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Introduction

Suppose S'={z€C;|z|=1} is the unit circle. Let us denote by
L*S") the Hilbert space of square integrable functions on S' equipped
with the inner product (f, g),2s,=(f, §)s;, Where ( , )Sl is the bilinear
form defined as follows: ‘

(0.1) f, g>sl=-2—1-—§” F(@)g(e?)de .
. . 71' 0

Let us denote by 5#™(S* the one dimensional subspace of L*S*) span-
ned by the exponential function ¢’. Then we have the direct sum de-
composition: -

0.2 . . L(SH=@) 52 ™(S")
~ and the orthogonal projection of L*S') onto S#™(SY) is given by
(0.3) o f(e*) — c ei™?
where
1 b4 4
(0.4) c",:-—_g Fe®)emdg
: 2w Jo

is the m-th Fourier coefficient of f. v

More generally, suppose S*~! is the n—1 dimensional unit sphere.
df, denotes the invariant measure on S** and 2, is the volume of S**,
Denote by L*S*') the Hilbert space of square integrable functions on
S*™" equipped with the inner product (f, g).2sn-1, =(f, §)sn-1, Where ( , )gn=
is the bilinear form defined as follows:

05  (f Oee=—|_ Ae@a.w) .
. N n |n

If we denote by S#%(S"') the space of spherical harmonics of degree k,
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2 MITSUO MORIMOTO
we have the direct sum decomposition:
(0.6) | LX(S* )= k§2+ K8 .
Let us remark that
SEHSY=2#""(SHYPs#""(SY) for k+0 .
The orthogonal projection of L*(S**) onto S#°%(S*™) is given by

0.7) £@) — 8u(f; @) ,
where
0.8) Sifs@)=L BB f2)pm; (w, 7)d2.0),

where P,(n;t) is the Legendre polynomial of degree % and of dimension
n and N(n, k)=dim S#£*S").
In this paper, we will study the Lie sphere 3*:

0.9 2*={e"w;0c R, we S} .

Remark that 3'=S' and that 3? is a polycirele: 3*~S'xS!. Let us
denote by L*Z*) the Hilbert space of square integral funections on 3"
equipped with the inner product (f, 9).;2csm=(f, 7)s», Where (, );» is the
bilinear form defined as follows:

(0.10) (f, Dsa== }2“ || fermrne m)ioas, ) .
Let us define the set 4 by

(0.11) A={(m, kYe ZXZ,; m=k (mod 2)}.
If we define, for (m, k) € 4, the space

(0.12) K2 ={e'™' S (w); S, € SFH(S* Y},
we have the direct sum decomposition:

(0.13) L(3"=_ @ s2mHz")

and the orthogonal projection of L*3*) onto S#™*3*) is given by

(0.14) fr— ™S, (f; @),
where
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(0.15) Suulf; )= BB f(eor)e o Pyin; <o, ©)d0d2,(2)
759” 0 Jgn—t

The function S, .(f; ®) is called the (m, k)-component of the function f.
Put, for R>1,

(0.16) K2p.={zcC; R'<|z|<R}.

Then {K32 r; R>1)} is a fundamental system of complex neighborhoods of
S'. Let us denote by S*7' the complex sphere:

0.17) S-i={zeCr =1},

where we 'put 2*=>.%,2: The Lie norm L(z) on C" is defined as follows:
(0.18) L(zy=[z|["+[|z]*—]2*"]"*,

I]zll being the Euclidean norm on C*. Put, for R>1,

(0.19) S*(R)={z e §**; L(z)<R} .

Then it has been proved in our previous paper [7] that {S*‘(R); R>1}
is a fundamental system of complex neighborhoods of the sphere S"'.
Put, for R>1,

(0.20) V(R, R; R)={z c C*; R:<|2*|<R? L(2)*<|2*|R% .

We shall prove in this paper that {V(R, R;R); R>1} is a fundamental
system of complex neighborhoods of the Lie sphere 2*.

Let us denote by C>(S%), C*(S**) and C*(3") the spaces of C* func-
tions on S% S** and 3*. Let us denote by .57 (S, & (S*™*) and ¥(2")
the spaces of real analytic functions on S! S*™* and 3*. Let us denote
by A(K3.z), Z(S**R)) and <~ (V(R, R; R)) the spaces of holomorphic
functions on K3 ., S*Y(R) and V(R, R; R). Then we have the following
inclusion relations:

(0.21) (KL C S (SHc C=(SHc LX(SY) ,
(0.22) 2(8*YR))C 7 (S* ) C=(S* ) LX(S )
and

(0.23) P(V(R, R; R))c ¥ (" cC(Z")C LX(3") .

Let us denote by =2'(SY), 2'(S*™*) and Z'(2") the spaces of distribu-
tions on S, S*~* and 3", i.e., the dual spaces of C=(S*), C*(S"*™*) and C*(3™").
We deonte by <& (S, &#(S* ') and <#(3") the spaces of hyperfunctions
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on 8% S"* and 3", i.e., the dual spaces of (S, . (S*™*) and ¥ (Z™).
The dual spaces of Z7(K3,z), (5" (R)) and <(V(R, R; R)) will be denoted
by Z'(K3.z), 2'(S*%R)) and &' (V(R, R; R)) respectively, whose elements
will be called generally analytic functionals. Then taking the dual

sequences of (0.21), (0.22) and (0.23), we get the following inclusion re-
lations:

(0.24) O(K8.2)D B (S)D> D" (S)D LXSY) ,
(0.25) (8 (R))D B (8D (S D L¥S*)
and

(0.26) o'(V(R, R; R))D F(3*) > D' (Z"> LA .

We will show in this paper that, even for an analytic functional fe
Z'(V(R, R; R)), we can define the (m, k)-component S, .(f; @) and that
we can characterize the spaces which appear in the sequences (0.23) and
(0.26) by the behavior of the (m, k)-components: namely

(0.27) fe”(V(R, R; R)) — im sup (1 Sasll]V ™+ <R,
. m|4k-+00

(0.28) fe57(3%) — lim sup [||S, o[+ <1,
Im|4+k—oo
(0.29) feC>(Z*) — ||S..;ll is rapidly decreasing on 4,
(0.30) | FeLA(3") = ||Susll € #¥4) , |
(0.31) fe Z'(3") —==[|S..ll is slowly increasing on 4.
0.32) fe (3% — lim sup [|| Swl ] ""1+9 <1,
Im | 4-k—so0 ,

(0.33) fe o'((R, R; R)) — llir:n Sup [|| S, [V* 9 <R,

m| 4 k—oo
where we put || S,,.l|=1|Sm,(f; @)l z2sn—.

The analogous results for S' are classical and recalled in our paper
[6]. The case S*7*' was treated in [7]. Using the same ideas as in [6] and
[7], we will prove the above equivalences.

Let us return to the case of unit circle S!. We know a holo-
morphic function f(z) defined in the unit disc B'={z¢C;|z|<1} has the
hyperfunction trace T(e*)ec <Z(S!), whose Fourler coefﬁc1ents

(0.34) .. ea=0 for m<0
i.e., the hyperfunctlon T(e") is orthogonal to the spaces %"""”(S‘) for
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m>0 with respect to the bilinear form (, ). Conversely, if a hyperfunc-
tion T(e*) is given on.S' and satisfies the condition (0.34), then there
exists & unique holomorphic function f(z)e 2 (B") in such'.a way that
the hyperfunction trace of f coincides with the given hyperfunction.

The holomorphic function f(z) is represented by the Cauchy integral
formula:

(0.35) f(Z_)=(T (), (1—e™2)™),

(,) being the canonical bilinear form on @(SI)XM(SI) By the trace
operator p: & (B — Q(S‘), we can consider <”(B') as a subspace of
Z(SY).

Now let us consider the space <?(B'[l]), where B'[1] is the closed
unit dise: B[1]={z € C; |z|<1}. Then the trace _operator o maps &’(E‘[l])
injectively into .97(S?). The mapping v: fi— f of M(S‘) onto <~ (BY1])
is a left inverse of the trace operator ©, Where f is defined by the
Cauchy integral formula (0.85). By the dual mapping v*, we can identify

~'(BY1]) with the subspace of “#(8"Y) of the hyperfunctions on S1 whose
Fourier coefficients ¢, vanish for m>0.

We will show also in this paper that we can generalize these facts

to the Lie sphere case. We define the Lie ball B=B* as follows:

(0.36) B=B"={zeC"; L(z)<1},

where IL(z) is the Lie norm. The Lie ball is E. Cartan’s classical
domain of type 4. (See Hua [5].) We will prove that every holomorphic
function f(2) on the Lie ball B has the hyperfunction trace T(e¥w) e
Z(Z™), whose (m, k)-coefficients

(0.37) S, i(T; ©)=0 for m<k,

e., the hyperfunction T(e”w) is orthogonal to the spaces S#™*3") with
respect to the bilinear form (, );» for m> —k. Conversely if a hyper-
function T(e“w) is given on 3" and satisfies the condition (0.87), then
there exists a unique holomorphic function f(z)e <7(B"), the trace of
which coincides with the given hyperfunction 7(¢“w). The holo-
morphic funection f(z) can be represented by the Cauchy-Hua integral

formula:
(0.38) f@)=(T(e"®), (w—e72)»)™"),

where (, ) denotes the canonical bilinear form on <Z(J")x . > (3*). In
this way, using the trace operator po: o (B*)—<#(3"), we can consider
(B*) as a subspace of <#(Z*). Now let us consider the space & (B*[1]),
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where B*[1] is the closed Lie ball: B*[1]={z e C*; L(z)<1}). Then the
trace operator o maps &’(B"[l]) injectively into .(3*). The mapping
v: fi— F of .57(3") onto o(B"[1]) is a left inverse of 0, where f is de-
fined by the Cauchy-Hua integral formula (0.38). The dual mapping v*
being injective, we can identify, by +*, the space '(B"[1]) with the
subspace of <#(3") of the hyperfunctions on X" whose (m, k)-compo-
nents S, vanish for m> —k.

The plan of this paper is as follows. In §1, we will recall some
facts about the Lie norm, spherical harmonics and harmonic polynomials,
introduce the Lie sphere 3" and define the complex neighborhood
V(A, B;R) of 2*. In §2, we will consider the space L*(Z*), the space

C>(2") and the space .7(3*), and prove the equivalences (0.30) and
(0.29). As for the equivalence (0.28), we mention it as Theorem 2.8,
which will be proved in §8 as Corollary to Theorem 3.1. In §3, we
will study the space of holomorphic functions ~(V(4, B; R)) and prove
the equivalence (0.27). We will study also the space of holomorphic
functions <7(B). In §4, we mention the results on =2'(Z*) and <Z(3").
In §5, we study the space of analytic functionals ~'(V(4, B; R)) and
prove the equivalence (0.33). We show also in §5 that o (B) and

’(B[l]) can be considered as subspaces of <#(2*) by the trace operator
p and the mapping v*. We will give a characterization of these sub-
spaces.

§1. Preliminaries.

Let Z={0, =1, £2, --:}, Z,={0,1,2, ---} and R be the real number
line. Let C=R+iR be the complex number plane and C*=C\{0}. For

2=(2,, 2 **+, 2,)€C* and w=(w,, w,, ---, w,) € C*, we put
(1.1) (2, w)=2,w,+ 2,W,+ + - - + 2,0,
and

(1.2) =2, 2)=2zi+zi+---+22 .

lz]|=<#, 2)* is the Euclidean norm of z. For € R", we have ||z||=
(x2)1/2. -

The Lie norm L(z) on C* is defined by the formula:
(1.3) Lz)=||z|*+[|z||*—|2*|F]"* .

By the simple calculations, we get
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(1.9) L@f=3; [ +[S @ Im 220" ,
and
(1.5) L(zy=lio|l+|lyl-+20l= Flly - <, 97,

where z=x+1y, 2, y € R*. Therefore we have
(1.6) lle+iyl|<Lx+ip)<||z|l+lly]l,

where the first equality holds if and only if |/z|]*=|2?| and the second
equality holds if and only if {x, y>=0. It has been proved by Druzko-
wski [1] that L(z) is the cross norm of the Euclidean norm ||z|| on R*,
i.e., '

1.7 L(z)=inf {3 M| |2;1l; 2= 3 M5, M, € C, 7,6 R*, me Zy) .
j=1 J=1

L(z) has been introduced by Harris [2] by a different method.
We call the complex sphere (of complex dimension n—1) the set

(1.8) S*i={z e C*; 2*=1}
={z=x+y; [lz|*—|lyll*=1, {z, y>=0} .
More generally we put, for R>1,

(1.9) S*YR)={z e §**; L(z)<R}
» —_ —_ y QJn—1. _!-_ __:!-__
—{z—x+zyeS s Hyll< 2<R R)}
and, for R>1,
(1.10) S*R]={z e §*; L(z)< R}
— J— s ~‘n—l. _1-_ __]_-_
—{z—x+zyeS sllyll< 2(13 R)} .

S"‘1=§"“0R"=§“‘1[1] is the (real unit) sphere. We will consider
gn—lzgn—l( o).

The complex orthogonal group O(n; C) is the group of complex non-
singular matrices U such that

(1.11) (Uz, Uw)={2, w) for every z and w in C*.
The special complex orthogonal group

(1.12) SO(n; C)={U € O(n; C); det U=1}
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is the connected component of the identity of the group O(n; C). O(n)=
O(n; C)NGL(n; R) is the othogonal group and SO(n)=80(n; C)N GL(n;R)
is the special orthogonal group. (See, for example, Helgason [4].)

LemMA 1.1. (i) For R>1, S»- (R) 18 conmected. (ii) For R>1,
S»- '[R] i8 connected. (iii) The group SO(n; C) acts t'ransztwely on the
complex sphere S,

PROOF. (i) Suppose z=x+1iy € S**(R). There exists a matrix Uec
SO(n) such that x’'= Ux=||x||e,, where '

65=¢(0,‘ Ty 0; 1: 0’ Ty O)

is the j-th unit vector. Put Uy=y'='(y), ¥, ---, ¥.). Then ||y’ =Ill»ll
and ||z|ly;=<=', y’) =<=, y»)=0. By (1.8), ||x||0. Therefore Y;=0. Now
there exists U’ € SO(n) such that U'e,=e, and U'y'=||y|le,. Put z’'=
U'Uzx=||zlle, and y"=U'Uy=||ylle.. As we have ||z|*—||y|[*=1 by (1.8),
there exists s,€ R such that

llell=chs,, |lyll=shs,.

Define
chs 72 sh s 0
(1.13) U=|—ishs chs 0 € SO(n; C) ,
0 0 - I,

where I,_, is the identity matrix of order n—2. Then we have

U,U’Uz= Ust(”xllr 1 ”ylly 07 Y 0)
="(ch(s,—8), ish(s,—s), 0, - - -, 0) .
Now the set S*"(R) is invariant under the action of the group SO(n)
and |sh(s,—s)|<|shs,| for 0<s<s,. The group SO(n) being connected,
we can find an arc joining the vector z and the unit vector e, in S*(R).

(ii) and (iii) are clear by the above proof. ¢ gq.edd.
In this paper, we will study the set

(1.14) V={zeC; 220} .
The following lemma is clear:

LEMMA 1.2. The scalar product p: (a, 2)—az 13 a holomo'rphw map—
ping of C*xS5** onto V. We have the diffeomorphism:
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(1.15) (C*x8 Y/ ~=V,
where ~ is the equivalence relation defined by
(1.16) (a, 2)~(a’, 2')
= a=a,z2=2" or a=-—-a,z=—2".
We put further, for 4, B>0 with AB>1 and R>1,
1.17) V(A, B; R)y={ze V; B*<|2*|< A’ L(z)'<|2*| RY} .

We will consider V V(co, 05 ). We put, for A, B>0 with AB>1
and R>1,

(1.18) VIA, B; R]={ze V; B*<|2}|<A4?, L(z)’<|2*|R%} .

LEmMmA 1.38. (i) V(A, B; R) is the mage of the open set K zxS*~ (R)
under the two-to-one diffeomorphism p: C* xS* —V, where

(1.19) K ,={aeC*; B'<|a|<A)

and S*YR) is defined by (1.9).

(ii) V(A B; R) is a domain, i.e., a connected open set in C™.

(ili) VI[A4, B, R] is the image of the compact set K, BXS" 1[R] under
the two-to-one diffeomorphism p: C* x S*1 —V, where

(1.19%) K, p={aeC*; B'<|a|< A}

and §""1[R~] i8 defined by (1.10). |
(iv) VI[A, B, R] is a connected compact set in C™.

PROOF. (i) Suppose ze V and put z=az, ac C*, 2’eS". Then
#’=a’ and L(z)=|a|L(z'). Therefore, zc V(A, B, R) if and only if
B7'<|a|<A and L(z')<R. ‘

(ii) Because the set S*"(R) is connected (Lemma 1.1), we have (ii).
The proof of (iii) and (iv) is similar. g.e.d.

We denote by df2, the invariant measure on the (real unit) sphere
S*7! induced by the Lebesgue measure on R*. The volume 2, of S
is given by: '

(1.20) ‘ Q“;Zn”’zf(n/2)"’ .

FZ%(S"') denotes the space of spherical harmonics of degree k and put

o -1y (2k+n—2)k+n—38)!
(1.21) N(n, k)= dlm%”(S )= =21
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For a spherical harmonic function Sy(w) € S#£*(S* ), there exists a unique
harmonic homogeneous polynomial S,(z) of degree k¥ such that Sy(w)=
Si(w) for w € 8*'. Py(n;t) denotes the Legendre polynomial of degree k
and of dimension m, namely

(1.22) P,(2; t)=cos(k cos™'t)
(the Tchebytchef polynomial),
g kl(n—38)! (n—2)/2
(1.23) Pb(n,t)—mck (t) for n=3,

where Ci*"?%(t) is the Gegenbauer polynomial. (See for example C. Miiller

[81.)
Let us denote by L*S*') the Hilbert space of square integrable
functions on S*'. The inner product of L*S*™) is given by

(1.24) (P, V)21, =(P, ¥)sgn—1 ,

where ( , )sn—1 is the following bilinear form:

(1.25) (f, Pori=——|__f@)9(@)d2.()

It is classical that the Hilbert space L*S*™') can be decomposed into
the direct sum:

(1.26) LA(S* )= @ K8 Y

and the orthogonal projecfion of LX(S*™) onto SZ*(S*): flw)—S(f; ®) is
given by

(1.27) Suf;@)=RBB  f2)Pn; <z, 0)d2,)

= N(n, B)(f(7), Pu(n; (@, T)))s»—1 .

Therefore, for a spherical harmonic function S,(w)e S#*S*™!), we have
the reproducing property:

(1.28) Su@)=NLEB | s,@)Pin; ¢z, 0)d0.2) .

From (1.28), we can conclude

LEMMA 1.4. Suppose S (w)e€ S#*(S*Y). Then we have
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(1.29) N(n, k)| S/(@)|] g0 sn—1y < || Si(@) [ z2esn—1 || Sp(@)|| Lo gn—1y
where || || osn—1, denotes the supremum morm on S*.

We will put, for fe L¥S*),

(1.30) Sufi =B  r@)Pm; ¢z, 29)d2.(0),
where (7, 2)=r7,2,4+7,2,+---+7,2,. Si(f;2) is a polynomial of degree k
and its restriction to the sphere S*! coincides with the spherical harmonie
funetion S,(f; w). Put further

(1.31) Suf; 2)=(VZ )8 f; 2/VZ) .

Then S.(f; z)~is the (unique) harmonic homogeneous polynomial of degree
k such that S,(f; w)=8,(f; ) for all w e S**.
Now let us define the Lie sphere X" to be the set

(1.32) 2r={e’weC*;0c R, weS"}.
The Lie sphere 2" is a compact real-analytic manifold of dimension .

LEMMA 1.5. The scalar product p: (e, w)— e“w is a real-analytic
mapping of S'XS* ' onto the Lie sphere 3. We have the real-analytic
diffeomorphism:

(1.33) - (8'x8* )/ ~=23",

where ~ is the equivalence relation defined by

(1.34) 6, w)~ (@, @) == 0=0"(mod 27), w=w'
or

0=60'"+n(mod 27), w=—w .
Proof is the same as that of Lemma 1.3.
The Laplace-Beltrami operator 4ds on 3* is given by
62
06*

where 4y is the Laplace-Beltrami operator on S*~!. The measure ded s,
is the invariant measure on 3* and the volume of 3" is 72,.

(1.35) d;=-2 +4,,

LEMMA 1.6. (i) We have the identity
(1.36) 3=V, 1;1].
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(ii) {V(4, B; R); A>1, B>1, R>1} is a fundamental system of
complex neighborhoods of the Lie sphere X",

Proor. If ze€2", then z=e¢"z, c R, xe S*'. Therefore [z} =[¢¥|=1
and L(z)=|e‘”|L(x)=||xl|~=1, i.e.,, ze V[1, 1;1]. o
Conversely, if ze V[1, 1;1] and put z=a2’, acC* 2’cS*'. Then
|2*|=|a’|=1 and |a|=1. If we put z’'=2'+iy, 2/, ¥’ € R*, the condition
2z’ € S*™' is equivalent to
|2’ [*=Il¥'l’=1 and <a', y">=0.
Therefore we have by (1.6)

1=Lz)=|a|L(z)= L) =" ||+ ||y l|=ll"||+[|| = ||*— 1],

from which results ||2’'||=1 and %’=0. This proves 2z’ belongs to the
real sphere S* ! and z=az’ € 3*. The second part of the lemma is clear

by Lemma 1.3. q.e.d.
Suppose »>0. The Lie ball B(r) of radius » is defined as follows:
(1.37) B(ry={zeC*; L(z)<7} .

We denote B=B(1). |
We will use the following facts in the sequel:

PROPOSITION 1.1. Suppose r>0. r2* 18 the Silov boundary of the
Lie ball B(r).

For the proof of the proposition, see L. Hua [5], where B is called
E. Cartan’s classical domain of type 4.

COROLLARY 1. If feZ(C") is a homogeneous polynomial of degree
k, them we have

(1.38) | f(2)| < L(2)* sup{|f(w)|; € S*7*} .
ProoF. By Proposition 1.1,
sup{|f(2)|; z € B}=sup{|f(e“w)|; 6 e R, @ € S~} .

By the homogeneity of f, the right hand side is equal to sup{|f(w)l;
weS*}. (1.38) is now clear. q.e.d.

COROLLARY 2. P,(n,t) denotes the Legendre polynomial of degree
k and of dimension n. Then :

F(z, w)= 2V w?)*Pyn; (z[V 2, wV w2)
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18 a polymomial of z and w and we have the estimate
(1.89) |(VZ )V Pu(n; 2]V 7 w/VwEy) | < L(z)"L(iv)" for z; weC .
PROOF. P,(n;t) is a polynomial of degree k& and we have
Py(n; —t)=(—1)*P(n; t) . |

Therefore F'(z, w) is a polynomial of z and w. If we fix we C*, then
F(z, w) is a homogeneous polynomial of degree %k in z. By Corollary 1,

|F(z, w)|< L(z)*sup{| F(®, w)|; ® € 8>} .

If we fix we 8", then F(w, w) is a homogenebus polynomial of degree
k in w. Again by Corollary 1,

| Fw, w)| < L(w)*sup{| F(w, 7)|; 7€ 8"} .
But, for w, 7€ S,
F(w, 7)=Pyn; {o, 7))
and we know
| —1<Pm; )<l for —1<t<l.

(See for example Miiller [8].) Therefore we have (1.39). q.e.d.y

§2. Function spaces on the Lie sphere 3*.

Let L*(2") be the space of square integrable functions on the Lie
sphere 2*. The inner product of the Hilbert space L") is given by

(2'1) (g), "l/‘)Lz(E”‘) =(¢9 "})2‘” ’

where (, )s» is the folloWing bil_inear form:

ﬂl)” So §sn_1 Few)g(e”®)d6d 2 (w) .

For Syw)e2#%(S*'), the function ¢S, (w) is defined on the Lie
sphere 3" if and only if m=k (mod 2). Put

(2.2) (f, 9).n=

(2.3) A={(m, k);meZ ke Z,, m=k(mod 2)} .
For (m, k)e 4, we define

(2.4) G ™M I ={e™'Si(w); Sy € SE7HS"Y)} .
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LEMMA 2.1. The spaces 5£™*3") are mutually orthogonal with re-
spect to the scalar product (2.1). The space SZ™*(3*) is the eigen-space
of the Laplace-Beltrami operator A4z of eigen value —[m*+k(k+n—2)].

PrROOF. The orthogonality of the spaces S#™* 3*) results from the
orthogonality of trigonometric functions and spherical harmonic funetions.
In fact, we have

(2.5) (™S (W), e S (®)) 12w = Om,m Ok, 17| |Su(@)] |3 2901,

for ¢™'Syw) e Z£2™*3") and e"™"’S,(w) e S£™"*(3*), where 0n,. and o,
are Kronecker’s symbols.
It is known that

o
(2.6) 06 .
4sSy(@) = —k(k+n—2)S, ()

eim0= __mzemo ,

for Sy(w)e S#£*S*'). Therefore we have the second part of the lemma.

q.e.d.

For fe L*(2*), we will define the (m, k)-component S, .(f; ®) by the
following formula:

@) Sunlf; @)=——HOB[*[ _ p(eucie=mPyn; (@, 7)d0d0,(2)

=MSS F(e?T)e" ™ Py(n; {w, 70)d0d2.(7) .
T2, 0 Jsn—1

Sm.(f; @) is a spherical harmonic function of degree k, i.e., S, .(f; ®)e
% (S*™*). Remark that

Suil(f; —@)=(—1)S,i(f; ®)
and that, by the definition formula (2.7),

Sni(f; —0)=(—1)"S, (f; ®) .
Therefore we must have
(2.8) Spi(f; @)=0 if mz=k(mod?2).
Similarly to (1.30) and (1.81), we define the polynomials

(2.9)  Sn(f; z)=N—§:zé-ﬂ§: Ssﬂ_lf (€*7)e™ ™ Py(n; {z, T))d0dR,(7)
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and
(2.10) ' Sui(f; 2) =V 28 i(f; 2/V ) .

The polynomial §,,,,,,( f; 2) is the (unique) harmonic homogeneous polynomial
of degree % such that

S, i(f; w)=S8, (f; w) for every weS"!.

THEOREM 2.1. We have the direct sum decomposition of the Hilbert
space L*(Z"):
(2.11) L} 2™ = SE™EI™)
(m,k)e A
The orthogonal projection of LAZ*) onto SE™H3") 18 given by fi—
™S, (f; ®). We have the SJollowing identity in the L* semse for
fe L¥(3"):
(2.12) fle¥w)= 2, emSuuf; @) .
(m,k)e
PROOF. By Lemma 1.4, the space L*3*) can be identified with the
subspace of L*S'xS"') of the functions satisfying the condition

f0+7w, —w)=f(6, ®). Therefore it is clear by (1.26) that every function
Sf(e®w) € L*(3*) can be expanded in the I? sense:

(2.13) : fe'w)= >, e™'Syw)

with some S, € Z7%S"*). By the orthogonality of trigonometrie functions
and the reproducing property (1.28) of the Legendre polynomial, S,(®)
must be equal to S, .(f; ). q.e.d.

COROLLARY 1 (Bessel’s equality). For fe L¥(2"), we have

(2.14) F11Z2com =(m%]e_4HSm,k(f; @)||325n—1y .

COROLLARY 2. If we have a sequence {S, .; (m, k) ¢ A}, S,..x € XS
such that || Sn,illi2sn—1 € #%(A), then the function J(EW) =3 .1 c 4™2 S, (@)
belongs to LX(Z") and S, .(f; ®)=S, (@) for every (m, k) e A.

Let us denote by C=(Z*) (resp. .97 (3")) the space of C* (resp. real
analytiec) functions on the compact real analytic manifold 3*. We endow
C=(2™) and 7(3") with the usual locally convex linear topology.

THEOREM 2.2. A function
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(2.12) f(e‘”w)=( >, e™S, . (f; w)e LA(2*)

,k)e A

belongs to C=(2™) if and only if the sequence {||S,...(f; ®)||z2i5n—1; (M, k) € A}
18 rapidly decreasing on A, i.e., {(|m|+k)?||Sp.i(f; ®)||12sn—1} 18 bounded
on A for every peZ,. For feC=(2"), the convergence of the series
(2.12) 18 im the topology of C*=(3™).

PrROOF. It is known that fe C=(3") if and only if (4;)*fe L¥3*) for
every p€ Z,. Because of Lemma 2.1,

(2.15) (—4d:)fle’w)= g‘. ) (m*+k(k+n—2))*e™’S,, «(f; w) ,
(m,k)e. .
from which results the theorem. q.e.d.

THEOREM 2.3. A function
(2.12) flev@)= 3 &8, (f; @) e LAZ")
(m,k)e
belongs to 7(Z*) +f and only if
(2.16) Hm sup [||Sm,i(f; @)l z2sn—n ] 1™1*9 <1 .
{m | ko0

For fe o7 (2"), the series (2.12) converges in the toﬁology of 7 (2™).

REMARK. Hashizume-Minemura-Okamoto [3] has proved this theorem
in more general context using the following fact: fe .97 (2*) if and only
if

@17 up { (= 42 llusam p € Zif < o0
for some ~>0, where
(2.18)  (—4)r*f(ew) =2 (m+h(k+ n—2))"%e'"™’S,, (f; @) .

We do not reproduce here their proof. We will give a new proof to
Theorem 2.3 in the following section (Corollary 2 (ii) to Theorem 8.1).
§3. Some spaces of holomorphic functions.

For an open set 2 of C*, we denote by ~(2) the space of holo-
morphic functions on 2. We endow ~7(2) with the topology of uniform
convergence on every compact set of 2. ~£°(2) is a Fréchet space.

LEMMA 3.1. Suppose A>1, B>1 and R>1 and define the open sets
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V and V(A, B, R) by (1.14) and (1.17). Then we have the following
continuous inclusions:

3.1) AV)=— A(V(A, B; R)) = 7 (3%) = C=(I*) = (3",
where the first and the second mappings are restrictions.

ProOF. The continuity of the mappings is clear. The injectivity of
the first mapping results from the uniqueness of analytic continuation.
Suppose F'e &’(V(A B; R)) vanishes on 3X". The Lie sphere 3" being
totally real in V(4, B; R), f vanishes in a complex neighborhood of >".
The set V(A, B; R) being connected (Lemma 1.3), f vanishes identically
on V(A, B; R) by the uniqueness of analytic continuation. q.e.d.

LeEMMA 8.2. (V) s dense in 7 (3"), C*(3*) and LXZ") respec-
tively.

PROOF. By Theorems 2.1, 2.2 and 2.3, the linear space
Dm0 aZ ™ 2Z") is dense in L"), C=(Z*) and .%(Z"). As the funection
™S, ,,(aJ) is the restriction onto 3" of the holomorphic function on v,
(V' 2)"*S,, x(2), the linear space Diim e 4Z ™ (3") is a subspace of (V).

q.e.d.

For a set KcC*, we put

(3.2) o(K)={e"z;z€¢ K, 0c R} .
For example, o(S*™)=3". For a set KcC" and aeC, we will put
(3.3) aK={az;z€ K} . _

LEMMA 3.3. Suppose A>1, B>1 and R>1. For fe Z(V(A, B;R)),
we define, for r>0 and z€ V(A/r, rB; R),

(3.4) C flrs z)z"é%'{f T

ti=r
(i) We can define f,.(z)e V(oo, oo; R)) by the following formula:
(3.5) fu(2)=Fu(r;2) for ze V(A/r, rB;R).
(ii) For any aeC* and z€ V(o, o; R), we have
(3.6) Fulaz)=a™f,(2) .

(iii) For every compact set KC§"‘1(R) and every r, B7'<r<A, we
hawve
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3.7 sup{|fu(2)|; z € K}<r ™sup{| f(2)]; z € ra(K)} .
(iv) We have the development

(3.8) @)= 3 fu@) for ze V4 BB,

the convergence being uniform on every compact set of V(A B; R).

Proor. By Lemma 1.3, there exists a function F(a’, 2’)e (K3 5%
S*~YR)) such that
F(—a, -2")=F(d', 2)
and that F(a’, 2)=f(a'z"). Remark that, for z=a'z’, @’ c C*, 2’ € S*!, we
have z’=a’® and we have

A Sfta'z’)
Fulr; a@) 2t J iti=r ™+t at
— 1 F(ta', z’) dt

o2mi J =, tmHT

for B™'<r|a’'|<A. By the Cauchy integral theorem, the function

P ! F(ta', z')
(3.9) F.(a, 2') prr O __t"'+1 dt

is defined independently of », holomorphic on C*xS**(R) and satisfies
F (', 2)=a"F.Q1, 2') .
Therefore, the function
fu(R)=Fy(a, 2"), z=a'z,
is defined on V(eo, «o; R) and satisfies (3.6).
(iii) For zeS**(R) and B'<r<A, we have the integral formula:

(3.10) fulz)=—1_ Si2) g

21 J 1el=r ™!

Therefore we get (3.7).
(iv) The Laurent development

Fa, 2)= 3 a™F.1,2)= 3 F.(,2)

m=—o0 m=—o0

converges uniformly on every compact set of K 2,,,><§"“(R). Therefore
we have (3.8). q.e.d.
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LEMMA 3.4. Suppose A>1, B>1 and R>1. Let fe Z(V(A, B; R)).
We will denote the (m, k)-component of flzm by S, .(f;®). The poly-
nomials S, (f;2) and S, .(f;2) are defined by (2.9) and (2.10). Then
we have

(3.11) Suslf; )=RBB 1 (0)Py(m; ¢z, 2p)a0(e) ,

”n

where f,, is defined in Lemma 3.3.

(3.12) Suilf; 2)=8,,.(f; 2)=0

Jor m=£k(mod 2).

(3.18) Ful@)=3(VF)"H8,u(f; 2)

fo'r ze 17'(00, o ; R), the convergence being uniform on every compact set
of V(eo, oo; R).

PrROOF. Put r=1 in (3.10) and (3.11) coincides with (2.9). (3.12) and
(8.13) are special cases of (2.8) and (2.10) respectively. We have, by
Corollary to Theorem 5.2 in M. Morimoto [7],

(3.14) @) =38.f;2) for ze8R),

the convergence being uniform on every compact set of §"“1(R). Both
sides of (3.18) are homogeneous of degree m and if zeg"‘l(R), (3.13)
coincides with (8.14). Therefore the equality in (8.18) holds also for
z2€ V(co, oo; R) (Lemma 2.1). q.e.d.

THEOREM 3.1. Let fe c(V(A, B; R)) and put S (@) =8, .(f; ®) for
(m, k)ye A. Then we hawve

(8.15) lim sup [ A" B¥|Sp, (@) |2i0n-5 ] "+ <1

m-k—oo,m=0

and

(3.16) lim sup [B'™ R¥|S,,i(@)|| s2(sn—5]" ™+ <1

|m|+k—0,m <0

The following series

(8.17) fz)= (V22 )" *S,, «(2)

(m,k)e A

converges uniformly on every compact set of V(A, B; R).
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Conversely, if we have a sequence {S,i; (m, k)e A}, S, ,€SF*S*)
sattsfying the conditions (3.15) and (3.16), then the right hand side of
(8.17) converges uniformly on every compact set of V(A, B; R) and de-
fines a function fe o (V(A, B; R)), whose (m, k)-components Sni(f; ®)
coincides with the given functions S, (®).

PrROOF. The restriction p: &°(B(R)) — (5" (R)) being a continuous
linear mapping of the Fréchet space <”(B(R)) onto the Fréchet space
(8" Y(R)), p is a homomorphism. Therefore, for every R, 1<R,<R.
There exists a compact set K(R,) of S*%(R) and a constant C(R,)>0
such that, for every ge ~(S*(R)), we can find Ge (B(R)) for which

G(z)=g(z) for zeS* Y R)
and
(3.18) sup{|G(2)|; z € R,3"}<C(R,)supflg(2)]; z € K(R,)} .

Now given fe & (V(A, B; R)), we define f.(z) € &(V(oo, «o; R)) for every
m e Z as in Lemma 3.3. Then by the above remark, we can find entire
functions F, € ~(B(R)) such that

(3.19) F.(2)=f.(2z) for zeS*YR)
and that
(3.20) sup{|F'(2)|; 2z € R.2"}<C(R,)sup{| fu(2)]; 2 € K(R))} .

Put, for je Z, and 0<R,<R,

1

(3.21) F, (z)= o

f F(ta)t-9+ds .
l¢l=R,
Then F, ;(z) is a homogeneous polynomial of degree j; and we have
(3.22) Fu(2)=3, F, (z) for zeB(R),
§=0

the convergence being uniform on every compact set of B(R). We have
by (3.21), for every R, 0<R,<R, and every e S",

(3.23) | Fom, {(T)| < Ry? sup{|F.(2)|; z€ R, 3"} .

Now by (3.19), (3.22) and the orthogonality of spherical harmonics, we
get
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Suslf; 0)=NEB £ (@Pin; (@, ©)d2:(2)

=M§ Fo(2)Py(n; {@, T)d2.(7)
2, Ja

=___.’___N(Z D5l Fui@Pun; 0, 2)d2(0) .

n jzk

Therefore, for every R, 1<R, <R, we have by (3.23) and (3.20)

| S f; @) <(Nw, k) % R sup{| F.(2)]; 2 € B, 2"}
< MN(n, k)RT"1—R7")*C(R)sup{| f.(2); z € K(R,)} .

Applying Lemma 3.8, (iii) for the compact set K(R,) of S*(R), we get,
for every r, B7'<r<A,

 18nif; @)| <N, H)R*C'(R)r"sup{|f(2); 2 € K()} ,
where C'(R)=(1—R)'C(R,) is a constant independent of k£ and m and

K@) =ra(K(R)) is a compact set of V(A, B; B). Therefore we have, for
every 1<A,<A and 1<B,<B,

(3.24) | S i(f; @) | < N(n, B)RT*AT"C'(R,)sup{| f(2)]; 2 € K}
for m>0 and
(8.24) | Spi(f; @)| < N(n, K)RT*Br'™IC"(R,) sup {|f(2)|; z € K}

for m<0, where K= U{K(r); Bi:<r<A,} is a compact set of V(4, B; R).
As we have, by (1.21), N(n, k)=0(k"?), we get (3.15) and (3.16).

Now let us suppose that we have (8.15) and (3.16). Suppose 0<0<1
and put 4,=A¢, B,=B6 and R,=R6. Then, from Lemma 1.4, we can
conclude that there exists M>0 such that |m|+k>M implies

ATRY||S, (@))] oo (g1 <O™*  for m>=0
and
B™ RY|| S, i(@)|| o (gn—1 <™+ for m<O0.

Let us denotg by §,,,,,,,(z) the harmonic homogeneous polyynomial of degree
k such that S, (@)=S8, (@) for @weS**. Then by Corollary 1 to Pro-
position 1.1, we have, for |m|+k=>M, '

1S,..(2)| <AT™R*L(2)*6™+* for m>0
and
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|8 1(2) | < Br™ R *L(z)*6'™+* for m<0.
If /m|+k>M and m>0, we have, for z¢€ V[A,, B; R,],
(V2 48, (@) S ATV 2| AT R L(2) 0 < om
If /m|+k>M and m<0, we have, for ze V[4, B; R,
|V 28, i(2)| < BI™ [V 2 B ™ Ry L(z) ko m k< gimI+E

Therefore the series (3.17) converges uniformly on the set V[4,, B; R.].
6 being arbitrary with 0<6#<1, the series (8.17) defines a holomorphic
function on the open set V(4, B; R). If S, .(®) is the (m, k)-components
of the function fe ~(V(A, B; R)), the formula (3.17) results from (8.8)
and (3.13).

Conversely, if we are given a sequence {S,.; (m, k) € 4}, satisfying
the conditions (3.15) and (3.16), then we can define a function f(z) by
the formula (3.17). By the uniform convergence of the series, we can
easily show that the (m, k)-components of the function f(z) thus defined
coincide with the given functions S, .(w). q.e.d.

COROLLARY 1. Suppose A, B>0 with AB>1 and R>1. Then f
belongs to &(V[A, B; R)), if and only if

(8.15)) lim sup [A™R*| S, «(f; @) [[z2ien—1 ]+ <1
m+k—roco
m=0
and
(3.16) lim Sup [ B/ R¥| Su(f; @)llsssnms V0™ <1 .
im|+k—roo

m <0

PrROOF. As we have
& (VIA, B; R)=lim ind (V(a4, aB; aR)) ,

Corollary results from the theorem. ' q.e.d.
It is worth while to mention the following special cases.
COROLLARY 2. (i) For f(z)e &(V), if and only if

(3.25) llinll sup 1 S i3 @]l z2gn—1 ]V ™1 +0 =0 .

m |- B—0
(ii) For fe (2", if and only if

(3.26) l'itfl sup [ S, (S5 @)l 2gn—y V™0 <1 |

mi{4-k—o0
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PROOF. We have

(3.27) ' ﬂ’(V’):lin; Elroj o (V(R, R; R))

and, by Lemma 1.5,
(3.28) y(f*):ligl) ind ( V(R, R; R)) .

But, by Theorem 8.1, for fe ~(V(R, R; R)) if and only if

llinll Sup [|| Spx(f; @)llz2sn—1]" ™SR
m |4 koo

Therefore we have (8.25) and (3.26). q.e.d.

REMARK. With a holomorphic function f(z)e <*(V(A, B;R)), we as-
sociated a holomorphic function F(o’,2") on K2 ,xS*YR), for which
F(—a', —2")=F(a', 2'). If the function F can be continued analytically
to the set {a' € C;|a’|<A}xS*%(R), then the (m, k)-components S, .(f; )
of f vanish for m<0. If the function F can be analytically continued
to the set ({a’eC; B-'<|a/|[JU{c}) xS*XR), then Spi(f; ®) vanish for
m>0.

Now recall B(r) is the Lie ball of radius »>0:
(3.29) B(ry=rB={zec C"; L(z)<7} .

LEMMA 3.5. Let fe &Z(B(r)). Define f. as in Lemma 3.3. Then
fn(2) 18 a homogeneous polynomial of degree m for m>0 and Ju=0 for
m<0. We have

(3.30) linnl'il.lp [ fn()| Lomin—1y ] <
and
(3.81) f@)=3fu@) for zeB),

the convergence being uniform on every compact subset of B(r).

Conversely if we have a sequence {f.(z); m € Z.} of homogeneous poly-
nomials f.(2) of degree m and if we have the condition (3.30), then the
right hand side of (8.81) conwverges wuniformly on every compact subset
of B(r) and i3 holomorphic there.

PrROOF. The function fe & (B(r)) can be expanded into the Taylor
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series in a neighborhood of 0. Therefore f, is a homogeneous poly-
nomial of degree m for m>0. Other statements results from the in-
tegral formula (8.10) of f,.(2) and Corollary to Proposition 1.1. q.e.d.

THEOREM 3.2. Let f(z)e &(B(r)). Define f. amd 8,..(f;2) as in
Lemmas 3.3 and 3.4. Let us denote S, (2)=S..(f;2). (i) We have

(3.32) §,.2)=0 for k>m

and

(3.33) limbsup [7™]| S, (@] z2gn—1 ]V " +¥ <1 .
m - k—oo

(ii) Let us denote

Ady={(m, k)e A4; k<m} .
Then we have

(3.32) f@=_3, W&\ *S.u(f;2)

for ze B(r), the convergence being wuniform om every compact set of
B@).

Conversely, if we are given a sequence of spherical harmonic func-
tions {S, (®); (m, k) € A} satisfying (3.32) and (8.83), then the right hand
side of (3.34) conwerges to a holomorphic fumction f(z) uniformly on
every compact set of B(r) and we have

8,..2)=8..f:2) for (m,k)ed.

PROOF. (3.32) results from the orthogonality of spherical harmonies.
By Lemma 3.5, for every >0, there exists a constant C,>0 such that

| fal(@)| oo ign—1, SCer™™(1+8)™ .
Therefore, by (3.11), we have
| S (@) < N(m, B)Cor™(L+¢&)™ .
By Lemma 1.4 and (1.21), we get
’liﬂc}F Sup [y S, (@) ]| z2gn—n ] =+ <L +e .

§>0 being arbitrary, we get (8.34).

Now suppose we have (3.32) and (3.33). Then, by Lemma 1.4, we
can conclude from (3.33) that, for any &>0, there exists a constant
C.>0 such that
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7™ | S, (@) | oo sn—1, KC (L 4-€)"+E |
If we have m>k, we have, by Corollary to Proposition 1.1,

(V7 )" *S,,4(2)
S L) *L(z)*C (1 +g)™t*p™
S LE™C(L+e)ymr ™ .

Therefore, the right hand side of (3.34) converges uniformly on the set
{ze C*; L(z)<r(1+2¢)7% .

If S, (@)=8,.(f; w) for a function fe ~7(B(r)), we have, by Theorem
3.1, the identity (3.34).

Conversely, if we are given a sequence {S,.} satisfying (3.32) and
(3.83), we ean define by the right hand side of (3.34) a funetion fe
Z(B(r)). It is clear that we have S, .(f;2)=S, .(z), because (3.34) con-
verges uniformly on the set 3" for every r, 0<#,<r. q.e.d.

Let us denote by < ,(B(r)) the space of holomorphic functions f on
B(r) which satisfy the differential equation:

F 5
3.35 ~0.
(3.35) (azf toa T T g, )f ()

& {B(r)) is a closed subspace of ~(B(r)).

THEOREM 8.8. Let f(z)e & (B(r)) and define f, and S..(f;z) as in
Lemmas 3.8 and 3.4.

(i) fa 18 a homogeneous harmonic polynomial of degree m for
m=0 and f,=0 for m<O0.

(i) Sui(f; 2)=fn(2) for k=m and S,.(f;2) =0 for k=m.

(1) f(2)= im0 Sn.n(f; 2) for ze B(r),

the convergence being uniform on every compact subset of B(r).

This theorem is due to Siciak [9]. See also Theorem 5.2, (i) in
M. Morimoto [7].

§4. Spaces of functionals on 3",

Let us denote by ='(J*) the space of distributions on the Lie
sphere 3*, i.e., 2'(3") is the dual space of C°(Z"). <Z(Z*) denotes the
space of hyperfunctions on X*, i.e., <Z(3") is the dual space of .7 (Z").
The dual spaces of ~(V) and <~(V(A, B; R)) will be denoted by ~'(V)
and &'(V(A, B; R)) respectively.
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LEMMA 4.1. We have the following inclusions:
4.1 Z(V)—= ' (V(A, B; R)—> (3" —> D'(S") =L 3") ,
where A>1, B>1 and R>1.

PROOF. Because of Lemma 8.2, we have only to take the dual
sequence of the sequence (8.1). q.e.d.

Recall (, );» is the bilinear form defined by (2.2). For Jf, g€ LA(3™),
we have

(4.2)  (f(e“w), g(e"’®));sn
= 3, (Sai(f5®), S_.u(g; ®))gn—1 ,

(m,k)ed

where ( , )s»—1 is the bilinear form defined by the formula (1.25).

Suppose T'€ 2'(3*) (resp. Te & (3*). We will write by (T, f) the
value of the functional T' at a testing function feC>(Z*) (resp. fe
&7(2")). By Theorem 2.2 (resp. Theorem 2.3), we have

(4.3) (T, H=(T, 3, e™Suilf;®)
= 5 (T, e™S.u(f; 0) .

(m,k)e A
By (2.7), we have
(4.4) e™’Sui(f; @)= N(n, k)(f(e**7), e™ "9 Py(n; (@, T)))zn .

Let us define the (—m, k)-component of the functional T by the follow-
ing formula:

(4.5) S_ni(T; T)=N(n, k)(T(6, ), ™ Py(n; {w, T))) .
Then we have, by Theorem 2.1,

(T, eimo m,k(f; a)))
=(f(e“"z'), e“‘"'PS_m'k( T; 7'-))2"
=( 2 eim"osm’,k’(f; T); e_im¢S—m,k(T’ T))l"

(m?,k’)e 1

= (S, 2(f3 T)y S_mt(T; T))gn—1 .

Therefore we have proved the formula:
(4.6) . (T, = ng;‘e . (S_m.i(T; @), Sy i(f; ®))sn—1 .

THEOREM 4.1. If Te <=2'(3*), then thev (m, k)-component of T,



ANALYTIC FUNCTIONALS 27

Sni(T; @) belongs to 2% S**) and the sequence {||Sn.(T; W)||z2sn—1} 18
slowly imcreasing on the set A, i.e., there exist peZ. and C>0 such
that

(4.7) IS T5 @)l z25n— <C(|m |+ K)?

for every (m, k)ec A.
Conversely if we have a sequence {S_,, .(); (m, k) € A} with S_, (@) €

FEH8"Y) and the sequence {||S_pn (@) 25—} 8 slowly imcreasing on the
set A, then the formula

(4.8) (T, f )= E (€78 (@), fl€"®))zn
= Z (S—~m k(w); s k(f: w))S“ 1

defines a distribution Te =2'(3*) and we have S_, (T; ®)=S_ (@) for
every (m, k)e A.

PrOOF. The theorem is dual to Theorem 2.2 and the proof is similar
to that of Theorem 3.1 in M. Morimoto [7]. q.e.d.

THEOREM 4.2. If Te ' (3"), then S_,.(T;®) belongs to S£*(S*).
If we put S_, . (w)=S_, (T; ®), we have the following estimate:

(4.9) linll Eup [ S_m,e(@)| z2ign—y JV ™0 L1,
|4 koo

Conversely, if we have a sequence {S_,. .(@); (m, k) € A} with S_n.i(®) €
2% S satisfying (4.9), then the formula (4.8) defines a hyperfunc-
tion Te Z(2") and we have S_, (T; @)=S_, (@) for every (m, k) e A.

REMARK. The theorem is dual to Theorem 2.3 and the proof is
similar to that of Theorem 1.8 in Hashizume-Minemura-Okamoto [3]. We

will give a new proof in the following section (Corollary 2 (ii) to
Theorem 5.1). ;

§5. Spaces of analytic functionals.

Suppose T is an analytic functional belonging to <*'(¥(4, B; R)) and
f(z) is a holomorphic function on V(A4, B; R). Then, by Theorem 8.1,
f(z) can be expanded as

(5.1) flz)= V)" *Suilf3 2)

(m,k)eA

where the convergence is uniform on every compact set of V(A, B; R).
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Therefore by the continnity of 7, we have
(6.2) (T, )= (mﬁk}u(Tz, V2 ) *8,(f; 2) .

As we have, by (38.11) and (2.10),

(5.3)  Snu(f;2)

=/Fyr HB) ([ feone=opin; a)VF, ©)d0aoy ) ,

we get
(5.9) (T, )= 3 (@S 0T D), FT)sn
= (m%eA(S—m,k(T; T)) Sm,’k(f; T))S"'_l ’

where we put
(5-5) S—u,b(T; Z')’:—’N(’n, k)(Tu (I’ zz )mPk(’n; <z/1/-zT9 T>)) ’
whieh we call the (—m, k)-component of T.

THEOREM 5.1. For an analytic functional Te 2'(V(A, B; R)), the
(—m, k)-component S_, (T; ®) is a spherical harmonic function of de-
gree k and we have

(5.6) lim Sup [A™R7* || S_p, (@)l L2sn—1 ]V ™ +P <1
m-+k—sco
mzo
and:
(5.7) llln:} skup [B—lmlR—k ” S—m,k(w)lle(sﬂ"l)]ll(lml-H‘) <1 ,
m|+k-+o0

m<0
where we put S_, (@)=8_,.(T; ®).
Conversely, if a sequence {S_, (®); (m, k) € A} of spherical harmonics
S_nm,x 0f degree k satisfies the conditions (5.6) and (6.7), we can define
an analytic functional T e ' (V(A, B; R)) by the formula

(5.8) (T, )= _ 3, (S-ns(@), Suslf; @)srs
for fe(V(A, B;R)). The (—m, k)-components of the functional T
coincide with the given spherical harmonics S_, , .

PrROOF. By the coninuity of the analytic functional 7, there exist
A, B, and R, with 0<A,<A,0<B,<B,1<A,B, and 1<R,<R, and a
constant C>0 such that
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(6.9) (T, AHI<Csup{lf(z); ze V[A, B; R.}} .

As (V22 P (n; (z/V'7%, t)) is a harmonic homogeneous polynomial of
degree k&, we have, by Corollaries to Proposition 1.1,

W7 M1 Pu(m; <2[VZ, T0)| < L(z)*sup{|Py(n; @, T))|; @ € S*™'}=L(2)" .
Therefore we have

sup{[V'Z " |Py(n; z/V'Z, t))|; 2 € V[A, B; R}
=sup{[VZ |* H[VZ |* | Pu(n; z/V'Z, T))|; z€ V[A, B; Ri]}
<sup{[VZ " *L(2)*; ze V[A, B; R.])
<sup{|V'#Z " RY; Bi*<|#'|< A}

A*R: for m>=0
- BI™R* for m<0.

We get, by (56.5) and (5.9),
|S_n.(T; 7)|<C N(n, k)APRY  for m=0

and
|S_ns(T; 7)|<C N(n, E)B{™'R} for m<0,

from which result (5.6) and (5.7) thanks to Lemma 1.4.

Conversely, suppose we have a sequence {S_,.(@)}. Denote by 72
the maximum of the left hand sides of (5.6) and (5.7). We have <1
by the assumption. For every g with g, <p<1, there exists a constant
C.>0 such that

H S——m,k(w) l ‘Lz(s""lr < Cp[!m'*_kAmRk for m=0
and
1 S_m 1(@)|lL2sn—1 < Cupt™**B™ R*  for m<O0.

Suppose a holomorphic function fe (V' (4, B; R)) is given. For
every A, B, and B, with 0<A,<A, 0<B,<B,1<A,B, and 1<RE,<R, we
have, by Lemma 1.4, (3.24) and (3.24'),

| S 1(f3 @)|lL2sn—1) || S i(f 3 @ zocgn—)
< N(n, H)R*AT"C'(R)sup{|f(2)]; z € K}
for m>0 and |

1| Spt(f3 @)l L2isn—1 < H Skl 5 @M Losn—1)
< N(n, k)R;*B;™C'(R,) supf| f(2)|; z € K}
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for m <0, Where-vze recall C'(R)=(1—R{Y)'C(R,) is a constant and K is
a compact set of V(A, B; R). Now we have

(6.10) [(S_m,x(®), S, i(f; ®))sn—1] S| S-m, (@) 22581 || S 1 (5 @) L2501,
<Cu"+t*A"R*N(n, kE)RT*A7™C'(R,) sup{|f(2)|; z € K}

for m>0 and

(5.11) |(S_ns(®), Spu(f5 @))sn—1]
<Cu.p™**B™ R*N(n, k)R *B7'™'C'(R,) sup{|f(2)|; z ¢ K}

for m<0. If we fix A, B, and R, for which pA<A, <A, uB< B,<B,
A,B>1 and max{l, #R}<R,<R, then by (5.10) and (5.11) and thanks
to (1.21), we can find a constant C>0 such that

>, (S (@), Sui(f; ®))sn-1|<Csup {|f(2)|; ¢ K},

(m,k)e 1

which means that we can define an analytic functional 7 e ~/( V(4, B; R))
by (5.8). It is clear by the orthogonality of spherical harmonics, that
the (—m, k)-components of the functional T defined above coincide with
the given S_,, .. q.e.d.

COROLLARY 1. Suppose A, B>0 {atisfy AB>1and R>1. Then an
analytic functional T belongs to <”'(V[A, B; R]) if and only of

(6.12) 11m Sup [A™™R7¥| S_ni(T; ®)|] sz gn—1, ] ™0 <1
mzo
and
(5.13) }ll‘nksup [B mlR—k”S—m k(T w)”zﬂ(sﬂ 1)]1/('"‘]+")<1
m| 4 ko0

m <0

The following special cases are worth while to mention.
COROLLARY 2. (i) T belongs to &'(V), if and only if
(5.14) lirn SUp [ S_u,u(T; @)|Lusign—s 1149 < co .
(ii) T belongs to <& ("), if and only tf
(5.15) lf,mfi.‘ip 1S i(T; @)l z2isn—1]" 1™ +0 <1 .

Now suppose a holomorphic function f(z) is given on the Lie ball
B. Then, by Theorem 3. 2, f(z) can be expanded as follows:



ANALYTIC FUNCTIONALS 31

(5.16) f@)= 3 (VZ)"*5,.(f;2)

(m,k)edy ‘
for ze€ B, the convergence being uniform on every compact set of B.
Thanks to (8.33) with r=1, we can define, by Corollary to Theorem 5.1,
a hyperfunction T(e“®) on the Lie sphere 3" as follows:

(6.17) T w)= 3, e™S,.(f;®).

(m,k) €Ay
This therfunction will be called the trace of the holomorphic function
fe(B) on the Lie sphere X*.

Suppose ge SZ(Z*). Then g is a holomorphic function in a complex
neighborhood V(4, B; R) of 3*. Consider the integral

(5.18) B.(f; 9)=——

da
21 |ael=rp SS""J- f(aw)g(aw)_&_d[‘)n(w) .

B,(f, g9) is defined for » with B '<r<1 and is independent of such .
We will write B(f, 9)=B,(f, g). Then it is clear that g+ B(f, g) is a
continuous linear functional on .7 (3") and this functional is, by the de-
finition, the trace T of fe &°(B):

T: 9— B(f, 9) .

THEOREM 5.2. For every holomorphic function fe(B), we can
define the trace T(e¥w)e #(Z*). The (—m, k)-components S_,. (T; @)
vanish for —m<k.

Conversely if we have a hyperfunction T e & (2*) and its (—m, k)-
components S_n(T; w) vanish for —m<k, then there ewxists a holo-
morphic function f(z)e 7 (B), the trace of which coincides with the
given hyperfunction T. The holomorphic function f(z) i8 represented
by the Cauchy-Hua formula:

(5.19) f(2)=(T(e“w), (0—e"2)")™"")
for z€ B, where ( , ) is the canonical bilinear form on & (I") X 7 (2").

PROOF. We prove the second part of the theorem. Expand the hy-
perfunction T(e*7):

(5.20) Te*t)= 3, e ™ S_.(T;7),

(—m,k)edy
where the (—m, k)-component S_,...(T; z) is defined as follow (c.f.(4.5)):
(5.21) S_wi(T; T)=N(n, k)(T(“®), e Py(n; <z, ®))) .
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The holomorphic function f(z) is defined as follows:
(5.22) f@)= 3 /ZF)" 8. (T;2),
(m,k)ezt+

where S, .(T;z) is the harmonic homegeneous polynomial of degree k
such that S, .(T; 7)=8,.T;7) for 7€ S** By Theorem 3.2 and Theorem
4.2, (5.22) converges uniformly on every compact set of B and define a
holomorphic function f there. It is known that the polynomial §,,,,,( f;2)
is given by the following formula:

(5.23)  8uu(T; 2)=N(n, b)(VZ H(T(e"w), e Pyn; V7, o)) .
Therefore we have

(5.24) f(e)= 3, Nin, H)VZ5)*(T(e¥w), e~ Py(n; z/V'F, »)) .

(m,k) GA+

Let us consider the following series

(5.25) S, (V7 )"N(n, k)e "™ Py(n; (2/V' 7%, ®))

(m,B)ed

=3 Z W/F)"Nn, m—20)e~™P, _ u(n; <z/V' 2, @)) .

m=0 =0

Recall first the following classical formula for the Gegenbauer poly-
nomials: for v>),

(5.26) Cay=F ) 3TeiChut)

where

_(m—=21+M+y—2)(v+m—1)
Nry—A)Irm—1ui+x+1) )

(5.27)

(See Hua [5], p. 141.) Putting v=n/2, A\=(n—2)/2, we have the following
formula:

(5.28) Cry(t) = “E’Z’(Zm 4l__+2'n 2)

On the other hand, we have, by (1.21) and (1.23),

Ca=3%(¢t) .

(5.29) N(n, k)Pu(n; t>=2—’%——f2‘20;"~2”2<t> .

Therefore we have
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[mi2]

2 N(n, m—20) Pp_u(m; t)= G (@) .

Now by (5.29) and Corollary 2 to Proposition 1.1,
V2" (Vw)Cr (2 /V'7, w/V W)
is a polynomial in z and w and we have the following estimate:
|(VE )" (Vw"Cr*((e/V'E, wivVwh)
SLE)*L(w)"n@2m+n)"*N(n+2, m) .

Therefore the series
S, (V7 ) (VW) CEHGEIVE, w] V)

is uniformly and absolutely convergent for L(z)<7, |Vw?|>B™* and
L(w)<R|Vw*|, provided rBR<1.

On the other hand we have the generating formula of the Gegen-
bauer polynomials:

(5.30) S s"CAt) = (1—2st +8%)* .

m=0

Therefore we have, for L(z)<7, |Vw?|>B™" and L(w)<R|Vw?,

(5.31) 3 (VZ)" (VD)™ Cr eV E, w] VW)

=1—2V7Z WV wzVZE, whV W)+ V7 [Vw))
=(w/Vw—z/[V W, w/Vwi—z/V wk) " .

We put w=e“w, e R, w € S** and get

(5.32) 3 Zi‘,:](V?)”‘N(n, m—2l)e P, _.(n; 2V P, @)

n=Q

=3 (VP CHNGIVF, o))

=(w—e ¥z, w—e"2))™* .

If we fix r<1, then we can find A>1, B>1 and R>1 such that »BR<1.
V(A, B; R) is a complex neighborhood of the Lie sphere 3*. The series
(5.81) is uniformly and absolutely convergent for ze B(r) and we
V(A, B; R), which implies that, for fixed z with L(2)<1, the series
(5.32) converges in the topology of . (Z*). As T is a continuous linear
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functional on .7 (2"), we can conclude from (5.24), (5.25) and (5.32) the
Cauchy-Hua integral formula (5.19). q.e.d.
Recall B[1] is the closed Lie ball:

(5.33) Bll]={zeC*; L(z)<1} .

The trace operator p: 2 (B[1]) — &7 (3*) being injective, we can consider
?(B[1]) as a subspace of .57 (3"). By Theorems 2.3 and 3.3, the follow-
ing lemma is clear.

LEMMA 5.1. Suppose fe . (3*). For f to belong to the subspace
o (B[1]), it i3 mnecessary and sufficient that S satisfies the following
condition: '

(5.34) Spi(f; ©)=0 for m<k.

Because the Lie sphere 3" is the Silov boundary of B (Proposition
1.1), p(B[1]) is a closed subspace of S (2*). With a real analytic
function f(e“w)e 7 (3"), we associate the function f(z)=1( f)(z), which
is defined by the Cauchy-Hua integral formula:

(5.19) F@)=7()@)=(fe"w), (@—e“2)) ™" .
Then the mapping v is the left inverse of the trace operator o, i.e.,
Yoo =id:
(5.35) 2B == o7 (") .
7

Take the dual of (5.85):

t 3

(5.36) OBl &= (") .
T*

The dual mapping v* being injective, we can consider, by the mapping
v*, the dual space <'(B[1]) of <7(B[1]) as a subspace of <& (™).

For an analytic functional T e ~'(B[1]), we define the (—m, k)-com-
ponent S_,, (T; w) by the following formula:

(5.37) S_mi(T; @)=N(n, k)XT., V'Z* )" *Pyn; [V, ®)))
for m>k, i.e., for (m, k)e 4.. We put

S_ni(T; )=0 for m<k.
For Te 7'(B[1]) and fe <~ (B[1]), we have
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(5.38) (T, = | 3%, (SmslT5 @), Suslf ONsns -

’

By Lemma 5.1 and Theorem 4.2, we can characterize the subspace
v*'(B[1]) of the space <& (Z") of hyperfunctions on I* as follows:

THEOREM 5.8. A hyperfunction Te <& (Z") belongs to the subspace
v*'(B[1)) if and only if

(5.39) S_ni(T; @)=0 for (m,k)¢Ad,.
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