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Abstract. Let A and B be subalgebras of C(X) and C(Y), respectively, for some topological spaces X and
Y . An arbitrary map T : A → B is said to be multiplicatively range-preserving if for every f, g ∈ A, (f g)(X) =
(Tf T g)(Y ), and T is said to be separating if TfT g = 0 whenever f g = 0.

For a given metric space X and α ∈ (0, 1], let Lipc(X, α) be the algebra of all complex-valued functions on
X satisfying the Lipschitz condition of order α on each compact subset of X. In this note we first investigate the
general form of multiplicatively range-preserving maps from C(X) onto C(Y) for realcompact spaces X and Y (not
necessarily compact or locally compact) and then we consider such preserving maps from Lipc(X, α) onto Lipc(Y, β)
for metric spaces X and Y and α, β ∈ (0, 1]. We show that in both cases multiplicatively range-preserving maps are
weighted composition operators which induce homeomorphisms between X and Y . We also give a description of a
linear separating map T : A → C(Y), where A is either C(X) for a normal space X or Lipc(X, α) for a metric space
X and 0 < α ≤ 1 and Y is an arbitrary Hausdorff space.

1. Introduction

Given two subalgebras A and B of continuous functions on topological spaces X and
Y , respectively, a (not necessarily linear) map T : A → B is called multiplicatively range-
preserving if (f g)(X) = (Tf T g)(Y ) holds for all f, g ∈ A. For Banach algebras A and B,
a map T : A → B is said to be multiplicatively spectrum-preserving if σ(f g) = σ(Tf T g),
f, g ∈ A, where σ(.) denotes the spectrum of an element in a Banach algebra.

There is a vast literature concerning the maps, not assumed to be linear, between certain
Banach algebras of functions preserving some structures such as norm, range, spectrum or
particular subsets of the range and the spectrum. Multiplicatively spectrum-preserving maps
were first studied by Molnár in [18]. He proved that ifX is a first countable compact Hausdorff
space, then each surjective multiplicatively spectrum-preserving map T on the supremum
norm Banach algebra C(X) of all continuous complex-valued functions on X, is “almost”
automorphism; more precisely, T is a weighted composition operator of the form

Tf (x) = h(x)f (ϕ(x)) (f ∈ C(X), x ∈ X) ,
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where h is a continuous function on X taking its value in {-1,1} and ϕ is a homeomorphism
on X. Then in [19] Rao and Roy generalized Molnár’s result to the case where C(X) is re-
placed by a uniform algebra A on a compact Hausdorff space X such that X is the maximal
ideal space of A. They also extended the result to the case where A is a (not necessarily
unital) uniform algebra on a locally compact Hausdorff space X whose maximal ideal space
is the same as X (see [20]). Simultaneously, in [8], Hatori, Miura and Takagi characterized
the general form of surjective multiplicatively range-preserving maps between uniform alge-
bras on compact Hausdorff spaces. They also proved in [9] that if T is a multiplicatively
spectrum-preserving map from a unital semisimple commutative Banach algebra A onto a
unital commutative Banach algebra B with T (1A) = 1B , then B is semisimple and T is an
algebra isomorphism. In [11] the authors obtained similar results for multiplicatively range-
preserving maps between certain (not necessarily unital) Banach function algebras. In [17],
introducing the peripheral range Ranπ(f ) = {z ∈ f (X) : |z| = supx∈X |f (x)|} of a func-
tion f ∈ C(X), whereX is a compact Hausdorff space, Luttman and Tonev studied surjective
maps T : A → B between unital uniform algebrasA and B satisfying the following condition

Ranπ(f g) = Ranπ(Tf T g) (f, g ∈ A) .
Recently their results have been generalized in [10] for uniformly closed subalgebras ofC0(X)

for a locally compact Hausdorff space X. Similar results can be found in [13] and [14] for
Lipschitz algebras of functions.

In the first part of this paper we consider surjective multiplicatively range-preserving
maps between topological algebras C(X) and C(Y ) for realcompact spaces X and Y (not
necessarily compact or locally compact) and show that such preserving maps are weighted
composition operators which induce homeomorphisms between X and Y . A similar charac-
terization will be given for multiplicatively range-preserving maps defined between (topolog-
ical) algebras of continuous functions on a metric space X satisfying the Lipschitz condition
of order α, for some 0 < α ≤ 1, on each compact subset of X.

For two algebras (or spaces of functions)A and B a map T : A → B is called separating

if f g = 0 implies Tf T g = 0 for all f, g ∈ A and biseparating if T is bijective and T −1

is separating as well. Clearly algebra homomorphisms and multiplicatively range-preserving
maps are separating. Weighted composition operators on algebras of functions are important
typical examples of linear separating maps. On the other hand, if X and Y are compact Haus-
dorff spaces, then any continuous linear separating map T fromC(X) ontoC(Y ) is a weighted
composition operator of the form (Tf )(y) = h(y)f (ϕ(y)), y ∈ Y and f ∈ A, where h is a
continuous complex-valued function on Y and ϕ : Y → X is continuous, in particular, if T is
bijective, then ϕ is a homeomorphism [12]. This result has been extended to regular Banach
function algebras satisfying Ditkin’s condition in [6]. The study of separating maps between
various Banach algebras has attracted a considerable interest in recent years. For example,
separating maps between C∗-algebras have been considered in [4] and biseparating maps be-
tween (vector-valued) Lipschitz functions have been studied in [2] and [15]. A more general
situation would be to consider the separating maps between not necessarily normable algebras
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of functions. For an integer m ≥ 0, linear separating functionals on Cm(Ω), the algebra of
allm-times continuously differentiable complex-valued functions on an open subsetΩ of Rn,
n ∈ N, were studied in [16]. Moreover, additive biseparating maps from C(X) onto C(Y ), for
completely regular spaces X and Y , were discussed in [1] and [3]. In fact, in the latter case
such maps induce homeomorphisms between the real compactifications of X and Y [3].

There are also some results related to the automatic continuity of linear separating maps.
For example, any bijective linear separating map between regular Banach function algebras
satisfying Ditkin’s condition is automatically continuous [6]. For more results on automatic
continuity of such maps see [3, 12, 16].

In the second part of the paper we give a description of a (not necessarily bijective) linear
separating map from a certain subalgebra A of continuous functions on a Hausdorff space X
into C(Y ) for some Hausdorff space Y . The result can be applied for the case where X is a
normal space, A = C(X) and for the case where X is a metric space and A is the algebra of
all complex-valued functions on X satisfying the Lipschitz condition of order α, 0 < α ≤ 1,
on each compact subset of X.

2. Preliminaries

By a topological algebra we mean a complex algebra A with a (Hausdorff) vector space
topology making the multiplication of A jointly continuous. A topological algebra whose
topology can be defined by a family of submultiplicative seminorms is called a locally mul-
tiplicatively convex algebra (an lmc-algebra). A Fréchet algebra is an lmc-algebra A whose
topology is generated by a sequence (pn) of submultiplicative seminorms such that the metric
induced by (pn) is complete. The set of all continuous complex-valued homomorphisms on a
Fréchet algebra A will be denoted by MA. We always endow MA with the Gelfand topology.
A unital commutative Fréchet algebra A is said to be regular if for each closed subset F of
MA and a point ϕ ∈ MA\F , there exists an element a ∈ A such that â(ϕ) = 1 and â = 0 on
F , where â is the Gelfand transform of a ∈ A. We refer the reader to [7] for some classical
results on Fréchet algebras.

For an arbitrary Hausdorff space X we denote the algebra of all continuous complex-
valued functions on X by C(X) and the subalgebra of C(X) consisting of all bounded func-
tions, respectively compact support functions by Cb(X), respectively Cc(X). For a point
x ∈ X we denote the evaluation homomorphism on C(X) at this point by δx and for an
element f ∈ Cb(X) we denote the supremum norm of f on X by ‖f ‖X .

Let X be a locally compact Hausdorff space. We denote the algebra of all continuous
complex-valued functions on X vanishing at infinity by C0(X). A subalgebra A of C0(X) is
called a function algebra on X if A separates strongly the points of X, i.e. for each x, z ∈ X
with x �= z, there exists f ∈ Awith f (x) �= f (z) and for each x ∈ X, there exists f ∈ Awith
f (x) �= 0. We follow [5] for the definition of a Banach function algebra, that is, a function
algebra on X which is a Banach algebra with respect to a norm. A uniform algebra on X is a
function algebra which is a closed subalgebra of (C0(X), ‖.‖X). A Banach function algebra
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A on a locally compact Hausdorff space X is called natural if the maximal ideal space MA

of A coincides with X, via the evaluation homomorphisms. We note that in this case by [5,
Proposition 4.1.2] we have X ∼= MA through the map x 	→ δx .

When X is compact, all Banach function algebras on X are assumed to contain the con-
stant functions.

A Banach function algebra A on a locally compact Hausdorff space X is said to satisfy
Ditkin’s condition if for each ϕ ∈ MA ∪ {0} and a ∈ A with â(ϕ) = 0 there exists a sequence
{an} in A such that each ân has compact support and vanishes on a neighborhood of ϕ and,
furthermore, ‖ana − a‖ → 0.

For metric spaces (X, d1) and (Y, d2) and α ∈ (0, 1] we call a map f : X → Y a

Lipschitz function of order α if LX,α(f ) = sup
{ d2(f (x),f (y))

dα1 (x,y)
: x, y ∈ X, x �= y

}
is finite. For

α = 1 such functions are referred to as Lipschitz functions.
If (K, d) is a compact metric space and 0 < α ≤ 1, then the algebra Lip(K, α) of all

complex-valued Lipschitz functions of order α on K is a natural Banach function algebra on
K with respect to the following Lipschitz norm

‖f ‖ = ‖f ‖K + LK,α(f ) (f ∈ Lip(K, α)) .

Moreover, for each closed subset F of K and open neighborhood U of F there exists a func-
tion f ∈ Lip(K, α), such that 0 ≤ f ≤ 1, f |F = 1 and f |K\U = 0. In particular, Lip(K, α)
is a regular Banach function algebra.

Let (X, d) be an arbitrary metric space and let 0 < α ≤ 1. We define Lipc(X, α) as the
algebra of all complex-valued functions onX which satisfy the Lipschitz condition of order α
on each compact subset of X, i.e. for each compact subset K of X, f |K ∈ Lip(K, α). Since
each metric space X is a k-space, in the sense that a subset U of X is open whenever U ∩K
is open in K for every compact subset of X, it follows that all functions in Lipc(X, α) are
necessarily continuous on X. It is easy to verify that Lipc(X, α) is a complete lmc-algebra
under the topology defined by the family (pK) of seminorms, where K ranges over all com-
pact subsets of X and for each f ∈Lipc(X, α), pK(f ) is the Lipschitz norm of f |K in the
Banach algebra Lip(K, α).

For a compact metric space K and an arbitrary metric space X we write Lip(K) and
Lipc(X), respectively, for Lip(K, α) and Lipc(X, α) whenever α = 1.

3. Multiplicatively Range-preserving Maps on C(X) and Lipc(X, α)

In this section we give a description of multiplicatively range-preserving maps from
C(X) ontoC(Y ) for realcompact spacesX and Y which are not necessarily compact or locally
compact, and from Lipc(X, α) onto Lipc(Y, β) for metric spaces X and Y and α, β ∈ (0, 1].
We show that in both cases such maps are essentially weighted composition operators which
induce homeomorphisms between X and Y .

Before stating the results we prove the following simple lemma which concludes that
multiplicatively range-preserving maps between certain subalgebras of continuous functions
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are increasing in modulus of functions in both directions (Corollary 3.3).

LEMMA 3.1. Let X be a Hausdorff space and let A be a subalgebra of C(X) with the
property that for each x ∈ X and each neighborhood V of x, there exists a bounded function
f ∈ A such that |f (x)| = 1 = ‖f ‖X and f = 0 on X \ V . Then for f, g ∈ A, |f | � |g| if
and only if for every c � 0 and h ∈ A, |gh| � c implies |f h| � c.

PROOF. The “only if” part is trivial. For the converse assume, on the contrary, that

there exists x0 ∈ X such that |f (x0)| > |g(x0)|. Set γ = 1
2 (|f (x0)|+ |g(x0)|), then |g(x0)| <

γ < |f (x0)| and hence there exists a neighborhood V of x0 such that |g(x)| < γ on V . Now,
by the hypothesis, we can find a bounded function h ∈ A such that |h(x0)| = 1 = ‖h‖X and
h = 0 on X \ V . Thus |gh| ≤ γ on X while |fh(x0)| > γ . �

We can easily deduce the following corollaries from the above lemma. It should be
noted that similar results are known for uniform algebras on compact Hausdorff spaces (see
Corollary 1 and Lemma 7 in [17]):

COROLLARY 3.2. Let X and A be as in the preceding lemma and let f, g ∈ A. If
(f h)(X) = (gh)(X) for every h ∈ A, then |f | = |g|.

COROLLARY 3.3. Assume that A and B are subalgebras of continuous functions on
Hausdorff spacesX and Y , respectively, having the property stated in Lemma 3.1. If T : A →
B is a surjective multiplicatively range-preserving map, then for f, g ∈ A, |f | ≤ |g| if and
only if |Tf | ≤ |T g|.

THEOREM 3.4. Let X and Y be realcompact spaces and let T : C(X) → C(Y ) be a
surjective multiplicatively range-preserving map. Then there exists a homeomorphism ϕ from
Y onto X such that

(Tf )(y) = (T 1)(y)f (ϕ(y)) (f ∈ C(X), y ∈ Y ) .
PROOF. Since, by assumption, T is multiplicatively range-preserving, (T 1)(Y ) ⊆

{−1, 1} and the restriction T̃ of T to Cb(X) maps Cb(X) onto Cb(Y ). Now the density of

X and Y in their Stone-Čech compactifications βX and βY implies easily that T̃ is a multi-
plicatively spectrum-preserving map from C(βX) onto C(βY ). Thus (T̃ 1)(βY ) ⊆ {−1, 1}
and by [9, Theorem 3.2] there exists a homeomorphism ϕ : βY → βX such that

(Tf )(y) = (T̃ f )(y) = (T 1)(y)f (ϕ(y)) (f ∈ Cb(X), y ∈ βY ) (1)

We first show that ϕ(Y ) ⊆ X. Let y ∈ Y and assume, on the contrary, that ϕ(y) ∈ βX\X.
Then by [21, P. 81] there is a function f0 ∈ Cb(X) with f0(ϕ(y)) = 1 and |f0| < 1 on X,
which is impossible, since |f0|(X) = |Tf0|(Y ) = |f0 ◦ ϕ|(Y ), by (1). This concludes that
ϕ(Y ) ⊆ X. It is now simple to observe that ϕ is a homeomorphism from Y onto X.

We now claim that (1) holds for every f ∈ C(X) and y ∈ Y . Since (T 1)(Y ) ⊆ {1,−1}
and f 	→ T 1 Tf defines a multiplicatively range-preserving map from C(X) onto C(Y ), we
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can assume, without loss of generality, that T (1) = 1. So rewriting (1) we have

(Tf )(y) = f (ϕ(y)) (f ∈ Cb(X), y ∈ βY ) (2)

Let y ∈ Y , f ∈ C(X) and take a = f (ϕ(y)) and b = (Tf )(y). We shall show that a = b. If
a = 0, then for an arbitrary ε > 0 set V = {x ∈ X : |f (x)| < ε}. Then V is a neighborhood
of ϕ(y). Since X is completely regular, we can take g ∈ Cb(X) with g(ϕ(y)) = 1 = ‖g‖X
and g = 0 on X \ V . Obviously f g ∈ Cb(X) and ‖f g‖X < ε, hence Tf T g ∈ Cb(Y ) with
‖Tf T g‖Y < ε. Since (T g)(y) = g(ϕ(y)) = 1, by (2), we get

|(Tf )(y)| = |(Tf )(y) (T g)(y)| ≤ ‖Tf T g‖Y < ε ,

which implies that b = (Tf )(y) = 0 = a as ε > 0 was arbitrary. So we may assume that
a �= 0. Set x = ϕ(y) and let V be an arbitrary neighborhood of x in X. Choose g ∈ Cb(X)

with g(x) = 1 = ‖g‖X and g = 0 on X \ V . Then there exists h ∈ Cb(X) such that
T h = min(|Tf |, |(Tf )(y)|). Since (T g)(y) = 1, by (2), it follows that

|(Tf )(y)| = |(Tf )(y) (T g)(y)| = |(T h)(y) (T g)(y)| ≤ ‖T h T g‖Y = ‖hg‖X .
Hence there exists a point x0 ∈ V such that |(Tf )(y)| ≤ |hg(x0)| ≤ |h(x0)|. Since V is
an arbitrary neighborhood of x and h is continuous, we conclude that |(Tf )(y)| ≤ |h(x)|.
On the other hand, |T h| ≤ |Tf | on Y and so by Corollary 3.3, |h| ≤ |f | on X. Hence
|(Tf )(y)| ≤ |h(x)| ≤ |f (x)| = |f (ϕ(y))|, that is |b| ≤ |a|. A similar argument implies
the other inequality, therefore |a| = |b|. Now consider the closed subsets F0 = {z ∈ X :
|f (z)− a| ≥ |a|/2} and

Fn =
{
z ∈ X : |a|

2n+1
≤ |f (z)− a| ≤ |a|

2n

}
(n ∈ N)

of X (the idea of considering such subsets comes from [8]). Then for each i ≥ 0 there exists
a positive function ui in Cb(X) such that ui(x) = 1 = ‖ui‖X and ui = 0 on Fi . Clearly
the series u0

∑∞
i=1

ui
2i

converges uniformly on X to a function u ∈ Cb(X). Obviously for

every z ∈ F0, fu(z) = 0. If z ∈ Fn, for some n ≥ 1, then a simple calculation shows that
|fu(z)| < |a| and if z ∈ X \ ⋃∞

n=0 Fn, then f (z) = a. Therefore, for every z ∈ X either
f u(z) = a or |fu(z)| < |a|. Consequently, (f u)(X) ⊆ {λ ∈ C : |λ| < |a|} ∪ {a}. Now since
(T u)(y) = 1, by (2), it follows that

b = (Tf )(y) = (Tf )(y) (T u)(y) ∈ (f u)(X) ,
and consequently b = a, as |b| = |a|. �

In the next theorem we prove the above result for multiplicatively range-preserving maps
from Lipc(X, α) onto Lipc(Y, β), where X and Y are metric spaces and α, β ∈ (0, 1]. The
argument in this case is different from the above and comes essentially from [18, Theorem 5].

Before stating the theorem we prove the following proposition which will be used in the
proof of Theorem 3.6.
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PROPOSITION 3.5. Let (X, d1) and (Y, d2) be metric spaces and α, β ∈ (0, 1]. Let
T : Lipc(X, α) → Lipc(Y, β) be a weighted composition operator of the form (Tf )(y) =
h(y)f (ϕ(y)), f ∈ Lipc(X, α), y ∈ Y , where h is a non-vanishing continuous complex-valued
function on Y and ϕ is a continuous function from Y into X. Then ϕ satisfies the Lipschitz
condition of order β on each compact subset of Y .

PROOF. We first note that since h = T 1 ∈ Lipc(Y, β) is non-vanishing, 1
h

∈
Lipc(Y, β). Hence for each f ∈ Lipc(X, α), f ◦ ϕ ∈ Lipc(Y, β). Let K be a compact subset
of Y , y0 be a fixed point of K and H = ϕ(K). Since Lip(H) ⊆ Lip(H, α) and each function
f ∈ Lip(H, α) can be extended to a bounded function f̃ on X satisfying the Lipschitz con-
dition of order α on the whole X, we can define a linear map TK : Lip(H) → Lip(K, β) by
TK(f ) = (f̃ ◦ϕ)|K . Clearly TK is well-defined and continuous by the Closed Graph theorem.
Let t = ‖TK‖, then for every f ∈ Lip(H), ‖TK(f )‖ ≤ t‖f ‖. Since for every pairs y1, y2 of
points of K , the function f defined on H by

f (x) = d1(x, ϕ(y1))− d1(ϕ(y1), ϕ(y0)) (x ∈ H)
is an element of Lip(H)with f (ϕ(y0)) = 0 and LH,1(f ) ≤ 1 and, furthermore, LH,1(f ) > 0
whenever ϕ(y1) �= ϕ(y2) it follows easily that

d1(ϕ(y1), ϕ(y2))

= sup

{ |f (ϕ(y1))− f (ϕ(y2))|
LH,1(f )

: f ∈ Lip(H),LH,1(f ) �= 0, f (ϕ(y0)) = 0

}
.

There is another norm ‖f ‖′ = max(LH,1(f ), |f (ϕ(y0))|), f ∈ Lip(H), on Lip(H)
which is equivalent to the norm of Lip(H), and so there exists a positive scalar s such that
‖f ‖ ≤ s‖f ‖′ for all f ∈ Lip(H). Hence

d1(ϕ(y1), ϕ(y2))≤ sup

{
ts

|g(y1)− g(y2)|
LK,β(g)

: g ∈ TK(Lip(H)), LK,β(g) �= 0, g(y0) = 0

}

≤ tsdβ2 (y1, y2) .

Therefore, supy1,y2∈K
d1(ϕ(y1),ϕ(y2))

d
β
2 (y1,y2)

≤ ts, that is, ϕ satisfies the Lipschitz condition of order

β on K . �

We note that for each metric space (X, d) and 0 < α ≤ 1, Lipc(X, α) satisfies the
hypothesis of Lemma 3.1. Indeed, for each x0 ∈ X and any neighborhood V of x0, h(x) =
1−max

(
0, 1− dα(x,X\V )

dα(x0,X\V )
)
, x ∈ X, defines an element of Lipc(X, α) with h(x0) = 1 = ‖h‖X

and h = 0 on X\V .

THEOREM 3.6. Let (X, d1) and (Y, d2) be metric spaces, let α, β ∈ (0, 1] and let T :
Lipc(X, α) → Lipc(Y, β) be a surjective multiplicatively range-preserving map. Then there

is a homeomorphism ϕ from Y onto X such that ϕ (respectively ϕ−1) is a Lipschitz function
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of order β (respectively α) on each compact subset and for each y ∈ Y and f ∈ Lipc(X, α),
(Tf )(y) = (T 1)(y) f (ϕ(y)) .

PROOF. Since (T 1)2 = 1 and the map T̃ : Lipc(X, α) → Lipc(Y, β) defined by

T̃ (f ) = T 1 Tf is a surjective multiplicatively range-preserving map, we can assume, without
loss of generality, that T (1) = 1.

We follow the same argument as in the proof of [18, Theorem 5] to show that T is
injective and homogeneous.

To prove the injectivity of T , suppose that f, g ∈ Lipc(X, α) such that Tf = T g . Then
for every h ∈ Lipc(X, α), (f h)(X) = (Tf T h)(Y ) = (T gT h)(Y ) = (gh)(X) and hence
|f | = |g|, by Corollary 3.2. If there exists an x0 ∈ X such that f (x0) �= g(x0), then we can
find r > 0 such that |f (x0) − g(x0)| > r . Let V be an open neighborhood of x0 such that

|f (x)− f (x0)| < r holds on V and let h(x) = 1 − max
(
0, 1 − dα1 (x,X\V )

dα1 (x0,X\V )
)
, x ∈ X. Then h

is an element of Lipc(X, α) and we observe that (f h)(X) is contained in the product [0, 1]D,
where D = {z ∈ C : |z − f (x0)| < r} while g(x0)h(x0) /∈ [0, 1]D since |g(x0)| = |f (x0)|.
This contradiction shows that T is injective.

The above argument shows, in particular, that two functions f, g ∈ Lipc(X, α) are equal
if and only if (f h)(X) = (gh)(X), for every 0 ≤ h ∈ Lipc(X, α). Similar identification holds
for two elements in Lipc(Y, β).

Now let f ∈ Lipc(X, α) and λ ∈ C. Then for every h ∈ Lipc(X, α), ((λTf )T h)(Y ) =
λ(Tf T h)(Y ) = λ(f h)(X) = ((λf )h)(X) = (T (λf )T h)(Y ) and hence T (λf ) = λTf , by
the above identification, i.e., T is homogeneous.

To any point y in Y , there exists a function hy in Lipc(Y, β) such that 0 ≤ hy ≤ 1,

hy(y) = 1 and hy(z) < 1 for all z �= y; for example, hy(z) = max(0, 1 − d
β
2 (z, y)), z ∈ Y ,

satisfies the requirements. We claim that for each y ∈ Y and each element hy in Lipc(Y, β)

with the above mentioned properties, T −1(hy) takes the value 1 exactly at one point in X,

independent of the choice of hy . We first note that since T −1(hy)(X) = hy(Y ), the range of

T −1(hy) contains the value 1. Suppose now that there exist two different points x1, x2 ∈ X

such that T −1(hy)(x1) = T −1(hy)(x2) = 1. Let V1 and V2 be disjoint neighborhoods of
x1 and x2 in X. Then, as before, we can find elements f1, f2 in Lipc(X, α) such that 0 ≤
fi ≤ 1, fi(xi) = 1 and fi = 0 on X\Vi , i = 1, 2. Clearly f1f2 = 0 and replacing fi by

min(fi, T −1(hy)), for i = 1, 2, we can assume that f1 + f2 ≤ T −1(hy). Let gi = Tfi , i =
1, 2, then gi ≤ hy by Corollary 3.3. Since T is multiplicatively range-preserving, g1g2 = 0
and therefore g1 + g2 ≤ hy . Since gi (Y ) = (Tfi)(Y ) = fi(X), there exists yi ∈ Y such
that gi (yi) = 1. Then y1 �= y2 by g1g2 = 0, and consequently hy(y1) = 1 = hy(y2), a

contradiction. We now claim that for each y ∈ Y the unique point in X at which T −1(hy)

attains its maximum value 1 is independent of the choice of hy . Let hy and h′
y be two elements

in Lipc(Y, β) having the above mentioned properties. Since min(hy, h′
y) also has the same

properties, it follows that min(T −1(hy), T
−1(h′

y)) attains its maximum value at a unique point
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x ∈ X. Hence T −1(hy) and T −1(h′
y) take their maximum value at the same point, as desired.

So we can define a function ϕ : Y → X such that for each y ∈ Y , ϕ(y) is the unique point
in X at which T −1(hy) attains its maximum module, where hy is an arbitrary function in
Lipc(Y, β) such that 0 ≤ hy ≤ 1, hy(y) = 1 and hy(z) < 1 for all z �= y.

Now we show that for any 0 ≤ f ∈ Lipc(X, α),

Tf (y) = f (ϕ(y)) (y ∈ Y ) (3)

Let f ∈ Lipc(X, α) be a non-negative function and let y ∈ Y . Set a = f (ϕ(y)) and
b = (Tf )(y). Considering the function hy as above we take gy = hy if b = 0 and

gy =min
(
hy,

Tf
b

)
if b �= 0. Hence bgy ≤ Tf and so by Corollary 3.3, bT −1(gy) =

T −1(bgy) ≤ f . Since 0 ≤ gy ≤ hy , T −1(gy)(ϕ(y)) = 1, and consequently b ≤ a. Similar
argument shows that a ≤ b and this establishes (3).

We now show that ϕ is continuous. Let y0 ∈ Y and let V be a neighborhood of ϕ(y0)

in X. As before, we can find a function fϕ(y0) ∈ Lipc(X, α) such that 0 ≤ fϕ(y0) ≤ 1,
fϕ(y0)(ϕ(y0)) = 1 and fϕ(y0) = 0 on X \ V . Hence W = {y ∈ Y : (Tfϕ(y0))(y) > 1/2} is
a neighborhood of y0 with ϕ(W) ⊆ V , by (3), that is, ϕ is continuous. Since our conditions

are symmetric with respect to T and T −1, there exists a continuous map ψ from X into Y
with the same properties as ϕ. Thus f (x) = (Tf )(ψ(x)) for all x ∈ X and 0 ≤ f ∈
Lipc(X, α). Therefore for all x ∈ X and 0 ≤ f ∈ Lipc(X, α), f (x) = f (ϕ(ψ(x))). Similarly
g(y) = g(ψ(ϕ(y))) for all y ∈ Y and 0 ≤ g ∈ Lipc(Y, β). Hence ψ is the inverse of ϕ, i.e.,
ϕ is a homeomorphism.

Now if f is an arbitrary element of Lipc(X, α), then for each non-negative function h ∈
Lipc(X, α),

(Tf · (h ◦ ϕ))(Y ) = (Tf T h)(Y ) = (f h)(X) = (f ◦ ϕ)(h ◦ ϕ)(Y ) ,
which concludes that Tf = f ◦ ϕ, by the identification stated earlier.

Finally it follows, from the previous proposition, that ϕ and ϕ−1 satisfy the Lipschitz
condition of order β and α, respectively, on the compact subsets of Y andX, respectively. �

4. Linear Separating Maps on C(X) and Lipc(X, α)

As it was mentioned before, linear separating maps T : A → B between regular Banach
function algebras A and B, where A satisfies the Ditkin’s condition, were discussed by Font
in [6]. The same proofs can be applied for the case where A is a Banach function algebra
satisfying the following (�)-property

(�) There exists a scalar c such that for each compact subset K of X and each
open neighborhood U ofK there exists a function f ∈ A with ‖f ‖X ≤ c, f = 1
onK and f = 0 on X\U,

which is slightly stronger than the regularity of A. However, in the next lemma we give
an elementary and short proof for this case and then, using this result we give a description
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of linear separating maps between (not necessarily normable) algebras of type C(X) and
Lipc(X, α) for a normal, respectively, metric space X.

LEMMA 4.1. Let A be a Banach function algebra on a locally compact Hausdorff
space X having the above (�)-property. Then the following statements hold.

(i) Any ‖ · ‖X-continuous linear separating functional on A is a scalar multiple of an
evaluation homomorphism.

(ii) Let T : A → C(Y ), where Y is an arbitrary Hausdorff space, be a linear sepa-
rating map and let Yc be the set of all points y ∈ Y such that δy ◦ T is nonzero and ‖ · ‖X-
continuous where δy is the evaluation functional at y. Then there exist continuous functions
h : Yc → C and ϕ : Yc → X such that

(Tf )(y) = h(y)f (ϕ(y)) (f ∈ A, y ∈ Yc) .
PROOF. (i) Letψ be a ‖·‖X-continuous linear separating functional onA. Extending

ψ to a continuous linear functional on C0(X) we can correspond a regular Borel measure µ to
ψ such thatψ(f ) = ∫

X f dµ for all f ∈ A. We shall show that the support of µ is a singleton.
Let F and G be arbitrary disjoint compact subsets of X and let U and V be disjoint compact
neighborhoods of F and G, respectively. By regularity of µ there exist decreasing sequences
{Un} and {Vn} of open neighborhoods of F andG, respectively, such that for each n, Un ⊆ U

and |µ|(Un\F) ≤ 2−n, similarly Vn ⊆ V and |µ|(Vn\G) ≤ 2−n. By the hypothesis, there
exist sequences {fn} and {gn} in A such that ‖fn‖X ≤ c, fn|F = 1 and fn = 0 outside Un
and similarly ‖gn‖X ≤ c, gn|G = 1 and gn = 0 outside Vn, for some constant c. Obviously,
ψ(fn) = ∫

X fndµ → µ(F) and ψ(gn) = ∫
X gndµ → µ(G). Since for each n, fngn = 0 it

follows that ψ(fn)ψ(gn) = 0, n ∈ N, that is µ(F)µ(G) = 0. Since this result is valid for all
pairs of disjoint compact subsets of X, the regularity of µ implies that if F andG are disjoint
compact subsets of X, then |µ|(F )|µ|(G) = 0. Now assume to the contrary that there exist
two distinct points x1 and x2 in the support of µ and choose compact neighborhoods U and V

of x1 and x2, respectively whose closures U and V are disjoint. Then by the above argument

either |µ|(U) = 0 or |µ|(V ) = 0, which is impossible. Therefore, µ has one point in its
support, as desired.

(ii) Let Yc = {y ∈ Y : δy ◦ T is nonzero and ‖ · ‖X − continuous}. Then by (i), for
each y ∈ Yc there exist a nonzero scalar h(y) and an element ϕ(y) inX such that (δy◦T )(f ) =
h(y)f (ϕ(y)) holds for all f ∈ A. We note that for each y ∈ Yc the scalar h(y) and the element
ϕ(y) with the above property are uniquely determined. Indeed, if h′(y) ∈ C and ϕ′(y) ∈ X

satisfy the same condition, then by property (�) we can find a function f ∈ A such that
f (ϕ(y)) = 1 = f (ϕ′(y)). Hence h(y) = (Tf )(y) = h′(y) which concludes easily that
ϕ(y) = ϕ′(y). Thus ϕ : Yc → X and h : Yc → C are well-defined.

We shall show that the functions ϕ and h obtained in this way are continuous. Let
y0 ∈ Yc and let U be an open neighborhood of ϕ(y0) in X. Consider, by property (�), a
function f ∈ A whose cozero set coz(f ) = {x ∈ X : f (x) �= 0} is contained in U and
f (ϕ(y0)) �= 0. Clearly (Tf )(y0) �= 0 and coz(Tf ) ∩ Yc is an open neighborhood of y0 in Yc
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such that ϕ(coz(Tf )∩Yc) ⊆ coz(f ) ⊆ U , that is ϕ is continuous. It is now simple to observe
that h is continuous as well. �

REMARK. It is easy to see that the set Yc defined in the above theorem is the largest
subset of Y for which there exist continuous functions h : Yc → C and ϕ : Yc → X such that
(Tf )(y) = h(y)f (ϕ(y)) for all y ∈ Yc and f ∈ A.

Let X be a Hausdorff space and for each compact subset K of X let (AK, pK) be a
Banach function algebra on K such that for all pairs of compact subsets K and K ′ of X with
K ′ ⊇ K , we have AK ′ |K = AK and pK(f |K) ≤ pK ′(f ) for all f ∈ AK ′ . Then the algebra
A = {f ∈ C(X) : f |K ∈ AK, for each compact subset K} is an lmc-algebra with respect to
the family (p̃K)K of seminorms defined by p̃K(f ) = pK(f |K), f ∈ A, whereK ranges over
all compact subsets of X. For simplicity we use the same notation pK instead of p̃K . The
algebra C(X), for an arbitrary Hausdorff space X, endowed with the compact-open topology
and the algebra Lipc(X, α), for a metric space X and 0 < α ≤ 1, with the topology defined
earlier, are examples of lmc-algebras which can be expressed in this way.

In the next theorem, we give a description of linear separating maps defined either on
C(X), for a normal space X or on Lipc(X, α), for a metric space X and 0 < α ≤ 1. However
the main part of the proof (except the continuity of ϕ) is valid for all lmc-algebras A defined
as above whenever for each compact subset K of X, A|K = AK , AK is regular, closed under
conjugation and Re(AK) is closed under maximum.

THEOREM 4.2. Let X be a normal space, Y be a Hausdorff space and A = C(X). If
T : A → C(Y ) is a linear separating map, then there exists a continuous map ϕ : Yc → X,
where Yc consists of all points y ∈ Y such that δy◦T is nonzero and continuous with respect to
the compact-open topology, such that (Tf )(y) = (T 1)(y)f (ϕ(y)), for all y ∈ Yc and f ∈ A.
The same conclusion holds when A = Lipc(X, α), for a metric space X and 0 < α ≤ 1.

PROOF. We prove both cases simultaneously. Let X be either a normal space or a
metric space and let 0 < α ≤ 1. For the first case we set A = C(X) and AK = C(K),
for each compact subset K of X, and for the second case we set A =Lipc(X, α) and AK =
Lip(K, α) for each compact subset K of X. Then clearly for each compact subset K of X,
A|K = AK .

We first show that each linear separating functional ψ on A which is continuous with
respect to the compact-open topology is a scalar multiple of an evaluation homomorphism at
some point of X. Since ψ is continuous

|ψ(f )| ≤ c‖f ‖K (f ∈ A) (4)

holds for some constant c and a compact subsetK ofX. The fact that in both casesA|K = AK

together with (4) imply that the linear functional ψK defined on AK by ψK(f |K) = ψ(f ),
f ∈ A, is well-defined and ‖ · ‖K -continuous. We claim that ψK is separating as well.
Let f, g ∈ AK with f g = 0. Since AK is conjugate closed and Re(AK) is closed under
maximum, f and g can be decomposed as f = f1−f2+i(f3−f4) and g = g1−g2+i(g3−g4)
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where fi, gi , i = 1, . . . , 4, are positive functions in AK with f1f2 = f3f4 = 0 and g1g2 =
g3g4 = 0. It is easy to see that figj = 0, i, j = 1, . . . , 4. So without loss of generality we
can assume that f and g are positive functions in AK . We can now choose a real function

h̃ in A such that h̃|K = f − g . Then it is easy to see that the functions f̃ = max(h̃, 0) and

g̃ = max(−h̃, 0) as elements of A are extensions of f and g , respectively such that f̃ g̃ = 0.

Hence ψK(f )ψK(g) = ψ(f̃ )ψ(g̃) = 0, i.e., ψK is separating. Now since AK is a regular
Banach function algebra onK which is closed under conjugation and Re(AK) is closed under
maximum, it follows that AK has (�)-property and so by the preceding lemma ψK is a scalar
multiple of an evaluation homomorphism on A|K = AK , i.e., ψK = αδxK , for some scalar α
and xK ∈ K , that is ψ(f ) = αδxK (f ) for all f ∈ A.

We now pass to the general case. Let T : A → C(Y ) be a linear separating map and let
Yc be the set of all points y ∈ Y such that δy ◦ T is a nonzero linear functional continuous
with respect to the compact-open topology. By the above argument for each y ∈ Yc, there
exist a nonzero scalar h(y) and an element ϕ(y) in X with (δy ◦ T )(f ) = h(y)f (ϕ(y)) for all
f ∈ A.

Continuity of the function h : Yc → C is obvious, since h is, indeed, the restriction of
T 1 to Yc. As in the proof of Lemma 4.1(ii) we can show that the function ϕ : Yc → X is also
continuous. �

REMARK. One can apply the proof of Proposition 3.5 to show that for metric spacesX
and Y and α, β ∈ (0, 1] and for any linear separating map T from Lipc(X, α) into Lipc(Y, β),
the map ϕ given in the previous theorem satisfies the Lipschitz condition of order β on each
compact subset of Yc.

It should be noted that, in general, a separating map need not be continuous. Indeed in
[12] it was shown that for any infinite compact Hausdorff space X, there is a discontinuous
linear separating functional on C(X). In the following we extend Proposition 5 in [16] con-
cerning the existence of a discontinuous linear separating functional ϕ on Cb(Ω), whereΩ is
an open subset of R

n, n ∈ N, such that ϕ(1) = 1 and ϕ = 0 on Cc(Ω) to certain subalgebras
of Cb(X), where X is a locally compact σ -compact Hausdorff space.

Let X be a locally compact σ -compact space which is not compact. For each compact
subset K of X let (AK, pK) be a natural Banach function algebra on K such that the family
{(AK, pK) : K ⊆ X is compact} satisfies the requirements stated before Theorem 4.2, i.e.,
for any pair K and K ′ of compact subsets of X with K ′ ⊇ K , AK ′ |K = AK and pK(f |K) ≤
pK ′(f ), f ∈ AK ′ . Let A = {f ∈ C(X) : f |K ∈ AK, for each compact subset K}. Since X
is locally compact and σ -compact there is a sequence {Kn} of compact subsets of X such that
X = ⋃

Kn and for each n ∈ N, Kn is contained in the interior int(Kn+1) of Kn+1. Hence
each compact subset of X is contained in some Kn and so in this case A = {f ∈ C(X) :
f |Kn ∈ AKn, n ∈ N}. In particular, A is a Fréchet algebra under the topology defined earlier.

THEOREM 4.3. Let X be a locally compact σ -compact space which is not compact
and let A be as above. Assume, in addition, that for each compact subset K of X and open
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neighborhood U ofK there exists a function f ∈ A such that f |K = 1, f = 0 onX\U . Then
there exists a discontinuous linear separating functional ϕ onAb = A∩Cb(X) (endowed with
the relative topology inherited from A) such that ϕ(1) = 1 and ϕ = 0 on Ac = A ∩ Cc(X).

PROOF. Let the sequence {Kn} of compact subsets of X be chosen as above. We first
establish the theorem for the case where A = C(X), equipped with the compact-open topol-
ogy. Let x ∈ βN\N and consider the subspace V = {a ∈ ł∞ : x /∈ supp(â)} of ł∞. Then

clearly e = (1, 1, . . . ) /∈ V and u = (
1, 1

2 ,
1
4 , . . . ,

1
2n−1 , . . .

)
/∈ V . Since X is not com-

pact we can choose a sequence {xn} in X such that xn ∈ Kn\Kn−1, for all n ≥ 2. Clearly
the set {xn : n ∈ N}, where x1 is an arbitrary element of K1, has no limit point. Now
choose a sequence {fn} in C0(X) with 0 ≤ fn ≤ 1/2n, fn|Kn = 1/2n and fn = 0 outside
int(Kn+1)\{xn+1}. Set f0 = ∑∞

n=1 fn. Then f0 ∈ C0(X) and (f0(x1), f0(x2), . . . ) = u.
Since {xn : n ∈ N} is contained in supp(f0), it follows that supp(f0) is not compact. Let ϕ be
a linear functional on ł∞ such that ϕ|V = 0, ϕ(e) = 1 and ϕ(u) �= 0 and let S be the linear
map from Cb(X) into ł∞ defined by S(f ) = (f (x1), f (x2), . . . ), f ∈ Cb(X). We claim that
for all f ∈ Cc(X), S(f ) ∈ V . For suppose that f ∈ Cc(X), then supp(f ) ⊆ KN0 for some
N0. Hence f (xn) = 0, for all n ≥ N0 + 1, that is the set {n ∈ N : f (xn) �= 0} is finite. There-
fore, supp(Ŝf ) is a finite subset of N and hence x /∈ supp(Ŝf ), i.e., Sf ∈ V . We can easily
verify that the linear functional T = ϕ ◦ S is a discontinuous linear separating functional on
Cb(X) (with respect to the compact-open topology) which has the desired properties.

Now consider the general case. Using the hypotheses on A, one can verify easily that
Ac = A ∩ Cc(X) is dense in A. Therefore, the restriction of the linear functional T obtained
in the first part of the proof to A is already discontinuous with respect to the relative topology
inherited from A, as desired. �

COROLLARY 4.4. LetX be a locally compact σ -compact space which is not compact.
If either A = C(X) or A = Lipc(X, α), 0 < α ≤ 1, when X is, in addition, a metric space,
then there exists a discontinuous linear separating functional on Ab = A ∩ Cb(X) (with
respect to the topology of A) which vanishes on each element of A with compact support.
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