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Introduction

Let {X,, k=1, 2, ---} be a sequence of independent random variables
with EX,=0, EX}=0i< (0,=0) and with distribution function F,(x),
and suppose that each of X, has a bounded density function »,(x).
Furthermore, we suppose that some of o} are not zero, in particular, we
assume 02>0 without loss of generality. Write &&=>%_, 0%, Z,=8.">.%-, X},
£i(8) = Bet=x, F.(t)=Eett?n, R,,(z)zsl  wdF,w) and Q)= Hl WP, ).

US>8 ulssz

Moreover, let 7,(x) be the density function of Z, and ¢(x) be the standard

normal density function.
Let us denote two classes of functions g(z) defined for all z as

follows:

G={9(z)|g(z) is even on (— oo, ) and positive on (0, =), and
further z/g(z) is non-decreasing on (0, o)}

and

G,={9(2)|g(z) € G, and in addition, 2%/g(z) is non-decreasing
on (0, ) for some a with 0<a<1}.

For g(z) e G, write
M@ =sup DR, m@)=sup L2Q,@),

01(9) =N, (9) + (9)

and

T ;_:Z;cl=1 0:(9) .
" sig(s.)
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In this paper, we shall discuss rates of convergence of Da(x) to é(x)
for independent but not necessarily identically distributed random vari-
ables, under the milder moment condition such as C(g)<co. In §1, we
shall state a uniform estimate for [ Pa(x)—g(x)|, the proof of which will
be given in §2. Some nonuniform bound will be stated in §3 and proved
in §4.

Throughout this paper, C and ¢ will be universal positive constants
which may depend on g(z) e G and differ from one expression to another,

and by the same 6 we shall denote generally different real or complex
numbers with |9|<1.

§1. A uniform estimate.

We first state a central limit theorem, which is a further extension
of the Berry-Esseen theorem for independent random variables. It is a

uniform version of Theorem 2 in [8], and also readily derived from
Therem 2 in [1].

THEOREM A (Central limit theorem). Let F,(x) be the distribution
Sfunction of Z, and ®(x) be the standard normal distribution Sunction.
Let g(z) €G and suppose p,(9)< o for 1<k<n. Then we have

sup | F'\(x) ~ @(x)|=CT, .

The result we are going to show is the following, which is a local
version of Theorem A.

THEOREM 1. Let g(2)€G. Suppose p,(g)<oo for 1=k<n. Further-
“more, suppose that

(a) si.<Km, for some positive constant K,
(b) sup, p.(x)<M, for some M>0 independent of k.

Then we have

sgp lﬁn(x) _¢(w) !éCTu .

It was remarked in [3] that if g(2)eG,, then p,(9)<C.\.(g), where
C. is a positive constant depending on a, a being the number such that
2"/g(z) is non-decreasing on (0, ). We thus have the following corollary.

COROLLARY 1. Let g(z)€G,. Suppose \.(9)< o for 1<k<n. I f the
conditions (a) and (b) are satisfied, then
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sup | B, (@) — ¢<m>|scz'°l(% :

If EX;g(X,)<c, then obviously p,(g)<c. Therefore, we have the
following.

COROLLARY 2. Let g(2)eG. If EXig(X,)<oo for 1=<k=n, then

sup | 7,(#)—¢(®) | < < c2ia EXig(X,)
829(8,)

under the conditions (a) and (b).
The following two corollaries are also given from Theorem 1.

COoROLLARY 3. In addition to the conditions (a) and (b), suppose
that lim inf, ... 82/n>0. Let 0<6=<1. Then, in order that

SUp | B,(®) —¢(2) | =O(n="") ,
1t 18 sufficient for 0<o6<1, that
(1.1 L S sup #Ru(2)=0(1) as m—eoo,
N k=t z>0
and for 6=1, that (1.1) with 6=1 and
L3 supQue)=0) as n—eo
N k=1 z>0

hold.

This corollary is obtained from our theorem with g(2)=|z|°, and is
an extension of the local limit theorem by Ibragimov-Linnik ([2], Theorem
4.5.1) to the case of non-identically distributed random variables. More-
over we have

COROLLARY 4. Suppose that {X,} is a sequence of independent,
identically distributed random wvariables with EX,=0, EX? =1, and with
bounded density p(x). Let g(z)eG. If

(1.2) sup g(2) S[  a'p(e)dr < oo

zi>2z

and

sup 42
2>0 4
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then
(1.3) sup | Du() — p(2) | éwg_ﬁ .

In particular, when g(z) € G,, only the condition (1.2) implies (1.3).
This is also an extension of Ibragimov-Linnik’s local limit theorem
[2], and where g(z)=|z]’, 0<d<1.

§2. Proof of Theorem 1.

We begin with the following lemma which is a slight modification
of Lemma 2 in [1].

LEMMA 1. Let g(z)eG, and write R(z)=§l

| 2’dF'(x) for some
>z
distribution F'(x). Suppose that

az:S:xzdF(xK  (620), Mg)=supg()R()<c .
Then

a’9(0) 8
Ag) 3

Proor. Since 0°<(0*/4)+ R(c/2), we have

Mg)gy(-g—)R(% gﬁf—zg(%) :

Noting that g(ez)=eg(z) for 0<e<1, we have
MOz 00)

which concludes the lemma.

In what follows, we suppose that 7,<1/27. In the other case, the
statement of the theorem trivially holds for C=27(M+1), since
| Ba() — p(x) | < M+1 because of the condition (b). We prove the following

LEMMA 2. For |t|=T=1/3)T,"3,
| Fu®— e | SCT, @+ |t [)e " .

This lemma plays a main role in the proof of the theorem. The
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technique of the proof is closely related to that of Lemma 5 in [1].

PrROOF. We first note that T=1, since we have assumed T,<1/27.
Using

ft)=1 ——21-aitz+ S: (e“" —1—itu +—;-t2u2)dFk(u) ,

we have

—:__122 _l_'33_1_44
fH®)=1 Eakt —l—Sm[Q( 6ztu +24ﬁtu)dFk(u)

R YIS Pra
+Sm;;1( 2ottt 2tu)dF,,(u) .

On the other hand,
1/]t} 1/1t)
S u‘dF,,(u)zS u2d(—Rk(u))§2S wR,(w)du .
luti<1 0 0
Hence

1 1/]¢
0

1 Lgspe gL gp 1, 2
futy=1——Zott+0 | [tFQ/tD+se | uBwdu+eRL/D]

=1—Loppg_t

2 g1/t

1 . /1% u
+igro/ieh | Yoo Ruwdu

+ g/ EDRCL/IED} -

{_els_g(l/itl)ltle(l/ltl)

Here
tgt/1th |~ Ru(w)du
o g(u)
1 1/71¢]
StZ 1 t)—————— % d = Ay .
<P/t —gen@ | du=n()

Therefore we have

1 e
() =1——03t*—200,(9)———— ,
Ji(t) zot 0 (g)g(l/ltl)

so that
(2.1) Fo(t/8s)=1—u, ,
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where

(2.2)

g
uk = ,;
282
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1 p
8ng(8./[2])

Noting that g(s,)/s,<g(0.)/0, and using Lemma 1, we have for [t|1£T,

2 2 2 2/3
2.3 _OI_ktz S—O.LTZS ok(g(sn))
2.3) 28, 23,  18s8¥*Cor-, ou(9))”?
<o)y LBy 2
18(n.(9))”® 18\ 3 9

Moreover, using that g(ez)=eg(z) for 0<e<1l and g(sz)=g(z) for e=1,

we have

209):(9) f2

s29(s./|t])

Sz‘o"(g)ltP if |t|=1,
829(8,)
<204 i 1p1<1,
sny(s,.)

so that we have, recalling Tgl, for all |¢t|<T,

zapk(g) .,.2

2pk(g)

(2.4)

(2.5)

We next have

829(8./1t])

Combining (2.2)-(2.4), we have

s?.g(s..) 27

|uklS <1l.

27

|, |2 sz( Tk gy

4(0.(9))’ t‘)

4s,  su(g(s./It]))*
which is
ke ge 1 4(0:(9))° 46 ;
= (4s:. T (g ) o=
and is
Ohgoy 4DV ) if 121<1
= \4st” s /7 a

Hence we have
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w %1 3 akg(sn) 8(04(9))* s
2l 3 s (ST e ")
|8 <& (oig(s.)/ sig(8)\ | 8(0.(9))* = sig(s,)
< .
8%9(s,) %( 652 \ p,(g) ) +2783,,9(8,.) 0:(9) >

[t & (_oilgG)® 8
 829(8,) ’2“:1‘ ( 655°(0.(g))*® 0+(9) +27Pk(9)> .

Here using that g(s,)/s,<g(¢.)/0, and Lemma 1 again, we have

oug(8 )" _ 0i(g(8)" _ o¥*(g(g.))*
8°(0u(9))"° PN T Oul@))*”

8\“*_16
=(3) =%
Therefore,
2.6 3 f (1,16, 8
(2.6) S lulss =3 (5 )

32 Dkt pk(g)l A
27 8.9(8,)

On the other hand, making use of (2.1) and (2.5), we have

1, Ju.l 27 2
2.7 log fu(t/sn) = —u,+—=0-—1%l_=_4, 2%
2.7) g fult/8n)=—u+5 T—u ] “ a3 e [*

so that from (2.2), (2.6) and (2.7),

log f.(t)= ké log f,(¢/s.)
— V) Zk 1 Px(9) z+16 Dk pk(g)l £

2 sng(sn/!tl) 829(8,)
= -—_;-t2+A(t) ,
say, where
<54 300 0@ g
2.8) A@) | sqg =i D, it Jt)z1,
(2.9) 54 k=1 pk(g)tz if |t|<1,

19 8n9(8,)

and further
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2.10 A <__—T T3:=Z
( ) l (t)l 19 * 19

for |[t|=<T. Using the inequality |e’—1|<|z|e'*', we finally have from
(2.8)-(2.10),

| fa®)— e | <e7™* |64 —1| e~ | A(t)|
=C(t*+|t[)e T,

for |¢t|<T, and the lemma is thus proved.

Now, let us return to the proof of the theorem. The condition (b)
implies the integrability of p, (%)p,,(x) for any 1<k,+k,<n, which gives
us the integrability of f£; (¢)fi,(t) by Parseval identity. Therefore f,(¢)
is integrable for n=>2, and so we have

Bue)=o= " e Far, nz2,
2 J-

and hence

Pu) =)= o= | e Fut)—e e, n22.

1
2w J-
We have

(2.11) SEDIﬁ,(w)~¢(w)l

és | Fu(®)—e] dt+§ | Fu®)] dt+§ e~ dt
itlsr r

1t1> It>7

=IL,+1L+1,,

say. It follows from Lemma 2 that

2.12) I<CT, Sl _, (B+[tRedt<CT, .
tl=T
As to I,
_1;_ 3,—12/2
2.13) Ls| ltredt<CT.,

since T°=(1/27)T,'. Finally, it remains to estimate I,. In order to do it,
we need the following result given by Survila [4].

LEMMA 3 ([4]). Under the conditions (a) and (b), we have
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| fuit/82)fe,(t/8,) | €XD {—en} , for |t|=—Ev'7 ,

_ V2
FAGIE _
exp {—et’} , for |tl<—17%1/n .
Using this lemma, we have
I2§§T<ltl<z4i/«/5 |f"(t)|dt+Sm=vr/F/‘/'2' lf”(t) l dt

=

S e~°"dt
T<lti<zvVm/vZ

I Ftle ) tts) e rat
ltlzavn/ve

g% +Cs,e~" ,

because Je, (O fi,(t) is integrable. Since T*=Q1/27)T,* and s: < Kn, we have
L=CT,+CV'ne—<".

On the other hand, since 0i>0, there exists 2z,>0 such that
2*dF,(x)>0. Therefore we have

21>z,
(2.14) T =Z;’,'=1 pk(g)zsup»o 9(2) Slml>z 2’dF\(x)
" 33»9(8,,) - Cn¥2
- 9 (%) SMMO ' dF\(x) _c
- Cn*? n?’

which implies V'ne—*<CT,. Thus we have

(2.15) L=<cCrT,.

Hence, (2.11), (2.12), (2.18) and (2.15) yield the conclusion of the theorem.
§3. A nonuniform eétimate.

We state the following theorem concerning nonuniform convergence
of |D.(x)—g(x)].

THEOREM 2. Let g(2)€G. Under the same conditions as in Theorem
1, we have )
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sup A+ |2])| Pa(®)—o(x) | =CT, .

Four corollaries mentioned in §1 also hold for this nonuniform
estimate, that is, we can replace sup, | P.(x) —¢(x)| by sup, A1 +|2|)?| P.(x) —
é(x)| in those corollaries.

We shall prove this theorem in the next section.

§4. Proof of Theorem 2.

First of all, we consider two independent random variables X and
X' with mean 0 and finite variance ¢® (6>>0), and with the same distribu-
tion function F(x). Denote by F'*(x) the distribution function of X— X',
and define R(z), Q) and R*(z) for F(x) and F'*(x) by the similar way as
in defining R.(z) and Q.(2) for F.(x). Let f(t) be the characteristic
function of X. Then we may express

4.1) @)= —t@*+.®) ,
4.2) @)= —a*+7.(¢),

where lim,_, |7,(¢)|=0, 1=1, 2.
We show some lemmas.

LEMMA 4 ([1]). For all z, R*(z)<40R(z/2).

LEMMA 5. Let g()e€G, and suppose that N\(g)=sup,s,g(z)R(z) <
and p(g)=sup,, 9(2)Q()/z<o>. Then

. Ng)
(4-3) Slul>l/lﬂ w dF(u)é 9(1/|t|) ’
. 2M9)
4.4) Vs WAFOIS 2
and
s ©(g)
(4.5) V spsun HAFO| Sl

PROOF. (4.3) and (4.5) are readily shown from the definition of A\(g)
and p(g), and (4.4) has been shown implicitly in the beginning part of
the proof of Lemma 2 in §2.

LEMMA 6. Let g(z) €G and suppose that p(g)=xg)+p(g)< . Then

Cp(g) =1
I'Yi(t)l_S_—————g(l/ltl) y

’ b
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where v,(t) are the ones defined in (4.1) and (4.2).

PROOF. We have

I'/l(t)l—m102t+f(t)l

l—::-l—l Szu(e““ —1—dtu)dF(u) '
é% §|u1>1/ltl |t|u2dF(u)

S u(e““ —1—1itu +-1—t2u2)dF(u) ‘
fuis1/1t] 2

1
|t
1

|
2,,3
+2't| \Slulsulcl tu dF(u)!

2 S wdF(u)+Le X wdF(u)
lul>1/1¢1 6

lul=s1/1¢t]

IA

+iltl

<_Cplg)
y(l/ 9@/t ’

because of Lemma 5. Further we have

Slulél/ltl uadF(u) I

[7:(0) =0+ f"(t)]
= [ S we —1)dF () l
<2 wdF(u)

Slul>1/ltl

+ S uz(e““—l——itu)dF(u)’
lul<s1/1¢t)

-+

Slulsl/ltl ’ituadF(u)i

IA

2 S WAF () + ¢ S wdF(u)
lul>1/1¢!

lul=1/1tl

Sluisl/ltl u3dF(u)l

Cpo(g)
=5q/ie)

which completes the proof.

+ 2]

321
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The following lemma is a slight modification of Lemma 38 in [1].

LEMMA 7. Under the same assumptions as in Lemma 1,

ATMg) 4

<] — g2
D) P=s1—at*+ (1/itl)

PrROOF. We have

4.6 | f(t)|2=1—02t2+§(cos tu— 1+Et2 )dF'(u)

—1—c%+ (S Tt Swzl)(cos tu—1 +—;—t2u2)dF'(u)

2 1 4 4 8 _1__ 2 2 s
=1- 0t+24 Slutl<1udF (u)+2t SlutlzludF ) .

From Lemma 4 and (4.3),

\ R 80\ (g) £
(4.7) t Smm =Ny (1/lt|)

Furthermore
1/1¢] 1/1¢]
S u‘dF'(u)=S u”d(—R'(u))§2§ wR w)du
lut] <1 0 0

<80 S:” | uR( )du

from Lemma 4. Since R(z)=)\(g9)/g(z), we have

R 71t yn(g) 80),(9) 1iel
w9 | warwssof e | au

__160M(g)
t*g(1/|t])

The estimates (4.6)-(4.8) give us the desired inequality.

Now, noting that fi(t) and fi(¢) exist, we have
4.9) =15 55(3) ;1 (L)
+5 AL )Eff( ) 1AL

ﬂ

Then we have the following lemma.
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LEMMA 8 ([4]). Under the conditions (a) and (b), we have for 1<k, +
for [t|>——1/'n ,

k,=n,
S h(f")f (f) V2

(1+t>) exp {—ect?} , for ltl<1/—72_1/7r7 )

| Frd) | <

In what follows, we suppose that 7,=<1/94. In the other case,
the statement of the theorem trivially holds for C=94C*, since
A+ )?| Po(x)—p(x) | =C* for some positive constant C* under our condi-
tions (a) and (b), which was implicitly shown by Survila [4].

LEMMA 9. For |t|STV=1/94)T;",

11 |A(L)|se, 1=i=n
=1 s,

and

(4.10) f[

<e®?, 1<j#i<m.

A(5)

Proor. It suffices to prove (4.10), because
H

114G)= 1 14()]

k=1
k+3 j#i
Note that 7™>=1. From Lemma 7, we have

n

; 470,(9) 4.
1Ty 200A0) 4
T8y sig(s,/|t])

2 AT ()
< —Gipey 2MAG) gl
Sexp { & SgGt) |

f(f—

Since \.(9)=p0.(9),

I fk(-:—;) <exp {—_;_tz(1_ai-:?—'ai*"""sf;"%zfjli’gg))}

1 oi+o: AT S, 0.(9)
S ___tZ 1___ J T 1 .
sexp | 2 ( & 8.9(s./It]) )}

Here, for 1<|t|<T®,
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47 Zk_1 Pk(g) 4733, Pk(g)| |S
829(s./|t]) = 8:9(8,)

and for |t|<1,

1350,0.0) 4130 00) _ 1 _1
898l /lt) T 8ag(s,) 2T =9

On the other hand, since 7,<1/94, we have, using Lemma 1,

i GHeE)" s

= W)
ggﬂ_g_(”_k)_)i/_m/a
= )"

8 2/3 1 2/8 1
=(3) G <3
Therefore, these estimates imply (4.10).

LEMMA 10. Under the conditions (a) and (b), we have for |t|<T*=
min (T(x), T(z))’ T(2) 5(1/3) T;-l/s,

| F2 @)= (@ —De 2| SCA+]t e T,
Proor. Note that T7"=1. From (4.9),

| )~ (&~ 1)6"2’ |
e

PRt b 8
A §AE) ) -re

87 k3
=J,+J,,

say. We express fi(t) and fi/(t) in the following form, respectively:
Fi)=—to%+7:,.(0)
FE@)=—0%+7.:(8) .

Then we have

L) Bl
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< __Z‘la’H‘f"< )+e —t2/2

)] |a(2)

+ Z

EJn‘i‘Jm ’

Sp
[
-
;

say. On the other hand, similarly as in (2.7),

(4.11)  log ,,_ﬁl f,,(gt:> = é} log ﬁ(f—)

_ 2.>+202k$; 0:(g ) }_6025,“5; pk(g)ltls
2 ; s.9(s./It])) 19  s.g9(s,)
= t?
2 2
say, where
| B; (t)IS—T &+t
and
IB,(t)Iéig

for [¢|=<T®. Therefore we have

JuSe"‘%’l Z:] {;32 +Bj(t)l"

—t2/2__1_ i

s =

‘ 1—exp {;’ +B(t)}l

T D C +sB<t)|)exp [+

22

gCe—‘2’2< za*+ ZoslB(t)I

28,‘ ,,, j=1 >

205+ @+t T,

28k i=

<Ce~* 2(

Here we have, using Lemma 1 again,

13 - 0i0(8,) 1 0i9(@)Ni(9)
‘8_: g" 0 8,.9(8,,,) -’z=}‘ sn 359(8 ) é 8,,0'_,'7\:5(9)
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1 &g 1 2 N
S oy 2 s 2 (G sy

Hence we have
(4.12) Ju=Ce (1 +t*+ [t®T, .

Next, from Lemmas 6 and 9,

_ C
4.13 12 TS )
(4.13) J= oy ZP(Q)H

C ZJ——I (O:(g) —ct2
= 829(8,/|t|)
M[t[e—cﬂ ,if [t=1
82.9(8,)

<O 30 0@ | if 41«1,
= $2.9(8,)

()

so that
(4.14) J.=<CA+|t)e T, .
As to J,,

=1

*1

+eL 3 z
st i~1 =1

I;?'l
J'

" 1<—> 0
1 |/ k(;,;)

+el 81 > 3,08 ’7‘,1(;:) h{i
A AG

¢—1 =
k=1
k#g+1

t*lzz Tl

“ i=1 ’—1
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EJ21+J22+J23+J24 ’
say. Similarly as in (4.11),

lOg f.[ fk(")“‘ '——+ 0'¢+0', +Du(t) ’
o
where
k=1 0u(9) 16, 2=y 0:(9)
- D,,(t)=26 _kiaf_i____t_;_ _Efzﬂ___| I,
=20 aGTTED 9(5)
and

lDﬂ(t)l< T(t“‘+lt|3), [D,,(t)|§E

Hence we have

4.15)  Jysepl S 0202(1 exp {0‘2+0’+D,t(t)}[+e“2/2t21 204

Sn =1 '7_1 Bn

éCe”‘“tz(“lT 3 0‘§-+i 3 33 91931 Dyt ’)

83 =1 sy i=1j=1
=Ce (1 +t*+|t|> T, .

Furthermore, by a way similar to one when we have had (4.13), we
have still from Lemmas 6 and 9,

22.1 =1 P:(g) —ct?
.16 J=Ct
(19 EXTON DN

SC(t2 |t|5)21 l(ngg) —at2
=Ct*+[t[He T, ,

and similarly

(4.17) Ju=Ct*+|t[)e~"T,
Finally,
A
TusCig 3% v )| e
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1 & P(g) z —ct2
<Ct*— _Ui\Y)
g (y(s../ltl))e

s ing B%

where
S50 < i Ly
8.(9(8,))° Y
Therefore,
(4.18) JusSCt+tHe 0T, .

Thus, (4.12), (4.14), (4.15), (4.16), (4.17) and (4.18) imply the conclusion
of the lemma.

Now we proceed to the proof of ;Theorem 2. We have shown in
Theorem 1 that sup, | p,(x)—¢(x)|<CT,, so that it suffices to prove

(4.19) sup «*| pn(2)— ¢(x) | =CT, .

Recalling the form (4.9), we see from the condition (b) that f(t) is
integrable for =4, and that

(4.20) sup o*|5,() — (@) || | () — (¢~ Vet

(For m<3, the statement of the theorem holds trivially, because
(L+[2])?| Pa(x)—o(x)| is bounded.)
From (4.20), we have

(4.21) sup @*| P () — () |
=| [Frw—@—eriae+| 17
ItlsT* 1tl>T*
+ S (L+t)e " dt
lel>T*
=K, +K,+K,,
say. It follows from Lemma 10 that
(4.22) v K,<CT, .

As to K,, using Lemma 8, we have
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K,=| A Frwlae+| (I Frlat

Tr<iti<nVa /v2

_IFr@ de+

- ST(1><Itl<n~’i'/1/2

‘(@) |d¢

£
ST(2)<ltl<n~’fT/~/E lf”

Fu(e)lde

Sltlzrﬂ/;/*’?

(1+tDHedt

- ST(1)<ItI<m’;/“'2"

1 2} ,—et2
+ST(2)<lt!<r~/vT/~/'2'( +t)e at

+Cn®*e—" ,

(n+Le"dt

Sltlz:r ZYAR)

C C
= Ev'(T)'+ (T®)

since f, (8)f:,(t) is integrable by the condition (b). Noting that TW=
1/94)T;* and (T?)*=1/27)T;*, and using T,=Cn~** which has been shown
in (2.14), we have

(4.23) K,<CT,.
Similarly, we have
(4.24) Kséx (1+t2)e_z2/2dt+s (1+t2)e“‘2/2dt
lel>7) 1¢]>7(2)
C C
é‘ﬁ"}‘mécq"ﬂ »

so that (4.21)-(4.24) conclude (4.19) and therefore the theorem.
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