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Abstract. Let S be a finitely generated standard multigraded algebra over an Artinian local ring A; M a finitely
generated multigraded S-module. This paper first investigates the relationship between the multiplicity and mixed
multiplicities of M. Next, we give some applications to multigraded fiber cones.

1. Introduction

Throughout this paper, let (A,m) denote an Artinian local ring with maximal ideal m;
S = ⊕

n1,...,nd≥0 S(n1,...,nd ) a finitely generated standard d-graded algebra over A (i.e., S is

generated over A by elements of total degree 1), where d ≥ 2 is a positive integer. Let
M = ⊕

n1,...,nd≥0 M(n1,...,nd ) be a finitely generated d-graded S-module. Set a : b∞ =⋃
n≥0(a : bn),

S�= ⊕
n≥0 S(n,...,n), Si = S(0,..., 1︸︷︷︸

i

,...,0),

S(i+)= SiS = ⊕
n1≥0,...,ni>0,...,nd≥0 S(n1,...,nd ) (i = 1, . . . , d) ,

S++= ⋂d
i=1 S(i+) = ⊕

n1,...,nd>0 S(n1,...,nd ) ,

S+= S(1+) + · · · + S(d+) = ⊕
n1+···+nd>0 S(n1,...,nd ) ,

S
�
+= ⊕

n>0 S(n,...,n),M
� = ⊕

n≥0 M(n,...,n), � = dim M� .

Denote by Proj S the set of the homogeneous prime ideals of S which do not contain
S++. Set Supp++M = {P ∈ Proj S | MP �= 0}. By [HHRT, Theorem 4.1] and Remark
2.1(ii), dim Supp++M = � − 1 and lA[M(n1,...,nd )] is a numerical polynomial of degree � − 1
for all large n1, . . . , nd (see Section 2, Remark 2.1). The terms of total degree � − 1 in this
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polynomial have the form

∑
k1 + ··· + kd = �−1

e(M; k1, . . . , kd)
n

k1
1 · · · nkd

d

k1! · · · kd ! .

Then e(M; k1, . . . , kd) are non-negative integers not all zero, called the mixed multiplicity of
type (k1, . . . , kd) of M [HHRT].

Set M = m⊕S+. It is clear that M is the homogeneous maximal ideal of S. If I is a ho-
mogeneous M-primary ideal of S, denote by e(ISM; MM) the Hilbert-Samuel multiplicity
of MM with respect to ISM. Set

e(I ; M) = e(ISM; MM), e(M) = e(MSM; MM) .

We call e(M) the multiplicity of M [HHRT]. It can be verified that S+ is a reduction of M.
This implies that SM+ = (S+)SM is a reduction of MSM. So

e(M) = e(MSM; MM) = e(SM+; MM) = e(S+; M) .

Expressing the multiplicity of multigraded rings in terms of mixed multiplicities was
mentioned by authors: Verma in [Ve1, Ve2] for Rees algebras and multigraded Rees algebras
; Katz and Verma in [KV] for extended Rees algebras; P. Roberts in [Ro] for local Chern
classes; D’Cruz in [CD] for multigraded extended Rees algebras; Herrmann et al. in [HHRT]
for finitely generated standard multigraded algebras over an Artinian local ring.

The relationship between the multiplicity and mixed multiplicities of finitely generated
standard multigraded algebras was showed by the authors in [HHRT] as follows.

THEOREM [HHRT, Theorem 4.3]. Let S be a finitely generated standard d-graded
algebra of dimension d + q − 1 over an Artinian local ring A. Suppose that

dim

(
S

S(i1+) + · · · + S(ir+)

)
≤ d + q − 1 − r

for all 1 ≤ i1 < · · · < ir ≤ d. Then

e(S) =
∑

k1 + ··· + kd = q−1

e(S; k1, . . . , kd ) .

It is clear that this result is general and important. It expresses the multiplicity of multi-
graded rings as a sum of mixed multiplicities. By applying the above theorem, the authors
in [HHRT] expressed the multiplicity of associated multigraded rings and the multiplicity of
multigraded Rees algebras in terms of mixed multiplicities (see [HHRT, Theorem 4.4, Corol-
lary 4.7]). The aim of this paper is to give a perfect version of [HHRT, Theorem 4.3] and
some applications to multigraded fiber cones.
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Then our purpose is achieved by the following theorem that is the main result of this
paper.

MAIN THEOREM (Theorem 2.4). Let S be a finitely generated standard d-graded alge-
bra over an Artinian local ring A and M a finitely generated d-graded S-module of dimension
d + q − 1 such that M(n1,...,nd ) = S(n1,...,nd )M(0,...,0) for all n1, . . . , nd . Set � = dim M�.

Then the following statements are equivalent.

(i) dim M/S(i+)M ≤ d + q − 2 for all i = 1, . . . , d.

(ii) � = q > 0 and e(M) = ∑
k1 + ··· + kd = q−1 e(M; k1, . . . , kd).

So we not only obtain a generalized result of [HHRT, Theorem 4.3] to multigraded mod-
ules but also give a necessary and sufficient condition for the simpler condition. As con-
sequences, we get Theorem 2.5 for multigraded algebras; Corollary 2.6 for the dimension
of multigraded modules; and some applications to multigraded fiber cones (Corollary 3.1,
Corollary 3.3, Corollary 3.7, Corollary 3.8).

This paper is divided into three sections. In Section 2, we investigate the relationship
between the multiplicity and mixed multiplicities of multigraded modules. The main result of
this section is Theorem 2.4 that expresses the multiplicity of multigraded modules as a sum of
its mixed multiplicities. Section 3 gives some applications of Sections 2 to multigraded fiber
cones.

2. The Multiplicity of Multigraded Modules

Let S be a finitely generated standard d-graded algebra over an Artinian local ring A and
M a finitely generated d-graded S-module such that

M(n1,...,nd ) = S(n1,...,nd )M(0,...,0)

for all n1, . . . , nd . In this section we will express the multiplicity of M as a sum of its mixed
multiplicities.

REMARK 2.1.
(i) Recall that a polynomial F(t1, . . . , td ) ∈ Q[t1, . . . , td ] is called a numerical poly-

nomial if F(n1, . . . , nd) ∈ Z for all n1, . . . , nd ∈ Z.
(ii) Remember that a polynomial P(n1, . . . , nd) is called the Hilbert-Samuel polyno-

mial of lA[M(n1,...,nd )] if P(n1, . . . , nd) = lA[M(n1,...,nd )] for all large n1, . . . , nd .

Set � = dim M�. Assume that � > 0. By [HHRT, Theorem 4.1], P(n1, . . . , nd) is
a numerical polynomial and

deg P(n1, . . . , nd) = dim Supp++M .

Moreover, all coefficients of monomials of highest degree in P(n1, . . . , nd) are
non-negative integers not all zero. So deg P(n1, . . . , nd) = deg P(n, . . . , n). Since

P(n, . . . , n) = lA[M(n,...,n)] = lA(M�
n )
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for all large n, we have

deg P(n, . . . , n) = dim M� − 1 = � − 1 .

Hence deg P(n1, . . . , nd) = dim Supp++M = � − 1.

(iii) Note that a map

f : Nd −→ Q
(n1, . . . , nd) 	−→ f (n1, . . . , nd)

is called a polynomial function of degree r if there exists

g(X1, . . . , Xd) ∈ Q[X1, . . . , Xd ], deg g = r

such that f (n1, . . . , nd) = g(n1, . . . , nd) for all large n1, . . . , nd . The degree and
leading coefficients of g(X1, . . . , Xd) are also called the degree and leading coef-
ficients of the polynomial function f , respectively. Denote by deg f the degree of
f . Hence we have deg f = deg g = r.

By the same argument as in [HHRT, Lemma 4.2], we have the following lemma.

LEMMA 2.2 [HHRT, Lemma 4.2]. Let F(n1, . . . , nd) be a numerical polynomial of
degree p in n1, . . . , nd and u1, . . . , ud non-negative integers. Then the function

G(n) =
∑

n1+···+nd=n, n1≥u1,...,nd≥ud

F (n1, . . . , nd)

is a numerical polynomial of degree ≤ p + d − 1 in n for large n and the coefficient of

np+d−1 in this polynomial is
1

(p + d − 1)!
∑

k1+···+kd=p e(k1, . . . , kd), where
e(k1, . . . , kd )

k1! · · · kd !
is the coefficient of n

k1
1 · · · nkd

d in F(n1, . . . , nd).

REMARK 2.3. Let 1 ≤ r ≤ d − 1 and i1, . . . , id positive integers such that

1 ≤ i1 < · · · < ir ≤ d, 1 ≤ ir+1 < · · · < id ≤ d, {1, 2, . . . , d} = {i1, i2, . . . , id } .

Set

α
(i1,...,ir )
(n1,...,nr )

= (0, . . . , 0, n1︸︷︷︸
i1

, 0, . . . , 0, nj︸︷︷︸
ij

, 0, . . . , 0, nr︸︷︷︸
ir

, 0, . . . , 0) ∈ Zd ,

Si1,...,ir =
⊕

n1,...,nr≥0

S
α

(i1,...,ir )

(n1,...,nr )

, Mi1,...,ir =
⊕

n1,...,nr≥0

M
α

(i1,...,ir )

(n1,...,nr )

.

Since

Mi1,...,ir 
Si1,...,ir

M

S(ir+1+)M + · · · + S(id+)M
,
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we have

dimSi1,...,ir
Mi1,...,ir = dimSi1,...,ir

[
M

S(ir+1+)M + · · · + S(id+)M

]

= dim S
S(ir+1+)+···+S(id+)

[
M

S(ir+1+)M + · · · + S(id+)M

]

= dimS

[
M

S(ir+1+)M + · · · + S(id+)M

]
≤ dim M/S(ij +)M

for all j = r + 1, . . . , d.

The relationship between the multiplicity and mixed multiplicities of M is determined as
follows.

THEOREM 2.4. Let S be a finitely generated standard d-graded algebra over an Ar-
tinian local ring A and M a finitely generated d-graded S-module of dimension d+q−1 such
that M(n1,...,nd ) = S(n1,...,nd )M(0,...,0) for all n1, . . . , nd . Set � = dim M�. Then the following
statements are equivalent.

(i) dim M/S(i+)M ≤ d + q − 2 for all i = 1, . . . , d.

(ii) � = q > 0 and e(M) = ∑
k1 + ··· + kd = q−1 e(M; k1, . . . , kd).

PROOF. Set F(n) = lS

[
(S+)nM

(S+)n+1M

]
. Then F(n) is a polynomial of degree dim M − 1

for all large n. Remember that

e(M) = lim
n→∞

(dim M − 1)!F(n)

ndim M−1 .

Since M(n1,...,nd ) = S(n1,...,nd )M(0,...,0) for all n1, . . . , nd , it is easily seen that

F(n) =
∑

n1 + ··· + nd = n

lA[M(n1,...,nd )] .

Assume that u is a positive integer such that lA[M(n1,...,nd )] is a polynomial for all
n1, . . . , nd ≥ u. Set

Dn =
{
(n1, . . . , nd)

∣∣∣∣
d∑

i=1

ni = n

}
, E(n,u) = {(n1, . . . , nd) ∈ Dn|n1, . . . , nd ≥ u} .

For every 1 ≤ i1 < · · · < ir ≤ d, 1 ≤ r ≤ d−1 and non-negative integers ur+1, . . . , ud < u,

set

E
(n,u,ur+1,...,ud )

i1,...,ir
= {(n1, . . . , nd) ∈ Dn|ni1, . . . , nir ≥ u, nir+1 = ur+1, . . . , nid = ud} ,

where 1 ≤ ir+1 < · · · < id ≤ d and

{ir+1, . . . , id} = {1, . . . , d} \ {i1, . . . , ir} .
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Then for all n ≥ du, we have

Dn = E(n,u)

⋃{d−1⋃
r=1

[ ⋃
1≤i1<···<ir≤d

( ⋃
0≤ur+1,...,ud<u

E
(n,u,ur+1,...,ud)

i1,...,ir

)]}
.

From this it follows that

F(n) =
∑

n1+···+nd=n; n1,...,nd≥u

lA[M(n1,...,nd )]

+
d−1∑
r=1

{ ∑
1≤i1<···<ir≤d

[ ∑
0≤ur+1,...,ud<u

( ∑
(n1,...,nd )∈E

(n,u,ur+1,...,ud )

i1,...,ir

lA[M(n1,...,nd )]
)]}

.

Set

Fu(n) =
∑

n1+···+nd=n; n1,...,nd≥u

lA[M(n1,...,nd )];

F
(u,ur+1,...,ud )

i1,...,ir
(n) =

∑
(n1,...,nd )∈E

(n,u,ur+1,...,ud )

i1,...,ir

lA[M(n1,...,nd )];

Gu(n) =
d−1∑
r=1

[ ∑
1≤i1<···<ir ≤d

( ∑
0≤ur+1,...,ud<u

F
(u,ur+1,...,ud)

i1,...,ir
(n)

)]
.

Now, we will adhere to the notations of the proof for Theorem 2.4.

CLAIM 1. If � > 0 then Fu(n) is a polynomial of degree � + d − 2 for large n and the

coefficient of n�+d−2 in this polynomial is

1

(� + d − 2)!
∑

k1 + ··· + kd = �−1

e(M; k1, . . . , kd) .

By Remark 2.1(ii), there exists a positive integer u such that lA[M(n1,...,nd )] is a numerical
polynomial of degree � − 1 for all n1, . . . , nd ≥ u. Moreover, since � > 0, it implies that the
elements of

{e(M; k1, . . . , kd ) | k1 + · · · + kd = � − 1}
are non-negative integers not all zero. Thus∑

k1 + ··· + kd = �−1

e(M; k1, . . . , kd) > 0 .
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Denote by f (n1, . . . , nd) this polynomial. We have

Fu(n) =
∑

n1+···+nd=n; n1,...,nd≥u

f (n1, . . . , nd) .

By Lemma 2.2, Fu(n) is a polynomial of degree ≤ � + d − 2 for large n and the coefficient

of n�+d−2 in this polynomial is

1

(� + d − 2)!
∑

k1 + ··· + kd = �−1

e(M; k1, . . . , kd) > 0 .

Hence deg Fu(n) = � + d − 2.

CLAIM 2. Set b = ur+1 + · · · + ud and

M
(u,ur+1,...,ud)

i1,...,ir
=

⊕
ni1 ,...,nir ≥u; nir+1 =ur+1,...,nid

=ud

M(n1,...,nd ) .

Then

F
(u,ur+1,...,ud )

i1,...,ir
(n) = lSi1,...,ir


 (Si1,...,ir+)n−b−ruM

(u,ur+1,...,ud )

i1,...,ir

(Si1,...,ir+)n−b−ru+1M
(u,ur+1,...,ud)

i1,...,ir


 .

For simplicity of exposition, we can assume that i1 = 1, . . . , ij = j, . . . , id = d . Then

Si1,...,ir = S1,...,r =
⊕

n1,...,nr≥0

S(n1,...,nr ,0,...,0),

S1,...,r+ =
⊕

n1+···+nr>0

S(n1,...,nr ,0,...,0),

M
(u,ur+1,...,ud )

1,...,r =
⊕

n1,...,nr≥u

M(n1,...,nr ,ur+1,...,ud) .

It is clear that M
(u,ur+1,...,ud )

1,...,r is an r-graded S1,...,r -module. Since

M(n1,...,nd ) = S(n1,...,nd )M(0,...,0)

for all n1, . . . , nd , it can be verified that

F
(u,ur+1,...,ud)

1,...,r (n) = lS1,...,r


 (S1,...,r+)n−b−ruM

(u,ur+1,...,ud)

1,...,r

(S1,...,r+)n−b−ru+1M
(u,ur+1,...,ud )

1,...,r


 .
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Claim 2 follows.

CLAIM 3.
(i) F

(u,ur+1,...,ud )

i1,...,ir
(n) is a polynomial of degree dimSi1,...,ir

M
(u,ur+1,...,ud )

i1,...,ir
− 1 for all

large n.
(ii) Gu(n) is a polynomial for all large n and

deg Gu(n) = max
1≤i1<···<ir≤d, 1≤r≤d−1, 0≤ur+1,...,ud<u

{dimSi1,...,ir
M

(u,ur+1,...,ud )

i1,...,ir
} − 1 .

By Claim 2, F
(u,ur+1,...,ud )

i1,...,ir
(n) is a polynomial of degree

dimSi1 ,...,ir
M

(u,ur+1,...,ud )

i1,...,ir
− 1

for all large n. We get (i).
By (i) and note that

Gu(n) =
d−1∑
r=1


 ∑

1≤i1<···<ir≤d

( ∑
0≤ur+1,...,ud<u

F
(u,ur+1,...,ud )

i1,...,ir
(n)

)
 ,

Gu(n) is a polynomial for all large n. Since the leading coefficient of F
(u,ur+1,...,ud)

i1,...,ir
(n) is

non-negative for all 1 ≤ i1 < · · · < ir ≤ d, 1 ≤ r ≤ d − 1, 0 ≤ ur+1, . . . , ud < u and by
(i),

deg Gu(n) = max
1≤i1<···<ir ≤d, 1≤r≤d−1, 0≤ur+1,...,ud<u

{dimSi1,...,ir
M

(u,ur+1,...,ud )

i1,...,ir
} − 1 .

We get (ii).

CLAIM 4.
(i) deg F(n) = max{deg Fu(n), deg Gu(n)}.

(ii) deg Gu(n) ≤ max{dim M/S(i+)M|i = 1, . . . , d} − 1.

Since F(n) = Fu(n) + Gu(n) and the leading coefficients of Fu(n),Gu(n) are non-
negative, we immediately get (i).

It is easy to see that

AnnSi1,...,ir
Mi1,...,ir ⊆ AnnSi1 ,...,ir

M
(u,ur+1,...,ud )

i1,...,ir
.

By Remark 2.3,

dimSi1 ,...,ir
M

(u,ur+1,...,ud)

i1,...,ir
≤ dimSi1,...,ir

Mi1,...,ir ≤ dim M/S(ij +)M

for all j = r + 1, . . . , d. Hence

dimSi1,...,ir
M

(u,ur+1,...,ud)

i1,...,ir
≤ max{dim M/S(i+)M|i = 1, . . . , d}
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for all 1 ≤ i1 < · · · < ir ≤ d, 1 ≤ r ≤ d − 1, 0 ≤ ur+1, . . . , ud < u. From this fact and by
Claim 3(ii),

deg Gu(n) = max
1≤i1<···<ir≤d, 1≤r≤d−1, 0≤ur+1,...,ud<u

{dimSi1,...,ir
M

(u,ur+1,...,ud)

i1,...,ir
} − 1

≤ max{dim M/S(i+)M|i = 1, . . . , d} − 1 .

We get (ii).
We now return to the proof of Theorem 2.4.

For i = 1, . . . , d, set

Di
n = {(n1, . . . , ni−1, 0, ni+1, . . . , nd)|

d∑
j=1,j �=i

nj = n},

Fi(n) =
∑

(n1,...,ni−1,0,ni+1,...,nd )∈Di
n

lA[M(n1,...,ni−1,0,ni+1,...,nd )] .

Set

Hi,u(n) =
∑

(n1,...,nd )∈D\[Di
n

⋃
E(n,u)]

lA[M(n1,...,nd )] .

Since u > 0, Di(n)
⋂

E(n,u) = ∅. From this fact and note that Di(n) and E(n,u) are subsets
of Dn, we have

F(n) = Fu(n) + Fi(n) + Hi,u(n) and Gu(n) = Fi(n) + Hi,u(n) .

Since M(n1,...,nd ) = S(n1,...,nd )M(0,...,0) for all n1, . . . , nd , it can be verified that

Fi(n) = lS

[
(S+)nM/S(i+)M

(S+)n+1M/S(i+)M

]
.

Thus Fi(n) is a polynomial of degree dim M/S(i+)M − 1 for all large n. Since Gu(n) and
Fi(n) are polynomials for all large n, it follows that Hi,u(n) is also a polynomial for all large
n. Moreover since Hi,u(n) ≥ 0 for all n, the leading coefficient of Hi,u(n) is non-negative.
Note that the leading coefficient of Fi(n) is also non-negative. Hence

deg Gu(n) = max{deg Fi(n), deg Hi,u(n)} = max{dim M/S(i+)M − 1, deg Hi,u(n)} .

(i) ⇒ (ii): Since F(n) = Fu(n) + Gu(n) and note that

e(M) = lim
n→∞

(dim M − 1)!F(n)

ndim M−1
,

we have

e(M) = lim
n→∞

(dim M − 1)!Fu(n)

ndim M−1
+ lim

n→∞
(dim M − 1)!Gu(n)

ndim M−1
.
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Since dim M/S(i+)M < dim M for all i = 1, . . . , d by Claim 4(ii),

deg Gu(n) < dim M − 1 .

This implies that limn→∞
(dim M − 1)!Gu(n)

ndim M−1 = 0. Thus

e(M) = lim
n→∞

(dim M − 1)!F(n)

ndim M−1
= lim

n→∞
(dim M − 1)!Fu(n)

ndimM−1
.

Since deg F(n) = dim M − 1 > deg Gu(n), deg F(n) > deg Gu(n). By Claim 4(i),

deg F(n) = deg Fu(n) > deg Gu(n) .

It follows that Fu(n) �= 0. Hence � > 0 for if � = 0 then Fu(n) = 0. By Claim 1,

dim M − 1 = deg Fu(n) = � + d − 2 .

Hence dim M = d + � − 1. From this fact and note that dim M = d + q − 1, we get � = q.

Since dim M = d + � − 1,

e(M) = lim
n→∞

(dim M − 1)!Fu(n)

ndim M−1 = lim
n→∞

(� + d − 2)!Fu(n)

n�+d−2 .

Hence by Claim 1,

e(M) =
∑

k1 + ··· + kd = �−1

e(M; k1, . . . , kd) =
∑

k1 + ··· + kd = q−1

e(M; k1, . . . , kd ) .

(ii) ⇒ (i): Since dim M = d + q − 1 and 0 < � = q, we have dim M − 1 = d + � − 2
and ∑

k1 + ··· + kd = �−1

e(M; k1, . . . , kd) =
∑

k1 + ··· + kd = q−1

e(M; k1, . . . , kd) .

Since e(M) = limn→∞
(dim M − 1)!F(n)

ndim M−1 , we have

lim
n→∞

(dim M − 1)!F(n)

ndim M−1 =
∑

k1 + ··· + kd = �−1

e(M; k1, . . . , kd ) .

Note that F(n) = Fu(n) + Gu(n),

lim
n→∞

(dim M − 1)!F(n)

ndim M−1
= lim

n→∞
(dim M − 1)!Fu(n)

ndim M−1
+ lim

n→∞
(dim M − 1)!Gu(n)

ndimM−1
.

By Claim 1,

lim
n→∞

(dim M − 1)!Fu(n)

ndim M−1
= lim

n→∞
(� + d − 2)!Fu(n)

n�+d−2
=

∑
k1 + ··· + kd = �−1

e(M; k1, . . . , kd) .
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Hence

lim
n→∞

(dim M − 1)!Gu(n)

ndim M−1 = 0 .

It follows that deg Gu(n) < dim M − 1. From this fact and since

deg Gu(n) = max{dim M/S(i+)M − 1, deg Hi,u(n)}
for all i = 1, . . . , d, we get dim M/S(i+)M < dim M for all i = 1, . . . , d. Theorem 2.4 has
been proved. �

As an immediate consequence of Theorem 2.4, we have the following theorem.

THEOREM 2.5. Let S be a finitely generated standard d-graded algebra of dimension
d + q − 1 over an Artinian local ring A. Set � = dim S�. Then the following statements are
equivalent.

(i) dim S/S(i+) ≤ d + q − 2 for all i = 1, . . . , d.

(ii) � = q > 0 and e(S) = ∑
k1 + ··· + kd = q−1 e(S; k1, . . . , kd).

So we obtain with Theorem 2.5 as a replacement of the condition

dim

(
S

S(i1+) + · · · + S(ir+)

)
≤ dim S − r

for all 1 ≤ i1 < · · · < ir ≤ d in [HHRT, Theorem 4.3] by the weaker condition

dim S/S(i+) < dim S for all 1 ≤ i ≤ d .

From the proof of Theorem 2.4, we also get the result on the dimension of multigraded
modules as follows.

COROLLARY 2.6. Let S be a finitely generated standard d-graded algebra over an
Artinian local ring A (d > 1) and M a finitely generated d-graded S-module such that
M(n1,...,nd ) = S(n1,...,nd )M(0,...,0) for all n1, . . . , nd . Set � = dim M�. Then the following
statements hold.

(i) If � > 0 then dim M = max{d + � − 1, dim M/S(i+)M | i = 1, . . . , d}.
(ii) If � = 0 then dim M = max{dim M/S(i+)M | i = 1, . . . , d}.
PROOF. (i) Since dim M = deg F(n) + 1 and by Claim 4(i),

dim M = max{deg Fu(n), deg Gu(n)} + 1 .

By Claim 1, deg Fu(n) = d + � − 2. By Claim 4(ii),

deg Gu(n) ≤ max{dim M/S(i+)M | i = 1, . . . , d} − 1 .

From the above facts, we have

dim M ≤ max{d + � − 1, dim M/S(i+)M | i = 1, . . . , d} .
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Clearly we also have

max{d + � − 1, dim M/S(i+)M | i = 1, . . . , d} ≤ dim M .

Hence we get (i).
(ii) If � = 0 then Fu(n) = 0. By Claim 4(i),

dim M = max{deg Fu(n), deg Gu(n)} + 1 = deg Gu(n) + 1 .

By Claim 4(ii),

deg Gu(n) ≤ max{dim M/S(i+)M | i = 1, . . . , d} − 1 .

Thus

dim M ≤ max{dim M/S(i+)M | i = 1, . . . , d} .

Clearly we also have

max{dim M/S(i+)M | i = 1, . . . , d} ≤ dim M .

Hence we get (ii). �

3. Some Applications to Multigraded Fiber cones

Let (B, n) denote a Noetherian local ring with maximal ideal n;
R = ⊕

n1,...,nd≥0 R(n1,...,nd )

a finitely generated standard d-graded algebra over B (i.e., R is generated over B by ele-
ments of total degree 1), where d is a positive integer; N = ⊕

n1,...,nd≥0 N(n1,...,nd ) a finitely

generated d-graded R-module such that

N(n1,...,nd ) = R(n1,...,nd )N(0,...,0)

for all n1, . . . , nd . Let J be an n-primary ideal of B. Define

FJ (R) = R/JR =
⊕

n1,...,nd≥0

R(n1,...,nd )

JR(n1,...,nd )

, FJ (N) = N/JN =
⊕

n1,...,nd≥0

N(n1,...,nd )

JN(n1,...,nd )

to be the d-graded fiber cone of R and N with respect to J, respectively. Then FJ (R) is
a finitely generated standard d-graded algebra over Artinian local ring B/J and FJ (N) is a
finitely generated d-graded FJ (R)-module. By applying the results in Section 2, this section
gives some results on the multiplicity of the fiber cone FJ (N).

Set N� = ⊕
n≥0 N(n,...,n), R(i+) = ⊕

n1≥0,...,ni>0,...,nd≥0 R(n1,...,nd ) for i = 1, . . . , d. It

is easily seen that

FJ (N)� =
⊕
n≥0

N(n,...,n)

JN(n,...,n)

= N�/JN� = FJ (N�) ,



MULTIPLICITY OF MULTIGRADED MODULES 353

FJ (N)

FJ (R)(i+)FJ (N)

 FJ (N/R(i+)N), i = 1, . . . , d .

Denote by e(FJ (N); k1, . . . , kd) the mixed multiplicity of type (k1, . . . , kd) of FJ (N). By
Theorem 2.4, we get the following result.

COROLLARY 3.1. Let R be a finitely generated standard d-graded algebra over a
Noetherian local ring B and N a finitely generated d-graded R-module such that N(n1,...,nd ) =
R(n1,...,nd )N(0,...,0) for all n1, . . . , nd . Let J be an n-primary ideal of B. Set � = dim FJ (N�).

Assume that dim FJ (N) = d + q − 1. Then the following statements are equivalent.

(i) dim FJ (N/R(i+)N) ≤ d + q − 2 for all i = 1, . . . , d.

(ii) � = q > 0 and

e(FJ (N)) =
∑

k1 + ··· + kd = q−1

e(FJ (N); k1, . . . , kd ) .

Let I1, . . . , Id be ideals of B and let K be a finitely generated B-module with Krull
dimension dim K > 0. Define

F(J, I1, . . . , Id ) =
⊕

n1,...,nd≥0

I
n1
1 · · · Ind

d

J I
n1
1 · · · Ind

d

, FK(J, I1, . . . , Id ) =
⊕

n1,...,nd≥0

I
n1
1 · · · Ind

d K

J I
n1
1 · · · Ind

d K

to be the d-graded fiber cone of B and K with respect to J, I1, . . . , Id , respectively. Let
t1, . . . , td be indeterminates. Set

R(I1, . . . , Id ) =
⊕

n1,...,nd≥0

I
n1
1 · · · Ind

d t
n1
1 · · · tnd

d ,

RK(I1, . . . , Id ) =
⊕

n1,...,nd≥0

I
n1
1 · · · Ind

d Kt
n1
1 · · · tnd

d .

R(I1, . . . , Id ) and RK(I1, . . . , Id ) are called the d-graded Rees algebra of I1, . . . , Id and
the d-graded Rees module of I1, . . . , Id with respect to K , respectively. Then clearly
F(J, I1, . . . , Id ) 
 FJ (R(I1, . . . , Id )) and FK(J, I1, . . . , Id ) 
 FJ (RK(I1, . . . , Id )).

Then we have the following remark.

REMARK 3.2. Set I = I1 · · · Id , � = dim
(⊕

n≥0
InK

nInK

)
. We call � the analytic

spread of I with respect to K. Since
√

J = n,

� = dim
(⊕

n≥0

InK

nInK

)
= dim

(⊕
n≥0

InK

JInK

)
.

From this fact and note that

FK(J, I1, . . . , Id )� 
 FJ (RK(I1, . . . , Id ))� 

⊕
n≥0

InK

JInK
,
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we get � = dim FK(J, I1, . . . , Id )�. Hence by Remark 2.1(ii), lA

(
I

n1
1 · · · Ind

d K

J I
n1
1 · · · Ind

d K

)
is a poly-

nomial of degree � − 1 for all large n1, . . . , nd .

Denote by EJ (I
[k1]
1 , . . . , I

[kd ]
d ; K) the mixed multiplicity of type (k1, . . . , kd ) of

FK(J, I1, . . . , Id ) for all non-negative integers k1, . . . , kd such that k1 +· · ·+kd = �−1. The
authors in [MV] answered when mixed multiplicities of FK(J, I1, . . . , Id ) are positive and ex-
pressed them in terms of the length of modules (see [MV, Theorem 3.5]). For i = 1, . . . , d,

set

FK(J, I1, . . . , Ii−1, Ii+1, . . . , Id ) =
⊕

n1,...,ni−1,ni+1,...,nd≥0

I
n1
1 · · · Ini−1

i−1 I
ni+1
i+1 · · · Ind

d K

J I
n1
1 · · · Ini−1

i−1 I
ni+1
i+1 · · · Ind

d K
.

By Corollary 3.1, we get the following result that expresses the multiplicity of
FK(J, I1, . . . , Id ) as a sum of its mixed multiplicities.

COROLLARY 3.3. Let J be an n-primary ideal and let I1, . . . , Id be ideals of B. Set

I = I1 · · · Id , � = dim
(⊕

n≥0
InK

nInK

)
. Suppose that dim FK(J, I1, . . . , Id ) = d + q − 1.

Then the following statements are equivalent.
(i) dim FK(J, I1, . . . , Ii−1, Ii+1, . . . , Id ) ≤ d + q − 2 for all i = 1, . . . , d.

(ii) � = q > 0 and

e(FK(J, I1, . . . , Id )) =
∑

k1 + ··· + kd = q−1

EJ (I
[k1]
1 , . . . , I

[kd ]
d ; K) .

Now, we investigate the multiplicity of FK(J, I1, . . . , Id ) in the case that I1, . . . , Id

satisfy

ht

(
I1 · · · Id + AnnBK

AnnBK

)
> 0 .

REMARK 3.4. Let �,�1,�2 be ideals of B such that ht

(�1�2 + AnnBK

AnnBK

)
> 0. Set

R(�) =
⊕
n≥0

�ntn, RK(�) =
⊕
n≥0

�nKtn ,

where t is an indeterminate. We have

dim

( �2RK(�)

�1�2RK(�)

)
= dim

(
R(�)

�1�2RK(�) : �2RK(�)

)

= dim

(
R(�)

�1R(�) + AnnR(�)(�2RK(�))

)

= dim

(
R(�)

�1R(�) + √
AnnR(�)(�2RK(�))

)
.
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On the other hand,√
AnnR(�)(�2RK(�)) =

⊕
n≥0

(�n
⋂ √

AnnB(�2K))tn .

Since ht

(�1�2 + AnnBK

AnnBK

)
> 0, it follows that ht

(�2 + AnnBK

AnnBK

)
> 0. This implies that

√
AnnB(�2K) =

√
AnnBK .

Thus √
AnnR(�)(�2RK(�)) =

⊕
n≥0

(�n
⋂√

AnnBK)tn = √
AnnR(�)(RK(�)) .

From the above facts, we get

dim

( �2RK(�)

�1�2RK(�)

)
= dim

(
R(�)

�1R(�) + √
AnnR(�)(RK(�))

)

= dim

(
R(�)

�1R(�) + AnnR(�)(RK(�))

)

= dim

(
R(�)

�1RK(�) : RK(�)

)

= dim

(
RK(�)

�1RK(�)

)
.

Hence dim

( �2RK(�)

�1�2RK(�)

)
= dim

(
RK(�)

�1RK(�)

)
.

REMARK 3.5. Let �1,�2 be ideals of B such that ht

(�1�2 + AnnK

AnnK

)
> 0. Set

�K(�1) = dim

(⊕
n≥0

�n
1K

n�n
1K

)
,

�K(�2) = dim

(⊕
n≥0

�n
2K

n�n
2K

)
,

�K(�1�2) = dim

[⊕
n≥0

(�1�2)
nK

n(�1�2)nK

]
.

Denote by f (n1, n2) the Hilbert-Samuel polynomial of the function lB

( �n1
1 �n2

2 K

n�n1
1 �n2

2 K

)
. By

Remark 3.2, deg f (n1, n2) = �K(�1�2) − 1. Assume that u is a non-negative integer such
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that

f (n1, n2) = lB

( �n1
1 �n2

2 K

n�n1
1 �n2

2 K

)

for all n1, n2 ≥ u. Then deg f (n1, n2) ≥ deg f (n1, u). Since

f (n1, u) = lB

( �u
2�n1

1 K

n�u
2�n1

1 K

)

for all n1 ≥ u, we have

deg f (n1, u) = dim

(⊕
n1≥0

�u
2�n1

1 K

n�u
2�n1

1 K

)
−1 = dim

[ �u
2RK(�1)

n�u
2RK(�1)

]
−1 .

Since ht

(�1�2 + AnnK

AnnK

)
> 0 and ht

(
n + AnnK

AnnK

)
> 0, it follows that

ht

(
n�u

2 + AnnK

AnnK

)
> 0 .

Hence by Remark 3.4,

dim

[ �u
2RK(�1)

n�u
2RK(�1)

]
= dim

[
RK(�1)

nRK(�1)

]
= �K(�1) .

Thus

deg f (n1, u) = dim

[
RK(�1)

nRK(�1)

]
−1 = �K(�1) − 1 .

From the above facts, we get �K(�1�2) ≥ �K(�1). By symmetry, we also have �K(�1�2) ≥
�K(�2).

REMARK 3.6. Let I1, . . . , Id be ideals of B such that ht

(
I + AnnK

AnnK

)
> 0, where

I = I1 · · · Id . Set

� = dim

(⊕
n≥0

InK

nInK

)
, �K(I1) = dim

(⊕
n≥0

In
1 K

nIn
1 K

)
,

�K(I2) = dim

(⊕
n≥0

In
2 K

nIn
2 K

)
, �K(I1I2) = dim

[⊕
n≥0

(I1I2)
nK

n(I1I2)nK

]
.

By Remark 3.2,

� = dim FK(J, I1, . . . , Id )�, �K(I1) = dim FK(J, I1) ,

�K(I2) = dim FK(J, I2), �K(I1I2) = dim FK(J, I1, I2)
� .
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Since ht

(
I + AnnK

AnnK

)
> 0, we have �K(I1I2) > 0. Hence by Corollary 2.6,

dim FK(J, I1, I2) = max{�K(I1I2) + 1, dim FK(J, I1), dim FK(J, I2)}
= max{�K(I1I2) + 1, �K(I1), �K(I2)} .

By Remark 3.5,

max{�K(I1I2) + 1, �K(I2), �K(I2)} = �K(I1I2) + 1 .

Hence dim FK(J, I1, I2) = �K(I1I2) + 1. By induction, assume that

dim FK(J, I1, . . . , Ii−1, Ii+1, . . . , Id ) = �K(I1 · · · Ii−1Ii+1 · · · Id) + d − 2 (*)

for all i = 1, . . . , d, where

�K(I1 · · · Ii−1Ii+1 · · · Id) = dim

[⊕
n≥0

(I1 · · · Ii−1Ii+1 · · · Id)nK

n(I1 · · · Ii−1Ii+1 · · · Id)nK

]

= dim FK(J, I1, . . . , Ii−1, Ii+1, . . . , Id )� .

Since ht

(
I + AnnK

AnnK

)
> 0, we have � > 0. Hence by Corollary 2.6,

dim FK(J, I1, . . . , Id )

= max{d + � − 1, dim FK(J, I1, . . . , Ii−1, Ii+1, . . . , Id )|i = 1, 2, . . . , d} .

By (*),

dim FK(J, I1, . . . , Id ) = max{d + �− 1, d + �K(I1 · · · Ii−1Ii+1 · · · Id)− 2|i = 1, 2, . . . , d} .

Since ht

(
I + AnnK

AnnK

)
> 0, �K(I1 · · · Ii−1Ii+1 · · · Id) ≤ � by Remark 3.5. Hence we get

dim FK(J, I1, . . . , Id ) = d + � − 1 and

dim FK(J, I1, . . . , Ii−1, Ii+1, . . . , Id ) < dim FK(J, I1, . . . , Id )

for all i = 1, 2, . . . , d.

By Corollary 3.3 and Remark 3.6, we get an interesting result as follows.

COROLLARY 3.7. Let J be an n-primary ideal and let I1, . . . , Id be ideals of B such

that ht

(
I + AnnK

AnnK

)
> 0, where I = I1 · · · Id . Set � = dim

(⊕
n≥0

InK

nInK

)
. Then

(i) dim FK(J, I1, . . . , Id ) = d + � − 1.

(ii) e(FK(J, I1, . . . , Id )) = ∑
k1 + ··· + kd = �−1 EJ (I

[k1]
1 , . . . , I

[kd ]
d ; K).

In the case where I1, . . . , Id are n-primary ideals, it is easily seen that

� = dim

(⊕
n≥0

InK

nInK

)
= ht

(
I + AnnK

AnnK

)
= dim K > 0 ,
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where I = I1 . . . Id . By Corollary 3.7, we obtain the following result.

COROLLARY 3.8. Let J, I1, . . . , Id be n-primary ideals of B. Then
(i) dim FK(J, I1, . . . , Id ) = dim K + d − 1.

(ii) e(FK(J, I1, . . . , Id )) = ∑
k1 + ··· + kd = dim K−1 EJ (I

[k1]
1 , . . . , I

[kd ]
d ; K).

EXAMPLE 3.9. Let k be a field and let x1, x2, x3, x4, x5, x6 be indeterminates. Set

B = k[[x1, x2, x3, x4, x5, x6]], n = (x1, x2, x3, x4, x5, x6) ,

I1 = (x1, x2, x3, x4, x5), I2 = (x1, x2, x3, x4), I3 = (x1, x2, x3) .

Consider 3-graded fiber cone of B with respect to n, I1, I2, I3:

F(n, I1, I2, I3) =
⊕

n1,n2,n3≥0

I
n1
1 I

n2
2 I

n3
3

nI
n1
1 I

n2
2 I

n3
3

.

Set

C =
{ 5∏

i=1

x
αi

i |0 ≤ αi ∈ Z, i = 1, . . . , 5, α5 ≤ n1, α4 + α5 ≤ n1 + n2,

5∑
i=1

αi =
3∑

i=1

ni

}
.

Denote by V the k-vector space generated by C. It can be verified that

V 
k

I
n1
1 I

n2
2 I

n3
3

nI
n1
1 I

n2
2 I

n3
3

.

Thus

lB

(
I

n1
1 I

n2
2 I

n3
3

nI
n1
1 I

n2
2 I

n3
3

)
= lk

(
I

n1
1 I

n2
2 I

n3
3

nI
n1
1 I

n2
2 I

n3
3

)
= dimk(V ) = Card(C) .

Set

D =
{ 3∏

i=1

x
αi

i |0 ≤ α1, α2, α3 ∈ Z,

3∑
i=1

αi = n1 + n2 + n3 − (α4 + α5)

}
.

Then we have

lB

(
I

n1
1 I

n2
2 I

n3
3

nI
n1
1 I

n2
2 I

n3
3

)
= Card(C) =

n1∑
α5=0

n1+n2−α5∑
α4=0

Card(D)

=
n1∑

α5=0

n1+n2−α5∑
α4=0

(
n1 + n2 + n3 − (α4 + α5) + 2

2

)

=
n1∑

α5=0

[(
n1 + n2 + n3 − α5 + 3

3

)
−

(
n3 + 2

3

)]
.
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By direct computing, we have

dimk(V ) = n4
1 + 4n3

1n2 + 4n3
1n3 + 6n2

1n
2
2 + 12n2

1n2n3

24

+ 6n2
1n

2
3 + 4n1n

3
2 + 12n1n

2
2n3 + 12n1n2n

2
3

24
+ g(n1, n2, n3) ,

where g(n1, n2, n3) is a polynomial and deg g(n1, n2, n3) < 4. From this fact, we get

En(I
[4]
1 , I

[0]
2 , I

[0]
3 ; B) = En(I

[3]
1 , I

[1]
2 , I

[0]
3 ; B) = En(I

[3]
1 , I

[0]
2 , I

[1]
3 ; B)

= En(I
[2]
1 , I

[2]
2 , I

[0]
3 ; B) = En(I

[2]
1 , I

[1]
2 , I

[1]
3 ; B) = En(I

[2]
1 , I

[0]
2 , I

[2]
3 ; B)

= En(I
[1]
1 , I

[3]
2 , I

[0]
3 ; B) = En(I

[1]
1 , I

[2]
2 , I

[1]
3 ; B) = En(I

[1]
1 , I

[1]
2 , I

[2]
3 ; B) = 1 .

The others are zero. Since ht(I1) = 5, ht(I2) = 4 and ht(I3) = 3, by Corollary 3.7 we obtain
dim F(n, I1, I2, I3) = 7 and

e(F (n, I1, I2, I3)) =
∑

k1+k2+k3=4

En(I
[k1]
1 , I

[k2]
2 , I

[k3]
3 ; B) = 9 .

EXAMPLE 3.10. Let k be a field and B = k[[x, y, z, t]]/(x)∩(y, z, t), where x, y, z, t

are indeterminates. Set
n = (x, y, z, t)/(x) ∩ (y, z, t), I = (x)/(x) ∩ (y, z, t).

Clearly ht(I) = 0 and dim B = 3. Consider 2-graded fiber cone

F(n, n2, I ) =
⊕

n1,n2≥0

n2n1In2

n2n1+1In2
.

Set

� = dim
⊕
n≥0

(n2I)n

n(n2I)n
, f (n1, n2) = lB

(
n2n1In2

n2n1+1In2

)
.

Direct computation shows that f (n1, n2) = 1 for all n1, n2 ≥ 1. Hence by Remark 3.2,

� = deg f (n1, n2) + 1 = 1 and En(n2[0], I [0]; B) = 1 .

Clearly f (0, 0) = 1. Set F(n) = ∑
n1+n2=n f (n1, n2). Then

F(n) = f (0, n) + f (n, 0) +
∑

n1+n2=n,n1,n2≥1

f (n1, n2)

for all n ≥ 1. We have∑
n1+n2=n,n1,n2≥1

f (n1, n2) =
∑

n1+n2=n,n1,n2≥1

1 = n − 1, f (0, n) = 1 .
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By direct computing, f (n, 0) =
(

2n + 2

2

)
+ 1 = 2n2 + 3n + 2. Thus

F(n) = n − 1 + 1 + 2n2 + 3n + 2 = 2n2 + 4n + 2

is a polynomial of degree 2 for all n ≥ 1. Hence

(i) dim F(n, n2, I ) = 3 > 2 = � + d − 1 (d = 2, � = 1).
(ii) e(F (n, n2, I )) = 4 �= 1 = En(n2[0], I [0]; B) = ∑

k1+k2=0 En(n2[k1], I [k2]; B).
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