Positive Solutions for Non-cooperative Singular *p*-Laplacian Systems

D. D. HAI

Mississippi State University
(Communicated by F. Nakano)

Abstract. We prove the existence of positive solutions for the p-Laplacian system

$$\begin{cases} -\Delta_p u_1 = \lambda f_1(u_2) & \text{in } \Omega \,, \\ -\Delta_p u_2 = \lambda f_2(u_1) & \text{in } \Omega \,, \\ u_1 = u_2 = 0 & \text{on } \partial \Omega \,, \end{cases}$$

where $\Delta_p u = \text{div}(|\nabla u|^{p-2}\nabla u)$, p > 1, Ω is a bounded domain in \mathbf{R}^n with smooth boundary $\partial \Omega$, $f_i : (0, \infty) \to \mathbf{R}$ are possibly singular at 0 and are not required to be positive or nondecreasing, and λ is a large parameter.

1. Introduction

Consider the system

$$\begin{cases}
-\Delta_p u_1 = \lambda f_1(u_2) & \text{in } \Omega, \\
-\Delta_p u_2 = \lambda f_2(u_1) & \text{in } \Omega, \\
u_1 = u_2 = 0 & \text{on } \partial\Omega,
\end{cases}$$
(I)

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$, p > 1, Ω is a bounded domain in \mathbb{R}^n with smooth boundary $\partial \Omega$, $f_i : (0, \infty) \to \mathbb{R}$, i = 1, 2, and λ is a positive parameter.

The system (I) with f_i nonsingular has been studied extensively in recent year (see e.g. [1, 3, 9, 11] and the references therein). In this paper, we are interested in obtaining positive solutions of (I) when f_i are possibly singular at 0 and are not required to be nonnegative, nondecreasing, or bounded away from 0 at infinity. Such nonlinearities have not been considered in the literature to the best of our knowledge. Our approach is based on the method of sub- and supersolutions.

2. Main results

We make the following assumptions:

(B.1)
$$f_i:(0,\infty)\to \mathbf{R}$$
 are continuous, $i=1,2$.

(B.2) There exist numbers $a, b, c, A > 0, \alpha_i, \beta_i \in (0, 1)$ with $\beta_i and <math>\alpha_i \ge \beta_i$ such that

$$-\frac{b}{t^{\alpha_i}} \le f_i(t) \le \frac{c}{t^{\beta_i}}$$

for t > 0, and

$$f_i(t) \ge \frac{a}{t\beta_i}$$

for t > A.

(B.3) There exist numbers L, A > 0 such that

$$f_i(t) \geq L$$

for t > A, i = 1, 2, and

$$\lim_{t \to \infty} \frac{f_1^{\frac{1}{p-1}} \left(c f_2^{\frac{1}{p-1}}(t) \right)}{t} = 0$$

for each c > 0.

(B.4) There exists a number $\delta \in (0, 1)$ such that

$$\limsup_{t\to 0^+} t^{\delta} |f_i(t)| < \infty$$

for i = 1, 2.

By a solution of (I), we mean a pair $(u, v) \in C^{1,\alpha}(\bar{\Omega}) \times C^{1,\alpha}(\bar{\Omega})$ for some $\alpha \in (0, 1)$ that satisfies (I) in the weak sense.

THEOREM 2.1. Let (B.1)–(B.2) hold. Then problem (I) has a positive solution $u = (u_{1,\lambda}, u_{2,\lambda})$ for λ large. Furthermore $||u_{i,\lambda}||_{\infty} \to \infty$ as $\lambda \to \infty$, i = 1, 2.

THEOREM 2.2. Let (B.1), (B.3), and (B.4) hold. Then problem (I) has a positive solution $u = (u_{1,\lambda}, u_{2,\lambda})$ for λ large. Furthermore $||u_{i,\lambda}||_{\infty} \to \infty$ as $\lambda \to \infty$, i = 1, 2.

REMARK 2.1. A result similar to Theorem 2.2 was obtained in Theorem 2.2 of [8]. However, the theorem in [8], when applied to (B.4), requires that $\delta < 1/n$. Theorem 2.2 also improves Theorem A in [11], where f_i are assumed to be nondecreasing, nonsingular, and unbounded

EXAMPLE 2.1. Let $f_1(u_2) = -\frac{b_1}{u_1^{\alpha_1}} + \frac{c_1}{u_1^{\beta_1}}$, $f_2(u_1) = -\frac{b_2}{u_1^{\alpha_2}} + \frac{c_2}{u_1^{\beta_2}}$, where $b_i, c_i > 0$, $p \geq 2$, $\alpha_i, \beta_i \in (0, 1)$ and $\alpha_i > \beta_i$. Then f_i satisfy (B.1),(B.2) and therefore (I) has a positive solution for λ large, by Theorem 2.1. Note that the nonlinearities $f_i(t)$ decay to 0 as $t \to \infty$, which do not seem to have been considered in the literature.

3. Preliminary results

We shall denote the norms in $L^q(\Omega)$, $C^1(\bar{\Omega})$, and $C^{1,\alpha}(\bar{\Omega})$ by $\|\cdot\|_q$, $\|\cdot\|_1$, and $\|\cdot\|_{1,\alpha}$ respectively.

The following results were established in [10]. For convenience, we sketch the proofs. Let d(x) denote the distance from x to the boundary of Ω .

LEMMA 3.1 [10]. Let $h \in L^{\infty}_{loc}(\Omega)$ and suppose there exist numbers $\gamma \in (0, 1)$ and C > 0 such that

$$|h(x)| \le \frac{C}{d^{\gamma}(x)} \tag{3.1}$$

for a.e. $x \in \Omega$. Let $u \in W_0^{1,p}(\Omega)$ be the solution of

$$\begin{cases}
-\Delta_p u = h & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$
(3.2)

Then there exist constants $\alpha \in (0,1)$ and M > 0 depending only on C, γ, Ω such that $u \in C^{1,\alpha}(\bar{\Omega})$ and $|u|_{1,\alpha} < M$.

PROOF. Suppose p = 2. It follows from [5] that the problem

$$-\Delta v = \frac{1}{v^\gamma} \quad \text{in } \ \Omega \ , \quad v = 0 \quad \text{on } \ \partial \Omega \ ,$$

has a positive solution v which is Lipschitz continuous in $\bar{\Omega}$. Let $C_1 > 0$ be such that $v(x) \le C_1 d(x)$ in Ω . Then

$$-\Delta(CC_1^{\gamma}v) \ge \frac{C}{d\gamma}$$
 in Ω .

Let \tilde{u} be the solution of

$$-\Delta \tilde{u} = |h|$$
 in Ω , $\tilde{u} = 0$ on $\partial \Omega$,

and $\bar{u} = u + \tilde{u}$. Then

$$-\Delta \bar{u} = h + |h| \ge 0 \quad \text{in } \Omega.$$

By the maximum principle, $\tilde{u}(x) \leq CC_1^{\gamma}v(x) \leq C_2d(x)$ and $u(x) \leq C_2d(x)$ similarly, and thus one obtains $\bar{u}(x) \leq 2C_2d(x)$ for $x \in \Omega$. Using the regularity result in [7, Theorem B.1], we conclude that there exist $\alpha \in (0,1)$ and $M_0 > 0$ such that $\tilde{u}, \bar{u} \in C^{1,\alpha}(\bar{\Omega})$ and $|\tilde{u}|_{1,\alpha}, |\bar{u}|_{1,\alpha} < M_0$. Since $u = \bar{u} - \tilde{u}$, Lemma 3.1 with p = 2 follows.

Now let u be the solution of (3.2) with p > 1. From Lemma 3.1, Theorem B.1, and the proof of Lemma A.7 in [7], it follows that the problem

$$\begin{cases} -\Delta_p v = \frac{C}{v^{\gamma}} & \text{in } \Omega, \\ v = 0 & \text{on } \partial \Omega, \end{cases}$$

has a unique positive solution $v \in W_0^{1,p}(\Omega)$ with $v \le c_0 d$ in Ω . This implies

$$-\Delta_p\left(c_0^{\frac{\gamma}{p-1}}v\right) \geq \frac{C}{d^{\gamma}} \quad \text{in } \Omega$$
,

Since

$$-\Delta_p u \le \frac{C}{d^{\gamma}}$$
 and $-\Delta_p(-u) \le \frac{C}{d^{\gamma}}$

in Ω , the weak comparison principle (see e.g. [14]) implies

$$|u| \le c_0^{\frac{\gamma}{p-1}} v \le c_0^{\frac{\gamma}{p-1}+1} d \quad \text{in } \Omega.$$

Next, let $w \in C^{1,\alpha}(\bar{\Omega})$ be the solution of

$$-\Delta w = h$$
 in Ω , $w = 0$ on $\partial \Omega$.

Then

$$\operatorname{div}(|\nabla u|^{p-2}\nabla u - \nabla w) = 0 \quad \text{in } \Omega,$$

and Lemma 3.1 now follows from Lieberman's result [12, Theorem 1].

COROLLARY 3.1. Let $\varepsilon > 0$ and $h, \tilde{h} \in L^{\infty}_{loc}(\Omega)$ satisfy (3.1) with $h \geq 0, h \not\equiv 0$. Let $u, u_{\varepsilon} \in W_0^{1,p}(\Omega)$ be, respectively, the solutions of

$$\begin{cases} -\Delta_p u = h & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

and

$$-\Delta_p u_{\varepsilon} = \begin{cases} h & \text{if } d(x) > \varepsilon, \\ \tilde{h} & \text{if } d(x) < \varepsilon. \end{cases}$$

Then for ε small enough,

$$u_{\varepsilon} \geq u/2$$
 in Ω .

PROOF. By Lemma 3.1, there exist M>0 and $\alpha\in(0,1)$ so that $|u|_{1,\alpha}, |u_{\varepsilon}|_{1,\alpha}< M$. By the strong maximum principle [15], there exists $\kappa>0$ such that $u\geq\kappa d$ in Ω . Multiplying the equation

$$-\Delta_p u - (-\Delta_p u_\varepsilon) = \begin{cases} 0 & \text{if } d(x) > \varepsilon\,, \\ h - \tilde{h} & \text{if } d(x) < \varepsilon \end{cases}$$

by $u - u_{\varepsilon}$ and integrating gives

$$\int_{\Omega} \left(|\nabla u|^{p-2} \nabla u - |\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} \right) \cdot \nabla (u - u_{\varepsilon}) dx \le 2M \int_{d < \varepsilon} |h - \tilde{h}| dx \tag{3.3}$$

Note that for $x, y \in \mathbf{R}^n$,

$$(|x| + |y|)^r (|x|^{p-2}x - |y|^{p-2}y) \cdot (x - y) \ge C_0|x - y|^{\max(p,2)}$$

where $r=2-\min(p,2)$, $C_0=(1/2)^{p-1}$, if $p\geq 2$, $C_0=p-1$, if p<2 (see e.g. [13, Lemma 30.1]). Using this inequality with $x=\nabla u, y=\nabla u_{\varepsilon}$ in (3.3) and note that $|x|+|y|\leq 2M$, we obtain

$$\frac{C_0}{(2M)^r} \int_{\Omega} \left| \nabla (u - u_{\varepsilon}) \right|^{\max(p,2)} dx \leq 2M \int_{d < \varepsilon} |h - \tilde{h}| dx \leq 4MC \int_{d < \varepsilon} \frac{1}{d^{\gamma}(x)} dx$$

Hence $\|\nabla(u-u_{\varepsilon})\|_{2} \to 0$ as $\varepsilon \to 0$, and since $C^{1,\alpha}(\bar{\Omega})$ is compactly imbedded in $C^{1}(\bar{\Omega})$, we obtain $|u-u_{\varepsilon}|_{1} \to 0$ as $\varepsilon \to 0$. Consequently, if ε is sufficiently small,

$$|u_{\varepsilon} - u|_1 \leq \kappa/2$$
,

which implies

$$u_{\varepsilon} \ge u - (\kappa/2)d \ge u/2$$
 in Ω ,

which completes the proof.

4. Proofs of main results

PROOF OF THEOREM 2.1. Let z_i , i = 1, 2, be the solutions of

$$\begin{cases} -\Delta_p z_i = \frac{1}{z_i^{\beta_i}} & \text{in } \Omega, \\ z_i = 0 & \text{on } \partial\Omega, \end{cases}$$

and let m > 0 be such that $z_i \le mz_j$ in Ω for $i \ne j$. Choose $\delta > 0$ so that

$$m\delta^{1-rac{eta_{i}eta_{j}}{(p-1)^{2}}} \leq \left(ac^{-rac{eta_{i}}{p-1}}m^{-eta_{i}}/2^{p-1}
ight)^{rac{1}{p-1}}, \quad i \neq j.$$

Let $\varepsilon > 0$ and u_i satisfy

$$-\Delta_p u_i = \begin{cases} a \left(\frac{\delta^{\beta_j}}{cm^{p-1}} \right)^{\frac{\beta_i}{p-1}} \frac{1}{z_i^{\beta_i}} & \text{if } d(x) > \varepsilon, \\ -\frac{b}{\delta^{\alpha_i} z_i^{\alpha_i}} & \text{if } d(x) < \varepsilon \end{cases}, \quad u_i = 0 \text{ on } \partial\Omega.$$

Using Corollary 3.1 with

$$u = \left[a \left(\frac{\delta^{\beta_j}}{cm^{p-1}} \right)^{\frac{\beta_i}{p-1}} \right]^{\frac{1}{p-1}} z_i , \quad h = a \left(\frac{\delta^{\beta_j}}{cm^{p-1}} \right)^{\frac{\beta_i}{p-1}} \frac{1}{z_j^{\beta_i}} ,$$

 $u_{\varepsilon} = u_i$, $\tilde{h} = -\frac{b}{\delta^{\alpha_i} z_i^{\alpha_i}}$, and note that h, \tilde{h} satisfy (3.1) with $\gamma = \max(\beta_i, \alpha_i)$, it follows that if $\varepsilon > 0$ is small enough then $u_{\varepsilon} \ge u/2$ in Ω , i.e.,

$$u_i \ge \frac{1}{2} \left[a \left(\frac{\delta^{\beta_j}}{cm^{p-1}} \right)^{\frac{\beta_i}{p-1}} \right]^{\frac{1}{p-1}} z_i \ge \delta m z_i \ge \delta z_j \tag{4.1}$$

in Ω , $i=1,2,\ i\neq j$. Let $r_i=\frac{p-1-\beta_i}{(p-1)^2-\beta_i\beta_j}$ and note that $1-r_j\beta_i=r_i(p-1)$ for $i\neq j$. Define

$$\Phi_i = \lambda^{r_i} u_i , \quad \Psi_i = \lambda^{r_i} \delta^{-\frac{\beta_i}{p-1}} c^{\frac{1}{p-1}} z_i ,$$

i = 1, 2. By the comparison principle,

$$u_i \leq \left[a \left(\frac{\delta^{\beta_j}}{cm^{p-1}} \right)^{\frac{\beta_i}{p-1}} \right]^{\frac{1}{p-1}} z_i \quad \text{in } \Omega,$$

and so $\Phi_i \leq \Psi_i$ in Ω if δ is small enough. We shall verify that $\Phi = (\Phi_1, \Phi_2)$ and $\Psi = (\Psi_1, \Psi_2)$ form a system of sub- and supersolutions for (I) (see Appendix). For $\xi \in W_0^{1,p}(\Omega)$ with $\xi \geq 0$ and $v_j \in [\Phi_j, \Psi_j]$, we have from (4.1) that for $i \neq j$,

$$v_j \geq \lambda^{r_j} \delta z_i$$
 in Ω ,

and thus

$$\lambda \int_{\Omega} f_{i}(v_{j}) \xi dx \leq \lambda c \int_{\Omega} \frac{\xi}{v_{j}^{\beta_{i}}} dx \leq \frac{\lambda^{1-r_{j}\beta_{i}} c}{\delta^{\beta_{i}}} \int_{\Omega} \frac{\xi}{z_{i}^{\beta_{i}}} dx = \frac{\lambda^{r_{i}(p-1)} c}{\delta^{\beta_{i}}} \int_{\Omega} \frac{\xi}{z_{i}^{\beta_{i}}} dx$$

$$= \int_{\Omega} |\nabla \Psi_{i}|^{p-2} \nabla \Psi_{i} \cdot \nabla \xi dx . \tag{4.2}$$

Next, we have

$$\int_{\Omega} |\nabla \Phi_{i}|^{p-2} \nabla \Phi_{i} \cdot \nabla \xi dx = \lambda^{r_{i}(p-1)} a \left(\frac{\delta^{\beta_{j}}}{cm^{p-1}}\right)^{\frac{\beta_{i}}{p-1}} \int_{d>\varepsilon} \frac{\xi}{z_{i}^{\beta_{i}}} dx
- \frac{\lambda^{r_{i}(p-1)} b}{\delta^{\alpha_{i}}} \int_{d<\varepsilon} \frac{\xi}{z_{i}^{\alpha_{i}}} dx .$$
(4.3)

Since there exists $m_0 > 0$ so that $z_i \ge m_0 d$ in Ω , i = 1, 2, it follows that

$$v_i(x) \ge \lambda^{r_i} \delta z_i(x) \ge \lambda^{r_i} \delta m_0 \varepsilon > A$$

if $d(x) > \varepsilon$ and $\lambda \gg 1$. Hence

$$\lambda \int_{d>\varepsilon} f_i(v_j) \xi dx \ge \lambda a \int_{d>\varepsilon} \frac{\xi}{v_j^{\beta_i}} dx \ge \lambda^{1-r_j\beta_i} a \left(\frac{\delta^{\beta_j}}{c}\right)^{\frac{\beta_i}{p-1}} \int_{d>\varepsilon} \frac{\xi}{z_j^{\beta_i}} dx$$

$$\geq \lambda^{r_i(p-1)} a \left(\frac{\delta^{\beta_j}}{cm^{p-1}} \right)^{\frac{\beta_i}{p-1}} \int_{d>\varepsilon} \frac{\xi}{z_i^{\beta_i}} dx . \tag{4.4}$$

On the other hand,

$$\lambda \int_{d<\varepsilon} f_i(v_j) \xi dx \ge -\lambda b \int_{d<\varepsilon} \frac{\xi}{v_j^{\alpha_i}} dx \ge -\frac{\lambda^{1-r_j\alpha_i}b}{\delta^{\alpha_i}} \int_{d<\varepsilon} \frac{\xi}{z_i^{\alpha_i}} dx$$

$$\ge -\frac{\lambda^{r_i(p-1)}b}{\delta^{\alpha_i}} \int_{d<\varepsilon} \frac{\xi}{z_i^{\alpha_i}} dx , \qquad (4.5)$$

where we have used the fact that $1 - r_j \alpha_i \le 1 - r_j \beta_i$ and $\lambda > 1$. Combining (4.3)–(4.5), we get

$$\lambda \int_{\Omega} f_i(v_j) \xi dx \ge \int_{\Omega} |\nabla \Phi_i|^{p-2} \nabla \Phi_i \cdot \nabla \xi dx ,$$

which, together with (4.2), shows that $\{\Phi, \Psi\}$ is a system of sub- and supersolutions of (I). Theorem 2.1 now follows from Lemma A in the Appendix.

PROOF OF THEOREM 2.2. Let ε , $\lambda > 0$ and z, ψ , ψ_{ε} satisfy

$$\begin{cases} -\Delta_p z = \frac{1}{z^\delta} & \text{in } \Omega \,, \\ z = 0 & \text{on } \partial \Omega \,, \end{cases}, \quad \begin{cases} -\Delta_p \psi = 1 & \text{in } \Omega \,, \\ \psi = 0 & \text{on } \partial \Omega \,, \end{cases}$$

and

$$-\Delta_p \psi_{\varepsilon} = \begin{cases} L & \text{if } d(x) > \varepsilon, \\ -\frac{1}{z^{\delta}} & \text{if } d(x) < \varepsilon \end{cases}, \quad \psi_{\varepsilon} = 0 \quad \text{on } \partial\Omega,$$

respectively. Then, by Corollary 3.1,

$$\psi_{\varepsilon} \ge (L^{\frac{1}{p-1}}/2)\psi$$
 in Ω

if ε is small enough, which we shall assume. By (B.3) and (B.4), there exists b > 0 such that

$$|f_i(t)| \le \frac{b}{t^{\delta}}$$

for t < A, and

$$f_i(t) \ge -\frac{b}{t^{\delta}}$$

for t > 0. Define

$$\tilde{f}_i(t) = \begin{cases} \sup_{A \le s \le t} f_i(s) & \text{if } t \ge A, \\ f_i(A) & \text{if } t < A. \end{cases}$$

Then $\tilde{f_i}$ are nondecreasing and

$$\lim_{t \to \infty} \frac{\tilde{f}_1^{\frac{1}{p-1}} \left(c \, \tilde{f}_2^{\frac{1}{p-1}}(t) \right)}{t} = 0$$

for each c > 0. Hence there exists $M \gg 1$ so that

$$\lambda \left[b + \|z\|_{\infty}^{\delta} \tilde{f}_{1} \left(\lambda^{\frac{1}{p-1}} \|z\|_{\infty} \left(b + \|z\|_{\infty}^{\delta} \tilde{f}_{2}(M\|z\|_{\infty}) \right)^{\frac{1}{p-1}} \right) \right] \leq M^{p-1}. \tag{4.6}$$

Define

$$\Phi_i = \lambda^{\frac{1}{p-1}} \psi_{\varepsilon}, \quad i = 1, 2, \ \Psi_1 = Mz, \ \Psi_2 = \lambda^{\frac{1}{p-1}} (b + \|z\|_{\infty}^{\delta} \tilde{f}_2(M\|z\|_{\infty}))^{\frac{1}{p-1}} z.$$

We shall verify that $\Phi = (\Phi_1, \Phi_2)$ and $\Psi = (\Psi_1, \Psi_2)$ form a system of sub- and supersolutions for (I) if λ is large enough.

By increasing b, we can assume that

$$\psi_{\varepsilon} \leq b^{\frac{1}{p-1}} z$$
 in Ω .

Next, take $\lambda > 0$ large enough so that

$$\lambda^{\frac{1}{p-1}} (L^{\frac{1}{p-1}}/2) \psi(x) > A$$

for $d(x) > \varepsilon$, and

$$\Phi_i > \max(1, b^{1/\delta})z$$
 in Ω .

Then, for $M \gg \lambda^{\frac{1}{p-1}}$, we have $\Phi_i \leq \Psi_i$ in Ω , i = 1, 2. Let $\xi \in W_0^{1,p}(\Omega)$ with $\xi \geq 0$. Then we have

$$\int_{\Omega} |\nabla \Phi_i|^{p-2} \nabla \Phi_i . \nabla \xi dx = \lambda L \int_{d>\varepsilon} \xi dx - \lambda \int_{d<\varepsilon} \frac{\xi}{z^{\delta}} dx . \tag{4.7}$$

For $v_j \in [\Phi_j, \Psi_j]$ and $d(x) > \varepsilon$, we have

$$v_j(x) \ge \lambda^{\frac{1}{p-1}} (L^{\frac{1}{p-1}}/2) \psi(x) > A$$
,

which implies

$$\lambda \int_{d>\varepsilon} f_i(v_j) \xi dx \ge \lambda L \int_{d>\varepsilon} \xi dx . \tag{4.8}$$

On the other hand,

$$\lambda \int_{d<\varepsilon} f_i(v_j) \xi dx \ge -\lambda b \int_{d<\varepsilon} \frac{\xi}{v_j^{\delta}} \ge -\lambda \int_{d<\varepsilon} \frac{\xi}{z^{\delta}} dx. \tag{4.9}$$

Combining (4.7)-(4.9), we get

$$\int_{\Omega} |\nabla \Phi_i|^{p-2} \nabla \Phi_i \cdot \nabla \xi dx \le \lambda \int_{\Omega} f_i(v_j) \xi dx \tag{4.10}$$

for $i \neq j$. Next, since

$$f_i(t) \le \frac{b}{t^{\delta}} + \tilde{f_i}(t)$$

for t > 0, we deduce from (4.6) that

$$c\lambda \int_{\Omega} f_{1}(v_{2})\xi dx$$

$$\leq \lambda \int_{\Omega} \left(\frac{b}{z^{\delta}} + \tilde{f}_{1} \left(\lambda^{\frac{1}{p-1}} \|z\|_{\infty} \left(b + \|z\|_{\infty}^{\delta} \tilde{f}_{2}(M\|z\|_{\infty}) \right)^{\frac{1}{p-1}} \right) \right) \xi dx \qquad (4.11)$$

$$\leq M^{p-1} \int_{\Omega} \frac{\xi}{z^{\delta}} dx = \int_{\Omega} |\nabla \Psi_{1}|^{p-2} \nabla \Psi_{1} \cdot \nabla \xi dx.$$

Similarly,

$$c\lambda \int_{\Omega} f_{2}(v_{1})\xi dx \leq \lambda \int_{\Omega} \left(\frac{b}{z^{\delta}} + \tilde{f}_{2}(v_{1})\right)\xi dx$$

$$\leq \lambda \int_{\Omega} \left(\frac{b + \|z\|_{\infty}^{\delta} \tilde{f}_{2}(M\|z\|_{\infty})}{z^{\delta}}\right)\xi dx = \int_{\Omega} |\nabla \Psi_{2}|^{p-2} \nabla \Psi_{2} \cdot \nabla \xi dx.$$

$$(4.12)$$

From (4.10)–(4.12), we see that Φ and Ψ form a system of sub- and supersolutions for (I), which completes the proof of Theorem 2.2.

Appendix

We shall present some results needed above concerning sub- and supersolutions for singular boundary value problems. Related results can be found in [4, 6, 9]. Consider the system

$$\begin{cases}
-\Delta_{p}u_{1} = h_{1}(x, u_{1}, u_{2}) & \text{in } \Omega, \\
-\Delta_{p}u_{2} = h_{2}(x, u_{1}, u_{2}) & \text{in } \Omega, \\
u_{1} = u_{2} = 0 & \text{on } \partial\Omega,
\end{cases}$$
(1)

where $h_i: \Omega \times (0, \infty) \times (0, \infty) \to \mathbf{R}$ are continuous, i = 1, 2. Let $\Phi = (\Phi_1, \Phi_2), \Psi = (\Psi_1, \Psi_2)$, where $\Phi_i, \Psi_i \in C^1(\bar{\Omega}), \Phi_i \leq \Psi_i$ in Ω . Suppose there exist $l, C > 0, \gamma \in (0, 1)$, such that $\Phi_i, \Psi_i \geq ld$ in Ω and

$$|h_i(x, w_1, w_2)| \le \frac{C}{d^{\gamma}(x)}$$

for a.e. $x \in \Omega$ and all $w_i \in C(\bar{\Omega})$ with $\Phi_i \leq w_i \leq \Psi_i$ in $\Omega, i = 1, 2$. We say that $\{\Phi, \Psi\}$ forms a system of sub- and supersolutions for (1) if $\Phi_i \leq 0 \leq \Psi_i$ on $\partial \Omega$ and for all $\xi \in W_0^{1,p}(\Omega)$ with $\xi \geq 0$,

$$\int_{\Omega} |\nabla \Phi_i|^{p-2} \nabla \Phi_i \cdot \nabla \xi dx \le \int_{\Omega} h_i(x, \tilde{u}_1, \tilde{u}_2) \xi dx,$$

where $\tilde{u}_j = \Phi_i$ if j = i, $\tilde{u}_j \in [\Phi_j, \Psi_j]$ if $j \neq i$, and

$$\int_{\Omega} |\nabla \Psi_i|^{p-2} \nabla \Psi_i \cdot \nabla \xi dx \ge \int_{\Omega} h_i(x, \tilde{v}_1, \tilde{v}_2) \xi dx,$$

where $\tilde{v}_j = \Psi_i$ if j = i, $\tilde{v}_j \in [\Phi_j, \Psi_j]$ if $j \neq i$. Here $[\Phi_j, \Psi_j] = \{u \in C(\bar{\Omega}) : \Phi_j \leq u_j \leq \Psi_i \text{ in } \Omega\}$.

Note that the integrals on the right-hand side are defined by virtue of Hardy's inequality (see e.g. [2]).

LEMMA A. Under the above assumptions, there exists $\alpha \in (0, 1)$ such that (1) has a solution $(u_1, u_2) \in C^{1,\alpha}(\bar{\Omega}) \times C^{1,\alpha}(\bar{\Omega})$, i = 1, 2.

PROOF. For $(v_1, v_2) \in C(\bar{\Omega}) \times C(\bar{\Omega})$, define $T(v_1, v_2) = (u_1, u_2)$, where u_i satisfy

$$-\Delta_n u_i = \tilde{h}_i(x, v_1, v_2)$$
 in Ω , $u_i = 0$ on $\partial \Omega$,

where $\tilde{h}_i(x, v_1, v_2) = h_i(x, \tilde{v}_1, \tilde{v}_2)$, $\tilde{v}_i = \min(\max(v_i, \Phi_i), \Psi_i)$, i = 1, 2. Note that $\Phi_i \leq \tilde{v}_i \leq \Psi_i$ in Ω . Since

$$|\tilde{h}_i(x, v_1, v_2)| \leq \frac{C}{d^{\gamma}(x)}$$

for a.e. $x \in \Omega$ and all $v_1, v_2 \in C(\bar{\Omega})$, Lemma 3.1 implies the existence of $\alpha \in (0, 1)$ such that $u_i \in C^{1,\alpha}(\bar{\Omega})$ and $|u_i|_{1,\alpha} < \tilde{C}$, i = 1, 2, where \tilde{C} is independent of v_i , i = 1, 2. It is easy to see that T is a compact operator. Since $T\left(C(\bar{\Omega}) \times C(\bar{\Omega})\right)$ is relatively compact in $C(\bar{\Omega}) \times C(\bar{\Omega})$, it follows from the Schauder Fixed Point Theorem that T has a fixed point $u = (u_1, u_2)$ with $u_i \in C^{1,\alpha}(\bar{\Omega})$, i = 1, 2, for some $\alpha \in (0, 1)$. Using standard arguments, we see that $\Phi_i \leq u_i \leq \Psi_i$ in Ω , i = 1, 2, which concludes the proof.

References

- [1] C. AZIZIEH, PH. CLEMENT and E. MITIDIERI, Existence and a priori estimates for positive solutions for *p*-Laplace systems, J. Differential Equations **184** (2002), 422–442.
- [2] H. BREZIS, Analyse fonctionnelle, théorie et applications, second edition, Masson, Paris (1983).
- [3] PH. CLEMENT, J. FLECKINGER, E. MITIDIERI and F. DE THELIN, Existence of positive solutions for a nonvariational quasilinear elliptic system, J. Differential Equations 166 (2000), 455–477.
- [4] A. CANADA, P. DRABEK and J. L. GAMEZ, Existence of positive solutions for some problems with nonlinear diffusion, Trans. Amer. Math. Soc. 349 (1997), 4231–4249.
- [5] M. G. CRANDALL, P. H. RABINOWITZ and L. TARTAR, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193–222.
- [6] C. DECOSTER and S. NICAISE, Lower and upper solutions for elliptic problems in nonsmooth domains, J. Differential Equations 244 (2008), 599–629.
- [7] J. GIACOMONI, I. SCHINDLER and P. TAKÁČ, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 6 (2007), no. 1, 117–158.
- [8] D. D. HAI, Singular boundary value problems for the p-Laplacian, Nonlinear Anal. 73 (2010), 2876–2881.
- [9] D. D. HAI, On positive solutions for p-Laplacian systems with sign-changing nonlinearities, Hokaiddo Math.
 J. 39 (2010), 67–84.
- [10] D. D. HAI, On a class of singular p-Laplacian boundary value problems, J. Math. Anal. Appl. 383 (2011), 619–626.
- [11] D. D. HAI and R. SHIVAJI, An existence result on positive solutions for a class of *p*-Laplacian systems, Nonlinear Anal. **56** (2004), 1007–1010.
- [12] G. M. LIEBERMAN, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203–1219.
- [13] T. ODEN, Qualitative Methods in Nonlinear Mechanics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1986).
- [14] S. SAKAGUCHI, Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 14 (1987), 403–421.
- [15] J. L. VAZQUEZ, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191–202.

Present Address:

DEPARTMENT OF MATHEMATICS, MISSISSIPPI STATE UNIVERSITY, MISSISSIPPI STATE, MS 39762, USA. e-mail: dang@math.msstate.edu