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Abstract. Let K be a cyclic quartic number field such that its 2-class group is of type (2, 4), K
(1)
2 be the

Hilbert 2-class field of K, K
(2)
2 be the Hilbert 2-class field of K

(1)
2 and G = Gal(K(2)

2 /K) be the Galois group of

K
(2)
2 /K. Our goal is to study the capitulation problem of 2-ideal classes of K and to determine the structure of G.

1. Introduction

Let K be a number field of finite degree over Q. We denote by OK , EK and CK , the ring
of integers, the unit group and the ideal class group of K , respectively. For a prime number

p, let CK,p be the p-class group and K
(1)
p the Hilbert p-class field of K . Further, we define

K
(n)
p , for an integer n � 0, by K

(0)
p = K and K

(n+1)
p = (K

(n)
p )(1). So we have the sequence

K ⊆ K(1)
p ⊆ · · · ⊆ K(n)

p ⊆ · · ·
that is called the p-class field tower of K . We know that it is finite if and only if there exists
a finite p-extension of K whose p-class number is equal to 1. It is well-known that if C

K
(1)
p ,p

is cyclic then C
K

(2)
p ,p

is trivial, implying that K
(2)
p = K

(3)
p (Taussky [17]).

A fractional ideal A of K is said to capitulate in an extension L/K if AOL = αOL for
some α ∈ L.

Let L/K be a cyclic unramified extension and j = jL/K : CK −→ CL the conorm of
L/K for ideal classes. Taussky defined:

• the extension L/K is said of type (A) iff |Ker(j) ∩ NL/K(CL)| > 1;
• the extension L/K is said of type (B) iff |Ker(j) ∩ NL/K(CL)| = 1.

Note that Ker(j) is the set of all the ideal classes of K which capitulate in L.
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DEFINITION 1. Let G be a group. We say that G is metacyclic if there exist a normal
cyclic subgroup H of G such that the quotient group G/H is cyclic.

REMARK 1. If G is a metagroup, then the commutator group G′ is cyclic.

Let K be a number field such that its 2-class group CK,2 is isomorphic to Z/2Z× Z/4Z

(i.e. is of type (2, 4)) and G be the Galois group of K
(2)
2 /K . By class field theory, G/G′ is

isomorphic to Z/2Z × Z/4Z. Then, the following diagram shows all the unramified subex-

tensions of K
(1)
2 /K:

K
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2

K
(1)
2
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��
��
��
��

L2
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��
��
��
��

F1

��
��

��
��

��
F3 F2

��
��
��
��
��

K

Q

Diagram 1

where Fi ’s and Li’s are the extensions over K of degree 2 and 4, respectively.

THEOREM 1. Let the notation be as above. Then the following assertions are equiva-
lent:

1. The group G is non-metacyclic;
2. The 2-class group of F3 is of type (2, 2, 2);
3. The 2-rank of the 2-class group of F3 is equal to 3.

PROOF. See [3]. �
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In [3], the authors have proved with the help of the transfer (Verlagerung) the following
remark:

REMARK 2.

1. If G is abelian, then four 2-ideal classes of K capitulate in Fi for each i and the 2-class
group CK,2 of K capitulates in Li for each i.

2. If G is non-metacyclic, then the capitulation of 2-ideal classes of K in F3 is of type 2A

(i.e. two 2-ideal classes of K capitulate in F3 and F3/K is of type (A)).

The aim of this work is the study of the capitulation problem of the 2-ideal classes of an
imaginary cyclic quartic number field K with 2-class group of type (2, 4), and we determine

the structure of G = Gal(K(2)
2 /K). Let K = k(

√
−nε

√
l) with k = Q(

√
l), ε the funda-

mental unit of k, l a prime number and n a square free positive integer prime to l. According
to E. Brown and C. J. Parry [6] and [7], CK,2 the 2-class group of K is of type (2, 4) in the
following cases:

1. l ≡ 5 mod 8, n = p ≡ 1 mod 4 and
(p

l

)
4 = −(

l
p

)
4

= 1, where p is a prime number;

2. l = 2, n = p ≡ 1 mod 16 and
(2
p

)
4

= −1, where p is a prime number;

3. l ≡ 9 mod 16, n = 1 and
(2
l

)
4 = 1.

We denote by K(∗) the genus field of K . Our two main theorems are the following:

THEOREM A. Let K = k(

√
−pε

√
l) with k = Q(

√
l), ε the fundamental unit of k, l

and p two distinct primes satisfying one of the following forms:

1. l ≡ 5 mod 8, p ≡ 1 mod 4 and
(p

l

)
4 = −(

l
p

)
4

= 1;

2. l = 2, p ≡ 1 mod 16 and
(2
p

)
4

= −1.

Then the 2-class field tower of K stops at K
(1)
2 , i.e. the group G is abelian. Moreover,

four 2-ideal classes of K which capitulate in Fi for each i and the 2-class group CK,2 of K

capitulates in Li for each i.

THEOREM B. Let K = k(
√

−ε
√

l) with k = Q(
√

l), ε the fundamental unit of k, and

l a prime number satisfying l ≡ 9 mod 16 and
(2
l

)
4 = 1. Then,

1. The group G is non-metacyclic. Moreover, the capitulation of 2-ideal classes of K in

F3 = K(∗) is of type 2A;

2. F1 = K(
√

ε), F2 = K(
√

ε′) and L3 = K(∗)(
√

ε), where ε′ denotes the conjugate of ε.

2. Preliminary results

This section is reserved for some useful results in the rest of this paper.
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LEMMA 1. Let K = k(

√
−pε

√
l), where ε is the fundamental unit of k = Q(

√
l) with

l a prime number such that l = 2 or l ≡ 5 mod 8 and p a prime number different to l such

that p ≡ 1 mod 4. Then K(∗) = K(
√

p).

PROOF. See [2]. �

LEMMA 2. Let K = k(
√

−ε
√

l), where ε is the fundamental unit of k = Q(
√

l) with

l a prime number such that l ≡ 1 mod 8. Then K(∗) = K(
√−1).

PROOF. As l is the unique odd prime of Q which ramifies in K , of ramification index

el = 4; then, according to [10, Theorem 4, p. 48–49], we have K(∗) = MlK where Ml is
the unique subfield of the l-th cyclotomic field of degree el = 4. Moreover, it is known that

Ml = Q(
√

ε
√

l). Thus K(∗) = K(
√−1). �

THEOREM 2. Let p and l be two distinct prime numbers such that l = 2 or l ≡
1 mod 4, p ≡ 1 mod 4, h(K0) (respectively h(lp)) be the class number of K0 = Q(

√
l,

√
p)

(respectively Q(
√

lp)) and e be the norm of the fundamental unit of Q(
√

lp).

1. If
(

l
p

) = −1, then h(K0) is odd, h(lp) ≡ 2 mod 4 and e = −1.

2. If
(

l
p

) = 1, so we have:

(a) If
(

l
p

)
4


= (p
l

)
4, then h(K0) is odd, h(lp) ≡ 2 mod 4 and e = 1.

(b) If
(

l
p

)
4

= (p
l

)
4 = −1, then h(K0) is even, h(lp) ≡ 4 mod 8 and e = −1.

(c) If
(

l
p

)
4

= (p
l

)
4 = 1, then h(K0) is even and h(lp) ≡ 0 mod 4. Moreover, if

e = −1, then h(lp) ≡ 0 mod 8.

PROOF. See [13]. �

PROPOSITION 1. Let L/M be a normal biquadratic extension of Galois group of type
(2, 2). Then L/M has three intermediate fields N1, N2, N3 and

h(L) = 2d−κ−2−vq(L/M)h(N1)h(N2)h(N3)

h(M)2
,

where q(L/M) = [EL : EN1EN2EN3 ] is the unit index of L/M , d is the number of infinite
places ramified in L/M , κ is the Z-rank of EM , and v = 1 or 0 according to whether L ⊂
M(

√
EM) or not.

PROOF. See [14]. �

LEMMA 3. Let K = k(
√

−nε
√

d) be a cyclic quartic number field, where ε is the

fundamental unit of k = Q(
√

d) with co-prime square free positive integers d and n. Then
{ε} is the fundamental system of units of K .
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PROOF. See [2]. �

THEOREM 3. Let p be a prime number such that p ≡ 1 mod 4, K0 = Q(
√

2,
√

p),

ε1 (respectively ε2, ε3) be the fundamental unit of k1 = Q(
√

2) (respectively k2 = Q(
√

p),

k3 = Q(
√

2p)) and F = K0(
√

−ε1
√

2).

1. If ε3 is of norm 1, then {ε1, ε2,
√

ε3} is a fundamental system of units of K0 and of F .
2. Else, {√ε1ε2ε3, ε2, ε3} is a fundamental system of units of K0 and of F .

PROOF. See [1]. �

THEOREM 4. Let K0 = Q(
√

l,
√

p) where p and l are two distinct primes such

that l ≡ p ≡ 1 mod 4, ε1 (respectively ε2, ε3) be the fundamental unit of k1 = Q(
√

l)

(respectively k2 = Q(
√

p), k3 = Q(
√

lp)) and F = K0(
√

−nε1
√

l) where n is a square free
positive integer.

1. If ε3 is of norm 1, then {ε1, ε2,
√

ε3} is a fundamental system of units of K0 and of F .
2. Else, {√ε1ε2ε3, ε2, ε3} is a fundamental system of units of K0 and of F .

PROOF. See [1]. �

3. Proof of Theorem A

The proof of Theorem A is based on the following result:

PROPOSITION 2. Let M be a number field with CM,2 the 2-class group of M of type
(2m, 2n). If there is an unramified quadratic extension of M with 2-class number equal to

2m+n−1; then all the three unramified quadratic extensions of M have 2-class number equal

to 2m+n−1, and the 2-class field tower of M terminates at M
(1)
2 .

PROOF. See [5]. �

In particular, let K be a cyclic quartic number field with CK,2 the 2-class group of K of
type (2, 4). If there is an unramified quadratic extension of K with 2-class number equal to 4,
then all the three unramified quadratic extensions of K have 2-class number equal to 4, and

the 2-class field tower of K terminates at K
(1)
2 .

THEOREM 5. Let K = k(

√
−pε

√
l) with k = Q(

√
l), ε the fundamental unit of k, l

and p two distinct primes satisfying one of the following forms:

1. l ≡ 5 mod 8, p ≡ 1 mod 4 and
(p

l

)
4 = −(

l
p

)
4

= 1;

2. l = 2, p ≡ 1 mod 16 and
(2
p

)
4

= −1.

Then h2(K
(∗)), the 2-class number of K(∗), is equal to 4.
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PROOF. By Lemma 1, K(∗) = K(
√

p). Then K(∗)/k is a normal biquadratic extension

of Galois group of type (2, 2), with quadratic subextensions K , K ′ = k(
√

−ε
√

l) and K0 =
Q(

√
l,

√
p). According to Proposition 1, we have

h2(K
(∗)) = 1

2
q(K(∗)/k)h2(K)h2(K

′)h2(K0) ,

because h2(k) = 1 (see [12]), d = 2, κ = 1 and v = 0. As K0/Q(
√

lp) is an unramified

extension and the 2-class group of Q(
√

lp) is cyclic (see [12]), we have h2(K0) = 1
2h2(lp),

where h2(lp) is the 2-class number of Q(
√

lp). Moreover, h2(K) = 8 (see [6], [7]) and

h2(K
′) = 1 (see [9]), which give h2(K

(∗)) = 2q(K(∗)/k)h2(lp). Also we have {ε} is a
fundamental system of units of K and of K ′ (Lemma 3), and from the Theorems 2, 3 and 4,

{ε, ε2,
√

ε3} is a fundamental system of units of K(∗) and of K0, since
(p

l

)
4 
= (

l
p

)
4

for (1) and(p
2

)
4 = (−1)

p−1
8 = 1 
= (2

p

)
4

for (2), thus q(K(∗)/k) = 1. Finally, h2(K
(∗)) = 2h2(lp) = 4,

where h2(lp) = 2 (Theorem 2). �

3.1. Proof of Theorem A. According to E. Brown and C. J. Parry [6] and [7], CK,2

the 2-class group of K is of type (2, 4). By Theorem 5, K(∗) is the unramified quadratic exten-
sion of K with 2-class number equal to 4. Then all the three unramified quadratic extensions

of K have 2-class number equal to 4, and the 2-class field tower of K terminates with K
(1)
2 .

On the other hand, by Remark 2, we have four 2-ideal classes of K which capitulate in Fi for
each i and the 2-class group CK,2 of K capitulates in Li for each i. This completes the proof.

EXAMPLE 1. Let K = Q(
√

−29ε
√

13) where ε = 3+√
13

2 . As 13 ≡ 5 mod 8, 29 ≡
1 mod 4 and

(29
13

)
4 = −(13

29

)
4 = 1, the group G is abelian and CK(∗),2 � Z/2Z × Z/2Z.

EXAMPLE 2. Let K = Q(
√

−17ε
√

2) where ε = 1 + √
2. As 17 ≡ 1 mod 16 and( 2

17

)
4 = −1, the group G is abelian and CK(∗),2 � Z/2Z × Z/2Z.

4. Proof of Theorem B.

In this section, we want to prove the second main theorem.

LEMMA 4. Let p be a prime number such that p ≡ 1 mod 8, then

p 
= x2 + 32y2 ⇐⇒ (2
p

)
4

= −(p
2

)
4 .

PROOF. See [4]. �

THEOREM 6. Let K = k(
√

−ε
√

l) with k = Q(
√

l), ε the fundamental unit of k, and

l a prime number satisfying l ≡ 9 mod 16 and
(2
l

)
4 = 1. Then h2(K

(∗)) is equal to 2h2(−l),

where h2(−l) is the 2-class number of Q(
√−l). Moreover, h2(K

(∗)) = 8.
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PROOF. By Lemma 2, K(∗) = K(
√−1). So we have that K(∗)/k is a normal bi-

quadratic extension of Galois group of type (2, 2), with quadratic subextensions K , L =
k(

√
ε
√

l) and K0 = Q(
√

l,
√−1). Therefore, by Proposition 1, we have

h2(K
(∗)) = 1

2
q(K(∗)/k)h2(K)h2(L)h2(K0) ,

because h2(k) = 1 (see [12]), d = 2, κ = 1 and v = 0. As K0/Q(
√−l) is

an unramified extension and the 2-class group of Q(
√−l) is cyclic (see [11]), we have

h2(K0) = 1
2h2(−l). Moreover, h2(K) = 8 (see [7]) and h2(L) = 1 (see [18]), which

give h2(K
(∗)) = 2q(K(∗)/k)h2(−l). Also we have q(K(∗)/k) = 1 (see [16, p.84]). Thus

h2(K
(∗)) = 2h2(−l) = 8, since h2(−l) = 4 and

(
l
2

)
4 = (−1)

l−1
8 = −1 = −(2

l

)
4 (see [4] and

Lemma 4). �

REMARK 3. The group G is non-abelian because K
(1)
2 
= K

(2)
2 .

4.1. Proof of Theorem B. (1) From the last proof, we see that K(∗) is a CM-field

with its maximal real subfield L = k(
√

ε
√

l) of odd class number (see [18]). Therefore,
by [15],

rank CK(∗),2 = t − 1 + rank(EL ∩ NK(∗)/L(K(∗))/E2
L) ,

where t is the number of finite prime ideals ramifying in K(∗)/L. Using a result in [16],(
ε
√

l
21

) = (
ε
√

l
22

) = (2
l

)
4 = 1 where 21 and 22 are the prime ideals in k above 2, we see that

2 splits completely in L. Thus exactly 4 prime ideals are ramified in K(∗)/L. It follows

from rank(EL ∩ NK(∗)/L(K(∗))/E2
L) = 0 (see [16, p.84]) that rank CK(∗),2 = 3. Further

h2(K
(∗)) = 8 by Theorem 6. Then, since CK(∗),2 is of type (2, 2, 2), we have F3 = K(∗).

On the other hand , CK,2 is of type (2, 4) by Brown and Parry [7], while G is non-metacyclic
by Theorem 1. Combining them, we can use Remark 2 to see that the capitulation of 2-ideal

classes of K in K(∗) is of type 2A.
(2) We know by Cohn [8], that if l ≡ 1 mod 8, then F = K0(

√
ε) is an unramified quadratic

extension over K0 where K0 = Q(
√

l,
√−1). It is easy to see that

√
ε /∈ F3. Therefore

KF = F3(
√

ε) is an unramified quadratic extension over KK0 = F3.
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��
��
��
��
��

K0

Q

Diagram 2

Moreover, we have that F3 is unramified over K . Thus KF is unramified over K and the

Galois group of KF/K is of type (2, 2). Consequently, F1 = K(
√

ε), F2 = K(
√

ε′) and

L3 = K(∗)(
√

ε).

EXAMPLE 3. Let K = Q(
√

−ε
√

73) where ε = 1068 + 125
√

73. As 73 ≡ 9 mod 16

and
( 2

73

)
4 = 1, the group G is non-metacyclic, CK(∗),2 � Z/2Z×Z/2Z×Z/2Z and K(∗)/K

is of type 2A where K(∗) = K(
√−1).
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