Equivariant Bauer-Furuta invariants on Some Connected Sums of 4-manifolds

Chanyoung SUNG

Korea National University of Education
(Communicated by K. Ahara)

Abstract. On some connected sums of 4-manifolds with natural actions of finite groups, we use equivariant Bauer-Furuta invariant to deduce the existence of solutions of Seiberg-Witten equations invariant under the group actions.

For example, for any integer $k \ge 2$ we show that the connected sum of k copies of a 4-manifold M with nontrivial Bauer-Furuta invariant has a nontrivial \mathbf{Z}_k -equivariant Bauer-Furuta invariant for the obviously glued Spin^c structure, where the \mathbf{Z}_k -action cyclically permutes k summands of M. This contrasts with the fact that ordinary Bauer-Furuta invariants of such connected sums are all trivial for any sufficiently large k, when $b_1(M) = 0$.

1. Introduction

Let M be a smooth closed oriented Riemannian manifold of dimension 4 with a smooth orientation-preserving isometric action of a finite group G. A second cohomology class of M is called a G-monopole class if it arises as the first Chern class of a G-equivariant Spin G structure G for which the Seiberg-Witten equations

$$\begin{cases} D_A \Phi = 0 \\ F_A^+ = \Phi \otimes \Phi^* - \frac{|\Phi|^2}{2} \text{Id} \end{cases}$$

admit a G-invariant solution (A, Φ) for every G-invariant Riemannian metric of M.

To detect a G-monopole class, there are two methods developed so far. The first one is a G-monopole invariant obtained by the intersection theory on the G-monopole moduli space, i.e., the space of G-invariant solutions of Seiberg-Witten equations modulo gauge transformations. The second one is G-equivariant Bauer-Furuta invariant, which is basically the $(G \times S^1)$ -equivariant stable cohomotopy class of the monopole map between appropriate Hilbert manifolds given by Seiberg-Witten equations, just as the ordinary Bauer-Furuta invariant is the S^1 -equivariant stable cohomotopy class of the monopole map.

Received August 24, 2015; revised February 4, 2016 1991 Mathematics Subject Classification: 57R57, 57M60

Key words and phrases: Seiberg-Witten equations, equivariant Bauer-Furuta invariant, group action

While it is difficult to compute those invariants, unless the action is free, we were able to exactly compute G-monopole invariants on some special types of connected sums in [8], and we will compute their G-equivariant Bauer-Furuta invariants in this paper as a sequel. In some cases, those invariants turn out to be nontrivial, although ordinary Bauer-Furuta invariant vanishes.

The existence of a *G*-monopole class can be applied to Riemannian geometry such as *G*-invariant Einstein metrics and *G*-Yamabe invariant of 4-manifolds, and some standard applications are dealt with in [7].

2. Equivariant Bauer-Furuta invariant

Let M be a smooth closed oriented 4-manifold. Suppose that a finite group G acts on M smoothly preserving the orientation, and this action lifts to an action on a Spin^c structure $\mathfrak s$ of M. Once there is a lifting, any other lifting differs from it by an element of $Map(G \times M, S^1)$. We fix a lifting and put a G-invariant Riemannian metric on M.

The corresponding spinor bundles W_{\pm} are also G-equivariant, and we let $\Gamma(W_{\pm})^G$ be the set of its G-invariant sections. When we put G as a superscript on the right shoulder of a set, we always mean the subset consisting of its G-invariant elements. Thus $\mathcal{A}(W_+)^G$ is the space of G-invariant connections on $\det(W_+)$, which is identified as the space $\Gamma(\Lambda^1(M))^G$ of G-invariant 1-forms, and $\mathcal{G}_o^G = Map((M,x_0),(S^1,1))^G$ is the set of G-invariant based gauge transformations for a base point $x_0 \in M$. When M/G is disconnected, more base points should be assigned so that $\mathcal{G}_o^G \subset \mathcal{G}^G$ is a maximal subgroup acting freely on $\mathcal{A}(W_+)^G$. Thus the number of base points is exactly the number of connected components of M/G.

Let
$$A_0 \in \mathcal{A}(W_+)^G$$
. Just as

$$Pic(M) := (A_0 + i \ker d)/\mathcal{G}_o$$

for $\mathcal{G}_o := Map((M, x_0), (S^1, 1))$ is a $b_1(M)$ -dimensional torus, one gets the quotient

$$Pic^G(M) := (A_0 + i \ker d)^G/\mathcal{G}_o^G$$
.

Since $\mathcal{G}^G := Map(M, S^1)^G$ is equal to $\mathcal{G}_o^G \times S^1$, and any constant gauge transformation acts trivially on connections, $Pic^G(M)$ is well-defined independently of the choice of the base point x_0 .

LEMMA 2.1. $Pic^G(M)$ is diffeomorphic to a torus $T^{b_1(M)^G}$ of dimension $b_1(M)^G := \dim H^1(M; \mathbf{R})^G$, and also covers a torus $T^{b_1(M)^G}$ embedded in Pic(M).

PROOF. Here we need the condition that G is finite. Let $A_0 + \alpha \in (A_0 + i \ker d)^G$. If $\alpha \in \text{Im } d$, namely $\alpha = df$ for some $f \in Map(M, i\mathbf{R})$, then

$$\alpha = df = d\left(\frac{\sum_{h \in G} h^* f}{|G|}\right),$$

and hence $\alpha \in d \ln \mathcal{G}_{o}^{G}$.

If $[\alpha]$ defines a nonzero element in $H^1(M; i\mathbf{Z})$, then write $\alpha = d \ln \mathfrak{g}$ for $\mathfrak{g} \in \mathcal{G}_o$, and

$$|G|\alpha = \sum_{h \in G} h^* d \ln \mathfrak{g} = d \ln \prod_{h \in G} h^* \mathfrak{g} \in d \ln \mathcal{G}_o^G.$$

Let $\{[\alpha_i]|i=1,\ldots,b_1(M)^G\}$ be a basis for a lattice $H^1(M;i\mathbf{Z})^G\simeq \mathbf{Z}^{b_1(M)^G}$. For each $[\alpha_i]$, let n_i be the smallest positive number such that $n_i\alpha_i\in d\ln\mathcal{G}_o^G$. In fact, n_i must be an integer, and we let $n=\prod_{i=1}^{b_1(M)^G}n_i$.

If $b_1(M)^G \neq 0$, then $Pic^G(M)$ is the obvious n-fold covering of the subtorus generated by those $[\alpha_i]$'s, and moreover the subtorus is embedded in $Pic(M) = H^1(M; \mathbf{R})/H^1(M; \mathbf{Z})$, because it is compact, and hence a closed subgroup. If $b_1(M)^G = 0$, then obviously $Pic^G(M)$ is a point embedded in Pic(M).

Define infinite-dimensional Hilbert bundles \mathcal{E}^G and \mathcal{F}^G over $Pic^G(M)$ by

$$\mathcal{E}^G := \tilde{\mathcal{E}}^G / \mathcal{G}_o^G$$
, and $\mathcal{F}^G := \tilde{\mathcal{F}}^G / \mathcal{G}_o^G$,

where

$$\tilde{\mathcal{E}}^G := (A_0 + i \ker d)^G \times (\Gamma(W_+)^G \oplus \Gamma(\Lambda^1 M)^G \oplus H^0(M)^G),$$
$$\tilde{\mathcal{F}}^G := (A_0 + i \ker d)^G \times \mathcal{U}^G$$

for

$$\mathcal{U}^G := \Gamma(W_-)^G \oplus \Gamma(\Lambda_+^2 M)^G \oplus \Gamma(\Lambda^0 M)^G \oplus H^1(M)^G,$$

and \mathcal{G}_o^G are endowed with appropriate Sobolov norms, and \mathcal{G}_o^G acts nontrivially on the connection part $(A_0 + i \ker d)^G$ and the spinor parts. Since \mathcal{G}_o^G actions are free, \mathcal{E}^G and \mathcal{F}^G are smooth Hilbert manifolds still endowed with (non-free) S^1 -actions.

The G-monopole map $\mu^G:\mathcal{E}^G\to\mathcal{F}^G$ is an S^1 -equivariant continuous fiber-preserving map defined as

$$[A, \Phi, a, f] \mapsto [A, D_{A+ia}\Phi, F_{A+ia}^{+} - \Phi \otimes \Phi^{*} + \frac{|\Phi|^{2}}{2} \mathrm{Id}, d^{*}a + f, a^{harm}],$$

which is fiberwisely the sum of a linear Fredholm operator denoted by \mathfrak{L}^G and a (quadratic) compact operator. Note that

$$(\mu^G)^{-1}$$
(zero section of \mathcal{F}^G)/ S^1

is exactly the G-monopole moduli space. The important property that the inverse image of any bounded set in \mathcal{F}^G is bounded follows directly from the corresponding boundedness property of the ordinary monopole map $\mu: \mathcal{E} \to \mathcal{F}$ with linear part \mathfrak{L} .

Expressing the G-monopole map as an S^1 -equivariant stable cohomotopy class is almost verbatim the same as ordinary Bauer-Furuta invariant, and we will omit the proof. The virtual index bundle ind \mathfrak{L}^G over $Pic^G(M)$ is

$$\ker(D)^G - \operatorname{coker}(D)^G - H_+^2(M)^G \in KO(\operatorname{Pic}^G(M)),$$

where D is the Spin^c Dirac operator, and $\underline{H_+^2(M)^G}$ is the trivial bundle of rank $b_2^+(M)^G := \dim H_+^2(M; \mathbf{R})^G$. Note that ind \mathfrak{L}^G can be represented as

$$E - F \in KO(Pic^G(M))$$

for some finite-dimensional vector bundles

$$F := Pic^G(M) \times V \subset Pic^G(M) \times \mathcal{U}^G$$
, and $E := (\mathfrak{L}^G)^{-1}(F)$,

where we used a Hilbert bundle isomorphism

$$\mathcal{F}^G \simeq Pic^G(M) \times \mathcal{U}^G$$

over a compact space $Pic^G(M)$.

With TH denoting the Thom space of a vector bundle H, define an S^1 -equivariant stable cohomotopy group

(2.1)
$$\pi^0_{S^1 \mathcal{U}^G}(Pic^G(M); \text{ ind } \mathfrak{L}^G)$$

as

$$\operatorname{colim}_{U\subset\mathcal{U}^G}[S^U\wedge TE, S^U\wedge TV]^{S^1},$$

where U runs all finite dimensional real vector subspaces of \mathcal{U}^G transversal to V, and $S^U \wedge$ denotes the smash product with the one-point compactification of a vector space U.

Then our G-monopole map gives an element $\overline{BF}_{M,\mathfrak{s}}^G$ in the above stable cohomotopy group, and let us call it "G-invariant Bauer-Furuta invariant" of a G-space (M,\mathfrak{s}) . When G is the trivial group $\{1\}$, $\overline{BF}_{M,\mathfrak{s}}^{\{1\}}$ is just equal to the ordinary Bauer-Furuta invariant $BF_{M,\mathfrak{s}}$ in [1,2]. Just as $BF_{M,\mathfrak{s}}$, it is also independent of choice of a Riemannian metric on M and a base point x_0 . Indeed for a one parameter family of base point x_0 , there is an isotopy of \mathcal{G}_o^G in \mathcal{G}^G so that the homotopy class $\overline{BF}_{M,\mathfrak{s}}^G$ remains the same.

Also in the same way as $BF_{M,s}$, $\overline{BF}_{M,s}^G$ can be viewed as the S^1 -equivariant homotopy class of μ^G in the set of the S^1 -equivariant continuous fiber-preserving maps which differ from μ^G by the fiberwise compact perturbations and have bounded inverse image for any bounded subset in \mathcal{F}^G . (See [3].) An important fact for our purpose is the following:

THEOREM 2.2. If $\overline{BF}_{M,\mathfrak{s}}^G$ is nontrivial, then $c_1(\mathfrak{s})$ is a G-monopole class.

PROOF. This is a consequence of facts from functional analysis, and one can take the proof in [5, Proposition 6] verbatim, which proves that $c_1(\mathfrak{s})$ is a monopole class, if ordinary Bauer-Furuta invariant $BF_{M,\mathfrak{s}} \neq 0$.

The *G*-equivariant Bauer-Furuta invariant $BF_{M,5}^G$ first introduced by M. Szymik [9] (in case of $b_1(M) = 0$) is a little different. (See also [6].) For this we need the condition that $M^G \neq \emptyset$ or $b_1(M) = 0$, which will be always assumed whenever $BF_{M,5}^G$ appears.

In the first case, we take the base point x_0 in M^G . Then the induced G-action is well-defined on $\mathcal{E} := \tilde{\mathcal{E}}/\mathcal{G}_o$ and $\mathcal{F} := \tilde{\mathcal{F}}/\mathcal{G}_o$, where

$$\tilde{\mathcal{E}} := (A_0 + i \ker d) \times (\Gamma(W_+) \oplus \Gamma(\Lambda^1 M) \oplus H^0(M))$$

and

$$\tilde{\mathcal{F}} := (A_0 + i \ker d) \times \mathcal{U}$$

for

$$\mathcal{U} := \Gamma(W_{-}) \oplus \Gamma(\Lambda^{2}_{+}M) \oplus \Gamma(\Lambda^{0}M) \oplus H^{1}(M).$$

The ordinary monopole map $\mu: \mathcal{E} \to \mathcal{F}$ is $(G \times S^1)$ -equivariant, and one takes its class in the $(G \times S^1)$ -equivariant stable homotopy group

(2.2)
$$\pi^0_{G \times S^1 \mathcal{U}}(Pic(M); \text{ ind } \mathfrak{L})$$

to get $BF_{M,\mathfrak{s}}^G$ by using a trivialization $\mathcal{F} \simeq Pic(M) \times \mathcal{U}$.

If $b_1(M)=0$, then Pic(M) is a point, and hence regardless of the choice of x_0 , \mathcal{E} and \mathcal{F} are canonically isomorphic to $\Gamma(W_+) \oplus \Gamma(\Lambda^1 M) \oplus H^0(M)$ and \mathcal{U} respectively, on which the G-action is well-defined, and hence enables us to get $(G \times S^1)$ -equivariant stable homotopy element $BF_{M,s}^G$.

There is the obvious forgetful map from (2.2) to

$$\pi^0_{\mathfrak{S}^1,\mathcal{U}}(Pic(M);\operatorname{ind}\mathfrak{L})$$
,

under which $BF_{M,\mathfrak{s}}^G$ gets mapped to $BF_{M,\mathfrak{s}}$.

LEMMA 2.3. Let $\tilde{p}_1: \tilde{\mathcal{E}} \to \tilde{\mathcal{E}}/\mathcal{G}_o$ and $\tilde{p}_2: \tilde{\mathcal{F}} \to \tilde{\mathcal{F}}/\mathcal{G}_o$ be the associated quotient maps. If $M^G \neq \emptyset$ or $b_1(M)^G = 0$, then the obvious maps

$$p_1: \mathcal{E}^G \to \tilde{p}_1(\tilde{\mathcal{E}}^G)$$
 and $p_2: \mathcal{F}^G \to \tilde{p}_2(\tilde{\mathcal{F}}^G)$

are bijective, and $Pic^{G}(M)$ is a submanifold of Pic(M).

PROOF. Since \mathcal{G}_o^G is a subgroup of \mathcal{G}_o , p_1 and p_2 are obviously surjective.

To show that p_1 is injective, suppose that $[A_1, \Phi_1, a_1, f_1]$ and $[A_2, \Phi_2, a_2, f_2]$ in \mathcal{E}^G are equivalent under $\gamma \in \mathcal{G}_o$. Then

$$A_1 = A_2 - 2d \ln \gamma$$
, and $\Phi_1 = \gamma \Phi_2$.

By the first equality, $d \ln \gamma$ is G-invariant.

Let's first consider the case when $M^G \neq \emptyset$. Let S be the subset of M where γ is G-invariant. By the continuity of γ , S must be a closed subset. Since S contains $M^G \neq \emptyset$, S is nonempty. It suffices to show that S is open. Let $x_0 \in S$. Then we have that for any $g \in G$,

$$q^* \ln \gamma(x_0) = \ln \gamma(x_0)$$
, and $q^* d \ln \gamma = d \ln \gamma$,

which implies that $g^* \ln \gamma = \ln \gamma$ on an open neighborhood of x_0 on which $g^* \ln \gamma$ and $\ln \gamma$ are well-defined. By the compactness of G, there exists an open neighborhood of x_0 on which $g^* \ln \gamma$ is well-defined for all $g \in G$, and $\ln \gamma$ is G-invariant. This proves the openness of S.

In case when $b_1(M)^G = 0$, a G-invariant closed 1-form $d \ln \gamma$ can be written as df for $f \in Map(M, i\mathbf{R})$. Again using the compactness of G, $df = d\left(\frac{\sum_{h \in G} h^* f}{|G|}\right)$, and so $\gamma \in \mathcal{G}_o^G$. In the same way, one can show that p_2 is injective.

Now it follows that $Pic^G(M)$ becomes a submanifold of Pic(M). Namely, the n in Lemma 2.1 is 1.

Thus if $M^G \neq \emptyset$ or $b_1(M) = 0$, then \mathcal{E}^G and \mathcal{F}^G are subsets of \mathcal{E} and \mathcal{F} respectively so that we can think of the restriction of μ to \mathcal{E}^G , which is equal to μ^G . Letting ρ be the map from (2.2) to (2.1) induced by restricting to its G-fixed point set, we have:

THEOREM 2.4. If $M^G \neq \emptyset$ or $b_1(M) = 0$, then

$$\rho(BF_{M,\mathfrak{s}}^G) = \overline{BF}_{M,\mathfrak{s}}^G,$$

and hence when $\overline{BF}_{M,\mathfrak{s}}^G$ is nontrivial, so is $BF_{M,\mathfrak{s}}^G$

As observed in [9], ρ is not injective in general.

When the G-action on M is free, $\overline{BF}_{M,\mathfrak{s}}^G$ is equal to $BF_{M/G,\mathfrak{s}'}$, where \mathfrak{s}' is the Spin^c structure on M/G induced from \mathfrak{s} and its G-action. Under the further assumption that $b_1(M)=0$, |G| is prime, and the dimension of Seiberg-Witten moduli space is zero, $BF_{M,\mathfrak{s}}^G$ may be expressed as $BF_{M,\mathfrak{s}}$ and $BF_{M/G,\mathfrak{s}''}$ for all \mathfrak{s}'' lifting to \mathfrak{s} . (See [9].) In general, it is difficult to compute $BF_{M,\mathfrak{s}}^G$ as well as $BF_{M,\mathfrak{s}}$ itself. Therefore it is quite worthwhile to compute $\overline{BF}_{M,\mathfrak{s}}^G$ when the G-action is not free.

3. Main Theorem

THEOREM 3.1. Let M and N be smooth closed oriented connected 4-manifolds satisfying $b_2^+(M) > 1$ and $b_2^+(N) = 0$, and \bar{M}_k for any $k \ge 2$ be the connected sum $M\# \dots \#M\#N$ where there are k summands of M.

Suppose that a finite group G with |G| = k acts effectively on N in a smooth orientation-preserving way, and that N admits a Riemannian metric of positive scalar curvature invariant under the G-action and a G-equivariant Spin^c structure \mathfrak{s}_N with $c_1^2(\mathfrak{s}_N) = -b_2(N)$.

Define a G-action on \bar{M}_k induced from that of N permuting k summands of M glued along a free orbit in N, and let $\bar{\mathfrak{s}}$ be the Spin^c structure on \bar{M}_k obtained by gluing \mathfrak{s}_N and a Spin^c structure \mathfrak{s} of M.

Then for any G-action on $\bar{\mathfrak{s}}$ induced from the above G-action on \bar{M}_k ,

$$\overline{BF}_{\bar{M}_{\ell},\bar{\mathfrak{s}}}^{G} = BF_{M,\mathfrak{s}} \wedge \overline{BF}_{N,\mathfrak{s}_{N}}^{G},$$

and when $b_1(N)^G = 0$,

$$\overline{BF}_{\bar{M}_k,\bar{\mathfrak{s}}}^G = BF_{M,\mathfrak{s}}.$$

If $BF_{M,\mathfrak{s}}$ is nontrivial, so is $\overline{BF}_{\bar{M}_k,\bar{\mathfrak{s}}}^G$.

PROOF. Let $\tilde{M}_k = N \cup \coprod_{i=1}^k (M \cup S^4)$ be the disjoint union of N and k-copies of $M \cup S^4$, and endow it with a Spin^c structure $\tilde{\mathfrak{s}}$ which is \mathfrak{s}_N on N, \mathfrak{s} on each M, and the trivial Spin^c structure \mathfrak{s}_0 on each S^4 . Then $(\tilde{M}_k, \tilde{\mathfrak{s}})$ has an obvious G-action induced from the G-action on $\bar{\mathfrak{s}}$ in a unique way. (Here G acts on $\coprod_{i=1}^k S^4$ by the obvious permutation, and on its Spin^c structure as induced from the action on $\bar{\mathfrak{s}}$ over the cylindrical gluing regions.)

Just as the ordinary monopole maps shown in [2], the stable cohomotopy class of the disjoint union of G-monopole maps is equal to the smash product \wedge of those, and hence

$$\begin{split} \overline{BF}_{\tilde{M}_{k},\tilde{\mathfrak{s}}}^{G} &= \overline{BF}_{\coprod_{i=1}^{K}(M \cup S^{4}), \coprod_{i=1}^{K}(\mathfrak{s} \coprod \mathfrak{s}_{0})}^{G} \wedge \overline{BF}_{N,\mathfrak{s}_{N}}^{G} \\ &= BF_{M \cup S^{4},\mathfrak{s} \coprod \mathfrak{s}_{0}} \wedge \overline{BF}_{N,\mathfrak{s}_{N}}^{G} \\ &= BF_{M,\mathfrak{s}} \wedge BF_{S^{4},\mathfrak{s}_{0}} \wedge \overline{BF}_{N,\mathfrak{s}_{N}}^{G} \\ &= BF_{M,\mathfrak{s}} \wedge \overline{BF}_{N,\mathfrak{s}_{N}}^{G}, \end{split}$$

where we used the fact that BF_{S^4,\mathfrak{s}_0} is just $[id] \in \pi^0_{S^1}(pt) \cong \mathbb{Z}$, which was shown in [2].

A surgery following S. Bauer [2] turns \tilde{M}_k into the union of \bar{M}_k and k-copies of $S^4 \coprod S^4$. In the notations of [2], for $X = X_1 \cup X_2 \cup X_3 = \tilde{M}_k$, we take

$$X_1 = N = (N - \coprod_{i=1}^k D^4) \cup (\coprod_{i=1}^k D^4),$$

$$X_2 = \coprod_{i=1}^k M = (\coprod_{i=1}^k D^4) \cup (\coprod_{i=1}^k (M - D^4)),$$

$$X_3 = \coprod_{i=1}^k S^4 = (\coprod_{i=1}^k D^4) \cup (\coprod_{i=1}^k D^4),$$

and

$$\tau = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right),\,$$

where X_3 is needed to make τ an even permutation so that "the gluing map V" of Hilbert bundles along the necks is well-defined continuously. After interchanging the second half parts of X_i 's by τ , we get

$$X^{\tau} = X_1^{\tau} \cup X_2^{\tau} \cup X_3^{\tau} = \bar{M}_k \cup (\coprod_{i=1}^k S^4) \cup (\coprod_{i=1}^k S^4)$$

as desired.1

Most importantly, we perform the above surgery from \tilde{M}_k to $\bar{M}_k \cup \coprod_{i=1}^{2k} S^4$ in a G-invariant way, and also "the gluing map V" from the Hilbert bundles \mathcal{E}^G , \mathcal{F}^G on $Pic^G(\tilde{M}_k)$ to the Hilbert bundles on $Pic^G(\bar{M}_k \cup \coprod_{i=1}^{2k} S^4)$ in a G-invariant way. The homotopy of the ordinary monopole map of \tilde{M}_k shown in [2] can also be done in a G-invariant way. Then those G-monopole maps of \tilde{M}_k and $\bar{M}_k \cup \coprod_{i=1}^{2k} S^4$ are conjugate via "the gluing map V" up to G-invariant homotopy. Therefore their stable cohomotopy classes are equal so that

$$\begin{split} \overline{BF}_{\tilde{M}_k,\tilde{\mathfrak{s}}}^G &= \overline{BF}_{\tilde{M}_k \cup \coprod_{i=1}^{2k} S^4,\tilde{\mathfrak{s}} \coprod \mathfrak{s}_0}^G \\ &= \overline{BF}_{\tilde{M}_k,\tilde{\mathfrak{s}}}^G \wedge \overline{BF}_{\coprod_{i=1}^{2k} S^4,\mathfrak{s}_0}^G \\ &= \overline{BF}_{\tilde{M}_k,\tilde{\mathfrak{s}}}^G \wedge BF_{S^4 \coprod S^4,\mathfrak{s}_0} \\ &= \overline{BF}_{\tilde{M}_k,\tilde{\mathfrak{s}}}^G \wedge BF_{S^4,\mathfrak{s}_0} \wedge BF_{S^4,\mathfrak{s}_0} \\ &= \overline{BF}_{\tilde{M}_k,\tilde{\mathfrak{s}}}^G , \end{split}$$

where we again used that $BF_{S^4,\mathfrak{s}_0} = [id]$.

Therefore we obtained

$$\overline{BF}_{\bar{M}_{h},\bar{\mathfrak{s}}}^{G} = BF_{M,\mathfrak{s}} \wedge \overline{BF}_{N,\mathfrak{s}_{M}}^{G},$$

and it gets equal to $BF_{M,\mathfrak{s}}$ in case of $b_1(N)^G=0$ by the following lemma:

LEMMA 3.2. If $b_1(N)^G = 0$, then $\overline{BF}_{N, \mathfrak{s}_N}^G$ is the class of the identity map

$$[id] \in \pi^0_{S^1}(pt) \cong \mathbf{Z}.$$

PROOF. The method of proof is basically the same as the ordinary Bauer-Furuta invariant in [2].

First, we need to show that the G-index of the $Spin^c$ Dirac operator is zero. Take a G-invariant metric of positive scalar curvature on N. Using the homotopy invariance of a

¹The gluing theorem 2.1 of [2] was stated when each X_i is connected with one gluing neck, but the proof also works well without this assumption. For more details, readers are referred to [2].

G-index, we compute the index at a G-invariant connection A_0 whose curvature 2-form is harmonic and hence anti-self-dual.

Applying the Weitzenböck formula with the fact that the scalar curvature of N is positive, and the curvature 2-form is anti-self-dual, we get zero kernel. Now then from the vanishing of the ordinary index given by $(c_1^2 - \tau(N))/8$, the cokernel must be also zero. In particular, we have vanishing of G-invariant kernel and cokernel, implying that the G-index is zero.

Then along with $b_1(N)^G = b_2^+(N)^G = 0$, we conclude that $\overline{BF}_{N,\mathfrak{s}_N}^G$ belongs to $\pi_{S^1}^0(\mathsf{pt})$ which is isomorphic to $\pi_{st}^0(\mathsf{pt}) = \mathbf{Z}$ by the isomorphism induced by restriction to the S^1 -fixed point set on which the G-monopole map is just the linear isomorphism:

$$L_{m+1}^{2}(\Lambda^{1}N)^{G} \times H^{0}(N)^{G} \to L_{m}^{2}(\Lambda_{+}^{2}N)^{G} \times L_{m}^{2}(\Lambda^{0}N)^{G} \times H^{1}(N)^{G}$$

$$(a,c) \mapsto (d^{+}a, d^{*}a + c, a^{harm}),$$

because it has no kernel and cokernel. This completes the proof.

Now let's consider the case of $b_1(N)^G \ge 1$. Again the G-index bundle of the Spin^c Dirac operator over $Pic^G(N)$ is zero so that $\overline{BF}_{N,\mathfrak{s}_N}^G$ belongs to $\pi_{\mathfrak{S}^1}^0(T^{b_1(N)^G})$.

Following [5], we consider the restriction map

$$\sigma: \pi^0_{S^1}(T^{b_1(N)^G}) \to \pi^0_{S^1}(\mathrm{pt})$$

to the fiber over a point in $Pic^G(N)$. By the same method as the above lemma, $\sigma(\overline{BF}_{N,\mathfrak{s}_N}^G)$ is just the identity map. Then the restriction of $\overline{BF}_{\tilde{M}_k,\tilde{\mathfrak{s}}}^G = \overline{BF}_{\tilde{M}_k,\tilde{\mathfrak{s}}}^G$ to

$$Pic^G(\coprod_{i=1}^k (M \cup S^4)) \times \{pt\} \subset Pic^G(\tilde{M}_k) = Pic^G(\tilde{M}_k)$$

is given by

$$BF_{M,\mathfrak{s}} \wedge \sigma(\overline{BF}_{N,\mathfrak{s}_N}^G) = BF_{M,\mathfrak{s}}.$$

It is obvious that $\overline{BF}_{\tilde{M}_k,\tilde{\mathfrak{s}}}^G$ is nontrivial, when $\sigma(\overline{BF}_{\tilde{M}_k,\tilde{\mathfrak{s}}}^G)$ is nontrivial, which completes the proof.

COROLLARY 3.3. Let M be a smooth closed oriented 4-manifold with $b_1(M) = 0$ and \bar{M}_k for $k \geq 2$ be the k-fold connected sum $M\# \dots \#M$. Suppose that $BF_{M,\bar{5}}$ is nontrivial for a Spin^c structure $\bar{5}$, and $\bar{\bar{5}}$ denotes the glued Spin^c structure on \bar{M}_k as before. Then there exists an integer K > 0 such that for any integer $k \geq K$, $BF_{\bar{M}_k,\bar{\bar{5}}}$ is trivial but $BF_{\bar{M}_k,\bar{\bar{5}}}^{\mathbf{Z}_k}$ is not trivial for a smooth \mathbf{Z}_k -action.

PROOF. As shown in Theorem 4.4 of [8], S^4 admits a smooth \mathbb{Z}_k -action with nonempty fixed point set, which satisfies the conditions for N in Theorem 3.1. Thus by applying the

above theorem, we have that $\overline{BF}_{\bar{M}_k,\tilde{\mathfrak{s}}}^{\mathbf{Z}_k}$ for any integer k>0 is nontrivial, and so is $BF_{\bar{M}_k,\tilde{\mathfrak{s}}}^{\mathbf{Z}_k}$ by Theorem 2.4.

But by the result of [4], there must exist an integer K>0 such that for any integer $k \geq K$, $BF_{\tilde{M}_k,\bar{5}}$ is trivial.

REMARK. For example, one can take M in the above corollary to be

$$lX#m\overline{\mathbb{C}P}_2$$
,

where X is a K3 surface, and integers l and m satisfy that $1 \le l \le 4$, and $m \ge 0$.

4. Examples of N

More examples of such N in Theorem 3.1 are given in Theorem 4.4 of [8], where those examples have \mathbb{Z}_k -actions which are free or have fixed points. Here, we will present some non-cyclic actions.

Take N to be $S^1 \times S^3$, and G to be any finite group with a smooth orientation-preserving effective action on S^3 . By the spherical space form conjecture which follows from the geometrization theorem proven by G. Perelman, such G action is conjugate to a subgroup of SO(4), and so S^3 has a G-invariant metric of positive scalar curvature. Since the frame bundle of N is trivial, the G action can be lifted to its spin bundle which is also trivial. Such trivial $Spin^c$ structure obviously satisfy $c_1^2 = -b_2(N) = 0$. One can take those G actions either free or with fixed points.

ACKNOWLEDGMENT. The author would like to give thanks to God, and appreciate the anonymous referee's critical remarks.

References

- [1] S. BAUER and M. FURUTA, A stable cohomotopy refinement of Seiberg-Witten invariants: I, Invent. Math. 155 (2004) 1-19
- [2] S. BAUER, A stable cohomotopy refinement of Seiberg-Witten invariants: II, Invent. Math. 155 (2004), 21–40.
- [3] S. BAUER, Refined Seiberg-Witten invariants, In: Different faces of geometry, International Mathematical Series Vol. 3 (2004), 1–46.
- [4] M. FURUTA, Y. KAMETANI and N. MINAMI, Nilpotency of the Bauer-Furuta stable homotopy Seiberg-Witten invariants, Geom. & Top. Mono. 10 (2007), 147–154.
- [5] M. ISHIDA and C. LEBRUN, Curvature, connected Sums, and Seiberg-Witten Theory, Comm. Anal. Geom. 11 (2003), 809–836.
- $[\ 6\]\quad N.\ NAKAMURA, Bauer-Furuta\ invariants\ under\ \textbf{Z}_2\mbox{-actions},\ Math.\ Z.\ \textbf{262}\ (2009),\ 219-233.$
- [7] C. SUNG, G-monopole classes, Ricci flow, and Yamabe invariants of 4-manifolds, Geom. Dedicata 169 (2014), 129–144.
- [8] C. SUNG, *G*-monopole invariants on some connected sums of 4-manifolds, Geom. Dedicata **178** (2015), 75–93.

[9] M. SZYMIK, Bauer-Furuta invariants and Galois symmetries, Quarterly J. Math. 63 (2012) no. 4, 1033–1054.

Present Address:

Department of Mathematics Education, Korea National University of Education, 250 Taeseongtabyeon-ro, Gangnae-myeon, Heundeok-gu, Cheongju-si, Chungbuk 28173, Korea(ROK).

e-mail: cysung@kias.re.kr