H-Supermagic Strength of Some Graphs

P. JEYANTHI and P. SELVAGOPAL

Govindammal Aditanar College for Women and CMS College of Engineering
(Communicated by M. Hara)

Abstract

A simple graph $G=(V, E)$ admits an H-covering if every edge in E belongs to a subgraph of G isomorphic to H. We say that G is H-magic if there is a total labeling $f: V \cup E \rightarrow\{1,2,3, \ldots,|V|+|E|\}$ such that for each subgraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G isomorphic to $H, s(f)=\sum_{v \in V^{\prime}} f(v)+\sum_{e \in E^{\prime}} f(e)$ is constant. When $f(V)=\{1,2, \ldots,|V|\}$, then G is said to be H-supermagic. In this case, the H-supermagic strength of G is defined as the minimum of all $s(f)$ where the minimum is taken over all H-supermagic labelings f of G, and is denoted by $S M_{H}(G)$. In this paper we find the C_{k}-supermagic strength of k-polygonal snakes of any length and H-supermagic strength of a chain of an arbitrary 2-connected simple graph H. Also we make a conjecture regarding the P_{h}-supermagic strength of P_{n} for $2 \leq h \leq n$.

1. Introduction

By a graph we mean a finite, simple, undirected,connected graph without loops or multiple edges. An edge-covering of a graph $G=(V, E)$ is a family of different subgraphs $H_{1}, H_{2}, H_{3}, \ldots, H_{k}$ such that every edge of E belongs to at least one of the subgraphs H_{i} for $1 \leq i \leq k$. If every H_{i} is isomorphic to a given graph H, then we say that G admits an H-covering.

A total labeling is a one-to-one and onto function from the set of vertices union the set of edges of a given graph G to a set of labels. A graph $G=(V, E)$ that admits an H-covering is called H-magic if there exists a total labeling $f: V \cup E \rightarrow\{1,2,3, \ldots,|V|+|E|\}$ such that for every subgraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G isomorphic to $H, \sum_{v \in V^{\prime}} f(v)+\sum_{e \in E^{\prime}} f(e)$ is constant. If $f(V)=\{1,2,3, \ldots,|V|\}$ then G is said to be H-supermagic.

The constant value that every copy of H takes under the labeling f is denoted by $m(f)$ in the magic case and by $s(f)$ in the supermagic case.

2. Main Results

Definition 1 (H-magic strength). For any H-magic labeling f of G there is a constant $m(f)$ such that $m(f)=\sum_{v \in V^{\prime}} f(v)+\sum_{e \in E^{\prime}} f(e)$ for every subgraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$
of G isomorphic to H. The H-magic strength of G is defined as the minimum of all $m(f)$ where the minimum is taken over all H-magic labelings f of G and is denoted by $M_{H}(G)$. That is, $M_{H}(G)=\min \{m(f): f$ is a H-magic labeling of $G\}$.

DEfinition 2 (H-supermagic strength). For any H-supermagic labeling f of G there is a constant $s(f)$ such that $s(f)=\sum_{v \in V^{\prime}} f(v)+\sum_{e \in E^{\prime}} f(e)$ for every subgraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G isomorphic to H. The H-supermagic strength of G is defined as the minimum of all $s(f)$ where the minimum is taken over all H-supermagic labelings f of G and is denoted by $S M_{H}(G)$. That is, $S M_{H}(G)=\min \{s(f): f$ is a H-supermagic labeling of $G\}$.

Let $G=(V, E)$ be a (ν, ϵ)-graph and let f be a H-supermagic labeling of G where H is a (p, q) subgraph of G. Let there be n subgraphs of G isomorphic to H in the H supermagic covering of G. Then each edge and vertex occurs in at least one subgraph of the H-supermagic covering. We define the following

DEFINITION 3 (H-order of vertices and edges). The H-order of a vertex $v \in V(G)$ is defined as the number of subgraphs in the H-supermagic covering of G in which v occurs and is denoted by $O_{H}(v)$.
The H-order of an edge $e \in E(G)$ is defined as the number of subgraphs in the H-supermagic covering of G in which e occurs and is denoted by $O_{H}(e)$.

Illustration 1. Given a 3-polygonal snake of length 6 and $H=C_{3}$. Here, $O_{H}\left(v_{1}\right)=1, O_{H}\left(v_{2}\right)=2, O_{H}\left(v_{3}\right)=2, O_{H}\left(v_{4}\right)=1, O_{H}\left(v_{5}\right)=1, O_{H}\left(v_{6}\right)=$ 1 and $O_{H}\left(v_{7}\right)=1 . O_{H}\left(e_{1}\right)=O_{H}\left(e_{2}\right)=O_{H}\left(e_{3}\right)=O_{H}\left(e_{4}\right)=O_{H}\left(e_{5}\right)=O_{H}\left(e_{6}\right)=$ $O_{H}\left(e_{7}\right)=O_{H}\left(e_{8}\right)=O_{H}\left(e_{9}\right)=1$.

Figure 1. C_{3}-supermagic covering of the 3-polygonal snake of length 3

DEFINITION 4 (Descending Occurrence sequence of vertices and edges). The descending sequence of the H-orders of vertices in G is called the occurrence sequence
of vertices of G. The descending sequence of the H-orders of edges in G is called the occurrence sequence of edges of G.

The concept of defining these sequences is to calculate the contribution of each vertex and edge in the maximum and minimum supermagic sum.

ILLUSTRATION 2. For the graph in illustration 1, the descending occurrence sequence of vertices is $2,2,1,1,1,1,1$ and the descending occurrence sequence of edges is $1,1,1,1,1,1,1,1,1$.

Lemma 1. Let $G=(V, E)$ be a (ν, ϵ)-graph and let f be a H-supermagic labeling of G where H is a (p, q) graph. Let there be n subsets of G isomorphic to H in the H-magic covering of G. Let $\left\{d_{v}^{i}\right\}_{i=1}^{v}$ be the descending occurrence sequence of vertices of G and $\left\{d_{e}^{i}\right\}_{i=1}^{\epsilon}$ be the descending occurrence sequence of edges of G. Then, $v q+\frac{\sum_{i=1}^{v} i d_{v}^{i}+\sum_{i=1}^{\epsilon} i d_{e}^{i}}{n} \leq$ $S M_{H}(G) \leq v q+\frac{\sum_{i=1}^{v}(v-i+1) d_{v}^{i}+\sum_{i=1}^{\epsilon}(\epsilon-i+1) d_{e}^{i}}{n}$.

Proof. Note that, $n=\frac{\sum_{i=1}^{v} d_{v}^{i}}{p}=\frac{\sum_{i=1}^{\epsilon} d_{e}^{i}}{q}$. Let f be a H-supermagic labeling of G. Then the lower limit of $s(f)$ can be obtained by assigning least labels to vertices and edges with largest H-orders. Thus,

$$
\begin{aligned}
n s(f) & \geq \sum_{i=1}^{\nu} i d_{v}^{i}+\sum_{i=1}^{\epsilon}(\nu+i) d_{e}^{i} \\
& =v n q+\sum_{i=1}^{\nu} i d_{v}^{i}+\sum_{i=1}^{\epsilon} i d_{e}^{i}
\end{aligned}
$$

Therefore, $s(f) \geq v q+\frac{\sum_{i=1}^{v} i d_{v}^{i}+\sum_{i=1}^{\epsilon} i d_{e}^{i}}{n}$.
The upper limit can be obtained by assigning largest labels to vertices and edges with largest H-orders. Thus,

$$
\begin{aligned}
n s(f) & \leq \sum_{i=1}^{\nu}(v-i+1) d_{v}^{i}+\sum_{i=1}^{\epsilon}(v+\epsilon-i+1) d_{e}^{i} \\
& =v n q+\sum_{i=1}^{\nu}(v-i+1) d_{v}^{i}+\sum_{i=1}^{\epsilon}(\epsilon-i+1) d_{e}^{i} .
\end{aligned}
$$

Therefore, $s(f) \leq \nu q+\frac{\sum_{i=1}^{v}(v-i+1) d_{v}^{i}+\sum_{i=1}^{\epsilon}(\epsilon-i+1) d_{e}^{i}}{n}$.
Hence, $v q+\frac{\sum_{i=1}^{v} i d_{v}^{i}+\sum_{i=1}^{\epsilon} i d_{e}^{i}}{n} \leq S M_{H}(G) \leq v q+\frac{\sum_{i=1}^{v}(v-i+1) d_{v}^{i}+\sum_{i=1}^{\epsilon}(\epsilon-i+1) d_{e}^{i}}{n}$.

In [2] a chain graph $H n$ of H of length n is defined as follows: Let $H_{1}, H_{2}, \ldots, H_{n}$ be copies of a graph H. Let u_{i} and v_{i} be two distinct vertices of H_{i} for $i=1,2, \ldots, n$. We construct a chain graph $H n$ of H of length n by identifying two vertices u_{i} and v_{i+1} for $i=$ $1,2, \ldots, n-1$. And it is proved that if H is a 2 -connected (p, q) simple graph then $H n$ admits a H-supermagic labeling f with supermagic sum $s(f)=\frac{n(p+q)^{2}+3(p+q)-2 n(p+q)+2 n-2}{2}$ if either $p+q$ is even or $p+q+n$ is even. With the help of Lemma 1 , it can be easily verified that it is the least supermagic sum. Hence we have the following corollary.

Corollary 2. Let H be a 2-connected (p, q) simple graph. Then $\operatorname{SM}_{H}(H n)=$ $\frac{n(p+q)^{2}+3(p+q)-2 n(p+q)+2 n-2}{2}$ if either $p+q$ is even or $p+q+n$ is even.

ILLUSTRATION 3

Figure 2. H-supermagic covering of a chain of H of length 3. $S M_{H}(G)=317$

A k-polygonal snake of length n is nothing but a chain of n cycles C_{k}. Hence we have the following corollary.

Corollary 3. The supermagic strength of k-polygonal snake of length n is $2 k n(k-$ 1) $+3 k+n-1$.

ILLUSTRATION 4

FIGURE 3. C_{4}-supermagic covering of 4-polygonal snake of length 5. $S M_{C_{4}}(G)=136$

DEFINITION 5 (H-dual supermagic labeling). Let $G=(V, E)$ be a (ν, ϵ)-graph and let f be a H-supermagic labeling of G where H is a (p.q) graph. Define $f^{\prime}: V \cup E \rightarrow$ $\{1,2,3, \ldots,|V|+|E|\}$ as follows,
$f^{\prime}(v)=v+1-f(v), v \in V$ and $f^{\prime}(e)=2 v+\epsilon+1-f(e), e \in E$. Then f^{\prime} is called the H-dual of f.

Illustration 5. A P_{4}-supermagic labeling of P_{7} is shown in Figure 4(a) and its P_{4}-dual supermagic labeling is shown in figure 4(b).

Figure 4(b). The P_{4}-dual of the P_{4}-supermagic covering of P_{7} in Figure 4(a)

Lemma 4. The H-dual of an H-supermagic labeling f of G is also an H-supermagic labeling with $s\left(f^{\prime}\right)=v(p+2 q)+p+q+q \epsilon-s(f)$.

3. Bounds of supermagic strength of Path-supermagic graphs

Let P_{n} be the path graph with vertex set $V=\left\{v_{i}: 1 \leq i \leq n\right\}$ and edge set $E=\left\{e_{i}=\right.$ $\left.v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$. For any integer $2 \leq h \leq n$ and $1 \leq i \leq n-h+1, P_{h}^{(i)}$ is the subpath of P_{n} with vertex set $V_{i}=\left\{v_{i}, v_{i+1}, \ldots, v_{i+h-1}\right\}$ and edge set $E_{i}=\left\{e_{i}, e_{i+1}, \ldots, e_{i+h-2}\right\}$. Then P_{n} admits an $\left(P_{h}^{(1)}, P_{h}^{(2)}, \ldots, P_{h}^{(n-h+1)}\right)$-covering. Since each $P_{h}^{(i)}$ is isomorphic to P_{h}, P_{n} admits a P_{h}-covering.

In [1], A. Gutierrez, A. Llado proved that the path P_{n} is P_{h}-supermagic for any integer $2 \leq h \leq n$.(Theorem 3) In the proof they defined a H-supermagic labeling f and under this labeling the supermagic sum is $s(f)=\frac{4 n h-3 n+h-\left(t h-l h+l^{2}-t^{2}-t\right)}{2}$ where $1 \leq l \leq h$, $1 \leq t \leq h-1$ such that $n \equiv l(\bmod h)$ and $n-1 \equiv t(\bmod (h-1))$. In this section we find yet another P_{h}-supermagic labeling for P_{n} and prove that the supermagic sum of its dual labeling is a better upper bound for the P_{h}-supermagic strength of P_{n}. We use the proof of Theorem 3 in [1] with a little modification.

THEOREM 5. $\quad S M_{P_{h}}\left(P_{n}\right) \leq \frac{4 n h-3 n+h-\left(l h+t h-l^{2}-t^{2}-t\right)}{2}$ for any integer $2 \leq h \leq n$ and $1 \leq l \leq h, 1 \leq t \leq h-1$ such that $n \equiv l(\bmod h)$ and $n-1 \equiv t(\bmod (h-1))$.

Proof. Let P_{n} be the path graph with vertex set $V=\left\{v_{i}: 1 \leq i \leq n\right\}$ and edge set $E=\left\{e_{i}=v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$. For any integer $2 \leq h \leq n$ and $1 \leq i \leq n-h+1$, $P_{h}^{(i)}$ is the subpath of P_{n} with vertex set $V_{i}=\left\{v_{i}, v_{i+1}, \ldots, v_{i+h-1}\right\}$ and edge set $E_{i}=$ $\left\{e_{i}, e_{i+1}, \ldots, e_{i+h-2}\right\}$.

For each $1 \leq i \leq n$ consider the decomposition $i=i_{1}+i_{2} h$, with $1 \leq i_{1} \leq h$ and $0 \leq i_{2} \leq \frac{n}{h}$ and write $\alpha(i)=\left(i_{1}, i_{2}\right)$. Let f_{1} be the lexicographic ordering of the pairs $\alpha(i)$.

Similarly, for each $1 \leq i \leq n-1$ consider the decomposition $i=i_{1}+i_{2}(h-1)$, with $1 \leq i_{1} \leq h-1$ and $0 \leq i_{2} \leq \frac{n-1}{h-1}$ and write $\beta(i)=\left(i_{1}, i_{2}\right)$. Let f_{2} be the lexicographic ordering of the pairs $\beta(i)$.

Consider the total labeling $f: V \cup E \rightarrow[1,2 n-1]$ defined as follows: $f\left(v_{i}\right)=f_{1}(\alpha(i))$ on the set of vertices and $f\left(e_{n-i}\right)=n+f_{2}(\beta(i))$ on the set of edges. It is clear that $f(V)=$ $[1, n]$ and $f(E)=[n+1,2 n-1]$.

For $1 \leq i \leq n-h$ we have, $f\left(P_{h}^{(i+1)}\right)-f\left(P_{h}^{(i)}\right)=f\left(v_{i+h}\right)-f\left(v_{i}\right)+f\left(e_{i+h-1}\right)-f\left(e_{i}\right)$. Note that, if $\alpha(i)=\left(i_{1}, i_{2}\right)$ then $\alpha(i+h)=\left(i_{1}, i_{2}+1\right)$ and hence $f\left(v_{i+h}\right)-f\left(v_{i}\right)=1$. Also if $\beta(i)=\left(i_{1}, i_{2}\right)$ then $\beta(i+h-1)=\left(i_{1}, i_{2}+1\right)$. Now,

$$
\begin{aligned}
f\left(e_{i+h-1}\right)-f\left(e_{i}\right) & =n+f_{2}\left(\beta(n-(i+h-1))-n-f_{2}(\beta(n-i)\right. \\
& \left.=f_{2}(\beta(n-i)-h-1)\right)-f_{2}(\beta(n-i)) \\
& =-1 .
\end{aligned}
$$

Hence, $f\left(P_{h}^{(i+1)}\right)-f\left(P_{h}^{(i)}\right)=0$ for $1 \leq i \leq n-h$. Hence f is P_{h}-supermagic.
Let us find the supermagic sum $s(f)$ of the supermagic labeling f. Let $1 \leq l \leq h$, $1 \leq t \leq h-1$ such that $n \equiv l(\bmod h)$ and $n-1 \equiv t(\bmod (h-1))$. Let $n=k h+l$ and
$n-1=s h+t$.
We find the labelings of the vertices and edges of P_{n} under f.
For $1 \leq i \leq n$, if $i=m h+j$ the vertex labelings are given by
$f\left(v_{i}\right)=(j-1)(k+1)+m+1$ for $0 \leq m \leq k$ and $1 \leq j \leq l$ and
$f\left(v_{i}\right)=l(k+1)+(j-l-1) k+m+1$ for $0 \leq m \leq k-1$ and $l+1 \leq j \leq h$.
For $1 \leq i \leq n-1$, if $i=m(h-1)+j$ the edge labelings are given by
$f\left(e_{n-i}\right)=n+(j-1)(s+1)+m+1$ for $0 \leq m \leq s, 1 \leq j \leq t$ and $f\left(e_{n-i}\right)=n+t(s+1)+(j-t-1) s+m+1$ for $0 \leq m \leq s-1, t+1 \leq j \leq h-1$.

$$
\begin{aligned}
f\left(P_{h}^{(1)}\right)= & \sum_{j=1}^{l} f\left(v_{j}\right)+\sum_{j=1}^{h-1} f\left(e_{j}\right) \\
= & \sum_{j=1}^{l} f\left(v_{j}\right)+\sum_{j=l+1}^{h} f\left(v_{j}\right)+\sum_{j=1}^{t} f\left(e_{j}\right)+\sum_{j=t+1}^{h-1} f\left(e_{j}\right) \\
= & \sum_{j=1}^{l}[(j-1)(k+1)+1]+\sum_{j=l+1}^{h}[l(k+1)+(j-l-1) k+1] \\
& +\sum_{j=1}^{t}[n+(t-j+1)(s+1)]+\sum_{j=t+1}^{h-1}[n+t(s+1)+(h-j) s] \\
= & \frac{n h+2 h-n+l h-l^{2}}{2}+(h-1) n+\frac{h(n+t-1)-t^{2}-t}{2} \\
= & \frac{4 n h-3 n+h+\left(l h+t h-l^{2}-t^{2}-t\right)}{2} .
\end{aligned}
$$

Hence $s(f)=\frac{4 n h-3 n+h+\left(l h+t h-l^{2}-t^{2}-t\right)}{2}$.
Let f^{\prime} be the P_{h}-dual of f. By Theorem 4,

$$
\begin{aligned}
s\left(f^{\prime}\right) & =(n+1)(2 h-1)+(h-1)(2 n-1)-s(f) \\
& =\frac{4 n h-3 n+h-\left(l h+t h-l^{2}-t^{2}-t\right)}{2} .
\end{aligned}
$$

The supermagic sum of the the supermagic labeling g defined in Theorem 3 of [1] is, $s(g)=$ $\frac{4 n h-3 n+h-\left(t h-l h+l^{2}-t^{2}-t\right)}{2}$. It can be easily verified that $l h+t h-l^{2}-t^{2}-t \geq t h-l h+l^{2}-t^{2}-t$ and consequently, $s\left(f^{\prime}\right) \leq s(g)$.

Hence, $S M_{P_{h}}\left(P_{n}\right) \leq \frac{4 n h-3 n+h-\left(l h+t h-l^{2}-t^{2}-t\right)}{2}$.
CONJECTURE 1. $\quad S M_{P_{h}}\left(P_{n}\right)=\frac{4 n h-3 n+h-\left(l h+t h-l^{2}-t^{2}-t\right)}{2}$ for any integer $2 \leq h \leq n$ and $1 \leq l \leq h, 1 \leq t \leq h-1$ such that $n \equiv l(\bmod h)$ and $n-1 \equiv t(\bmod (h-1))$.

ILLUSTRATION 6. Various P_{4}-supermagic labelings of P_{9} and their P_{4}-duals are given below.

FIGURE 5(a). $\quad P_{4}$-supermagic labeling g of P_{9} with $s(g)=61$

FIGURE 5(c). $\quad P_{4}$-supermagic labeling f of P_{9} with $s(f)=63$

References

[1] A. Gutierrez, A. Llado, Magic coverings, J. Combin. Math. Combin. Comput. 55 (2005), 43-56.
[2] P. Jeyanthi, P. Selvagopal, Magic covering of chain of an arbitrary 2-connected simple graph, SUT Journal of Mathematics, Vol. 44, No. 1 (2008), 23-31.
[3] P. Selvagopal, P. Jeyanthi, On C_{k}-supermagic graphs, International Journal of Mathematics and Computer Science 3 (2008), No. 1, 25-30.

Present Addresses:
P. Jeyanthi

Research centre, Department of Mathematics,
Govindammal Aditanar College for Women, Tiruchendur-628 215 , India.
e-mail: jeyajeyanthi@rediffrail.com
P. Selvagopal

Department of Mathematics,
CMS College of Engineering,
NAMAKKAL, NAMAKKAL District-637 003, India.
e-mail: ps_gopaal@yahoo.co.in

