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Geometric Limits and Length Bounds on Curves

Teruhiko SOMA

Tokyo Metropolitan University

Abstract. In this paper, we present the new proof of the Length Upper Bounds Theorem on curves in surfaces,
which is crucial in the proof of Ending Lamination Conjecture by Minsky et al. Our proof is based on arguments in
Bowditch [Bow2] but we use geometric limit arguments fully.

Geometric limits of hyperbolic 3-manifolds describe extremal situations. By studying
such limits, we often know the existence of uniform constants which are useful in hyperbolic
geometry. Most results derived from geometric limit arguments do not give any computable
bounds, but they are not needed for many applications, most notably, the Ending Lamination
Conjecture and its consequences. Our plan in this paper and others is to reinterpret recently
obtained important results on hyperbolic geometry by mainly using geometric limit argu-
ments. Indeed, Soma [So] is one of papers written along the philosophy. Such reinterpreta-
tions will be useful to generalize theorems on hyperbolic 3-manifolds to those on 3-manifolds
with pinched negatively curved metric.

The Ending Lamination Conjecture of Thurston [Th2] asserts that any open hyperbolic
3-manifold M with finitely generated fundamental group is determined up to isometry by
its end invariants. In the case that π1(M) is isomorphic to the fundamental group of a sur-
face S of finite type, the conjecture is proved by Minsky [Mi2] partially collaborating with
Masur, Brock and Canary [MM1, MM2, BCM]. They also announced in [BCM] that the
conjecture holds for all hyperbolic 3-manifolds N with π1(N) finitely generated. We refer
to [Bow3, BBES, Re, So] for alternative approaches to this conjecture. In Minsky’s proof of
the conjecture, the a-Priori Bounds Theorem in [Mi2] plays an important role. This theorem
shows that, for entries v of the tight geodesics in certain hierarchies on the curve graph C(S),
the length of a closed geodesic in M representing v is uniformly bounded.

The Length Upper Bounds Theorem in Bowditch [Bow2] also presents a uniform bound
for the length of closed geodetics in M representing entries of tight geodesics in C(F ) for
subsurfaces F of S. His result is essentially equivalent to Minsky’s, for example see [Bow2,
Section 8]. Bowditch proved his boundedness theorem by studying a nearly geometric limit
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situation of the relevant hyperbolic 3-manifold Mn. In general, the topological types of geo-
metric limit manifolds are very complicated even if all Mn have simple topological types. So,
he made a detour to avoid the difficulty. In fact, he stopped just before reaching at the geo-
metric limit and studied the situation by using a certain stability for laminations in Mn and
their lifts to the tangent line bundle over Mn.

In this paper, we will present the proof of the Length Upper Bounds Theorem based on
that in [Bow2]. However, our proof relies fully on geometric limit arguments which enable us
to skip rather harder discussions in [Bow2, Sections 6 and 7]. In our proof, the fact that the
topological types of geometric limits are complicated does not matter, but just the existence
of the limits does.

When F is either a one-holed torus or a four-holed sphere, the proof of the Length Upper
Bounds Theorem in [Bow2] is quite different from that in other cases. In fact, he invoked then
trace identities for representations π1(F ) → PSL2(C). In this paper, we will use geometric
limit arguments even for the exceptional case, which may have an advantage in generalizing
the Ending Lamination Conjecture on hyperbolic 3-manifolds to that on pinched negatively
curved 3-manifolds. We note that this exceptional case is crucial in the proof of the conjecture
in any case.

1. Preliminaries

We refer to Thurston [Th1], Benedetti and Petronio [BP], Matsuzaki and Taniguchi
[MT], Marden [Ma] for details on hyperbolic geometry, and to Hempel [He] for those on
3-manifold topology.

Throughout this paper, all manifolds are assumed to be oriented and all homeomorphisms
between manifolds orientation-preserving. Moreover, we always suppose that S is a connected
surface with hyperbolic structure of finite area. An open subset F of S is an open geodesic
subsurface (for short o.g.-subsurface) of S if each component of the topological boundary ∂F
of F in S is a simple closed geodesic of S. In particular, this means that S itself is an o.g.-
subsurface of S even if S is a closed surface. The complexity of an o.g.-subsurface F is defined
by ξ(F ) = 3g +p− 3, where g is the genus of F and p is the total number of components of
∂F and cusps of F . When ξ(F ) ≥ 2, we define the curve graph C(F ) of F to be the simplicial
graph whose vertices are homotopy classes of non-contractible and non-peripheral simple
closed curves in F and whose edges are pairs of distinct vertices with disjoint representatives.
We simply call a vertex of C(F ) or any representative of the class a curve in F . For our
convenience, we take a uniquely determined geodesic in F as a representative for any curve
in F . The notion of curve graphs is introduced by Harvey [Har] and extended and modified
versions are studied by [MM1, MM2, Mi1]. In the case that ξ(F ) = 1, the curve graph C(F )
is the simplicial graph such that its vertices are curves in F and two curves v,w form the
end points of an edge if and only if they have the minimum geometric intersection number
i(v,w), that is, i(v,w) = 1 when F is a one-holed torus and i(v,w) = 2 when F is a four-
holed sphere. In either case, C(F ) is supposed to have a path metric such that each edge is
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isometric to the unit interval [0, 1]. The graph C(F ) is not locally finite but is proved to be δ-
hyperbolic by Masur and Minsky [MM2] (see also Bowditch [Bow1]) for some δ > 0. Hence
C(F ) has the boundary ∂C(F ) at infinity. The set of vertices in C(F ) is denoted by C0(F ).
We say that the union of k + 1 elements of C0(F ) with mutually disjoint representatives is a
k-simplex in C0(F ).

DEFINITION 1.1. A sequence {vi}i∈I of simplices in C0(F ) is called a tight geodesic
if it satisfies one of the following conditions, where I is a finite or infinite interval in Z.

(i) When ξ(F ) ≥ 2, for any vertices wi of vi and wj of vj with i �= j , d(wi,wj ) =
|i− j |. Moreover, if {i − 1, i, i + 1} ⊂ I , then vi is represented by the topological

boundary ∂F i+1
i−1 of F i+1

i−1 in F , where F i+1
i−1 is the minimum o.g.-subsurface of F

containing the geodesic representatives of vi−1 ∪ vi+1.
(ii) When ξ(F ) = 1, {vi}i∈I is just a geodesic sequence in C0(F ).

This definition implies that, for a tight geodesic {vi}, if a vertex w of C(F ) meets vi
transversely, then w meets at least one of vi−1 and vi+1 transversely. In fact, this is just a
property of tight geodesics which we use in this paper. According to Lemma 5.14 in [Mi1]
(see also Theorem 1.2 in [Bow2]), any distinct points of C0(F ) ∪ ∂C(F ) are connected by a
tight geodesic in C0(F ).

A geodesic pattern F on F is a disjoint family of simple closed geodesics and connected
o.g.-subsurfaces J in F with ξ(J ) ≥ 1. The notion of geodesic patterns is essentially same to
that of efficient subsurfaces in F introduced by [Bow2]. However, components of an efficient
subsurface are not necessarily supposed to be geodesic. By requiring any elements of F to
be geodesic, one can determine them uniquely in their homotopy classes. For any geodesic
pattern F on F , the union

⋃F = F1 ∪ · · · ∪ Fn (Fi ∈ F) is a subset of F . The distance of
two geodesic patterns F ,F ′ on F is defined as d(F ,F ′) = min{d(v, v′)}, where v (resp. v′)
ranges over simple geodesic loops contained in elements of F (resp. of F ′). Note that a curve
in

⋃F is not necessarily contained in an element of F . Indeed, for any non-separating simple
geodesic loop l in F , the union

⋃F of the geodesic patternF = {l, F \l} is F itself and hence
contains a simple geodesic loop not in either l or F \ l. Two geodesic patterns F ,F ′ on F are
said to be compatible if the union F ∪ F ′ is also a geodesic pattern on F . A finite sequence
{Fi}pi=1 of non-empty geodesic patterns on F is compatible if Fi and Fi+1 are compatible

for any i ∈ {1, . . . , p − 1}. A compatible sequence {Fi}pi=1 is taut if Fi ⊂ Fi−1 ∪ Fi+1 for
any i ∈ {1, . . . , p}, where F0 = Fp+1 = ∅. The definition of a taut sequence implies that
F1 ⊂ F2 and Fp ⊂ Fp−1, and hence in particular p ≥ 2.

The following lemma given in [Bow2, Lemma 2.1] plays an important role in Bowditch’s
proof of the Length Upper Bounds Theorem and also in ours.

LEMMA 1.2 (2/3-Lemma). For any taut sequence {Fi}pi=1 of geodesic patterns on F ,

d(F1,Fp) ≤ [2
3p

] − 1 holds.

A non-empty compact subset λ of F is a lamination on F if λ is a union of mutually
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disjoint simple geodesics, called leaves, in F . We say that a lamination is minimal if it con-
tains no proper sublaminations. Any lamination λ contains at most finitely many minimal
laminations, which are mutually disjoint. The union of such minimal laminations is denoted
by λmin.

For an ε > 0, the ε-thin part of a hyperbolic 3-manifold M is denoted by M(0,ε], that is,
M(0,ε] is the set of points x in M admitting a non-contractible loop in M of length at most 2ε
and passing through x. The ε-thick part M[ε,∞) is the closure ofM \M(0,ε] in M . The ε-thin
part F(0,ε] and thick part F[ε,∞) of an o.g.-subsurface F of S are defined similarly. According
to the Margulis Lemma, there exists a uniform constant ε0 > 0 independent of M , called a
Margulis constant, such that each component of M(0,ε] is either a solid torus with geodesic
core, called a Margulis tube, or a parabolic cusp if ε < ε0. This constant works also for S.

If 0 < ε < ε0 is taken sufficiently small, then S(0,ε] consists of parabolic cusps. Fix
such an ε. We suppose that any hyperbolic 3-manifold M in this paper other than geometric

limit manifolds admits a homeomorphism h : M → S × R such that h−1(S(0,ε] × R) is a
union of parabolic cusps of M . The thin part M(0,ε] may contain parabolic cusps disjoint

from h−1(S(0,ε] × R), which are called accidental parabolic cusps of M . The composition
π = pr ◦ h : M → S is called a marking of M , where pr : S × R → S is the direct
projection to the first factor. Throughout the remainder of this paper, we assume that any
hyperbolic 3-manifold M homeomorphic to S × R is equipped with a marking. For an o.g.-
subsurface F of S, a continuous map f : F → M is said to be marking-preserving if π ◦ f
is homotopic to the inclusion F ⊂ S. Then, for any simple essential loop v in F , v� denotes
the geodesic loop in M freely homotopic to f (v) if any. Otherwise, v� represents the end of
the parabolic cusp of M to which f (v) is freely homotopic in M . We denote the M-length of
v� by lM(v) if v� is a geodesic loop and set lM(v) = 0 if v� is a parabolic cusp end. If w is
a union of mutually disjoint and non-parallel simple essential loops v1, . . . , vn in F , we set
lM(w) = lM(v1)+ · · · + lM(vn).

Let λ be a geodesic lamination on an o.g.-subsurface F with ξ(F ) ≥ 1 and let µ be
the union of loop components of λ corresponding to accidental parabolic cusps of M . A
marking-preserving continuous map ϕ : F \µ → M is a pleated map realizing λ if it satisfies
the following conditions.

• For each componentH of F \µ, the restriction ϕ|H is a proper map sending each end
of F to either a parabolic cusp of M or a geodesic loop in M .

• There exists a lamination νH on H containing λ ∩H such that the restriction of ϕ on
any leaf l of νH or any component ofH \ νH is a totally geodesic immersion.

The union µ ∪ (⋃
H νH

)
is called a pleating locus of ϕ, where H ranges all components of

F \µ. Then F(σ) \µ means that F \ µ has the hyperbolic metric σ induced from that on M
via ϕ. The length of any geodesic loop v in F(σ) \ µ is denoted by lF (σ )\µ(v) (or lσ (v) for
short).

Let λ be a connected lamination in S. When λ is not a geodesic loop, we say that a
connected o.g.-subsurface F in S supports λ if F contains λ and each component of F \ λ is
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either an open disk or an open annulus. When λ is a geodesic loop, we suppose that λ is equal
to its support. The support of λ is determined uniquely.

Though the following lemma is probably well known, the author does not know any
suitable reference. So he presents the proof.

LEMMA 1.3. Let F be the support of a non-loop connected lamination λ in S and
ϕ : F → M a pleated surface realizing λ. If a geodesic segment α in M is not contained in
the ϕ-image of any leaf of λ, then measα(α ∩ ϕ(λ)) = 0. In particular, if α ⊂ ϕ(λ), then α is
contained in the ϕ-image of some leaf of λ.

Here measa(·) denotes the one-dimensional Lebesgue measure on a segment a with Rie-
mannian metric.

PROOF. Let α be a geodesic segment in M which is not contained in the ϕ-image of
any leaf of λ. We suppose that measα(α∩ϕ(λ)) > 0 and will derive a contradiction. Consider
the natural lift p : λ → P (M) of ϕ|λ to the tangent line bundle P (M) over M . It is well
known that p is a homeomorphism onto p(λ), for example see [Th3, Theorem 5.6] or [CEG,
Subsection I.5.3]. For any sufficiently small ε > 0, one can take a subset τ of α ∩ ϕ(λ)

satisfying the following conditions.
(i) There exists a subsegment α0 of α containing τ with measα0(τ ) > 0 and

lengthM(α0) < ε.
(ii) For each x ∈ τ , there exists a vector lx of p(λ) tangent to M at x with

diamP (M){lx ; x ∈ τ } < ε for a fixed Riemannian metric on P (M).

Since p is a homeomorphism to its image, one can choose ε > 0 so that Y = {p−1(lx) ; x ∈
τ } is contained in an embedded open disk U in F with arbitrarily small radius. There exists a

rectangle R in F which contains the closure Y of Y in F and has four sides a1, a2, b1, b2 such

that ai (i = 1, 2) is a segment contained in a leaf of λ with ai ∩Y �= ∅, bj (j = 1, 2) is a geo-
desic segment meeting a1 ∪a2 almost orthogonally and max{lengthF (bj )}/min{lengthF (ai)}
is sufficiently small, see Fig. 1.1. For any point y of Y , the ϕ-image of the leaf l of λ ∩ R
containing y meets α0 transversely at ϕ(y). If necessary replacing ε and R by smaller ones,
one can suppose that all such leaves meet α0 in single points. Consider another geodesic
segment c in R meeting both a1, a2 almost orthogonally such that distR(c, b1)/distR(c, b2) is
sufficiently close to one. From our construction, any leaf l of λ with l∩R �= ∅ meets c almost
orthogonally.

Now we define a Lipschitz map f : c → α0 as follows. Let π : λ ∩ R → c be

the projection along the leaves of λ ∩ R and d = π(Y). For any z ∈ d , f (z) is a unique
intersection point of ϕ(π−1(z)) and α0. The complement c \ d consists of countably many
open segments ιn. We define f |ιn to be an affine map onto the subsegment of α0 bounded
by f (∂ιn). For any two points w,w′ ∈ d , let ui, u′

i (i = 1, 2) be the points in bi with

π(ui) = w, π(u′
i ) = w′. Since any leaves of λ ∩ R meet b1 ∪ b2 almost orthogonally,

by applying elementary hyperbolic geometry we have a constant K > 0 independent of the
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FIGURE 1.1

choice of w,w′ with

Kdistc(w,w
′) ≥ distF (u1, u

′
1)+ distF (u2, u

′
2) .

Since ϕ is a pleated map, distM(ϕ(ui), ϕ(u′
i )) ≤ distF (ui, u′

i ). Since we took ε > 0 suf-

ficiently small, by the condition (ii) the angle formed by ϕ(π−1(z)) and α0 at f (z) for any
z ∈ d is uniformly bounded away from zero (or π). It follows that there exists a constant
K ′ > 0 independent of the choice of w,w′ with

distα0(f (w), f (w
′)) ≤ K ′(distM(ϕ(u1), ϕ(u

′
1))+ distM(ϕ(u2), ϕ(u

′
2))

)
.

This implies that f is a KK ′-Lipschitz map. Note that λ has zero two-dimensional Lebesgue
measure in F , for example see [Th1, Subsection 8.5]. It follows from Fubini’s Theorem that
measc(d) = 0. Since f is Lipschitz and τ ⊂ f (d), we also have measα0(τ ) = 0. This
contradicts the condition (i) and hence completes the proof. �

LEMMA 1.4. For i = 1, 2, let Fi be the support of a connected lamination λi in S
and ϕi : Fi → M a pleated surface realizing λi . If ϕ1(λ1) = ϕ2(λ2) in M , then (F1, λ1) is
isotopic to (F2, λ2) in S.

PROOF. When λi are loops, the proof is obvious. So, we may assume that λi are
not loops. Let pi : λi → P (M) (i = 1, 2) be the homeomorphism defined as above.
The assumption ϕ1(λ1) = ϕ2(λ2) together with the particular case of Lemma 1.3 implies

p1(λ1) = p2(λ2). Thus, h0 = p−1
2 ◦ p1 : λ1 → λ2 is a well-defined homeomorphism with

ϕ2 ◦ h0 = ϕ1|λ1 .

The total space F̃i of the universal covering qi : F̃i → Fi is realized as a convex subset of

H2. Let Di be the set of all simply connected components of Fi \λi . Each element∆1 of D1 is
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lifted to a polygon ∆̃1 in F̃1 with ideal vertices whose boundary Λ̃1 is a union of finitely many

geodesic lines. Set λ̃i = q−1
i (λi) (i = 1, 2) and Λ1 = q1(Λ̃1). Since ϕ1|Λ1 = ϕ2 ◦ h0|Λ1

extends to a map from ∆1 to M , it follows from the π1-injectivity of ϕ2 that Λ2 = h0(Λ1)

is contractible in F2. Thus Λ2 is lifted to a union Λ̃2 of geodesic lines in F̃2 bounding a
polygon ∆̃2. If ∆̃2 ∩ λ̃2 were not empty, then λ̃2 would contain a geodesic line which divides

∆̃2 into two polygons. For the side L̃2 of one of them, L1 = h−1
0 ◦ q2(L̃2) has a lift L̃1 in

F̃1 which bounds a proper subpolygon of ∆̃1. This contradicts that ∆̃1 ∩ λ̃1 = ∅. Thus we
have ∆̃2 ∩ λ̃2 = ∅ and hence q2|∆̃2

: ∆̃2 → F2 is an embedding the image of which is a
component ∆2 of D2. Using this fact repeatedly, one can extend h0 to a homeomorphism
h1 : λ1 ∪ (⋃D1

) → λ2 ∪ (⋃D2
)

such that ϕ2 ◦ h1 is homotopic to ϕ1|λ1∪(
⋃D1) rel. λ1.

Moreover, h1 is extended to a homeomorphism h2 between small regular neighborhoods Ci
(i = 1, 2) of λi ∪ (⋃Di

)
in Fi . Since each component of Fi \ Ci is an open annulus, h2 is

also extended to a homeomorphism h3 : F1 → F2 such that ϕ2 ◦h3 is homotopic to ϕ1 rel. λ1.
Since the pleated maps ϕi preserve the markings of Fi andM , h3 also preserves the markings
of F1 and F2. This shows that (F1, λ1) is isotopic to (F2, λ2) in S. �

2. Quasi-convexity Theorem

For L > 0, let C0M(F,L) be the subset of C0(F ) consisting of elements v with lM(v) ≤
L and CM(F,L) the maximal subgraph of C(F ) with vertex set C0M(F,L). A non-empty
subset Y of a geodesic metric space X is r-quasi-convex for an r > 0 if any geodesic in X
connecting two points of Y is contained in the r-neighborhood of Y in X. Minsky proved the
Quasi-convexity Theorem (Theorem 3.1 in [Mi1]) by using standard arguments of hyperbolic
geometry and geometric group theory, which says that the subgraph CM(F,L1) for some
L1 > 0 is uniformly quasi-convex in C(F ).

Let F be a connected o.g.-subsurface of S with ξ(F ) ≥ 1 and lF (∂F ) ≤ L for a given
L > 0. Any uniform constant in the remainder of this paper means a number depending only
on L, ξ(F ) (and previously determined uniform constants). According to Bers [Be], there
exists a uniform constant L1 ≥ L (and hence independent of the hyperbolic metric on F ) such
that there exists a disjoint union v of simple geodesic loops in F with lF (v) ≤ L1 and such
that each component of F \v is a three-holed sphere. From now on, we fix L1 = L1(L, ξ(F ))

satisfying this condition.

THEOREM 2.1 (Quasi-convexity Theorem [Mi1]). For any L > 0 with lM(∂F ) ≤ L,
there exists a uniform constant r > 0 such that CM(F,L1) is r-quasi-convex in C(F ).

We say that a pleated map ϕ : F(σ) \ µ → M realizing λ is ε-stable if it satisfies the
following conditions.

• Each component of λ \ µ is either a geodesic core of some annulus component of
(F (σ) \ µ)(0,ε] or disjoint from (F (σ) \ µ)(0,ε].

• The geodesic core c of any component of (F (σ) \ µ)(0,ε] is contained in the pleating
locus of ϕ, and hence in particular lσ (c) = lM(c).
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Then the union µ(ε) of µ and all such geodesic cores in the ε-thin part of F(σ) \ µ is called
the ε-thin locus of the ε-stable pleated map ϕ. A lamination in F is said to be ε-stable inM if
it is realized by an ε-stable pleated map from F toM . Let CM(F,L) be the maximal subgraph
of C(F ) whose vertex set consists of curves v with lM(v) ≤ L.

As an application of Theorem 2.1, Tube Penetration Lemma for F with ξ(F ) ≥ 2 is
given in [Mi2, Lemma 7.7] and also in [Bow2, Lemmas 5.1, 5.2].

LEMMA 2.2 (Tube Penetration Lemma). Suppose that ξ(F ) ≥ 2. For any 0 < ε <

ε0, r ≥ 0, L > 0, there exists a constant ε′ = ε′(ε, r, L, ξ(F )) with 0 < ε′ < ε and
satisfying the following condition. If {vi}pi=0 is a tight geodesic in C0(F ) such that vk (k =
0, p) is ε-stable in M and satisfies d(vk, CM(F,L)) ≤ r , then vj is ε′-stable in M for any
j ∈ {1, . . . , p − 1}.

We note that the constant ε′ is independent of the length p of the tight geodesic {vi}pi=0.

3. Geometric limits

Let Mn (n ∈ N) be hyperbolic 3-manifolds with markings πn : Mn → S and base
points xn ∈ Mn. We say that the sequence {(Mn, xn)} converges geometrically to a hyper-
bolic 3-manifold (M∞, x∞) with base point if there exist monotone decreasing and increasing
sequences {Kn}, {Rn} with limn→∞Kn = 1, limn→∞ Rn = ∞ and Kn-bi-Lipschitz maps

gn : NRn(xn,Mn) → NRn(x∞,M∞) ,(3.1)

where NR(x,M) denotes the closed R-neighborhood of x in M . It is well known that, if
inf{injMn

(xn)} > 0, then {(Mn, xn)} has a geometrically convergent subsequence, for example
see [JM, BP]. In this case, we say that {(Mn, xn)} subconverges geometrically to (M∞, x∞)
and denote the subsequence again by {(Mn, xn)} for simplicity. The limit manifold M∞ is
not necessarily homeomorphic to S × R. In general, M∞ has infinitely many ends. Infinitely
many of them may not be topologically tame, that is, any neighborhood of such an end in M
is not homeomorphic to the direct product of a surface and R, see [OS].

Suppose that F is a connected o.g.-subsurface of S and ϕn : F(σn) \ µn → Mn (n ∈ N)

are ε-stable pleated maps with ε-thin loci µ(ε)n and lMn(∂F ) = lσn(∂F ) ≤ L for any n ∈ N.

If necessary passing to a subsequence, we may assume that F \ µ(ε)n are homeomorphic to

each other. Then there exist homeomorphisms ηn : F(σ) \ µ(ε) → Fn(σn) \ µ(ε)n which are

Cn-bi-Lipschitz with supn{Cn} < ∞ on any compact subset of F \ µ(ε), where µ(ε) = µ
(ε)
1

and σ = σ1. Let H1, . . . , Hm be the components of F \ µ(ε). For each k ∈ {1, . . . ,m},
suppose that xn,k = ϕn ◦ ηn(yk) is the base point of Mn for a fixed yk ∈ Hk [ε,∞). Let gn,k :
NRn(xn,k,Mn) → NRn(x∞,k,M∞,k) be aKn-bi-Lipschitz map as above. Since the diameters
of ηn(Hk [ε,∞)) are uniformly bounded, for all sufficiently large n ∈ N, gn,k ◦ ϕn ◦ ηn|Hk [ε,∞)

:
Hk [ε,∞) → M∞,k is well defined. By the Ascoli-Arzelà Theorem, {gn,k ◦ϕn ◦ηn|Hk [ε,∞)

} have
a subsequence converging uniformly to a map from Hk [ε,∞) to M∞,k which is extended to a
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pleated map ψk : Hk(σ∞,k) → M∞,k such that the ε-thin part of Hk(σ∞,k) does not contain
non-peripheral components. When supn{distMn(xn,k, xn,l)} < ∞, one can identify M∞,k

with M∞,l . Otherwise, we suppose that M∞,k ∩M∞,l = ∅. Let N∞ be a maximal union of
M∞,k’s which are not identified with each other. Then we say that {ϕn ◦ ηn} subconverges

geometrically to the ε-stable pleated map ψ : F(σ∞) \ µ(ε) → N∞ with ψ|Hk = ψk , where

F(σ∞) \ µ(ε) is the disjoint union H1(σ∞,1) ∪ · · · ∪Hm(σ∞,m).

4. Length Upper Bounds Theorem (Non-exceptional case)

Throughout this section, we suppose that F is a connected o.g.-subsurface of S with
ξ(F ) ≥ 2 (possibly F = S) and M is a hyperbolic 3-manifold with marking π : M → S.

The proofs of the following two lemmas are based on those of [Bow2, Theorem 1.1 and
Lemmas 8.1, 8.2].

LEMMA 4.1. Let p be any integer with p ≥ 2 and L2 any positive number with
lM(∂F ) ≤ L2. Then there exists a constant L′

2 depending only on p, L2, ξ(F ) and satis-

fying the following condition. Suppose that g = {vi}qi=0 is any tight geodesic in C0(F ) of

length q ≤ p with v0, vq ∈ CM(F,L2). Then lM(vi) ≤ L′
2 for all i ∈ {0, 1, . . . , q}.

Before getting to the formal proof, we will explain the special case of q = 3 roughly.
Suppose that there exists a sequence {Mn}∞n=1 of hyperbolic 3-manifolds with S-markings and

tight geodesics {v0
n, v

1
n, v

2
n, v

3
n} in C(F ) with v0

n, v
3
n ∈ CMn(F,L2) and limn→∞ lMn(v

i
n) = ∞

for i = 1, 2. If necessary passing to subsequences, we may assume that {v0
n ∪ v1

n}, {v1
n ∪ v2

n},
{v2
n∪v3

n} converge (up to marking) geometrically to laminations v0 ∪ν1, ν1 ∪ν2, ν2 ∪v3 in F

respectively which are realized in a geometric limit M∞ of {Mn}, where v0, v3 are geodesic

loops in F and all νi , νj are non-loop laminations. These laminations are pulled back to

laminations v0
n ∪ ν1

n, ν1
n ∪ ν2

n, ν2
n ∪ v3

n realized in Mn via a bi-Lipschitz map gn as (3.1). By

using Lemma 1.4, one can show that ν1
n = ν1

n(:= ν1
n) and ν2

n = ν2
n(:= ν2

n). We assume

here that ν1
n , ν2

n are minimal for simplicity. Since ν1
n , ν2

n are sublaminations of ν1
n ∪ ν2

n , the

minimality condition implies either ν1
n = ν2

n or ν1
n ∩ ν2

n = ∅, and hence the supports F in of

νin (i = 1, 2) satisfy either F 1
n = F 2

n or F 1
n ∩ F 2

n = ∅. Since v0
n ∩ ν1

n = ∅ and ν2
n ∩ v3

n = ∅,

v0
n ∩ F 1

n = ∅ and F 2
n ∩ v3

n = ∅. It is not hard to show that vin (i = 1, 2) is contained in F in
for all sufficiently large n. Let β be a simple geodesic loop in F 1

n crossing v1
n transversely.

Thus, if F 1
n ∩ F 2

n = ∅, then β ∩ (v0
n ∪ v2

n) = ∅. This contradicts that {vin} is a tight geodesic.

On the other hand, if F 1
n = F 2

n , then dC(F )(v0
n, β) = 1 and dC(F )(β, v3

n) = 1 and hence

dC(F )(v0
n, v

3
n) ≤ 2. This also contradicts that dC(F )(v0

n, v
3
n) = 3. It follows that at least one

of {lMn(v
1
n)} and {lMn(v

2
n)} is bounded. When the former is bounded, by applying a similar

argument to the tight geodesics {v1
n, v

2
n, v

3
n} one can show that the latter is also bounded.
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PROOF OF LEMMA 4.1. We suppose that the conclusion fails and will derive a con-
tradiction. Then there exist a sequence {Mn}∞n=1 of hyperbolic 3-manifolds with markings
πn : Mn → S, a sequence {Fn} of connected o.g.-subsurfaces of S with ξ(Fn) = ξ(F ),

lMn(∂Fn) ≤ L2 and tight geodesic sequences gn = {vin}qni=0 with qn ≤ p, lMn(v
0
n) ≤ L2,

lMn(v
qn
n ) ≤ L2 and lMn(v

i
n) ≥ n for some i ∈ {1, . . . , qn − 1}. If necessary passing to a sub-

sequence, we may assume that qn = q and that there exist consecutive indices s, s + 1, . . . , t

of maximal length in {1, . . . , q − 1} with limn→∞ lMn(v
i
n) = ∞ for any i ∈ {s, s + 1, . . . , t}.

The maximality implies that supn{lMn(v
s−1
n )} < ∞ and supn{lMn(v

t+1
n )} < ∞. We may also

assume that, for each i, vin is divided into two unions uin,w
i
n of curves such that the Mn-

lengths of uin are uniformly bounded and the Mn-length of every component of win diverges

to infinity as n → ∞. For i = s, . . . , t , let ϕin : Fn \ µin → Mn be a pleated map realizing

vi−1
n ∪ vin. By Lemma 2.2, there exists a small constant ε > 0 independent of n such that the

ϕin are ε-stable for any i ∈ {s, . . . , t}. Then the ε-thin locus µin of ϕin can be defined.

If necessary passing to a subsequence again, we may assume that the pairs (Fn, µin)
(n ∈ N) are all homeomorphic for each i ∈ {s, . . . , t}. As was seen in Section 3, there exist
homeomorphisms ηin : F \µi → Fn \µin such that {ϕin ◦ηin} subconverges geometrically to an

ε-stable pleated map ψi : F \ µi → Ni∞. Consider the disjoint union winof simple geodesic

loops in F \µi such that ηin(w
i
n) is freely homotopic to win in Fn \µin. Similarly, let wi−1

n be

the disjoint union of simple geodesic loops in F \µi such that ηin(w
i−1
n ) is freely homotopic to

wi−1
n inFn\µin. The sequence {win} (resp. {wi−1

n }) subconverges geometrically to a lamination

νi (resp. νi−1) in F \ µi which is realized by ψi . Since limn→∞ lMn(w
i
n,a) = ∞ for any

components win,a of win (n ∈ N), no component of νi−1 ∪ νi is a loop. Let Gi be the geodesic

pattern on F \µi consisting of elements supporting the components of νi and F i the geodesic

pattern consisting of elements supporting the components of νimin. The geodesic patterns Gi−1

and F i−1
in F \µi are defined similarly. Since (νi−1 ∪ νi)min is a lamination containing both

νi−1
min and νimin as unions of components, F i−1

and F i are compatible in F \µi . For any n ∈ N,

let Gi
n

(resp. F i
n) be the geodesic pattern in Fn \µin each element of which is freely homotopic

to the ηin-image of the corresponding element of Gi (resp. F i). The geodesic patterns Gi−1
n

and F i−1
n in Fn \ µin are defined similarly. We note that

⋃Gi
n

⊂ Fn \ µin and
⋃Gin ⊂ Fn \ µi+1

n .

Now we will show that Gi
n

= Gin and F i
n = F i

n for any i ∈ {s, . . . , t} and all sufficiently

large n. Let λi be any component of νi and {cin} a sequence of unions of components of win
converging geometrically to λi . Suppose that cin is the union of components of win such that

ηi+1
n (cin) is freely homotopic to ηin(c

i
n) in Fn. Since the closed geodesic ηin(c

i
n)
� inMn is equal



LENGTH BOUNDS ON CURVES 213

to the closed geodesic ηi+1
n (cin)

�, {cin} subconverges geometrically to a sublamination λ
i

of νi

in F \µi+1 with ψi(λi) = ψi+1(λ
i
) under the natural identification of the components ofNi∞

and Ni+1∞ containing ψi(λi) and ψi+1(λ
i
) respectively. The component is denoted by Mi∞.

Then we have Kn-bi-Lipschitz maps gn : NRn(xn,Mn) → NRn(x∞,M∞) as (3.1), where xn
is a point of Mn contained in ηin(c

i
n)
�. Since {gn ◦ ϕin ◦ ηin} converges uniformly to ψi , the

composition gn◦ϕin◦ηin is homotopic toψi for all sufficiently large n. LetGi (resp.G
i
) be the

element of Gi (resp. Gi ) supporting λi (resp. λ
i
). For all sufficiently large n, we have pleated

maps ζ i : ηin(Gi) → Mn, ζ i+1 : ηi+1
n (G

i
) → Mn realizing ηin(λ

i
n) and ηi+1

n (λ
i

n) respectively.

By the definition of pleated maps, both ζ i and ζ i+1 are marking-preserving. By Lemma 1.3,

for any leaf l of λin, there exists a leaf l of λ
i

with ψi(l) = ψi+1(l). Since both ζ k and ϕkn are

marking-preserving maps for k = i, i + 1, ζ k ◦ ηkn|G(k) is homotopic to ϕkn ◦ ηkn|G(k) and hence

to g−1
n ◦ ψk |G(k) , where G(i) = Gi and G(i+1) = G

i
. Since g−1

n (ψi (l)) = g−1
n (ψi+1(l)),

the geodesic lines ζ i(ηin(l)) and ζ i+1(ηi+1
n (l)) in Mn are equal to each other. This shows that

ζ i(ηin(λ
i)) ⊂ ζ i+1(ηi+1

n (λ
i
)), and similarly ζ i+1(ηi+1

n (λ
i
)) ⊂ ζ i(ηin(λ

i)). Then, by Lemma

1.4, (ηin(G
i), ηin(λ

i)) is isotopic to (ηi+1
n (G

i
), ηi+1

n (λ
i
)) in Fn. This implies that Gi

n
⊂ Gin

and F i
n ⊂ F i

n. Similarly, we have Gin ⊂ Gi
n
, F i

n ⊂ F i
n and hence Gi

n
= Gin(:= Gin),

F i
n = F i

n(:= F i
n).

We can see, by Bowditch [Bow2, Section 3, (F8), (F9)], that {F i
n}ti=s is a taut sequence

for each n and hence in particular t − s ≥ 1, as follows. In fact, if an element J of F i
n did not

belong to either F i−1
n or F i+1

n , then J would be disjoint from
(⋃Gi−1

n

) ∪ (⋃Gi+1
n

)
. From

the definition of F i
n, vin crosses some simple closed geodesic β in J for all sufficiently large

n. Since {vin} is a tight geodesic, β meets either vi−1
n or vi+1

n non-trivially and hence we have

either β ∩ (⋃Gi−1
n

) �= ∅ or β ∩ (⋃Gi+1
n

) �= ∅, a contradiction.
Since t − s ≥ 1, 2/3-Lemma implies that

d
(⋃

F s
n,

⋃
F t
n

)
≤

[
2

3
(t − s + 1)

]
− 1 ≤ t − s − 1 .

Since vs−1
n ∩ F s

n = ∅ and vt+1
n ∩ F t+1

n = ∅,

d(vs−1
n , vt+1

n ) ≤ d
(⋃

F s
n,

⋃
F t
n

)
+ 2 ≤ t − s + 1 .

On the other hand, since {vin} is a tight geodesic,

d(vs−1
n , vt+1

n ) = (t + 1)− (s − 1) = t − s + 2 ,

a contradiction. This completes the proof. �
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LEMMA 4.2. Suppose that lM(∂F ) ≤ L for a given constant L > 0. Let p, r be
positive integers with p ≥ 12(r+ 1), and let L1 ≥ L be the uniform constant given in Section
2. Then there exists a constant L2 ≥ L1 depending only on p, L, r , ξ(S) and satisfying

the following condition. If g = {vi}pi=0 is any tight geodesic in C0(F ) of length p with

d(vk, CM(F,L1)) ≤ r for k = 0, p, then lM(vi ) ≤ L2 for some i ∈ {0, . . . , p}.
PROOF. Suppose that the conclusion fails. Then there exist a sequence {Mn}∞n=1 of

hyperbolic 3-manifolds with markings πn : Mn → S, a sequence {Fn} of connected o.g.-
subsurfaces of S with ξ(Fn) = ξ(F ), lMn(∂Fn) ≤ L, and tight geodesic sequences gn =
{vin}pi=0 with d(vkn, CM(F,L)) ≤ r for k = 0, p and lMn(v

i
n) ≥ n for i ∈ {0, 1, . . . , p}. Let

{̂vin}0
i=−sn , {̂vin}p+tn

i=p be tight geodesics in C0(Fn) such that lMn (̂v
−sn
n ) ≤ L, lMn (̂v

p+tn
n ) ≤ L

and 0 ≤ sn, tn ≤ r and v̂kn (k = 0, p) is a vertex of vkn with limn→∞ lMn (̂v
k
n) = ∞. If

necessary passing to a subsequence and replacing the markings πn : Mn → S, we may
assume that sn = s, tn = t and Fn = F (n ∈ N). We may also assume that there exist

indices a, b with −s < a ≤ 0, p ≤ b < p + t and such that limn→∞ lMn (̂v
i
n) = ∞ for any

i ∈ {a, . . . , 0} ∪ {p, . . . , b} and supn{lMn (̂v
a−1
n )} < ∞, supn{lMn (̂v

b+1
n )} < ∞. Applying

arguments in the proof of Lemma 4.1 to the tight geodesics {̂vin}0
i=a−1, {vin}pi=0, {̂vin}b+1

i=p , one

can obtain compatible sequences {F̂ i
n}0
i=a , {F i

n}pi=0, {F̂ i
n}bi=p of geodesic patterns on F with

F̂0
n ⊂ F0

n , F̂p
n ⊂ Fp

n , v̂a−1
n ∩ (⋃ F̂a

n

) = ∅, v̂b+1
n ∩ (⋃ F̂b

n

) = ∅. Moreover, the extension

{F i
n}p+1
i=−1 of {F i

n}pi=0 with F−1
n = F0

n and Fp+1
n = Fp

n is taut, see [Bow2, Corollary 2.2].

By 2/3-Lemma, there exist simple geodesic loops wkn (k = 0, p) contained in elements of

Fk
n with d(w0

n,w
p
n ) ≤ [ 2

3 (p + 3)] − 1 < 2
3p + 2. Let ŵjn (j = a − 1, b + 1) be a vertex of

v̂
j
n . If w0

n is contained in an element of F̂0
n , then d(ŵa−1

n ,w0
n) ≤ 1 − a ≤ r , and otherwise

d(ŵa−1
n ,w0

n) ≤ 2 − a ≤ r + 1. Similarly, we have d(ŵb+1
n ,w

p
n ) ≤ r + 1. It follows that

d(ŵa−1
n , ŵb+1

n ) ≤ d(ŵa−1
n ,w0

n)+ d(w0
n,w

p
n )+ d(w

p
n , ŵ

b+1
n ) <

2

3
p + 2r + 4 .

On the other hand, since p ≥ 12(r + 1),

d(ŵa−1
n , ŵb+1

n ) ≥ d(̂v0
n, v̂

p
n )− d(ŵa−1

n , v̂0
n)− d(̂v

p
n , ŵ

b+1
n ) ≥ p − 2r ≥ 2

3
p + 2r + 4 ,

a contradiction. This completes the proof. �

An upper bound of the M-lengths of curves in a tight geodesic given in Lemma 4.1
depends on the length of the geodesic. The following Upper Bounds Theorem shows the
existence of an upper bound independent of the lengths of tight geodesics.

THEOREM 4.3. Suppose that ξ(F ) ≥ 2. Let L be any positive number with lM(∂F ) ≤
L. Then there exists a constant L′ depending only on L and ξ(S) such that, for any finite tight
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geodesic g = {vi}pi=0 in C0(F ) with lM(v0), lM(v
p) ≤ L1, lM(vi) is smaller than L′ for any

i ∈ {0, 1, . . . , p}.
PROOF. By Theorem 2.1, CM(F,L1) is r-quasi-convex in C(F ) for some uniform con-

stant r > 0. Set d = 12(r + 1). By Lemma 4.1, it suffices to consider the case of p ≥ d . We

divide {vi}pi=0 into subsequences {vi}q(j+1)
i=q(j) with 0 = q(0) < q(1) < · · · < q(k) = p each of

which has length at least d and at most 2d . By Lemma 4.2, each subsequence has a vertex of

the M-length at most L(d). These vertices divide {vi}pi=0 into subsequences {vi}a(j+1)
i=a(j) with

0 = a(0) = q(0) ≤ a(1) ≤ q(1) ≤ a(2) ≤ q(2)

≤ · · · ≤ q(k − 1) ≤ a(k) ≤ q(k) = a(k + 1) = p

each of which has length at most 4d and such that lM(v
a(j)
n ) ≤ L(d) for any j ∈ {0, . . . , k+1}.

Applying Lemma 4.1 again to the {vi}a(j+1)
i=a(j) ’s, one can show that the lengths lM(vi) (i ∈

{0, 1, . . . , p}) are uniformly bounded. �

5. Length Upper Bounds Theorem (Exceptional case)

Now we consider the case of ξ(F ) = 1. Then any tight geodesic {vi}pi=0 in C0(F ) is a
usual geodesic. In particular, each entry of which consists of a single vertex. A simple and
numerical proof in this case is given by [Bow2, Section 9]. His proof uses trace identities for
representations π1(F ) → PSL2(C). In this section, we present a proof based on geometric
limit arguments.

THEOREM 5.1. Suppose that ξ(F ) = 1. Let L be any positive number with lM(∂F ) ≤
L. Then there exists a constant L′ depending only on L such that, for any finite geodesic
g = {vi}pi=0 in C0(F ) with lM(v0) ≤ L1, lM(v

p) ≤ L1, lM(vi) is smaller than L′ for any
i ∈ {0, 1, . . . , p}.

We give here the proof only in the case that F is a four-holed sphere. The proof in the
one-holed torus case is done quite similarly.

LEMMA 5.2. Under the assumptions as above, for any p ∈ N, there exist a constant

L′ depending only on L, p and satisfying the following condition. Suppose that g = {vi}qi=0
is a sequence in C0(F ) with q ≤ p and such that

• d(vi , vi+1) = 1 for any i ∈ {0, 1, . . . , q − 1},
• lM(v

0) ≤ L1, lM(v
q) ≤ L1,

• vi �= vj for any i, j ∈ {0, 1, . . . , q},
Then lM(vi) is smaller than L′ for any i ∈ {0, 1, . . . , q}.

Note that the sequence {vi}qi=0 here is not necessarily a geodesic.
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PROOF. We suppose that the conclusion fails. Then there exist a sequence {Mn}∞n=0 of
hyperbolic 3-manifolds with markings πn : Mn → S, a sequence {Fn} of geodesic four-holed

spheres in S with lMn(∂Fn) ≤ L, and geodesic sequences gn = {vin}qni=0 in C0(Fn) satisfying
the conditions of Lemma 5.2 and supn{lMn(vi)} = ∞ for some i ∈ {1, . . . , qn − 1}. If neces-
sary passing to a subsequence and replacing the makings ofMn, we may assume that Fn = F ,
qn = q and that there exists s with 1 ≤ s ≤ q − 1 and such that supn{maxi{lMn(v

i
n)}} < ∞

for any 0 ≤ i ≤ s − 1 and limn→∞ lMn(v
s
n) = ∞.

Let ϕn : F(σn) → Mn be a pleated map realizing vsn. We consider the following two
cases after passing to a subsequence of {ϕn} and complete the proof by showing that neither
of them occurs.

Case 1. There exists a sequence {εn} of positive numbers with limn→∞ εn = 0 and
such that F(σn)(0,εn] contains a non-peripheral component An.

Let cn be the geodesic core of An. Fix a hyperbolic structure on F and a simple geodesic
loop c in F . Note that F \ c consists of two components H± each of which is homeomorphic
to a three-holed sphere. There exists a homeomorphism ηn : F \ c → F(σn) \ cn which
is Cn-bi-Lipschitz with supn{Cn} < ∞ on any compact subset of F \ c. For any simple
geodesic loops wn in F(σn) with wn \ cn �= ∅, let ŵn be the union of the geodesic arcs in

F (̂σn) \ c properly homotopic to η−1
n (wn) in F \ c without moving the end points, where σ̂n

is an incomplete hyperbolic metric on F \ c induced from σn via ηn. The sequence {ϕn ◦ ηn}
subconverges geometrically to a pleated map ψ : F(σ∞) \ c → N∞ and {̂vsn} does to a
lamination consisting of two geodesic lines λ± in H±(σ∞) such that each end of λτ (τ = ±)
exits the parabolic cusp of Hτ(σ∞) adjacent to c. For any geodesic loop wn as above, {ŵn}
also converges geometrically to λ+ ∪ λ−. Fix an arbitrarily small ε > 0 and let Bn be the
component of F(σn)(0,ε] containing An when ε ≥ εn. Note that the diameter of Bn diverges

to infinity as n → ∞. The loop wn is divided into geodesic segments a1, b1, . . . , am, bm

in F(σn) with aj ⊂ F(σn) \ IntBn and bj ⊂ Bn and such that {xj } = ∂aj ∩ ∂bj , {yj } =
∂bj ∩ ∂aj+1 are single point sets, where am+1 = a1. From the geometric convergence of

{ŵn} to λ+ ∪ λ−, we know that ϕn(aj ) is homotopic rel. ϕn(∂aj ) to a geodesic segment αj

in Mn arbitrarily close to a subsegment of vs�n . We now consider the case of d(wn, vsn) = 1,

that is, wn meets vsn in two points. In this case each bj meets vsn at most two points zjk , see
Fig. 5.1. Since the ε > 0 is taken arbitrarily small, one can suppose that vsn ∩ Bn consists
of mutually close and almost parallel geodesic segments in F(σn) and hence ϕn(vsn ∩ Bn)

FIGURE 5.1
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does so in Mn. It follows that ϕn(bj ) is homotopic rel. ϕn(xj ), ϕn(yj ), ϕn(z
j
k ) to a polygonal

segment βj consisting of at most three geodesic segments in Mn such that the angle of αj

and βj at ϕn(xj ), that of βj and αj+1 at ϕn(yj ) and the internal angles of βj at ϕn(z
j
k ) are

arbitrarily close to π . This shows that the geodesic loop w�n is freely homotopic in Mn to

the polygonal loop ωn = α1 ∪ β1 ∪ · · · ∪ αm ∪ βm and is contained in an arbitrarily small

neighborhood of ω�n in Mn for all sufficiently large n. It follows that limn→∞ lMn(wn) = ∞.

This implies that no such wn is equal to vs−1
n and hence vs−1

n = cn. Thus ϕn(Bn) is contained

in the component Tn of Mn(0,ε] with core (or end) vs−1�
n . By setting wn = vs+1

n , we have

limn→∞ lMn(v
s+1
n ) = ∞ and that vs+1�

n ∩ Tn is non-empty and consists of almost parallel

geodesic segments. So one can repeat similar arguments for vs+1
n , . . . , v

q−1
n instead of vsn and

obtain finally limn→∞ lMn(v
q
n) = ∞, a contradiction. Thus Case 1 does not occur.

Case 2. F (σn)(0,ε] contains no non-peripheral components for all n ∈ N and some
ε > 0.

There exists a homeomorphism ζn : F → F(σn) which is C′
n-bi-Lipschitz with

supn{C′
n} < ∞ on any compact subset of F . Then {ϕn ◦ ζn} subconverges geometrically

to a pleated map χ : F(σ∞) → N∞ and {vsn} does to a lamination νs∞ in F(σ∞) realized

by χ . The sequences {vs−1
n }, {vs+1

n } also subconverge geometrically to laminations νs−1∞ and

νs+1∞ in F(σ∞) respectively.
First we show that νs∞ contains a compact leaf. It is well known that νs∞ has a sub-

lamination τ s∞ which fully supports a transverse invariant measure, for example see [Th1,
Proposition 8.10.6]. If τ s∞ did not have a compact leaf, then each component of F \τ s∞ would
be an annulus with just one cusp adjacent to τ s∞, see [Th1, Subsection 9.5]. It follows that
τ s∞ = νs∞. Since any transverse invariant measure on a lamination without compact leaves

has no atoms, if νs−1∞ meets νs∞ transversely, then any arc α in νs−1∞ with Int(α) ∩ νs∞ �= ∅
intersects νs∞ in infinitely many points. Hence the intersection number i(vs−1

n , vsn) would di-
verge to infinity as n → ∞. This contradicts the fact that the intersection number is two.

From this, we know that νs−1∞ is contained in νs∞. Since supn{lMn(v
s−1
n )} < ∞, νs−1∞ is a

closed geodesic in νs∞ = τ s∞. This also gives a contradiction. Thus νs∞ contains a compact
leaf w(νs∞), called the waist of νs∞.

Note that νs∞ \ w(νs∞) consists of two geodesic lines spiraling around w(νs∞). For k =
s − 1, s + 1, the condition of i(vsn, v

k
n) = 2 (n ∈ N) implies that νk∞ can not intersect

w(νs∞) transversely. This shows that νk∞ has the waist w(νk∞) = w(νs∞). In the case that

w(νk∞) �= νk∞, νk∞ \ w(νk∞) consists of two spirals. Then, again by i(vsn, v
k
n) = 2 for any

n, one can show that νk∞ and νs∞ have the same spirals. Thus either νk∞ = w(νk∞) � νs∞ or

νk∞ = νs∞ necessarily holds. As above, the condition supn{lMn(v
s−1
n )} < ∞ implies νs−1∞ =

w(νs−1∞ ). Since vs−1
n �= vs+1

n for all n, νs−1∞ = w(νs+1∞ ) �= νs+1∞ and hence νs+1∞ = νs∞.

In particular, this implies limn→∞ lMn(v
s+1
n ) = ∞. Hence χ : F(σ∞) → N∞ is also a
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geometric limit of pleated maps realizing vs+1
n inMn and realizes νs+1∞ with w(νs+1∞ ) = νs−1∞

inN∞. By repeating similar arguments for vin (i = s+2, . . . , q−1) instead of vs+1
n , we have

limn→∞ lMn(v
q
n) = ∞, a contradiction. Thus Case 2 also does not occur. �

PROOF OF THEOREM 5.1. By Theorem 2.1, CM(F,L1) is r-quasi-convex in C(F ) for
some uniform constant r > 0. By Lemma 5.2, it suffices to consider the case of p ≥ 3r .

We divide {vi}pi=0 into subsequences {vi}q(j+1)
i=q(j) with 0 = q(0) < q(1) < · · · < q(k) = p

each of which has length at least 3r and at most 6r . Let wj (j = 0, 1, . . . , k) be a vertex in

CM(F,L1) closest to vq(j) and let {xj,a}aja=0 be a geodesic in C0(F ) connectingwj with vq(j).

Consider the shortest subgeodesic {xj,a}bja=0 of {xj,a}aja=0 that connects wj with {vi}pi=0 and

suppose the terminal vertex xj,bj = vq̄(j). Since q(j + 1)− q(j) ≥ 3r , q̄(j + 1)− q̄(j ) ≥ r

and {xj,a}bja=0 ∩ {xj+1,a}bj+1
a=0 = ∅. Adding the subgeodesics {xj,a}bja=0, {xj+1,a}0

a=bj+1
to

{vi}q̄(j+1)
i=q̄(j) , we have the extended sequence in C0(F ) of length at most 8r which connects wj

with wj+1 and satisfies the conditions of Lemma 5.2. Thus there exists a uniform constant
L′ > 0 satisfying lM(vi) < L′ for any i ∈ {q̄(j ), . . . , q̄(j + 1)} with 0 ≤ j ≤ k − 1. This
completes the proof. �
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