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Abstract. We prove the existence of positive solutions for the p-Laplacian system⎧⎨
⎩

−�pu1 = λf1(u2) in Ω ,

−�pu2 = λf2(u1) in Ω ,

u1 = u2 = 0 on ∂Ω ,

where�pu = div(|∇u|p−2∇u),p > 1, Ω is a bounded domain in Rn with smooth boundary ∂Ω, fi : (0,∞) → R
are possibly singular at 0 and are not required to be positive or nondecreasing, and λ is a large parameter.

1. Introduction

Consider the system

⎧⎨
⎩

−�pu1 = λf1(u2) in Ω ,

−�pu2 = λf2(u1) in Ω ,

u1 = u2 = 0 on ∂Ω ,

(I)

where�pu = div(|∇u|p−2∇u), p > 1, Ω is a bounded domain in Rn with smooth boundary
∂Ω, fi : (0,∞) → R, i = 1, 2, and λ is a positive parameter.

The system (I) with fi nonsingular has been studied extensively in recent year (see e.g.
[1, 3, 9, 11] and the references therein). In this paper, we are interested in obtaining positive
solutions of (I) when fi are possibly singular at 0 and are not required to be nonnegative,
nondecreasing, or bounded away from 0 at infinity. Such nonlinearities have not been consid-
ered in the literature to the best of our knowledge. Our approach is based on the method of
sub- and supersolutions.

2. Main results

We make the following assumptions:
(B.1) fi : (0,∞) → R are continuous, i = 1, 2.
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(B.2) There exist numbers a, b, c,A > 0, αi , βi ∈ (0, 1) with βi < p − 1 and αi ≥
βi such that

− b

tαi
≤ fi(t) ≤ c

tβi

for t > 0, and

fi(t) ≥ a

tβi

for t > A.

(B.3) There exist numbers L,A > 0 such that

fi(t) ≥ L

for t > A, i = 1, 2, and

lim
t→∞

f
1
p−1

1

(
cf

1
p−1

2 (t)
)

t
= 0

for each c > 0.
(B.4) There exists a number δ ∈ (0, 1) such that

lim sup
t→0+

tδ |fi(t)| < ∞

for i = 1, 2.
By a solution of (I), we mean a pair (u, v) ∈ C1,α(Ω̄) × C1,α(Ω̄) for some α ∈ (0, 1)

that satisfies (I) in the weak sense.

THEOREM 2.1. Let (B.1)–(B.2) hold. Then problem (I) has a positive solution u =
(u1,λ, u2,λ) for λ large. Furthermore ‖ui,λ‖∞ → ∞ as λ → ∞, i = 1, 2.

THEOREM 2.2. Let (B.1), (B.3), and (B.4) hold. Then problem (I) has a positive solu-
tion u = (u1,λ, u2,λ) for λ large. Furthermore ‖ui,λ‖∞ → ∞ as λ → ∞, i = 1, 2.

REMARK 2.1. A result similar to Theorem 2.2 was obtained in Theorem 2.2 of [8].
However, the theorem in [8], when applied to (B.4), requires that δ < 1/n. Theorem 2.2 also
improves Theorem A in [11], where fi are assumed to be nondecreasing, nonsingular, and
unbounded

EXAMPLE 2.1. Let f1(u2) = − b1

u
α1
2

+ c1

u
β1
2

, f2(u1) = − b2

u
α2
1

+ c2

u
β2
1

, where bi, ci >

0, p ≥ 2, αi , βi ∈ (0, 1) and αi > βi. Then fi satisfy (B.1),(B.2) and therefore (I) has a
positive solution for λ large, by Theorem 2.1. Note that the nonlinearities fi(t) decay to 0 as
t → ∞, which do not seem to have been considered in the literature.
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3. Preliminary results

We shall denote the norms in Lq(Ω),C1(Ω̄), and C1,α(Ω̄) by ‖ · ‖q , | · |1, and | · |1,α
respectively.

The following results were established in [10]. For convenience, we sketch the proofs.
Let d(x) denote the distance from x to the boundary of Ω.

LEMMA 3.1 [10]. Let h ∈ L∞
loc(Ω) and suppose there exist numbers γ ∈ (0, 1) and

C > 0 such that

|h(x)| ≤ C

dγ (x)
(3.1)

for a.e. x ∈ Ω. Let u ∈ W 1,p
0 (Ω) be the solution of{−�pu= h in Ω ,

u = 0 on ∂Ω ,
(3.2)

Then there exist constants α ∈ (0, 1) and M > 0 depending only on C, γ,Ω such that

u ∈ C1,α(Ω̄) and |u|1,α < M.

PROOF. Suppose p = 2. It follows from [5] that the problem

−�v = 1

vγ
in Ω , v = 0 on ∂Ω ,

has a positive solution v which is Lipschitz continuous in Ω̄. Let C1 > 0 be such that v(x) ≤
C1d(x) in Ω. Then

−�(CCγ1 v) ≥ C

dγ
in Ω .

Let ũ be the solution of

−�ũ = |h| in Ω , ũ = 0 on ∂Ω ,

and ū = u+ ũ. Then

−�ū = h+ |h| ≥ 0 in Ω .

By the maximum principle, ũ(x) ≤ CC
γ

1 v(x) ≤ C2d(x) and u(x) ≤ C2d(x) similarly, and
thus one obtains ū(x) ≤ 2C2d(x) for x ∈ Ω. Using the regularity result in [7, Theorem

B.1], we conclude that there exist α ∈ (0, 1) and M0 > 0 such that ũ, ū ∈ C1,α(Ω̄) and
|ũ|1,α, |ū|1,α < M0. Since u = ū− ũ, Lemma 3.1 with p = 2 follows.

Now let u be the solution of (3.2) with p > 1. From Lemma 3.1, Theorem B.1, and the
proof of Lemma A.7 in [7], it follows that the problem{−�pv = C

vγ
in Ω ,

v = 0 on ∂Ω ,
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has a unique positive solution v ∈ W 1,p
0 (Ω) with v ≤ c0d in Ω. This implies

−�p
(
c

γ
p−1
0 v

)
≥ C

dγ
in Ω ,

Since

−�pu ≤ C

dγ
and −�p(−u) ≤ C

dγ

in Ω, the weak comparison principle (see e.g. [14]) implies

|u| ≤ c

γ
p−1
0 v ≤ c

γ
p−1 +1

0 d in Ω.

Next, let w ∈ C1,α(Ω̄) be the solution of

−�w = h in Ω , w = 0 on ∂Ω .

Then

div(|∇u|p−2∇u− ∇w) = 0 in Ω ,

and Lemma 3.1 now follows from Lieberman’s result [12, Theorem 1].

COROLLARY 3.1. Let ε > 0 and h, h̃ ∈ L∞
loc(Ω) satisfy (3.1) with h ≥ 0, h 	≡ 0. Let

u, uε ∈ W 1,p
0 (Ω) be, respectively, the solutions of{−�pu = h in Ω ,

u = 0 on ∂Ω ,

and

−�puε =
{
h if d(x) > ε ,

h̃ if d(x) < ε .

Then for ε small enough,

uε ≥ u/2 in Ω.

PROOF. By Lemma 3.1, there exist M > 0 and α ∈ (0, 1) so that |u|1,α, |uε|1,α <
M. By the strong maximum principle [15], there exists κ > 0 such that u ≥ κd in
Ω. Multiplying the equation

−�pu− (−�puε) =
{

0 if d(x) > ε ,

h− h̃ if d(x) < ε

by u− uε and integrating gives∫
Ω

(|∇u|p−2∇u− |∇uε|p−2∇uε
) · ∇(u− uε)dx ≤ 2M

∫
d<ε

|h− h̃|dx (3.3)
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Note that for x, y ∈ Rn,

(|x| + |y|)r(|x|p−2x − |y|p−2y) · (x − y) ≥ C0|x − y|max(p,2) ,

where r = 2 − min(p, 2), C0 = (1/2)p−1, if p ≥ 2, C0 = p − 1, if p < 2 (see e.g.
[13, Lemma 30.1]). Using this inequality with x = ∇u, y = ∇uε in (3.3) and note that
|x| + |y| ≤ 2M , we obtain

C0

(2M)r

∫
Ω

|∇(u− uε)|max(p,2)dx ≤ 2M
∫
d<ε

|h− h̃|dx ≤ 4MC
∫
d<ε

1

dγ (x)
dx

Hence ‖∇(u − uε)‖2 → 0 as ε → 0, and since C1,α(Ω̄) is compactly imbedded in C1(Ω̄),

we obtain |u− uε|1 → 0 as ε → 0. Consequently, if ε is sufficiently small,

|uε − u|1 ≤ κ/2 ,

which implies

uε ≥ u− (κ/2)d ≥ u/2 in Ω ,

which completes the proof.

4. Proofs of main results

PROOF OF THEOREM 2.1. Let zi , i = 1, 2, be the solutions of{−�pzi = 1

z
βi
i

in Ω,

zi = 0 on ∂Ω ,

and let m > 0 be such that zi ≤ mzj in Ω for i 	= j. Choose δ > 0 so that

mδ
1− βiβj

(p−1)2 ≤
(
ac

− βi
p−1m−βi /2p−1

) 1
p−1

, i 	= j .

Let ε > 0 and ui satisfy

−�pui =

⎧⎪⎨
⎪⎩
a

(
δ
βj

cmp−1

) βi
p−1 1

z
βi
i

if d(x) > ε ,

− b

δαi z
αi
i

if d(x) < ε

, ui = 0 on ∂Ω .

Using Corollary 3.1 with

u =
[
a

(
δβj

cmp−1

) βi
p−1

] 1
p−1

zi , h = a

(
δβj

cmp−1

) βi
p−1 1

z
βi
i

,
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uε = ui, h̃ = − b

δαi z
αi
i

, and note that h, h̃ satisfy (3.1) with γ = max(βi, αi), it follows

that if ε > 0 is small enough then uε ≥ u/2 in Ω, i.e.,

ui ≥ 1

2

[
a

(
δβj

cmp−1

) βi
p−1

] 1
p−1

zi ≥ δmzi ≥ δzj (4.1)

in Ω, i = 1, 2, i 	= j. Let ri = p−1−βi
(p−1)2−βiβj and note that 1 − rj βi = ri(p − 1) for i 	= j.

Define

Φi = λri ui , Ψi = λri δ
− βi
p−1 c

1
p−1 zi ,

i = 1, 2. By the comparison principle,

ui ≤
[
a

(
δβj

cmp−1

) βi
p−1

] 1
p−1

zi in Ω ,

and so Φi ≤ Ψi in Ω if δ is small enough. We shall verify that Φ = (Φ1,Φ2) and Ψ =
(Ψ1, Ψ2) form a system of sub- and supersolutions for (I) (see Appendix). For ξ ∈ W 1,p

0 (Ω)

with ξ ≥ 0 and vj ∈ [Φj,Ψj ], we have from (4.1) that for i 	= j,

vj ≥ λrj δzi in Ω ,

and thus

λ

∫
Ω

fi(vj )ξdx ≤ λc

∫
Ω

ξ

v
βi
j

dx ≤ λ1−rjβi c
δβi

∫
Ω

ξ

z
βi
i

dx = λri (p−1)c

δβi

∫
Ω

ξ

z
βi
i

dx

=
∫
Ω

|∇Ψi |p−2∇Ψi · ∇ξdx . (4.2)

Next, we have

∫
Ω

|∇Φi |p−2∇Φi · ∇ξdx = λri(p−1)a

(
δβj

cmp−1

) βi
p−1

∫
d>ε

ξ

z
βi
i

dx

− λri (p−1)b

δαi

∫
d<ε

ξ

z
αi
i

dx . (4.3)

Since there exists m0 > 0 so that zi ≥ m0d in Ω, i = 1, 2, it follows that

vj (x) ≥ λrj δzi(x) ≥ λrj δm0ε > A ,
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if d(x) > ε and λ � 1. Hence

λ

∫
d>ε

fi(vj )ξdx ≥ λa

∫
d>ε

ξ

v
βi
j

dx ≥ λ1−rj βi a
(
δβj

c

) βi
p−1

∫
d>ε

ξ

z
βi
j

dx

≥ λri(p−1)a

(
δβj

cmp−1

) βi
p−1

∫
d>ε

ξ

z
βi
i

dx . (4.4)

On the other hand,

λ

∫
d<ε

fi(vj )ξdx ≥ −λb
∫
d<ε

ξ

v
αi
j

dx ≥ −λ
1−rjαi b
δαi

∫
d<ε

ξ

z
αi
i

dx

≥ −λ
ri(p−1)b

δαi

∫
d<ε

ξ

z
αi
i

dx , (4.5)

where we have used the fact that 1 − rjαi ≤ 1 − rjβi and λ > 1. Combining (4.3)–(4.5), we
get

λ

∫
Ω

fi(vj )ξdx ≥
∫
Ω

|∇Φi |p−2∇Φi · ∇ξdx ,

which, together with (4.2), shows that {Φ,Ψ } is a system of sub- and supersolutions of (I).
Theorem 2.1 now follows from Lemma A in the Appendix.

PROOF OF THEOREM 2.2. Let ε, λ > 0 and z,ψ,ψε satisfy{
−�pz = 1

zδ
in Ω ,

z = 0 on ∂Ω,
,

{ −�pψ = 1 in Ω ,

ψ = 0 on ∂Ω ,

and

−�pψε =
{
L if d(x) > ε ,

− 1
zδ

if d(x) < ε
, ψε = 0 on ∂Ω ,

respectively. Then, by Corollary 3.1,

ψε ≥ (L
1
p−1 /2)ψ in Ω

if ε is small enough, which we shall assume. By (B.3) and (B.4), there exists b > 0 such that

|fi(t)| ≤ b

tδ



328 D. D. HAI

for t < A, and

fi(t) ≥ − b

tδ

for t > 0. Define

f̃i (t) =
{

sup
A≤s≤t

fi (s) if t ≥ A ,

fi(A) if t < A .

Then f̃i are nondecreasing and

lim
t→∞

f̃
1
p−1

1

(
cf̃

1
p−1

2 (t)
)

t
= 0

for each c > 0. Hence there existsM � 1 so that

λ

[
b + ‖z‖δ∞f̃1

(
λ

1
p−1 ‖z‖∞

(
b + ‖z‖δ∞f̃2(M‖z‖∞)

) 1
p−1

)]
≤ Mp−1. (4.6)

Define

Φi = λ
1
p−1ψε , i = 1, 2, Ψ1 = Mz, Ψ2 = λ

1
p−1

(
b + ‖z‖δ∞f̃2(M‖z‖∞)

) 1
p−1 z .

We shall verify that Φ = (Φ1,Φ2) and Ψ = (Ψ1, Ψ2) form a system of sub- and supersolu-
tions for (I) if λ is large enough.

By increasing b, we can assume that

ψε ≤ b
1

p−1 z in Ω .

Next, take λ > 0 large enough so that

λ
1

p−1 (L
1

p−1 /2)ψ(x) > A

for d(x) > ε, and

Φi ≥ max(1, b1/δ)z in Ω .

Then, for M � λ
1

p−1 , we have Φi ≤ Ψi in Ω, i = 1, 2. Let ξ ∈ W 1,p
0 (Ω) with ξ ≥ 0. Then

we have ∫
Ω

|∇Φi |p−2∇Φi.∇ξdx = λL

∫
d>ε

ξdx − λ

∫
d<ε

ξ

zδ
dx . (4.7)

For vj ∈ [Φj,Ψj ] and d(x) > ε, we have

vj (x) ≥ λ
1

p−1 (L
1
p−1 /2)ψ(x) > A ,
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which implies

λ

∫
d>ε

fi(vj )ξdx ≥ λL

∫
d>ε

ξdx . (4.8)

On the other hand,

λ

∫
d<ε

fi(vj )ξdx ≥ −λb
∫
d<ε

ξ

vδj
≥ −λ

∫
d<ε

ξ

zδ
dx . (4.9)

Combining (4.7)-(4.9), we get∫
Ω

|∇Φi |p−2∇Φi · ∇ξdx ≤ λ

∫
Ω

fi(vj )ξdx (4.10)

for i 	= j. Next, since

fi(t) ≤ b

tδ
+ f̃i (t)

for t > 0, we deduce from (4.6) that

cλ

∫
Ω

f1(v2)ξdx

≤ λ

∫
Ω

(
b

zδ
+ f̃1

(
λ

1
p−1 ‖z‖∞

(
b + ‖z‖δ∞f̃2(M‖z‖∞)

) 1
p−1

))
ξdx

≤ Mp−1
∫
Ω

ξ

zδ
dx =

∫
Ω

|∇Ψ1|p−2∇Ψ1 · ∇ξdx.

(4.11)

Similarly,

cλ

∫
Ω

f2(v1)ξdx ≤ λ

∫
Ω

(
b

zδ
+ f̃2(v1)

)
ξdx

≤ λ

∫
Ω

(
b + ‖z‖δ∞f̃2(M‖z‖∞)

zδ

)
ξdx =

∫
Ω

|∇Ψ2|p−2∇Ψ2 · ∇ξdx .
(4.12)

From (4.10)–(4.12), we see that Φ and Ψ form a system of sub- and supersolutions for (I),
which completes the proof of Theorem 2.2.

Appendix

We shall present some results needed above concerning sub- and supersolutions for sin-
gular boundary value problems. Related results can be found in [4, 6, 9]. Consider the system⎧⎨

⎩
−�pu1 = h1(x, u1, u2) in Ω ,

−�pu2 = h2(x, u1, u2) in Ω ,

u1 = u2 = 0 on ∂Ω,
(1)
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where hi : Ω × (0,∞) × (0,∞) → R are continuous, i = 1, 2. Let Φ = (Φ1,Φ2), Ψ =
(Ψ1, Ψ2), where Φi,Ψi ∈ C1(Ω̄),Φi ≤ Ψi in Ω. Suppose there exist l, C > 0, γ ∈ (0, 1),
such that Φi,Ψi ≥ ld in Ω and

|hi(x,w1, w2)| ≤ C

dγ (x)

for a.e. x ∈ Ω and all wi ∈ C(Ω̄) with Φi ≤ wi ≤ Ψi in Ω, i = 1, 2. We say that
{Φ,Ψ } forms a system of sub- and supersolutions for (1) if Φi ≤ 0 ≤ Ψi on ∂Ω and for all

ξ ∈ W 1,p
0 (Ω) with ξ ≥ 0,∫

Ω

|∇Φi |p−2∇Φi · ∇ξdx ≤
∫
Ω

hi(x, ũ1, ũ2)ξdx ,

where ũj = Φi if j = i, ũj ∈ [Φj,Ψj ] if j 	= i, and∫
Ω

|∇Ψi |p−2∇Ψi · ∇ξdx ≥
∫
Ω

hi(x, ṽ1, ṽ2)ξdx ,

where ṽj = Ψi if j = i, ṽj ∈ [Φj ,Ψj ] if j 	= i. Here [Φj,Ψj ] = {u ∈ C(Ω̄) : Φj ≤ uj ≤
Ψj in Ω}.

Note that the integrals on the right-hand side are defined by virtue of Hardy’s inequality
(see e.g. [2]).

LEMMA A. Under the above assumptions, there exists α ∈ (0, 1)such that (1) has a

solution (u1, u2)∈ C1,α(Ω̄)× C1,α(Ω̄), i = 1, 2.

PROOF. For (v1, v2) ∈ C(Ω̄)× C(Ω̄), define T (v1, v2) = (u1, u2), where ui satisfy

−�pui = h̃i (x, v1, v2) in Ω , ui = 0 on ∂Ω ,

where h̃i(x, v1, v2) = hi(x, ṽ1, ṽ2), ṽi = min(max(vi ,Φi), Ψi), i = 1, 2. Note that Φi ≤
ṽi ≤ Ψi in Ω. Since

|h̃i (x, v1, v2)| ≤ C

dγ (x)

for a.e. x ∈ Ω and all v1, v2 ∈ C(Ω̄), Lemma 3.1 implies the existence of α ∈ (0, 1) such

that ui ∈ C1,α(Ω̄) and |ui |1,α < C̃, i = 1, 2, where C̃ is independent of vi, i = 1, 2. It

is easy to see that T is a compact operator. Since T
(
C(Ω̄)× C(Ω̄)

)
is relatively compact in

C(Ω̄) × C(Ω̄), it follows from the Schauder Fixed Point Theorem that T has a fixed point
u = (u1, u2) with ui ∈ C1,α(Ω̄), i = 1, 2, for some α ∈ (0, 1). Using standard arguments,
we see that Φi ≤ ui ≤ Ψi in Ω, i = 1, 2, which concludes the proof.
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