [17]. Let f: M×N→  be a smooth function with compact 
support K ⊂ M × N, and let K1≔prM(K) ⊂ M, K1≔prN(K) ⊂ N, whence 
K is a subset of the compact set K1×K2. Let T(2):(M×N)→Fun(M,) be 
the following map: For each x∈M, let fx∈(N) be the partial function 
yf(x,y). Then we set

(T(2)(f))(x)=T(fx).

The superscript (2) means here that we see f as a function of its 
second variable only, when applying the distribution T.

Upon using the approximation theorem of any distribution 
by a sequence of regular distributions, one can show that (T(2)(f): 
M→ is a smooth function having compact support in K1. It is clear 
that T(2):(M×N)→(M) is linear, and it can be shown by the same 
approximation theorem that T(2) is continuous. It follows that the map

(S,T)(fS(T(2)(f)))

is a well-defined -bilinear map ′(M)′(N)→′(M×N), and there is 
thus a unique linear map (where ⊗ denotes the usual algebraic tensor 
product over )

F2M,N: (M)⊗′(N)→′(M×N)	       (71)

such that for all f ∈ (M×N) we have

(F2M,N (S⊗T))(f)=S(T(2)(f )).

Note also that it can be shown that the right hand side is equal 
to T (S (1)(f )) where the notation is self-explanatory. Furthermore, it 
is not hard to see that for two distributions supported in one point, 
i.e.

1
' ( )eS M∈  and 

2
' ( )eT N∈  the distribution F2M,N (S⊗T) is 

supported in (e1,e2), i.e. is an element of ε′(e1,e2) (M×N). We shall 
denote the restriction of the map F2M,N to 

1 2
' ( ) ' ( )e eM N⊗   by the same 

symbol F2M,N. For three pointed manifolds (M,e1), (N,e2), and (P,e3), let 
αM,N,P:M×(N×P)→(M×N)×P be the usual associator for the monoidal 
category of all sets, and for three vector spaces V, W, X over , let 
V,W,X: V ⊗(W⊗X)→(V⊗W)⊗X be the well-known associator for the 
monoidal category of all vector spaces. By using the definitions, it is not 
hard to see that the following identity holds

 2 ( ), 2 , ' ( ) ' ( ), ' ( ), ' ( )
3 1 2 3

( id )M N P M N P M N Pe e e e
F F β× ⊗    

, , * 2 ,( ) ' ( ) 2 ,
1

= ( ) (id )M N P M N P M N Pe
F Fα × ⊗   		                 (72)

hence eqn (3) of [15]. In the same vein, the two diagrams in eqn (4) 
of [15] are satisfied upon setting F0=εpt and λ:⊗V→V and ρ:V⊗ 
→V the usual left-unit and right-unit identifications in the monoidal 
category of vector spaces.

Let (M′,e1′) and (N′,e2′) two other pointed differentiable manifolds, 
and let φ:(M, e)→ (M′, e′) and ψ: (N,e2)→ (N′,e2′) two smooth maps of 
pointed differentiable manifolds. It is a straight-forward check that the 
map F2M,N to is natural in the following sense

F2M′,N′°(φ*⊗ψ*)=(φ×ψ)*° F2M,N*	         (73)

Moreover, note that the map F0=εpt (see eqn (67)) defines an 
isomorphism of ε′pt({pt}) to  which had already been seen to be 
natural.

As a result, the functor F is a monoidal functor in the sense of [15]. 
Moreover, since the category f* is even a symmetric monoidal category 
by means of the canonical flip map τM,N:M×N→N×M:(x,y)→(y,x), see 
e.g. [15], and the monoidal category -vect is also symmetric, it is not 
hard to see that the monoidal functor is also symmetric, see e.g. [15] 
for definitions.

We shall now show that the monoidal functor F is strong, i.e. that 
F0=εpt and F2M,N are isomorphisms. This is clear for εpt. Recall that for 
each distribution T in ε′e(V) (where V is a nonempty open set in m 
containing the point e), there is nonnegative integer l (called the order 
of the distribution) such that

=0 ,| |=

= ( )
l

e
mr r

T c
x

δ
∈

∂
∂∑ ∑

k

k
kk k

Where ck∈ for each multi-index k. In a slightly more algebraic 
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manner we can express this as follows: let E be a finite-dimensional real 
vector space, let V⊂E be an open set containing e⊂E. Then we have the 
following linear isomorphism S:S(E)→ε′e(V) given by ΦS(1)=δe and for 
any positive integer k and vectors w(1),…,w(k)∈E and f ∈(V,)

ΦS(w(1)•…•w(k))(f)

(1)
1 ( )

1 =0, , =01

( ( ))
=

k
k k

k s sk

f e s w s w
s s

∂ + + +

∂ ∂






                               (74)

where • denotes the commutative multiplication in the symmetric 
algebra, see Appendix A. Using the fact that the inclusion map 

:U U Mαα
ι →  of any chart domain of M such that e∈Uα defines an 
isomorphism * : ' ( ) ' ( )U e eU Mαα

ι →  , and that any chart ϕα:Uα→Vα⊂m 
defines an isomorphism * ( ): ' ( ) ' ( )e eU Vα α ϕ αα

ϕ →  , we can conclude that 
there is a linear isomorphism

1 1
* * * S=: : S( ) ' ( )m

U V e Mα αα α
ι ϕ ι− −Φ Φ →     	      (75)

with the symmetric coalgebra S(m) on m (see Appendix A) computed 
as follows

1
(1)

( ) (1) ( )1
, , =11 1

( | )
( ( ( )) ).

km U
k i k ik

i i i ik k

f
w w f e w w

x x
αα

α

ϕ
ϕ

−∂
• •

∂ ∂∑




   



  (76)

where we write 
( ) ( )=1

= mm
j j i ii

w w e∋ ∑  where all the w(j)i are real 

numbers and e1,…,em is the canonical base of m. Note that for the 
particular case of M being an open set V of m and the chart ϕα being 
the identity map the map Φα (see eqs (75) and (76)) coincides with the 
canonical map ΦS, see eqn (??).

For two pointed manifolds (M, e1) and (N, e2) and given charts 
(Uα,ϕα) of M such that e1∈Uα and ( , )Uβ βϕ

  of N such that 

2e Uβ∈  , we thus have linear isomorphisms 
1

: S( ) ' ( )m
e MαΦ →  , 

2
: S( ) ' ( )n

e NβΦ →   , and Φα,β:S(m+n)→ε′(e1, e2)(M×N) (upon using the 

product chart ( , )U Uα β α βϕ ϕ× ×

 ). Using the above definitions, one 

can compute that

2 , , ,( ) =M N m nF α β α βΦ ⊗ Φ Φ Θ

 

Where Θm,n:S(m)⊗S(n)→S(m+n) denotes the natural 
isomorphism of commutative associative unital algebras induced by 
the obvious inclusions m  m+n (first m coordinates) and n  m+n 
(last n coordinates). It follows that the natural map F2M,N is equal to 

1 1
, , ( )m nα β α β

− −Φ Θ Φ ⊗ Φ 
 and is thus a linear isomorphism, whence the 

functor F is a strong monoidal functor.

In order to define more structure, let us consider the well-known 
diagonal map diagM:M→M×M defined by

diagM(x)=(x,x)

for all x∈M. Clearly, diagM is a smooth map of pointed manifolds (M, 
e)→(M×M, (e,e)). Moreover, the diagonal map is clearly natural in the 
sense that

diagM′°φ=(φ×φ)°diagM

for any smooth map φ: (M, e) (M′, e′) of pointed differentiable 
manifolds. In other words, the class of diagonal maps diagM constitutes 
a natural transformation from the identity functor to the diagonal 
functor (M,e)→(M×M,(e,e)) and φ(φ×φ). Define the following linear 
map  ∆=∆e=∆(M,e):ε′e(M)→ ε′e(M)⊗ ε′e(M) by

1
2 ,  *:= diag .e M M MF −∆ 

	      (77)

This definition has avatars with more than two tensor factors. 
Indeed, observe that the naturality relation (73) implies for φ=idM and 
ψ=diagM that

(idM × diagM)*

1
2 ,( ) ' ( ) 2 , ' ( ) 2 ,= (i ) (i ) .M M M M M M M e M Me e

F d F d F −
× × × ∆   

Similarly, we have relations of this type for any number of tensor 
factors.

In the following, we invite the reader to look again at Appendix A 
for definitions and notations about coalgebras.

We have the following

Theorem 3.1 With the above notations: 1. The -vector space 
ε′e(M) equipped with the linear maps ∆e (cf. eqn (77)), εe (cf. eqn 
(67), and 1e (cf. eqn (68) is a C5-coalgebra which is (non canonically) 
isomorphic to the standard symmetric coalgebra

(S(m), ε, ∆,1).

2. The above strong symmetric monoidal functor F extends to a 
functor –also denoted by F – from f * to the symmetric monoidal 
category of C5-coalgebras over .

 3. The subspace of all primitive elements of the coaugmented 
coalgebra ε′e(M) is natural isomorphic to the tangent space Te(M). 
Moreover for each smooth map φ: (M, e)→ (M′, e′) of pointed manifolds 
the coalgebra morphism φ*: ′e(M)→ ε′e′(M′) induces the tangent map 
Te*: Te(M)→ Te(M′).

Proof: 1. Coassociativity of ∆e: This follows from the coassociativity-
diagram of diagM* by first taking the induced diagram between 
distribution spaces which reads then

(αM,M,M)*°(idM× diagM)*° diagM*=(diagM× idM)*° diagM*.

Starting for example on the left hand side, one replaces the map 
diagM* by F2M,N ° ∆e, and also the map (idM× diagM)* by

1
2 ,( ) ' ( ) 2 , ' ( ) 2 ,(i ) (i ) .M M M M M M M e M Me e

F d F d F −
× × × ∆   

Now one observes that one may apply the relation (72) on the left 
hand side. One obtains

2 ( ), 2 , ' ( ) ' ( )( i ) (i )M M M M M M M e ee e
F F d dβ× × × ∆ ∆    

2 ( ), 2 , ' ( ) ' ( )= ( i ) ( i ) .M M M M M M e M ee e
F F d d× × ∆ × ∆   

One deduces coassociativity.

2. Cocommutativity of ∆e: This follows from the symmetry of F 
(already noted before) and the cocommutativity of diagM*.

3. Counitality of ∆e: This follows from the counitality of diagM*, i.e.

1 2(p i ) diag =i , a (i p ) diag =i ,e M e e M eroj d ncl nd d roj ncl× × 

Where proje:M→{e}, 1i : { }encl M e M→ ×  and 2i : { }encl M M e→ ×  are 
the canonical maps. Indeed, these equations induce the corresponding 
equations between distribution spaces, and translating direct products 
into tensor products (and thus (proje)* into ε and diagM* into ∆e), one 
obtains counitality.

 4. Connectedness of ∆e: The coalgebra ε′e(M) is isomorphic to the 
symmetric algebra S(n), and the latter is connected.
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 This shows part (1) of the statement, as the isomorphy to the 
standard symmetric coalgebra has been shown above.

The only thing which has to be shown for the second statement is 
the preservation of the coalgebra structure on the level of morphisms, 
which is clear.

For the third part, consider the linear map TeM→Prim(ε′e(M)) (see 
Appendix A for the definition of the primitives Prim(C) of a coalgebra 
C) defined by

v(f  dfe(v)):

Indeed the right hand side is clearly in ε′e(M), and the Leibniz rule 
for the derivative shows that this is in Prim(ε′e(M)). Moreover the above 
map is clearly injective, and since Prim(S(n))=n and dim(TeM)=n it 
follows that the above map is an isomorphism of real vector spaces. The 
naturality is a simple computation.

The last statement means that the composed functor Prim°F of the 
Serre functor F and the functor associating to any coalgebra C its space 
of primitive elements, Prim(C), is naturally isomorphic to the tangent 
functor T* associating to any pointed differentiable manifold (M, e) its 
tangent space TeM .

Remark 3.1: There is neither a canonically defined (i.e. not 
depending on the choice of a chart) projection from the coalgebra to its 
primitives, so the coalgebras ε′e(M) are isomorphic to the cofree S(m), 
but in general not naturally, nor a canonically defined commutative 
multiplication (the classical convolution of distributions of compact 
support which needs the additive vector space structure).

Remark 3.2: Note also the disjoint union ∪x∈Mεx(M)(k) carries 
the structure of a smooth vector bundle over M: Its smooth sections 
coincide with the space of all differential operators of order k.

Remark 3.3: In case U⊂m and V⊂n are pointed open sets, the 
coalgebra morphism φ* of a smooth map φ:U→V of pointed manifolds 
is isomorphic to the coalgebra morphism S(m)→ S(n) induced by the 
jet of infinite order of φ at the distinguished point e of U, j∞(φ)e, for 
further information [18]. The functorial equation (φ °ψ)*=φ*°ψ* can be 
computed out of the chain rule for higher derivatives.

Pointed manifolds with multiplication and their associated 
bialgebras

We can now apply the Serre functor defined in the preceding 
Section 3.2 to pointed manifolds with multiplication:

Theorem 3.2: Let (M,e,m) be a pointed manifold with multiplication. 
Then the C5-coalgebra ε′e(M) carries a multiplication, i.e. a linear map 
µ=m*°F2,M,M: ε′e(M) ε′e(M) ε′e(M) which is a morphism of C5-coalgebras.

In case m is left-unital (resp. right unital), the nonassociative C3I-
algebra ε′e(M) is left regular (resp. right regular)

 Proof: The map µ exists and is linear by functoriality. We have 
trivially

diagM°m=(m×m) ° (idM×τM,M×idM) ° (diagM× diagM),

and this shows that µ is a morphism of coalgebras by translating diagM 
into ∆e using as before the maps of type F2. The regularity statements 
are a consequence of the connectedness of the C3-coalgebra ε′e(M), see 
Lemma 2.1.

In the following, we shall enumerate some important (sub)
categories of pointed differentiable manifolds with multiplications.

Lie groups and universal enveloping algebras: Let (G,m,e,()−1) a 
Lie group. The following theorem is well-known:

Theorem 3.3: The associated coalgebra with multiplication µ of 
the Lie group (G,m,e,()−1) is an associative unital bialgebra (in fact, a 
Hopf algebra) isomorphic to the universal enveloping algebra of the 
Lie algebra g=TeG of G.

We just indicate the isomorphism: For any ξ∈g, let ξ+ denote the 
left invariant vector field ξ+(g)≔TeLg(ξ) generated by its value ξ∈g=TeG. 
Then the map ΦU:U(g)→F(G) is given by (for all k∈, ξ1,…,ξk∈g and 
f′∈∞(G,))

U 1
1

( )( ) = (( )( ))( )k
k

f f e
ξ ξ

ξ ξ + +′ ′Φ    	      (78)

Where X denotes the Lie derivative in the direction of the vector 
field X.

Note that the identities for the inverse map gg−1 can be written as

m°(()−1×idG)°diagG=(ge)=m°(idG×()−1)°diagG,	        (79)

and an application of the functor F gives the convolution identities for 
the antipode, defined by S=(()−1)*.

Lie semigroups and Lie monoids: It is easy to see but presumably 
less known that the result of the preceding subsection remains true for 
a Lie monoid (G,m,e):

Theorem 3.4: 1. The associated coalgebra with multiplication µ of 
the Lie monoid (G,m,e) is an associative unital bialgebra (in fact a Hopf 
algebra) isomorphic to the universal enveloping algebra of a Lie algebra 
g≅ TeG.

2. The associated coalgebra with multiplication µ of the right Lie 
group (G,m,e,()−1) is a right Hopf algebra.

In order to see the first statement note that it is clear that the 
associated coalgebra C≔F(G) carries an associative unital multiplication 
µ=m*°F2G,G. The fact that the coalgebra is always connected implies by 
the Takeuchi-Sweedler argument (see Appendix 4) that the identity 
map idC has a convolution inverse, and is thus a Hopf algebra. Since 
the coalgebra C is connected and cocommutative, it follows from 
the Cartier-Milnor-Moore Theorem that the Hopf algebra F(G) is 
isomorphic to the universal enveloping algebra over the Lie subalgebra 
g of its primitive elements which is equal to TeG.

The second statement is an immediate consequence of the 
functorial properties of F.

(Lie) dimonoids and digroups: Recall that a Lie dimonoid (see 
e.g. Lod 2001) is a pointed differentiable manifold (D,e) equipped with 
two smooth associative multiplications D×D→D, written (x,y)xy and 
(x,y)xy (and preserving points, i.e. ee=e=e), such that the dialgebra 
conditions eqs (41), (42), (43), (44), and (45) hold for all x,y,z∈D and e 
(replacing 1): Hence (D,,e) is a left unital Lie semigroup and (D,,e) 
is a right unital Lie semigroup, and as for dialgebras, we shall say bar-
unital dimonoid to stress the fact that the bar-unit e is among the data 
for the dimonoid.

Let us call a Lie dimonoid (D,e,,) balanced iff in addition for 
all x∈D the analogue of eqn (46) holds, i.e. xe=ex. Any Lie monoid 
(G,e,m) is a Lie dimonoid by setting ==m.

Another class of examples is obtained by the following important 
augmented dimonoid construction (cf Example 2.5): Let G be a Lie 
group, let (D, eD) be a pointed differentiable manifold, let G smoothly 
act on the left and on the right of M (written (g,x)gx and (x,g) xg) 
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such that (g,x) g′=g(x,g′) for all g, g′∈ g and x∈D, and let f:(D,eD)→(G,e) 
be a smooth map of pointed manifolds such that for all g, g′∈ G and 
x∈D

 f (gxg)=gf (x) g′. 	     (80)

Then the pointed manifold (D,eD,,) will be a (bar-unital) 
dimonoid by setting

xy≔f(x)y and xy≔xf(y) 	 (81)

A general Lie digroup is defined (according to Liu) to be a (bar-
unital) dimonoid (D,e,,) such that the left unital Lie semigroup 
(D,e,) is a right group and the right unital Lie semigroup (D,e,) is 
a left group (see Appendix 5 for definitions): Here the right inverse 
of x with respect to  does in general not coincide with the left 
inverse of x with respect to . For an example, take any Lie group 
G, set (D,eD)=((G×G,(e,e)), define the two canonical G –actions 
g(g1,g2)≔(gg1,g2) and (g1,g2)g≔(g1,g2g) (for all g,g1,g2,∈g), and let f: 
G×G→ G be the group multiplication. Then (D,eD,,) will be a general 
digroup with 1 1 1

1 2 2 1( , ) = ( , )g g g g e− − −
  and 1 1 1

1 2 2 1( , ) = ( , )g g e g g− − −
 .

In [13, Definition 4.1] Kinyon defines a Lie digroup as a general Lie 
digroup such that in addition for each x its right inverse (w.r.t. to x) is 
equal to its left inverse (w.r.t. ). This can be shown to be equivalent to 
demanding that the general Lie digroup (D,e,,) be balanced.

Again using the Suschkewitsch decomposition Theorem (which 
applies in case the underlying manifold is connected), it is not hard 
to see that the category of all connected Lie digroups (in the sense of 
Kinyon) is equivalent to the category of all left -spaces, i.e. whose 
objects are pairs (G,X) where G is a connected Lie group and X is a 
pointed connected left G-space (i.e. the distinguished point of X is a 
fixed point of the G-action) with obvious morphisms. Recall that the 
Lie digroup is given by X×G equipped with the point (eX,e) and the two 
multiplications (x1,g1)(x2,g2)=(g1x2,g1,g2) and (x1,g1)(x2,g2)=(x1,g1,g2) 
for all x1,x1∈X and g1,g1∈G.

The following theorem is a direct consequence of the functorial 
properties of the functor F:

Theorem 3.5: Let (D,e,,) be a bar-unital Lie dimonoid (D,e,,).

1. The underlying vector space of the associated coalgebra F(D) 
to the bar-unital Lie dimonoid (D,e,,) equipped with 1 and the 
multiplications µ,µ is an associative bar-unital dialgebra.

In case D is balanced, F(D) is a cocommutative Hopf dialgebra.

2. In case (D,e,,) is a Lie digroup (in the sense of Kinyon), F(D) 
is a cocommutative Hopf dialgebra.

(Lie) racks: Recall that a Lie rack is a pointed manifold with 
multiplication (M,e,m) satisfying the following identities for all x,y,z∈M 
where the standard notation is m(x,y)=xy

ex=x, 	       (82)

xe=e, 	                                                                                    (83)
x(yz)=(xy) (xz)                                                                  (84)

In addition, one demands that (M,e,m) be left-regular, i.e. 
for all x∈M the left multiplication maps Lx:yxy should be a 
diffeomorphism.

Note the following version of the self-distributivity identity (84) in 
terms of maps:

m°(idM×m)

=m°(m×m) °(idM×τM,M×idM) °(diagM×idM×idM)                                  (85)

Example 3.1: Note that every pointed differentiable manifold (M,e) 
carries a trivial Lie rack structure defined for all x,y∈M by

x 0y≔y, 	        (86)

and this assignment is functorial.

Example 3.2: Any Lie group G becomes a Lie rack upon setting for 
all g,g′∈ G

g  g′≔gg′g−1, 	         (87)

again defining a functor from the category of Lie groups to the category 
of all Lie racks.

Example 3.3: Let G be a Lie group and V be a (smooth) G-module 
(supposed to be a real or complex vector space). On X≔V×G, we define 
a binary operation  by

(v,g) (v′,g′)=(g(v′),gg′g−1)

for all v,v′∈ ∈ V and all g,g′∈G. X is a Lie rack with unit 1≔(0,1) which 
is called a linear Lie rack.

Example 3.4: Let (D,e,,) be a (balanced) digroup. Then formula 
(13) of [5],

xy≔xyx−1

equips the pointed manifold (D,e, ) with the structure of a Lie rack.

Any Lie rack (M,e, ) can be gauged by any smooth map f: 
(M,e)(M,e) of pointed manifolds satisfying for all x,y∈M

f (xy)=x f (y).

A straight-forward computation shows that the pointed manifold 
(M,e) equipped with the gauged multiplication f defined by

xf y≔ f (x) y

is a Lie rack(M, e, f).

Furthermore, recall that an augmented Lie rack (M,φ,G,) consists 
of a pointed differentiable manifold (M,eM), of a Lie group G, of a 
smooth map φ:M→G (of pointed manifolds), and of a smooth left G 
–action :G×M→M (written (g,x)(g,x)=g(x)=gx) such that for all 
g∈G, x∈M

geM=eM,	                                                                                   (88)

φ(gx)=gφ(x)g−1.	                                                                                   (89)

It is a routine check that the multiplication  on M defined for all 
x,y∈M by

xy≔φ(x)(y)                                                                                         (90)

satisfies all the axioms (82), (83), and (84) of a Lie rack, thus making 
(M,eM,) into a Lie rack such that the map φ is a morphism of Lie racks, 
i.e. for all x,y∈M

φ(xy)=φ(x)φ(y)φ(x)−1. 	         (91)

A morphism (Ψ,ψ):(M,φ,G,)→(M′,φ′,G′,′) of augmented Lie racks 
is a pair of maps of pointed differentiable manifolds Ψ: M→ M′ and ψ: 
G→G′ such that ψ is homomorphism of Lie groups and such that all 
reasonable diagrams commute, viz: for all g∈G

φ′°Ψ=ψ°φ	                                                                                       (92)
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Ψ°g=′ψ(g) °Ψ                                                                                           (93)

Note that the trivial Lie rack structure of a pointed manifold (M,e) 
comes from an augmented Lie rack over the trivial Lie group G={e}.

Let (M,e,) be a Lie rack. Applying the functor F we get the 
following

Theorem 3.6: The associated coalgebra F(M) with multiplication µ 
of the Lie rack (M,e,m) is a rack bialgebra, i.e. satisfying for all a,b,c∈C, 
using the same notation ab for µ(a⊗b):

1a=a, 	                                                                                    (94)

a1=ε(a)1, 	                                                                                    (95)
(1) (2)

( )
( ) = ( ) ( ).

a
a b c a b a c∑                                           (96)

Proof: 1. By definition, S⊗T∈εe′(M)⊗εe′(M) are sent by µ=* to 
the distribution fF2M,M(S⊗T)(f°). We evaluate this formula for 
S=1. This gives the distribution f 1(T(2)(f°)). But T(2) means that 
the function is seen as function of its second variable, i.e. T(2) (f°)
(y)=T(f(y−)). On the other hand, the delta distribution 1 evaluates a 
function in e, thus

1(T(2)( f°))=T(f(e−))=T(f),

Because ey=y for all y∈M. This shows 1T=T.

2. Exchanging the roles of the two variables in the above 
computation, we obtain for T 1 the distribution

T (1(2)( f°)) or in other words 1(T(1)( f°)), i.e. the above element 
y is now in the second place. We obtain

1(T(1)( f°))=T(f(−e))=T(f(e))=T(1)=ε(T).

This shows T1=ε(T)1.

3. As remarked before, the definition of ∆e, namely 
1

2 ,  *= diage M M MF −∆ 

, induces thanks to the naturality relation (73) 
relations like

1
* 2 ,( ) ' ( ) 2 , ' ( ) 2 ,(i diag ) = (i ) (i ) ,M M M M M M M M M e M Me e

d F d F d F −
×× × × ∆   

and

' ( ) ' ( )i ie M Me e
d d∆ × × 

1 1
2 , ' ( ) ' ( ) 2 ( ), ' ( )= ( i i ) ( i )M M M M M M M Me e e

F d d F d− −
×× × ×  

1
2 ( ) , *(diag i i )M M M M M M MF d d−

× × × × 

2 ( ), 2 , ' ( )( i ).M M M M M Me
F F d× ×  

Therefore, starting from the relation induced on ε′e (M) by relation 
(85), one replaces (diagM×idM×idM)* by the above and obtains finally an 
equation equivalent to equation (8).

Remark 3.4: This theorem should be compared to Proposition 3.1 
in [3]. In [3], the authors work with the vector space K[M] generated 
by the rack M, while we work with point-distributions on a Lie rack 
M. Once again, in some sense, we extend their Proposition 3.1 “to 
all orders”. Observe however that their structure is slightly different 
(motivated in their Remark 7.2).

We get a similar theorem for an augmented Lie rack: Let g denote 
the Lie algebra of the Lie group G, then we have the:

Theorem 3.7: The associated coalgebra C with multiplication µ of 
an augmented Lie rack (M, φ, G, ) is a cocommutative augmented rack 
bialgebra (C,φ*,U(g), )

We shall close the subsection with a geometric explanation of some 
of the structures appearing in Subsection 2.1: Let (h,[,]) be a real finite-
dimensional Leibniz algebra. There is the following Lie rack structure 
on the manifold h defined by

ad:= ( )xx y e y 	           (97)

Moreover, pick a two-sided ideal z⊂h with Q(h)⊂z⊂z(h) so that 
the quotient algebra g≔h/z is a Lie algebra. Let p:h→g be the canoncial 
projection. Let G be the connected simply connnected Lie group 
having Lie algebra g. Since g acts on h as derivations, there is a unique 
Lie group action  of G on h by automorphisms of Leibniz algebras. 
Consider the smooth map

φ:h→G:xexp(p(x)).	        (98)

Clearly φ(g.x)=gφ(x)g−1 for all x∈h and g∈G whence(h,φ,G,) is an 
augmented Lie rack, and it is not hard to see that the Lie rack structure 
coincides with (97).

Theorem 3.8: The C5-rack bialgebra associated to the augmented 
Lie rack (h,φ,G,) by means of the Serre functor is isomorphic to 
the universal envelopping algebra of infinite order, UAR∞(h), see 
Definition 2.3 and Theorem 2.1.

Proof: First we compute φ*exp*°p*. Since p:h→g is linear, it is easy to 
see using formula (??) that for all k∈ and x1,…,xk∈h

p*(ΦS(x1•…•xk))=ΦS(p(x1)•…•p(xk))=ΦS(p)(x1•…•xk)),

see (??) for a definition of ΦS. Next, for all k∈ and ξ1,…,ξk∈g, we shall 
show the formula (for all f′∈∞(G,))

S 1 U (1) ( )*
1( ( ( )))( ) = ( ( ))( )exp
!k k

Sk

f f
k σ σ

σ

ξ ξ ξ ξ
∈

′ ′Φ • • Φ∑ 

=(ΦU(ω(ξ1•…•ξk)))(f′)

(see eqn (78) for a definition of ΦU). Both sides of this equation are 
symmetric k-linear maps in the arguments ξ1,…,ξk, hence by the 
Polarization Lemma, it suffices to check equality in case ξ1=…=ξk=ξ 
[19]. Since for each real number t the map ( ) := exp( )tg F g g tξ ξ  is 
the flow of the left invariant vector field ξ+, we get

S*
=0 =0

( ( ( )))( ) = ( (exp( ))) = ( ( ( ))))exp
k k

tk k
t t

f f t f F e
t t

ξξ ξ ξ∂ ∂′ ′ ′Φ • •
∂ ∂



*

=0

= ((( ) )( ))))
k

tk
t

F f e
t

ξ∂ ′
∂

*

=0
= (( ) (( )( )))( )t

t
F f eξ

ξ ξ+ + ′
 

= (( )( ))( )f e
ξ ξ+ + ′
 

=(ΦU(ω(ξ1•…•ξk)))(f′)

proving the above formula. It follows that

1
* * U S*= = S( ) .exp p pφ ω −Φ Φ   

	       (99)

Next, we compute *. We get for positive integers k,l, ξ1,…,ξk∈g, 
x∈h, and f∈(h,):

(*(ΦU(ξ1…ξk)⊗ΦS(x•l)))(f)
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exp( ) exp( )1 1
1 = = =0=1

= ( (( )( )))
k l

s sl k k
k s s tk

f tx
s s t ξ ξ

+∂
∂ ∂ ∂



 



dim( )

1
=11 1 1 = = =01

= (0) ( ) ( )
k l

s j s jl
j jk j jl l s sk

f x x
s s x x

 ∂ ∂ 
 ∂ ∂ ∂ ∂ 

∑




 

 

h

where in the last line we have used a basis of h, have written, y1,…,yn 
(n=dim(h)) for the components of each vector y∈h, and used the 
notation s for the linear map exp( ) exp( )1 1s sk kξ ξ  . By induction 
on k it is easy to prove that

1
1 = = =01

( ( ) ( )) = ad ( ),
k

s l
s s k

k s sk

x x x
s s ξ ξ

•∂
• •

∂ ∂ 



  



and using again the Polarisation Lemma, we finally get for all uU(g) 
and α∈S(h)

* U S S S( ( ) ( )) = (ad ( )) = ( . ),s
uu uα α αΦ ⊗ Φ Φ Φ

	     (100)

and the isomorphism with the augmented rack bialgebra UAR∞(h)=S(h) 
is established.

Remark 3.5: Observe that the Serre functor can be rendered 
completely algebraic, i.e. for example for an algebraic Lie rack R 
(meaning that the underlying pointed manifold is a smooth algebraic 
variety and the rack product is algebraic), one can take as its Serre 
functor image F(R) the space of derivations along the evaluation map 
in the distinguished point. The composition of F with the functor of 
primitives gives then the tangent functor (see text before Remark 3.1). 
This gives a new and completely algebraic functorial way to associate to 
a Lie rack its tangent Leibniz algebra.

Some Definitions Around Coalgebras (Appendix)
Let C be a module over a commutative associative unital ring 

K (which we shall assume to contain ). Recall that a linear map 
∆:C→C⊗KC=C⊗C is called a coassociative comultiplication iff 
(∆⊗idC)°∆=(idC⊗∆)°∆, and the pair (C,∆) is called a (coassociative) 
coalgebra over K. Let (C′,∆′) be another coalgebra. Recall that a K-linear 
map Φ:C→C′ is called a homomorphism of coalgebras iff ∆′°φ=(⊗φ)°∆. 
The coalgebra (C,∆) is called cocommutative iff τ°∆=∆ where τ: 
C⊗C→C⊗C denotes the canonical flip map. Recall furthermore 
that a linear map ε: C→K is called a counit for the coalgebra (C,∆) iff 
(ε⊗idC)∆=(idC⊗ε)°idC. The triple (C,∆,ε) is called a counital coalgebra. 
Moreover, a counital coalgebra (C,∆,ε) equipped with an element 1 is 
called coaugmented iff ∆(1)=1⊗1 and ε(1)=1∈K. Let C+⊂C denote 
the kernel of ε. Recall that a morphism φ:(C,∆,ε,1)→(C′,∆′,ε′,1′) of 
counital coaugmented coalgebras over K is a K-linear map satifying 
(φ⊗φ)°∆=∆′°φ,ε′°φ=ε, and φ(1)=1′. Moreover, for any counital 
coaugmented coalgebra the K-submodule of all primitive elements is 
defined by

Prime(C)≔{x∈C ∆(x)=x⊗1+1⊗x}.	     (101)

Every morphism of counital coaugmented coalgebra clearly maps 
primitive elements to primitive elements, thus defining a functor Prim 
from the category of counital coaugmented coalgebras to the category 
of K-modules. Finally, following Quillen, we shall call a counital 
coaugmented coalgebra connected iff the following holds: The sequence 
of submodules (C(r))r∈ defined by C(0)=K1 and recursively by

C(k+1)≔{xC∆(x)−x⊗1−1⊗x∈C(k)}	     (102)

is easily seen to be an ascending sequence of coaugmented counital 

subcoalgebras of (C,∆,ε,1), and if the union of all the C(k) is equal to C, then 
(C,∆,ε,1) is called connected. We refer to each C(k) as the subcoalgebra 
of order k. Clearly, each C(k) is connected, and C(1)=K1⊗Prim(C). 
Moreover, each morphism of counital coaugmented coalgebras maps 
each subcoalgebra of order k to the subcoalgebra of order k of the 
target coalgebra thus defining a functor C→ C(k) from the category of 
coaugmented counital coalgebras to itself. We shall use the following 
acronyms:

Definition 4.1: We call a coassociative, counital, coaugmented 
coalgebra a C3-coalgebra. In case the C3-coalgebra is in addition 
cocommutative, we shall speak of a C4-coalgebra. Finally, a connected 
C4-coalgebra will be coined a C5-coalgebra.

Recall also that the tensor product of two counital coaugmented 
coalgebras (C,∆,ε,1) and (C′,∆′,ε′,1′) is given by (C⊗C′,(idC⊗τ⊗idC′)°
(∆⊗∆′),ε⊗ε′,1⊗1′). Tensor products of connected coalgebras are 
connected. Recall the standard example: Let V be a K-module and 

=0S( ) = S ( )r
rV V∞⊕  be the symmetric algebra generated by V, i.e. the 

free algebra T(V) (for which we denote the tensor multiplication by 
suppressing the symbol) modulo the two-sided ideal I generated by xy−
yx for all x, y∈V. Denoting the commutative associative multiplication 
in S(V) (which is induced by the free multiplication) by , i.e.

x1•…•xk:x1…xk mod I,

we have ∆(x)=x⊗1+1⊗x for all x∈V and ∆(x1•…•xk)=(x1⊗1+1⊗x1)•…
•(xk⊗1+1⊗xk) for all positive integers k and x1…xk∈V. Recall that 
S0(V) is the free K-module K1 and the counit is defined by (λ1)=λ for 
all λ∈K and by declaring that ε vanishes on =1S ( )r

r V∞⊕ . Moreover, 

the submodules (S(V))(n) are given by *
=0

r
rr

λ ϕ∞∑ , whence S(V) is 
clearly connected, so it is a C5-coalgebra whose submodule of primitive 
elements equals V.

Moreover, for a given coalgebra (C,∆)) and a given nonassociative 
algebra (A,µ) whereµ:A⊗A→A is a given K-linear map, recall the 
convolution multiplication in the K –module HomK(C,A) defined in 
the usual way for any two K-linear maps φ,ψ:c→A by

φ*ψ≔µ°(φ⊗ψ)°∆.	     (103)

In case ∆ is coassociative and  associative, * will be associative. The 
following fact is rather important: If C is connected and if the K-linear 
map ϕ:C→A vanishes on 1C, then any convolution power series of ϕ 
converges, i.e. the evaluation of some formal series *

=0
r

rr
λ ϕ∞∑  (with 

λr∈K and ϕ*0≔1AεC) on c∈C always reduces to a finite number of 
terms. In particular, let :C→A be a K-linear map such that ψ(1C)=1A. 
Then –as has been observed by Takeuchi and Sweedler– ψ has always 
a convolution inverse, i.e. there is a unique K-linear map ψ′: C→A 
such that ψ*ψ′=1AεC=ψ′*ψ, where ψ′ is defined by the geometric series 

*
=0

= ( ) r
A Cr

ψ ε ψ∞′ −∑ 1 [20,21].

Semigroups
We collect some properties of semigroups which are very old, but 

a bit less well-known than properties of groups. The standard reference 
to these topics is the book [22] by A. H. Clifford and G. B. Preston.

Recall that a semigroup Γ is a set equipped with an associative 
multiplication Γ×Γ→Γ, written (x,y)xy. An element e of Γ is called a 
left unit element (resp. a right unit element resp. a unit element) iff for 
all x∈Γ we have ex=x (resp. xe=x resp. iff e is both left and right unit 
element). A pair (Γ,e) of a semigroup Γ and an element e is called left 
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unital (resp. right unital resp. unital) iff e is a left unit element (resp. 
a right unit element resp. a unit element). A unital semigroup is also 
called a monoid. It is well-known that the unit element of a monoid is 
the unique unit element (unlike left or right unit elements in general). 
Let (Γ,e) be a right unital or a left unital semigroup. Recall that for a 
given element x∈Γ an element y∈Γ is called a left inverse of x (resp. a 
right inverse of x resp. an inverse of x) iff yx=e (resp. xy=e resp. iff y is 
both a left and a right inverse of x). Clearly, a unital semigroup (Γ,e) 
such that every element has an inverse is a group. In that case it is well-
known that for each x there is exactly one inverse element, called x−1.

Note that by a Lemma by L. E. Dickson every left unital semigroup 
such that each element has at least one left inverse is already a group 
which can be shown by just using the definitions. Dually, every right 
unital semigroup such that each element has at least one right inverse 
is also a group.

More interesting is the case of a left (resp. right) unital semigroup 
(Γ,e) such that every element x has at least one right (resp. left) inverse 
element. In that case (which is an equivalent formulation of a so-called 
right group (resp. left group), the conclusion of Dickson’s Lemma 
does no longer hold. In order to see what is going on, there is first the 
following useful

Lemma 5.1: Let (Γ,e) be a left-unital semigroup, let a, b, c three 
elements of Γ such that

ab=e and bc=e.

Then

c=ae, be=b,

and the left multiplications La:xax and Lb:xbx are invertible. In 
particular, given the element a, its right inverse b is unique under the 
above hypotheses.

The proof is straight-forward.

The structure of right (resp.left) groups is completely settled in 
the Suschkewitsch Decomposition Theorem, 1928: Given a right 
group (Γ,e), it can be shown –using the above Lemma and elementary 
manipulations, see also– that all the left multiplications Lx:yxy (resp. 
right multiplications Rx:yyx) are invertible, that for each element 
there is exactly one right (resp. left) inverse (whence there is a map 
Γ→Γ assigning to each element x its right (resp. left) inverse x−1), that 
the image of this right (resp. left) inverse map is equal to Γe (resp. eΓ) 
(which turns out to be a subgroup of (Γ,e)), and that (Γ,e) is isomorphic 
to the cartesian product (Γe×E,(e,e)) (resp. (E×eΓ,(e,e)) where E is the 
set of all left (resp. right) unit elements in (Γ,e) (coinciding with the 
set of all idempotent elements). For right groups, the aforementioned 
isomorphism is given as follows:

φ:Γe×E→Γ:(a,f)af,                                                                            (104)

φ−1:Γ→Γe×E:x(xe,x−1x).                                                                (105)

Note that both components of φ−1 are idempotent maps. There is a 
completely analogous statement for left groups.

Recall that a Lie semigroup is a differentiable manifold Γ equipped 
with a smooth associative multiplication m: Γ×Γ→Γ. All the other 
definitions of semigroups mentioned above (such as left unital, right 
unital semigroups, monoids, groups, right groups, left groups etc.) 
carry over to the Lie, i.e. differentiable, case.

Moreover for right Lie groups, it is easy to see that all the left 

multiplications are diffeomorphisms (since their inverse maps are 
left multiplications with the inverse elements and therefore smooth). 
This fact and the regular value theorem applied to the equation xy=e 
imply that the right inverse map is smooth since its graph is a closed 
submanifold of Γ×Γ and the restriction of the projection on the first 
factor of the graph is a diffeomorphism. As the maps xxe=(x−1)−1 and 
xx−1x are smooth and idempotent, it follows that their images, the 
subgroup Γe, and the semigroup of all left unit elements, E, are both 
smooth submanifolds of Γ and closed sets provided Γ is connected for 
a proof [23]. Hence Γe is a connected Lie group, and the Suschkewitsch 
decomposition Γ≅Γe×E, see Appendix 5, is a diffeomorphism. 
Conversely, any cartesian product of a Lie group G and a differentiable 
manifold E equipped with the multiplication (g,x)(h,y)≔(gh,y) is easily 
seen to be a right Lie group. An analogous statement holds for left Lie 
groups.

It is not hard to see that the category of all connected right Lie 
groups is equivalent to the product of category of all connected Lie 
groups and the category of all pointed connected manifolds.
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