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Abstract. We prove the existence of positive solutions for the p-Laplacian system

—Apul :)»fl(uz) in .Q,
—APMQZ)LfQ(ul) in 2,
uy=up=0 on 982,

where Apu = div(|Vu|p_2Vu), p > 1, £2 is abounded domain in R” with smooth boundary 952, f; : (0, 00) > R
are possibly singular at 0 and are not required to be positive or nondecreasing, and A is a large parameter.

1. Introduction

Consider the system

—Apuy = Afi1(uz) in £,
—Apur = Afo(uy) in £, @D
uy=ur=0 on 0582,

where A ,u = div(|Vu |/’_2Vu), p > 1, £2 is abounded domain in R” with smooth boundary
082, fi : (0,00) — R, i = 1,2, and A is a positive parameter.

The system (I) with f; nonsingular has been studied extensively in recent year (see e.g.
[1, 3,9, 11] and the references therein). In this paper, we are interested in obtaining positive
solutions of (I) when f; are possibly singular at O and are not required to be nonnegative,
nondecreasing, or bounded away from 0 at infinity. Such nonlinearities have not been consid-
ered in the literature to the best of our knowledge. Our approach is based on the method of
sub- and supersolutions.

2. Main results

We make the following assumptions:
(B.1) fi:(0,00) — Rare continuous, i = 1, 2.
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(B.2) There exist numbers a,b,c, A > 0,«;, 8; € (0,1) with 8; < p—1 and o; >
Bi such that

b c
~rar < fi(n) < B
fort > 0, and
a
fi() = B
fort > A.
(B.3) There exist numbers L, A > 0 such that

fit) = L
fort > A,i =1,2, and

1

lim " (¢ T )

t—00 t

=0

for each ¢ > 0.
(B.4) There exists a number § € (0, 1) such that

limsup®| f; (t)| < oo
t—07t
fori =1, 2.
By a solution of (I), we mean a pair (1, v) € CH¥(2) x C1%(£2) for some « € (0, 1)
that satisfies (I) in the weak sense.

THEOREM 2.1. Let (B.1)~(B.2) hold. Then problem (1) has a positive solution u =
(u1,r, u2,5) for A large. Furthermore ||u; ) |lcoc — 00 as . — 00,i =1, 2.

THEOREM 2.2. Let (B.1), (B.3), and (B.4) hold. Then problem (1) has a positive solu-
tion u = (uy 3, u2,)) for A large. Furthermore ||u; 3 ||loco = 00 as A — o0o,i =1, 2.

REMARK 2.1. A result similar to Theorem 2.2 was obtained in Theorem 2.2 of [8].
However, the theorem in [8], when applied to (B.4), requires that § < 1/n. Theorem 2.2 also
improves Theorem A in [11], where f; are assumed to be nondecreasing, nonsingular, and
unbounded

EXAMPLE 2.1. Let fi(uz) = _ule‘ + ;Tll Hruy) = _”bTZZ + ;Tzz where b;, c; >
2 1
0, p>2, aj, Bi € (0,1) and o; > B;i. Then f; satisfy (B.1),(B.2) and therefore (1) has a

positive solution for )\ large, by Theorem 2.1. Note that the nonlinearities f;(t) decay to 0 as
t — 00, which do not seem to have been considered in the literature.
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3. Preliminary results

We shall denote the norms in L9 (£2), C!(£2), and C1*(2) by || - ll4, | - |1, and | - |1 ¢
respectively.

The following results were established in [10]. For convenience, we sketch the proofs.
Let d(x) denote the distance from x to the boundary of £2.

LEMMA 3.1 [10]. Leth € L

ioe(82) and suppose there exist numbers y € (0, 1) and
C > 0 such that

h < 3.1
hol < s (3.1)
forae x € 2. Letu € Wol’p(.Q) be the solution of
—Apu=h in £,
{ u=0 on 982, (3-2)

Then there exist constants o« € (0,1) and M > 0 depending only on C,y, §2 such that
ueCh¥(Q)and|uli 4 < M.

PROOF. Suppose p = 2. It follows from [5] that the problem

1
—Av=— 1in 2, v=0 on 98,
vY
has a positive solution v which is Lipschitz continuous in £2.Let C; > 0 be such that v(x) <
Cid(x) in 2. Then

Y c .
—A(CC{v) > — in 2.
day
Let & be the solution of
—Au=|h| in 2, u=0 on 952,
and u = u + i. Then
—Aiu=h+1h| >0 in £2.

By the maximum principle, #(x) < CC{v(x) < C2d(x) and u(x) < Cpd(x) similarly, and
thus one obtains u(x) < 2Chd(x) for x € £2. Using the regularity result in [7, Theorem
B.1], we conclude that there exist & € (0, 1) and Mg > O such that i, € C1%(£2) and
lii|1,0, [U]1,0 < Mo. Since u = i — i1, Lemma 3.1 with p = 2 follows.

Now let u be the solution of (3.2) with p > 1. From Lemma 3.1, Theorem B.1, and the

proof of Lemma A.7 in [7], it follows that the problem

—Apv=5 in 2,
v=0 on 052,
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has a unique positive solution v € Wé’p (£2) with v < cod in £2. This implies

- C
-A, (cop v) > o in 2,

Since

Apu < ¢ d A < ¢
— pu_d—y an — p(—ll)_d—y

in £2, the weak comparison principle (see e.g. [14]) implies
Y %"‘1

|u|§copjv <cy d in $2.

Next, let w € C1*(£2) be the solution of
—Aw=h in 2, w=0 on 052.
Then
div(|Vu|?2Vu — Vw) =0 in 2,
and Lemma 3.1 now follows from Lieberman’s result [12, Theorem 1].

COROLLARY 3.1. Lete > 0 and h,fz € LS (82) satisfy (3.1) with h > 0, h % 0. Let

loc

U,Ug € WO1 "P(R2) be, respectively, the solutions of
—Apu=~h in £,
u=0 on a9s2,
and

CAg = h if dix)>e,
PRET VR if d(x) <&.

Then for ¢ small enough,
ues >u/2 in S2.

PROOF. By Lemma 3.1, there exist M > 0 and @ € (0, 1) so that |u|.q, |Us|1,a <
M. By the strong maximum principle [15], there exists x > 0 such that u > «d in
£2. Multiplying the equation

0 if dix) > ¢,

—Apu = (ZApue) = {h —hoifdx) <e

by u — u, and integrating gives

/ (IVulP=2Vu — |Vue |P72Vu,) - V(u — ug)dx <2M |h — h|dx (3.3)
2

d<e
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Note that for x, y € R",
(x| =+ 1yD" (27720 = [y1P72y) - (v = y) = Colx — y[™*P2),

where r = 2 — min(p,2), Co = (1/2)?7'if p > 2, Co = p—1,if p < 2 (see e.g.
[13, Lemma 30.1]). Using this inequality with x = Vu,y = Vu, in (3.3) and note that
|x| + |y| < 2M, we obtain

Co
QM)

/ IV —ue)|™™PDdx <2M | |h—hldx <4MC /
2

X
d<e d7 (x)

Hence |V(u — ug)|2 — 0as e — 0, and since C1*(£2) is compactly imbedded in C'(£2),
we obtain |u — u.|; — 0as e — 0. Consequently, if ¢ is sufficiently small,

d<e

lug —ulh <x/2,
which implies
ug >u— (k/2)d >u/2 in £2,

which completes the proof.

4. Proofs of main results
PROOF OF THEOREM 2.1. Letz;,i = 1,2, be the solutions of
—Apzi= 4 in £,
{ i = (z)i on 052,

and let m > 0 be such that z; < mz; in £2 fori # j. Choose § > 0 so that

- BiBj B: +1
ms -1 < (ac—ﬁm—ﬁi/zp—l)p it
Let ¢ > 0 and u; satisfy
y
a(25)" & ifdw e,
—Apu; = cm Z; , u;=0on 052.
— L if dix) <e
8% z;
Using Corollary 3.1 with
Bi 1 Bi

§Bi =17 p—1 8B 1 1
elam) ] meGm)
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Ug = U;, h = —WL%., and note that 4, h satisfy (3.1) with y = max(8;, «;), it follows
iz;
that if ¢ > 0 is small enough then u, > u/2 in £2, i.e.,
Bi
1 8B N\ P T =
Ui = 5[“(%) :| zi > 8mz; > 8z (4.1

. . ) ) . p=1-8 e . .
in2,i=12,i+#j Letr; = -17—5:F; and note that 1 —r;8; = ri(p — 1) fori # j.
Define

1
1

&, =Au;, W =Ni§ rTcr-

i = 1, 2. By the comparison principle,

Bi
§BJ p—17p-1
up < |a z; in £,
cmP~1

and so @; < ¥; in £2 if § is small enough. We shall verify that @ = (@1, P;) and ¥ =

(Y1, ¥,) form a system of sub- and supersolutions for (I) (see Appendix). For & € Wol’p (£2)
with& > 0 and v; € [®}, ¥;], we have from (4.1) that fori # j,

v; > A'8z; in £2,

and thus
Aibic g )J’z(P De £
dx <X —d AT e J
'/ fuvpsds C/ = I Qzﬁ’ 8Bi /Qzﬁ, X
=/ V&PV - VEdx . (4.2)
Q
Next, we have
Bi
§Bi \ T
/ |V<D,-|P_2chi . VEdx = )Lri(p—l)a( 1) / g_dx
@ cmbP™ d>¢e Z;.B’
Ai(p—Dp
T sw / . (4.3)
e d<e %

Since there exists mqg > 0 so that z; > mod in £2,i = 1, 2, it follows that

vj (x) = AV8zi(x) = AT8moe > A,
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ifd(x) > eand A > 1. Hence

Bi
§Bi\ p—T
A fpedx = a / s xl—rfﬁfa(_’> / £
d 1

d d>e V"' c ;
> > J > Z]

Bi
, 8B\ T
. ,\“(P—“a< _1> / . (4.4)
cm?P d>e Zil
On the other hand,
Al—rjaib
A/ fivj)édx > —Xb/ iaidx > — . / ETidx
d<e d<e V; g d<e 3
Aitp=Dp
el £ i, (4.5)
8¢ d<e 3

where we have used the fact that 1 — rjo; <1 —7;8; and A > 1. Combining (4.3)-(4.5), we
get

) / fivjsdx = / IV;|P72VP; - VEdx
2 2

which, together with (4.2), shows that {®, ¥} is a system of sub- and supersolutions of (I).
Theorem 2.1 now follows from Lemma A in the Appendix.

PROOF OF THEOREM 2.2. Lete, A > 0 and z, ¥, ¥, satisfy

—Apz=7% in @2, —Apy =1 in £,
z=0 on 952, Y =0 on 082,
and
L if dix) > ¢,
_prg—{_z% lf d(.x)<8 ) wa—o on aQ,

respectively. Then, by Corollary 3.1,
1
Ve = (LP=T/2)y in £2

if ¢ is small enough, which we shall assume. By (B.3) and (B.4), there exists b > 0 such that

b
[fi(®)] < =
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fort < A, and
b
fi) = 3
for t > 0. Define

sup fi(s) ifr=>A,

fit) = {A<s<t
fi(A) ifr<A.

Then f; are nondecreasing and

t—00 t
for each ¢ > 0. Hence there exists M > 1 so that

1

A[b 120 i (7 zlloo (b + ||z||ioﬁ<M||z||oo))w)] <Ml

Define

1

1 1 ~
O =27, i=1,2, ¥ =Mz, W =277 (b+ zld o(Mllzlle)) T 2.

(4.6)

We shall verify that @ = (@1, &2) and ¥ = (¥, ¥,) form a system of sub- and supersolu-

tions for (I) if A is large enough.
By increasing b, we can assume that

1

Ye <br-Tz in £2.
Next, take A > 0 large enough so that
AL /)0 (x) > A
ford(x) > ¢, and

®; > max(1,b'%z in 2.

1
Then, for M > AP-T, wehave &; < ¥; in 2,i = 1,2. Let& € Wol’p(Q) with & > 0. Then

we have

/ |V®;|P2V®; . VEdx = AL Edx — x/ %dx,
2 d>e d

<8Z

Forv; € [®j, ¥;] and d(x) > &, we have

0 (0) = AFT(LTT 20 (x) > A,

4.7
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which implies

x/ fiopedx > AL | Edx. (4.8)
d>¢ d>¢
On the other hand,
£ §
A fivj)édx > —1b == = —dx. (4.9)
d<e d<e V; d<e <

Combining (4.7)-(4.9), we get
/ |V®; P2V ®; - VEdx < ,\/ fi(vj)Edx (4.10)
Q Q
fori # j. Next, since
b -
fi(t) < = + fi(®)
for r > 0, we deduce from (4.6) that

C)»/ J1(v2)édx
2

b . =
< x/ <—5 + /i (m‘—l Ilse (6 + 121 (M 1)) )) Edx “10)
2 \Z
< 2

Similarly,

b -
C)»/ fa(v)édx S)»/ (—5+f2(v1)) Edx
Q o \z
.
5)»/ <b+IIleoofz(Mllzlloo)>§dx:/ VP2V, - Vedy .
2 2

z8

(4.12)

From (4.10)—(4.12), we see that @ and ¥ form a system of sub- and supersolutions for (I),
which completes the proof of Theorem 2.2.

Appendix

We shall present some results needed above concerning sub- and supersolutions for sin-
gular boundary value problems. Related results can be found in [4, 6, 9]. Consider the system

—Apur =hi(x,uy,uz) in$2,
—Apuy = ha(x,uy,uz) in$2, (D
uy=ur=0 on 452,
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where h; : 2 x (0,00) x (0,00) — R are continuous, i = 1,2. Let ® = (D1, P), ¥ =
(¥, ¥,), where &;, ¥; € C!(£2), ®; < ¥; in 2. Suppose there exist [, C > 0,y € (0, 1),
such that @;, ¥; > Id in §2 and

|hi (x, wi, wa)| < 70

forae. x € 2andall w; € C(2) with &; < w; < ¥ in 2,i = 1,2. We say that
{@, ¥} forms a system of sub- and supersolutions for (1) if @; < 0 < ¥; on 952 and for all

£ e W, (2) with £ > 0,
/ IV |P2V; - VEdx < / hi(x, iy, @i2)édx
2 2
whereﬁj = @; ifj =1, ﬁj [S [(Dj, '1/]'] ifj #*1, and
/ |V P72V, - VEdx > / hi(x, D1, D2)édx ,
2 2

where l~)j =Y; ifj =1, l~)j € [fpj, '1/]'] ifj # 1. Here [(Dj, '1/]'] ={u e C(Q) : @j Su; =
'1/]' in .Q}

Note that the integrals on the right-hand side are defined by virtue of Hardy’s inequality
(see e.g. [2]).

LEMMA A. Under the above assumptions, there exists « € (0, 1)such that (1) has a
solution (uy, us) € CH4(2) x CL2(2), i =1,2.

PROOE. For (v, v2) € C(£2) x C(£2), define T (v1, v2) = (u1, uz), where u; satisfy
—Apu; = hi(x,v1,v2) in 2, u; =0 on 382,

where fz,-(x, v, v2) = h;i(x, U1, U2), v; = min(max(v;, ®;),¥;), i = 1,2. Note that &; <
U; < ¥;in £2. Since

[hi(x, v1, v2)| <

dr(x)

fora.e. x € £2 and all vy, vy € C(f?), Lemma 3.1 implies the existence of & € (0, 1) such
that u; € Cl’“(f_?) and |u;|1,4 < C’, i = 1,2, where C is independentof v;, i = 1,2. It
is easy to see that 7' is a compact operator. Since T (C (£2)xC (.{_2)) is relatively compact in
C(£2) x C(£2), it follows from the Schauder Fixed Point Theorem that 7 has a fixed point
u = (uy,up) with u; € C“’(Q), i =1,2, for some o € (0, 1). Using standard arguments,
we see that @; < u; <¥;in §2, i = 1,2, which concludes the proof.
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