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Abstract. Let S be a finitely generated standard multigraded algebra over an Artinian local ring A; M a finitely
generated multigraded S-module. This paper first investigates the relationship between the multiplicity and mixed
multiplicities of M. Next, we give some applications to multigraded fiber cones.

1. Introduction

Throughout this paper, let (A, m) denote an Artinian local ring with maximal ideal m;
S = @nl,...,ndz() S(ny,....ng) a finitely generated standard d-graded algebra over A (i.e., S is
generated over A by elements of total degree 1), where d > 2 is a positive integer. Let
M = @,, >0 Man,...ng be a finitely generated d-graded S-module. Set a : b =

UnZO(a : bn)’

A
§°= @nzo Sn,.mys Si = S(o 1 ...0°

——

yenes

Si-0=5iS =Dy 20...0=0...ng20 Strr,ngy G =1,....d),
d
St+=Ni=1 Si+) = D, ... ng=0Str1..na) »
S+= S(1+) +-- 4+ S(d+) = ®nl+“‘+”d>0 S(n],...,nd) b

A .
St =Dy Sy MP = Byyzg Min,...y, £ = dimM>.

Denote by Proj S the set of the homogeneous prime ideals of S which do not contain
Si4. Set Supp, . M = {P € Proj § | Mp # 0}. By [HHRT, Theorem 4.1] and Remark
2.1(ii), dim Supp, , M = £ — 1 and [4[M,,,....n,)] is a numerical polynomial of degree £ — 1
for all large ny, ..., ng (see Section 2, Remark 2.1). The terms of total degree ¢ — 1 in this
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polynomial have the form

ky ka
n] PR nd
Z e(M,kl,,kd)W
ki 4+ kg = -1 I d:
Then e(M; ki, . .., kq) are non-negative integers not all zero, called the mixed multiplicity of

type (ki1, ..., kg) of M [HHRT].

Set M = me S... Itis clear that M is the homogeneous maximal ideal of S. If I is a ho-
mogeneous M-primary ideal of S, denote by e(/Sp; M 4) the Hilbert-Samuel multiplicity
of M p with respect to /Spq. Set

e(I; M) =e(ISp; Mag), e(M) = e(MSpai; Mag) -

We call e(M) the multiplicity of M [HHRT]. It can be verified that Sy is a reduction of M.
This implies that Sy = (S+)Saq is a reduction of MSpq. So

e(M) = e(MSpg; Mag) = e(Sp4s Mag) = e(S; M) .

Expressing the multiplicity of multigraded rings in terms of mixed multiplicities was
mentioned by authors: Verma in [Vel, Ve2] for Rees algebras and multigraded Rees algebras
; Katz and Verma in [KV] for extended Rees algebras; P. Roberts in [Ro] for local Chern
classes; D’Cruz in [CD] for multigraded extended Rees algebras; Herrmann et al. in [HHRT]
for finitely generated standard multigraded algebras over an Artinian local ring.

The relationship between the multiplicity and mixed multiplicities of finitely generated
standard multigraded algebras was showed by the authors in [HHRT] as follows.

THEOREM [HHRT, Theorem 4.3]. Let S be a finitely generated standard d-graded
algebra of dimension d + q — 1 over an Artinian local ring A. Suppose that

S
dim( >§d+q—1—r
S+ S+

foralll <iy <---<i, <d.Then

e(S) = Z e(S; ki, ... ka).

ki + -+ kg =q—1

It is clear that this result is general and important. It expresses the multiplicity of multi-
graded rings as a sum of mixed multiplicities. By applying the above theorem, the authors
in [HHRT] expressed the multiplicity of associated multigraded rings and the multiplicity of
multigraded Rees algebras in terms of mixed multiplicities (see [HHRT, Theorem 4.4, Corol-
lary 4.7]). The aim of this paper is to give a perfect version of [HHRT, Theorem 4.3] and
some applications to multigraded fiber cones.
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Then our purpose is achieved by the following theorem that is the main result of this
paper.

MAIN THEOREM (Theorem 2.4). Let S be a finitely generated standard d-graded alge-
bra over an Artinian local ring A and M a finitely generated d-graded S-module of dimension
d+q — 1 such that M. nyy = Suy,..ng)M,..,0) for all ny, ..., ng. Set £ = dim M2.
Then the following statements are equivalent.

(1) dmM/S;yM <d+qg—2foralli=1,...,d.
(i) £=¢qg>0ande(M) = Zkl botkg=go1 €Mk, k).

.....

So we not only obtain a generalized result of [HHRT, Theorem 4.3] to multigraded mod-
ules but also give a necessary and sufficient condition for the simpler condition. As con-
sequences, we get Theorem 2.5 for multigraded algebras; Corollary 2.6 for the dimension
of multigraded modules; and some applications to multigraded fiber cones (Corollary 3.1,
Corollary 3.3, Corollary 3.7, Corollary 3.8).

This paper is divided into three sections. In Section 2, we investigate the relationship
between the multiplicity and mixed multiplicities of multigraded modules. The main result of
this section is Theorem 2.4 that expresses the multiplicity of multigraded modules as a sum of
its mixed multiplicities. Section 3 gives some applications of Sections 2 to multigraded fiber
cones.

2. The Multiplicity of Multigraded Modules

Let S be a finitely generated standard d-graded algebra over an Artinian local ring A and
M a finitely generated d-graded S-module such that

M, ...n9) = Sauy,..n)yMo,...,0)

forall ny, ..., ng. In this section we will express the multiplicity of M as a sum of its mixed
multiplicities.
REMARK 2.1.
(i) Recall that a polynomial F(t1,...,t3) € Qlt1, ..., t4] is called a numerical poly-
nomialif F(ny,...,nq) € LZforallny,...,ng € Z.
(ii)) Remember that a polynomial P(ny, ..., ng) is called the Hilbert-Samuel polyno-
mial of [A\[M,,,.. aplif P(n1,...,nq) = la[M@,,...np] for all large ny, ..., ng.

Set ¢ = dim M2. Assume that £ > 0. By [HHRT, Theorem 4.1], P(ny, ..., ng) is
a numerical polynomial and

deg P(ny,...,nq) = dimSupp, . M .
Moreover, all coefficients of monomials of highest degree in P(ny,...,ng) are
non-negative integers not all zero. So deg P(n1, ...,nqg) =deg P(n,...,n). Since

P(n,...,n) =IslM.. ] =1a(M>)

yenes
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for all large n, we have
deg P(n,...,n) =dimM> —1=1¢—1.

Hence deg P(n1, ...,nqg) = dimSupp, M =€ — 1.
(iii) Note that a map

f:N—Q
(ny,...,ng)— f(ny,...,nq)

is called a polynomial function of degree r if there exists

g(X1,..., Xq) € Q[X1,..., Xgql,degg =7
such that f(n1,...,nq) = g(ny, ..., ng) for all large ny, ..., ng. The degree and
leading coefficients of g(X1, ..., X4) are also called the degree and leading coef-

ficients of the polynomial function f, respectively. Denote by deg f the degree of
f. Hence we have deg f = degg =r.

By the same argument as in [HHRT, Lemma 4.2], we have the following lemma.

LEMMA 2.2 [HHRT, Lemma 4.2]. Let F(ny,...,nq) be a numerical polynomial of
degree pinny,...,ng anduy, ..., uqg non-negative integers. Then the function
G(n) = > F(ny,....nq)
ny+-+ng=n, n1=uy,..., ng>ug

is a numerical polynomial of degree < p + d — 1 in n for large n and the coefficient of

1 ek, ... kq)
nP+4=1 iy this polynomial is ——————— _ e(ky, ..., kqg), where ———-
pory (0 1 d — D)1 Zhi+etha=p & ) Tl kgl
is the coefficient ofnlf1 ‘e n];" in F(ny, ..., ng).
REMARK 2.3. Letl <r <d-—1landiy,...,i4 positive integers such that
I<ii<---<ip<d, 1 <ipy1<---<ig=<d,{1,2,...,d} ={i1,iz2,...,14}.
Set
(Lenin) Q.0 0,...,0, n; ,0,...,0 0,...,0)eZ¢
Ol(n n)_(7"'7an17 yeees U,y U0 Ay, s, 0) € s
1s--0p —_—— N —
i l/ ir
Sieir = D Sy Miic = D M
ni,...,n>0 Lol ny,...,n; >0 Lo "
Since
M
Mil,...,ir :Si
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we have

M
dimg, . M; . i =dimg [ i|
o L SGe oM A+ S M

M
=dm_ s |: :|
Sir1 0+ g0 LS M + -+ Sig M

M
St M+ -+ SiyHM

=dims[ :|§ dim M/Si; M
forall j=r+1,...,d.

The relationship between the multiplicity and mixed multiplicities of M is determined as
follows.

THEOREM 2.4. Let S be a finitely generated standard d-graded algebra over an Ar-
tinian local ring A and M a finitely generated d-graded S-module of dimension d +q — 1 such
that M(y,,...ngy) = S@y,..na)M,....0) forallny, ..., ng. Set £ = dim M2 . Then the following
Statements are equivalent.

(i) dmM/S¢yM <d+q—2foralli=1,...,d.

(i) £=qg>0ande(M) = Zk1+~~~+k,1=q71 e(M; ki, ..., kg).

yeeey

S'M
PROOF. Set F(n) =lIg L . Then F(n) is a polynomial of degree dim M — 1
(S+)”+1M
for all large n. Remember that
. (dimM — 1)!'F®n)
e(M) = lim L dim M1 :
Since My, ,...n5) = Sny,..onyM0,...,0) forall ny, ..., ng, it is easily seen that
Fimy= > LalM,..np]-

ny+--+ng=n

Assume that u is a positive integer such that [4[M,,
ni,...,ng > u. Set

ngy]l 1s a polynomial for all

.....

D, = {(nl,...,nd)

d
Z’li =n}, Enwuy ={(n1,...,nq) € Dplny, ..., nqg > u}.
i=1

Foreveryl <ij <--- <i, <d, 1 <r <d—1andnon-negative integers u,+1, ..., Uqg < u,
set

Uy g1, lid)
E[I’_._’[: = {(n], LN nd) € Dnlnils LR} nir 2 u, nir+1 = ur+17 LI} nid = ud} ’

where | <i,y] <--- <ig <dand

{ir1, iy =1{1,....dy\ {i1,....ir}.
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Then for all n > du, we have

d—1

oerelff (U, )

r=1"1<ij<--<iy<d 0<uy1,...,uq<u

From this it follows that

F(n) = > [AIMy.....np)]

ny+-tng=n;ny,....ng=u

x5 )

=1 "1<ij<-<iy<d =0<uyy1,....,uq<u

(Vl],...,nd)EE,‘l vvvvv ir
Set
A= X M
ny+--+ng=n; ny,....ng>u
(RTEI ) ;
F ) = 2 lalMonns

(n,u,ur+1 ..... ug)

(1, By

d—1
am=Y| ¥ (¥ mpee)]

r=1"-1<ii<--<iy<d “0<u,41,...,ug<u

Now, we will adhere to the notations of the proof for Theorem 2.4.

CLAM 1. If€ > O then F,(n) is a polynomial of degree £ + d — 2 for large n and the

coefficient of n*+t4=2 in this polynomial is
1
_ M;ky,...,kq).
((+d—2) D, ek @)

ki 4 hg = 1

By Remark 2.1(ii), there exists a positive integer u such that [4[ My, ... n,)]is a numerical
polynomial of degree £ — 1 for all ny, ..., ng > u. Moreover, since £ > 0, it implies that the
elements of

feM; ky,....ka) | ki1 + -+ + kg = £—1}
are non-negative integers not all zero. Thus

Z e(M:ki,... . kg)>0.
ki + -+ kg=10—1
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Denote by f(n1, ..., ng) this polynomial. We have

F,(n) = Z fny,...,ng).

ny+-tng=n; ny,...ng>u

By Lemma 2.2, F,(n) is a polynomial of degree < ¢ 4+ d — 2 for large n and the coefficient

of n*4=2 in this polynomial is
1
iy 2 cOhkiko 0.

ky + 4 kg =01
Hence deg F,,(n) = ¢ +d — 2.

CLAIM 2. Setb=1uypy1+---+uqg and

(U Uy 1 yeenslly)
Mil . = @ My....nq) -

O

Then
. n—b—ru gy Uty 41,msUd)
(Siy,... i +) M

L Nn—b—ru+1 Wt 1,s )
(Sll,...,lr+) “ M,'] ,,,,, ir

F(”>”r+l>~~~sud)
Ulsesly

(n) =Is;

For simplicity of exposition, we can assume thati; =1,...,i; = j,...,ig =d. Then

Siteensiy = Slyor = @ St 0,...,0)

St,..,
ny+-+n,>0

(U, typ g1 5eesttg)
Ml,...,r - @ M(ﬂ],...,nr,ur+1,...,ud) .

AYyeeeyp>U
It is clear that M{"_’_f";’]""’ud) is an r-graded S, . ,-module. Since
Mn,....na) = Say.cnayM.....0)

forall ny, ..., ng, it can be verified that

—b— (URTPSR NP
(Sl,...,r+)n ruM])m’;

_bh— (UN/PSS NN 7))
(S1,...p bt pg

(U Ur 150 Ud)
Fy (n) = Is,
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Claim 2 follows.
CLAIM 3.
@) F.(”’”’t‘ """ “d(n) is a polynomial of degree dims, Mi(lbf’.'ffitl """ “D _ 1 for all
large n.

(i) Gy (n) is a polynomial for all large n and

deg G, (n) = max (dims, MUty

1<ii<--<ip<d, 1<r<d—1, 0<u,y1,....uq<u

By Claim 2, Fl.(lu’u’“""’u") (n) is a polynomial of degree

..... ir

for all large n. We get (i).
By (i) and note that

d—1

-2 £ (5 ampew)|

r=1 | 1<ij<--<i,<d 0<u,41,..., Ug<u

G (n) is a polynomial for all large n. Since the leading coefficient of F; (u’urf’"""ud)(n) is

(] 5eees iy
non-negative forall 1 <i; <---<i, <d, 1 <r<d-1, 0 <up41,...,uq < u and by
(),

deg G (n) = max {dimg, , Moty
1<ij<-<iy<d,1<r<d—1, 0<upyp,....,ug<u Loentt oo r
We get (ii).

CLAIM 4.
(i) deg F(n) = max{deg F,(n), deg G,(n)}.
(ii)) degGy(n) < max{dimM/S;Ml|i =1,...,d} —1.

Since F(n) = F,(n) + G,(n) and the leading coefficients of F,(n), G,(n) are non-
negative, we immediately get (i).
It is easy to see that

Anng,

By Remark 2.3,

I PR - iy

.....
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foralll <ij<---<i,<d, 1 <r<d-1, 0<up41,...,uq < u.From this fact and by
Claim 3(ii),
deg G, (n) = max (dimg, _, Mty

. s SN S /£ JUN i yeunsd
1<ij<-<ir<d,1<r<d—1, 0<upy1,...,ug<u rooh r

<max{dimM/S;yMl|i=1,...,d} —1.

We get (ii).
We now return to the proof of Theorem 2.4.
Fori =1,...,d, set

d
Dy ={(.....ni—1,0,nix1,....na)l Y nj=n),
=L

Fi(n) = > IAlM s ..ony 1 O )] -

(n1,...sni—1,0,ni41,....nq)ED]

Set

H;\(n) = > 1AIMny....n )]
(111 ~~~~~ nd)ED\[D)izUE(n,u)]

Since u > 0, D;(n) () En,uy = 9. From this fact and note that D; (n) and E(, ) are subsets
of D,, we have

Fn)y=F,0 + F® + H;,(n) and G,(n) = Fi(n) + H; ,(n) .

Since M, ,...ng) = Stny,...ng)M0,...,0) forall ny, ..., ng, it can be verified that
SH*M/S; M
F(n) =15|: ( +)+1 /Si+) }
(S M/SipHM

Thus F;(n) is a polynomial of degree dim M /S +yM — 1 for all large n. Since G, (n) and
F; (n) are polynomials for all large n, it follows that H; ,(n) is also a polynomial for all large
n. Moreover since H; ,(n) > 0 for all n, the leading coefficient of H; ,(n) is non-negative.
Note that the leading coefficient of F;(n) is also non-negative. Hence

deg G, (n) = max{deg F;(n), deg H; ,(n)} = max{dimM/S; M — 1,deg H; ,(n)}.

(i) = (ii): Since F(n) = F,(n) + G, (n) and note that
(M) = lim (dimM — 1)!F(n)

00 pdim M—1 ’

we have

) = Tim @imM — DIF ) | dimM = DIG, ()

N—>00 pdimM—1 n— 00 pdimM—1
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Since dim M /S )M < dim M foralli =1, ..., d by Claim 4(ii),
degGy(n) <dimM — 1.
(dimM — 1D)'G,(n)

This implies that lim,,_, ] = (0. Thus
. (dimM — D!F@n) . (dimM — D!F,(n)
e(M) = lim L dim M1 = lim L dim M1 :

Since deg F(n) =dimM — 1 > deg G, (n), deg F (n) > deg G, (n). By Claim 4(i),
deg F(n) = deg F,,(n) > deg G, (n) .

It follows that F, (n) # 0. Hence £ > 0 for if £ = 0 then F,,(n) = 0. By Claim 1,
dmM —1=degF,(n)=£¢+d—2.

Hence dim M = d + £ — 1. From this fact and note that dimM =d + g — 1, we get £ = q.
SincedimM =d + ¢ — 1,

_ (dimM — D!F,(n) . (£+d—2)F,(n)
e(M) = Lim L dim M1 = Jlim plrd—2
Hence by Claim 1,
e(M) = Z e(M: ki, ... kg) = Z e(M: ki, ... kq).
ki + -+ kg=10—1 ki + - 4+ka=q—-1

(ii) = (@i): SincedimM =d+qg —1and0 < £ =q, wehavedimM — 1 =d + € —2
and

Z e(M: ki, ... kg) = Z e(M: ki, ... kg).
ki + -+ kg =1£-1 ki +-+kg=qg—1
. . (dimM — D'F(n)
Since e(M) = lim,— oy v , we have
. (dimM — DIF®@n) )
Jim —— e = Yo eMiki. ... k).

ki A+ kg = =1

Note that F(n) = Fy(n) + G, (n),

I (dmM — D)!F(n) . (dimM — 1)F,(n) i (dimM — 1)'G,(n)
o dim M1 = am dim M1 + am S dim M1
By Claim 1,
. (dmM — DF,(n) . (+d—2)'F,(n) )
,}Hgo S dim M1 = n‘;‘{}o lrd—2 = Z e(Miky, ... ka).

ki 4 kg =1
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Hence

(dim M — DIG,(n) _

e 00 pdim M—1

0.

It follows that deg G, (n) < dim M — 1. From this fact and since
deg G, (n) = max{dimM/S; M — 1, deg H; ,(n)}

foralli =1,...,d, we getdimM/S;yM < dimM foralli =1,...,d. Theorem 2.4 has
been proved. |

As an immediate consequence of Theorem 2.4, we have the following theorem.

THEOREM 2.5. Let S be a finitely generated standard d-graded algebra of dimension

d + q — 1 over an Artinian local ring A. Set £ = dim S®. Then the following statements are
equivalent.
(1) dimS/Si4y <d+qg—2foralli=1,...,d.

(i) £=g >0ande(S) =3, bt kg =g €Sk, k).
So we obtain with Theorem 2.5 as a replacement of the condition

S
dim( )5 dimS —r
St + -+ S+

forall 1 <i; <--- < i, <d in [HHRT, Theorem 4.3] by the weaker condition
dimS/Si4) <dim S for all 1 <i <d.

From the proof of Theorem 2.4, we also get the result on the dimension of multigraded
modules as follows.

COROLLARY 2.6. Let S be a finitely generated standard d-graded algebra over an
Artinian local ring A (d > 1) and M a finitely generated d-graded S-module such that
Mu,,..np) = Say,..onyM,....0) for all ny, ..., ng. Set £ = dim M?%. Then the following
statements hold.

(i) Ift > O0thendimM =max{d+£—1,dmM/S; M |i=1,...,d}.

(ii)) If€ =0thendim M = max{dimM/S;yM |i=1,...,d}.

PROOF. (i) Since dim M = deg F(n) + 1 and by Claim 4(i),
dim M = max{deg F,(n),degG,(n)} + 1.
By Claim 1, deg F,,(n) = d + ¢ — 2. By Claim 4¢(ii),
deg Gy (n) < max{dimM/S;yM |i=1,...,d}—1.
From the above facts, we have

dimM < max{d + ¢ —1,dimM/S; M | i =1,....d}.
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Clearly we also have
max{d +¢ —1,dimM/S; M |i=1,...,d} <dimM.

Hence we get (i).
(ii) If £ = 0 then F,, (n) = 0. By Claim 4(i),

dim M = max{deg F,,(n),degG,(n)} +1 =degG,(n) + 1.
By Claim 4¢(ii),
deg Gy (n) < max{dimM/S;yM |i=1,...,d}—1.
Thus
dimM < max{dimM/S;yM |i=1,...,d}.
Clearly we also have
max{dimM/S;yM |i=1,...,d} <dmM.

Hence we get (ii). [ |

3. Some Applications to Multigraded Fiber cones

Let (B, n) denote a Noetherian local ring with maximal ideal n;
R = @nl,...,ndzo Ray,...ong)
a finitely generated standard d-graded algebra over B (i.e., R is generated over B by ele-
ments of total degree 1), where d is a positive integer; N = ®n1 1g>0 N, ,...ng) a finitely

.....

generated d-graded R-module such that

Nay.,..ong) = Ry, ...np)N....,0)
for all ny, ..., ng. Let J be an n-primary ideal of B. Define
R(n] < nd) N(’ll nq)
Fi(R)=R/JIR= @ =" F,N)=N/IN= B *
nyseenig>0 J (n1,....nq) e 1ng>0 JN(n1 ..... ng)

to be the d-graded fiber cone of R and N with respect to J, respectively. Then F;(R) is
a finitely generated standard d-graded algebra over Artinian local ring B/J and Fj(N) is a
finitely generated d-graded F;(R)-module. By applying the results in Section 2, this section
gives some results on the multiplicity of the fiber cone F;(N).

Set N% = @,20 Ny Rii+) = By20,..mi>0,..ng20 Rny gy fori =1, d. It
is easily seen that

N
Fy(N)® = D) == = N4 [IN® = Fy(N®).

n>0 (n,...,n)



MULTIPLICITY OF MULTIGRADED MODULES 353
Fj(N)
Fy(R)in Fi(N)

Denote by e(F;(N); ki, ..., kg) the mixed multiplicity of type (ki, ..., kq) of F;(N). By
Theorem 2.4, we get the following result.

~Fy(N/RipN), i=1,...,d.

COROLLARY 3.1. Let R be a finitely generated standard d-graded algebra over a
Noetherian local ring B and N a finitely generated d-graded R-module suchthat N, .. n,) =
Ry,..npyNo,....0) forallny, ..., ng. Let J be ann-primary ideal of B. Set £ = dim F (N?).
Assume that dim Fj(N) = d + q — 1. Then the following statements are equivalent.

(i) dimF;(N/RiN)<d+q—2foralli=1,...,d.

(i) £=gq > 0and

e(Fy(N) = > e(Fs(N)iki,....ka).
ki kg = g1

Let Iy, ..., I; be ideals of B and let K be a finitely generated B-module with Krull
dimension dim K > 0. Define

T I YK
F(J, Ii,....1q) = @ TR Fx(J, I, ..., 1qg) = @ TR
nyyeng=0 " 1 d n,..ng=0" "1 d
to be the d-graded fiber cone of B and K with respect to J, Iy, ..., Iz, respectively. Let
t1, ..., 17 be indeterminates. Set
R(,....ly= @ 1" -1y,
ni,...,ng>0
Rx(I.....Iy= @ I/ 1K' -1y
ny,...,ng>0

R(Iy, ..., 1) and Rg(Iy, ..., 1 ) are called the d-graded Rees algebra of Iy, ..., I; and
the d-graded Rees module of Iy, ..., I; with respect to K, respectively. Then clearly
FU, I, ....,1g) ~ Fj(R(I, ..., 1g))and Fx(J, I, ..., 1y) = Fj(Rg(I1, ..., 14)).

Then we have the following remark.
I"K

REMARK 3.2. Setl = I11---1z, £ = dim(@nzo nI"K

). We call ¢ the analytic
spread of I with respect to K. Since VI = n,

. I"K . I"K
l = dlm(@ nI”K): dlm(@ JI”K) .

n>0 n>

From this fact and note that
I"K
JI"K

bl

Fx(J, I, ... 10)® = Fy(Rg (I, ..., la)* ~ P

n>0
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LYK

1
n n
JI 1K

we get £ =dim Fx (J, Iy, ..., 1;,)2. Hence by Remark 2.1(ii),lA(
1

) is a poly-
nomial of degree ¢ — 1 for all large ny, ..., ng.

Denote by Ey (Il[k‘], el Ia[,kd]; K) the mixed multiplicity of type (ki,...,kq) of
Fx(J, I, ..., Iy) for all non-negative integers k1, . . . , kg such thatky+- - -+kg = £ —1. The

authors in [MV] answered when mixed multiplicities of Fx (J, I1, ..., I;) are positive and ex-
pressed them in terms of the length of modules (see [MV, Theorem 3.5]). Fori = 1,...,d,
set
I”] . I.ni_] I_”H—l . IndK
1 —1 7i41 d
T R« R e
M yeres i — 15 ] eees 8 >0 1 i—1 %i+1 d

By Corollary 3.1, we get the following result that expresses the multiplicity of

Fx(J, I, ..., 1;) as a sum of its mixed multiplicities.
COROLLARY 3.3. Let J be an n-primary ideal and let 11, . .., 15 be ideals of B. Set
I"K
I=5hL -1 L= dim(@n>o W) Suppose that dim Fg (J, I, ..., 1;) =d +q — 1.
=“n

Then the following statements are equivalent.
1) dimFx(J, I1,....Li—1, Liv1,....Ig) <d+q—2foralli=1,...,d.
(i) £=gq > 0and

k k,
eFx( NIy = Y Eiah oK)
ki + -+ kg =q—1
Now, we investigate the multiplicity of Fx(J, I, ..., Iz) in the case that Iy, ..., I

satisfy

L---1 A K
pe( 2t FAMBR Y
AnngK

3132 + Anng K

REMARK 3.4. Let3, 31, I2 be ideals of B such that ht
AnngK

)> 0. Set

R =P "". Rk () = P"K1",

n>0 n>0

where ¢ is an indeterminate. We have
. S2Rk () . R(3)
dim{| ————— ) =dim
S12Rk (J) S12Rk () 1 32 Rk ()

. < R(J) )
S1R(I) + Anng () (S2Rk ()

. < R(J) >
= dim .
S1R() + /Anng () (32Rk (I))
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On the other hand,
VAR Q2Rx (3)) = PR (] VAmpRK)" .
n>0
3132 + Anng K 3» + AnngK
Since ht( 22T AMBR ) 6 i follows that ht( “2- 228X ) _ . This implies that
Anng K nng K

VAnng (3:K) = /AnngK .
Thus

VAR (32Rx (3)) = PR () VAmpK)" = \/Anng) (Rk (3)) -

n>0

From the above facts, we get

) < S2Rk () )
dim
J132Rk ()

RX) )
dim
S1RE®) + JAnng ) (Rk ()

Il
a

I
o

im

< R(J) )
im
¥ R(J) + AnnR(J)(RK(\S))

S1Rk («S) RK (3) )

di < Rk (%) >
my ————— .
S1Rk (I)

SRk (3 Rk (S
Hence dim(w—K(gl>= dim(ﬂ).

S1S82Rk () S1Rk ()

REMARK 3.5. Let 31, 33 be ideals of B such that ht(

k) = di (@ W)
K (51) = dim = s
n3K

NN AnnK
SN2 AR ger
AnnK

n>0
ShK
lk(32) =dim(€|9 o )
>0 n35 K

Cx (3132) =dim[@ %}
n

XX\
~0 n(3132)"K

ny~ng
SR, ’K B
n3|S2K )
Remark 3.2, deg f(n1,n2) = £ (3132) — 1. Assume that u is a non-negative integer such

Denote by f(n1,ny) the Hilbert-Samuel polynomial of the function / B(
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that

STINK
f(ni,n2) =g T~

nJ'37 K
forall ny, ny > u. Thendeg f(n1,ny) > deg f(ny, u). Since

Ul
SH3 K )
xucl
n3r 3 K

fny,u) =lB<

for all n; > u, we have

UK SUR (S
deg fln1,u) = dim(@ %)—1 — dim[%(l)}_l _

1 e ~
2o MR K nI5 Rk (31)

J13 AnnkK AnnK
Since ht<u)> 0 and ht(n-l—gnn

> (), it follows that
AnnkK nn

nJ4% + AnnkK
tf({—2————1)>0
AnnkK

Hence by Remark 3.4,
JYRk (I Ry (S
di [ 5 Rk (31) i|=dim|: k(31)

nd5 Rk (I1) nRk (31)

]=EK(*31)-

Thus

Rk (31)

deg f(l’ll, I/l) = dlm[m

}-1:5,((31)—1.

From the above facts, we get £k (3132) > £k (J1). By symmetry, we also have £g (3132) >
Lk (32).

. I + AnnK
REMARK 3.6. Let Iy,...,I; be ideals of B such that ht{ ————— |> 0, where
AnnK
I=1---1;. Set
I"K I"K
¢ =dim Lk (I1) = dim ! ,
<® nI”K) k() (EB nIfK)
n>0 n>0
I"K (L IL)"K
tx () = di 2" ) (1 ) = di —= .
k() lm<@ n1§1<> k(1) nn[EB TS
n>0 n>0

By Remark 3.2,
¢=dimFx(J, Iy, ..., 1), €x(I}) = dim Fx (J, Iy) ,
(x (L) =dim Fx (J, ), Lx (I 1) = dim Fg (J, I}, )" .
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I + AnnkK
AnnK
dim Fg (J, I, I) = max{{x (I1 ) + 1,dim Fg (J, I), dim Fg (J, I>)}

=max{lg (1) + 1,Lx (1), Lx(2)}.

Since ht< )> 0, we have £k (I1I2) > 0. Hence by Corollary 2.6,

By Remark 3.5,
max{lx (I112) + 1, €x (I2), Lk (1)} = L (11 1) + 1.
Hence dim Fg (J, I1, I) = £ (I1I») + 1. By induction, assume that
dim Fg (J, I, .. Limyy Digers ooy La) = L (Ly - - iy Ligy -+ - Mg) +d — 2 (*)

foralli =1,...,d, where

. Iy diiLigr -+ I)"K
eKuy-JFJAH-~M)=dm{GB —

n(y - Limtdivy - L)' K

n>0
=dimFx(J, 11, ..., li—1, Lip1s ., 1)
. I + AnnK
Since ht{ ————— )> 0, we have £ > 0. Hence by Corollary 2.6,
AnnK
dim Fg(J, I, ..., 1)
=max{d +¢—1,dim Fx(J, I1,..., li—1, lit+1,..., Ip)]i =1,2,...,d}.

By (%),
dim Fx (J, I, ..., Ig) =max{d+{¢—1,d+Llx (I --- i1 Liy1--- 1g)—2]i =1,2,...,d}.

I + AnnK
AnnkK
dim Fg(J, I;,...,1;) =d+ £ — 1 and

Since ht( >> 0, bx(Iy---Li—11i41---15) < £ by Remark 3.5. Hence we get
dim Fg(J, Iy, ..., li—1, liy1, ..., 1Ig) <dim Fg(J, Iy, ..., Ig)
foralli =1,2,...,d.

By Corollary 3.3 and Remark 3.6, we get an interesting result as follows.

COROLLARY 3.7. Let J be an n-primary ideal and let Iy, . . ., 1; be ideals of B such
thar e ZEAMEN o where 1 = 1 -+ 1. Ser ¢ = di (EB IHK) Th
— >0, =51 = dim — ).
a ™% where 1 4. Se n=0 [ Tn g en

(i) dmFx(J, I,....I5) =d+¢—1.

.. k k.

() e(Fx( I, oo 1)) = g 4oty — e B0 1 K.

In the case where Iy, ..., I; are n-primary ideals, it is easily seen that

I"K I + AnnkK
t=dim(@ - )=ht IHAMRD GmK >0,
nl"K AnnK

n>0
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where I = I; ... I;. By Corollary 3.7, we obtain the following result.

COROLLARY 3.8. Let J, I, ..., I be n-primary ideals of B. Then
(i) dmFg(J, Ii,...,I;) =dimK +d — 1.

.. k k,
() e(Fk(J. 11, 1a) = Yp ooty — dimk—1 Es (1 1 K.

EXAMPLE 3.9. Letk be afield and let x1, x2, x3, x4, X5, X be indeterminates. Set

B = kl[x1, x2, x3, x4, x5, x6]], n = (x1, X2, X3, X4, X5, X6) ,
Iy = (x1, x2, X3, X4, x5), [ = (x1, X2, X3, X4), I3 = (x1, X2, X3) .
Consider 3-graded fiber cone of B with respect to n, 11, I, I3:
ny ynp yn3
I LI
nygnz yn3 *
nl' I

Fn, I b, 1) = B

ny,n,n3=0

Set
5 5

C={nx?i|0§ai €Z,i=1,...,5as Snl,a4+a5§n1+n2,zai=

i=1 i=1
Denote by V the k-vector space generated by C. It can be verified that
~ "L
_ n n ns -
nl' L2 LR

Thus

ny yny yn3 ny yny yn:
s 11212513: — 1 11;12:13; — dimg (V) = Card(C).
Wi NV

Set

3 3
D= {HX?"IOSauaz,% EZ,Zai =n +nz+n3—(a4+as)}.

i=1 i=1
Then we have

M s ny nit+ny—as
<%) = Card(C) = Z Z Card(D)
n L

as=0 oy=0

_ HZ] nl+n227a5 <n1 +ny+n3— (a4 +as)+2
N 2

o5 =0 Dl4:0

_ i[<n1+nz+23—a5+3>_(n3;-2)i|.

as=0

3
2 ni

i—1

1

|
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By direct computing, we have
n‘f + 4n?n2 + 4n?n3 + 6n%n§ + 12n%n2n3
24
6n%n§ + 4n1n% + 12n1n§n3 + 12n1n2n§
24

where g(n1, na, n3) is a polynomial and deg g(n1, n2, n3) < 4. From this fact, we get

dim (V) =

+g(n1,n2,n3),

E (™, 1 1% By = E, (P, 1M, 11 B) = En(IB],I[O],I[”;B)
= E (1, 12, 11 By = En P Y, 1Y By = EnaP 1 1 B)
= Eo(}", P 10 By = Bl 2 1Y By = B B 1P By = 1.

The others are zero. Since ht(/1) = 5, ht(/2) = 4 and ht(/3) = 3, by Corollary 3.7 we obtain
dim F(n, I, I», I3) = 7 and

e(F(n, It . )=y Eg(f, [ [ By =9,
k1+ky+k3=4

EXAMPLE 3.10. Letkbeafieldand B = k[[x, v, z, t]]/(x)N(y, z,t), where x, y, z, t
are indeterminates. Set

n=(x,y,z,0)/(x)N,z, 1), [ = x)/(x)N (¥, 2, 1).
Clearly ht(/) = 0 and dim B = 3. Consider 2-graded fiber cone
2n11n2
) _ n
Fouw. = @ i -

ny,n2>0

Set

2 1\n 2ny yn
1 L
= am@ e o =)

n(nZI)n 2ni+1n;

Direct computation shows that f(ny,n2) = 1 forall ny, no > 1. Hence by Remark 3.2,
¢=deg f(n1,n2) +1=1and E,(n?° 19: B) =1.
Clearly f(0,0) = 1. Set F(n) = an+n2=n f(ny,ny). Then
Fn)y=fO.m)+ fm.00+ > f.n)
ni+ny=n,ny,ny>1

forall n > 1. We have

> foumy= Y l=n-1f0n=1.

ni+ny=n,ny,ny>1 ni+ny=n,ny,ny>1
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. . 2n+2 2
By direct computing, f(n,0) = 5 + 1 =2n“+ 3n + 2. Thus

Fmy=n—14+142n>+3n+2=2n"+4n+2

is a polynomial of degree 2 for all n > 1. Hence
() dmFm,n? )=3>2=0+d—1d=2,£=1).
(i) e(Fm,n? D) =4#1=E,@ [0 B) =3 .\ o Ea(m?h], 11l B),
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