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Introduction

Let D be the open unit disc in the complex plane C, D its closure
and T its boundary, the unit circle. The basic algebras appearing in this
paper are the algebra C(T) of continuous functions on T, and the algebra
L~ of essentially bounded, measurable functions with respect to the
normalized Lebesgue measure df/2r on T. These are Banach algebras
under the supremum and essential supremum norms, respectively. We
denote by A and H> the closed subalgebras of C(T) and L, respectively,
whose Fourier coefficients with negative indices vanish. Let M(B) be
the maximal ideal space of a uniform algebra B, and 3(B) be the Silov-
boundary. We recall that L™ is isometrically isomorphic to C(M(L>))
and that o(H>)=M(L>). Let us denote M(L>~) by X.

The closed subalgebras of L=, called Douglas algebras, which contain
H~> properly, are studied in connection with Toeplitz operators. There is
a smallest such algebra, namely, the closed subalgebra of L~ generated
by H* and C(T), which is denoted by [H=, C(T)]. This algebra turns
out to be equal to H=+C(T), the linear span of H> and C(T) ([14]).
A. Chang [3] and D. E. Marshall [10] showed that every Douglas algebra
B is characterized as an algebra B=H<>+C,, where Cj;is the C*-algebra
generated by the inner functions invertible in B." This fact inspired
our interest in characterizing or classifying closed subalgebras of H*
containing A, which will be called hereafter analytic subalgebras in this
paper. The algebras H>NC,, defined in [4] is only well-known class of
analytic subalgebras, which are associated with the Douglas algebras
H>+Cy. The first thing for this purpose, we shall construct in §1 a
new class of analytic subalgebras and seek common properties for these
algebras, hopefully, for all the analytic subalgebras. Second, we shall
be concerned in § 2 and § 4 with two problems, which will be mentioned
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below. We denote the independent variable on T by z or by e, accord-
ing to convenience. For f in L=, the harmonic extention of f into D is
defined by the Poisson’s formula. If f is in H=, this coincides with
the analytic extention of f to D. The restricted backward shift operator
is the operator U* on H* defined by U*(f)(e*’)=e*-(f(e*’)— £(0)), where

f (O)=(1/2n')s f(e®)dd. Algebras A, H* and H*NCj; are invariant under
T

U*. The key observation needed to solve the following problems is the
U*-invariance of an analytic subalgebra. Section 3 is devoted to the
existence of analytic subalgebras which are not U*-invariant.

D. Stegenga generalized in [17] the fact that H*+C(T) is closed,
by replacing H* by an w*-closed, shift-invariant subspace M. In view
of this, we shall attempt to generalize the fact by replacing H* by an
analytic subalgebra B;

PROBLEM P,: Find necessary and sufficient conditions for an analytic
subalgebra B to satisfy, in order that the linear span B+C(T) is a closed
subalgebra of L*, or in other words, that B4+C(T) coincides with the
closed subalgebra [B, C(T)].

Theorem 5 in §2 is an answer to P,.

J. Wermer [8] showed that if B is a closed subalgebra of C(T') and
contains A properly, then B=C(T). This fact is often called Wermer’s
maximality theorem. K. Hoffman and I. M. Singer [8] showed that if B
is a closed subalgebra of L* containing H* properly, then C(T)cCB,
namely, H>® is maximal in the algebra H*+C(T). D. Sarason [15] asks
the possibility of getting a common generalization which contains the
both maximality theorems as special cases. Let B be a closed subalgebra
of L~ such that ASBZ H*. He gives a sufficient condition for B to
contain C(T) and also gives an example of such B satisfying C(T)ZB.
We will consider this question as a problem for analytic subalgebras;

PrOBLEM P,. Find sufficient conditions for an analytic subalgebra
B to satisfy, in order that any closed superalgebra B of B in L* with
B¢ H> contains C(T).

Theorem 9 in §4 is an answer to P,.
A convenient reference book for the basic facts about closed sub-
algebras of L~ is K. Hoffman [8].

§1. Subalgebras By(X').

At first we review the definition and some properties of the algebras
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B, and B; obtained in [18]. By the separability of D, there exists a
countable, dense subset {x;:7€ N} of D, where N is the set of natural
numbers Let a be a mapping from N into D defined by a(n)=x,. By
the Cech-compactification BN of N, a can be extended to a unique con-
tinuous mapping from BN onto D, which we also denote by a. Further
a maps the growth N*=gN— N onto D by the compactness of SN—N.
- Fix an interpolating sequence S={z,: z, € D} for H>, which converges to
A of T. Identify # in N with 2, in D. Then we obtain an embedding
of BN into M(H*), by which N* corresponds to a compact, totally dis-
connected subset Y of the fiber M;={m e M(H>): m(z)=X\}. Thus given
a mapping ¥ from Y onto D, the mapping v* of C(D) into C(Y) is defined
by Y*(f)=fov. It is clear that v* is isometric.

We denote by o the restriction mapping of H* into C(Y), via the
Gelfand transform f of f; o(f)=Fly for fin H*. AsSis interpolating,
p is surjective. Define B, and B, to be p~'o7*(4) and p~'ov*(C(D)),
respectively. B, and B, are closed subalgebras satisfying the conditions
ASB,&SB,SH>, M(B,)=M(B;). The above is shown in [13].

LEMMA 1 (Newmann [8, p. 179]). For m in M(H>), the following
three conditions are equivalent;

(a) m 18 im the Silov-boundary,

(b) |m()|=1 for all Blaschke products b,

(e) m(b)#0 for all Blaschke products b.

PROPOSITION 1. The Silov-boundaries of B, and B, are equivalent
to the Silov-boundary of H*. B, and B, are mot logmodular on X.

PROOF. Define y~y' for y, ¥’ in Y by 7(y)=7(y’). We can identify
M(B;) with (M(H*)—Y)U(Y/~) and we have Y/~=D. Lemma 1 says
that the Silov-boundary X of H> is disjoint with Y, since the inter-
polating Blaschke product 5(S) is zero on Y but its modulus is 1 on X,
where b(S) is associated with S and defined by

b(S)(2) =T 2=l 2oz’
z, 1—7.z2
Therefore X is embedded in M(B,). Hence X is a boundary for B, and
for B,.
It remains to show that X is minimal one. For any open set U in
X, there exists g in H>* such that

max |g(m)|=|lg |l -
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Since the product ¢g-b(S) is zero on Y in the case of g¢ B,, g-b(S) is in
B, and it satisfies

max |§5(S)|=max |g| =l g]=lg-b(S) | -

Hence X is the Silov-boundary of B, and B,.

Further we shall show that B, and B, are not logmodular on X.
In fact, it is sufficient to remark that H> is logmodular on X and that
the mapping from Y onto D is not injective. The last assertion is clear,
because Y is disconnected and, in contrast, D is connected. Let y and
y" be in Y with y~%’. Then for y (resp. y’) there exists a unique re-
presenting measure g (resp. p') supported on X. Hence we have at
least two different representing measures for [y] in Y/~. This implied
that neither of two algebras B, and B, is logmodular on X. The proof
of Proposition 1 is complete.

Let X’ be a separable, connected, compact, Hausdorff space. Then
we define an analytic subalgebra By(X') in the same manner as we did
for B, and for B, by fixing an arbitrary uniform algebra B on X',
replacing D with X’ and regarding v* as a mapping from C(X’) into
C(Y), we define
By(X")=po7*(B) .

When X’=1D, the analytic subalgebras B, and B, are nothing but A(D)
(=p7o7*(A4)) and C(D)s(D) (=p~* = 7*(C(D))), respectively. For notational
convenience, we shall often use B instead of By(X').

THEOREM 1. The Silov-boundary of By(X') is X. By(X') 18 not
logmodular.

PROOF. The proof is exactly the same as the proof of Proposition
1 with D replaced by X’ and with B, (or B,) replaced by By (X").

By Theorem 1, the class of analytic subalgebras By(X’) is of different
type from the class of H> N Cj, because H* N C;is logmodular on 9(H* N Cjp)
(=M(Cp)) and M(Cp)+#M(Cjp) if Cz+#Chy.

We can characterize 0(Bg(X")) in analogous way as for H~ in Lemma 1.

THEOREM 2. For m in M(By(X')), the following conditions are
equivalent;

(@) m 18 in 0(By)

(b) |m@®)|=1 for all Blaschke products in By

(¢) md)+#0 for all Blaschke products in B;.
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PrROOF. By Lemma 1 and by Theorem 1, it is clear that (a) implies
(b). That (b) implies (c¢) is trivial. Now suppose (¢). So we may assume
that m(b(S))=1 for the interpolating Blaschke product 5(S). Now define
a complex homomorphism # from H<* into C such that @(f)=m(f-b(S))
for any fin H>. This mapping 4 is well-defined because of b(S)- H*C B,
and 7 is in M(H*) (details are given in [18]). For any Blaschke product
b in H=, m(') is not zero, since m(b’-b(S))#0 by (c). Hence by Lemma
1, @ isin X. Since XNY =@, # is identified with m (see [13]). Thus
(¢) implies (a). This completes the proof.

We remark that the equivalence of (a) and (b) in Theorem 2 is also
true for the case H*NC; (see [4]).

The following theorem for the case A was proved by Fisher [7],
for H> by Marshall [9] and for a general H*NC; by Chang and
Marshall [4].

LEMMA 2 (Bernard, Garnett and Marshall [2]). Let B be a uniform
algebra on a compact Hausdorff space X, and let U(B) be {uc B; |u(x)|=1
on X}. If B satisfies the following conditions

(1) the elements of U(B) separate the points of X,

(2) for fin CX) with || f||<1, there is g in C(X) such that |g|=1
and f—g 18 in B,
then the unit ball of B is the morm closed convex-hull of U(B).

THEOREM 8. The closed unit ball of Bs(X') is the norm closed convex-
hull of the Blaschke products in By(X').

PrROOF. First we remark that H> satisfies (1) and (2) in Lemma 2
by considering H> as a uniform algebra on X. By Theorem 1, By(X")
is considered as a uniform algebra on X, via the Gelfand transform. B
satisfies the conditions (1) and (2). In fact, for m, and m, in X, we
choose % in U(H>) such that m,(w)#=m,(u). If u is not in U(Bs«(X")),
then we only consider the function ub(S) in Bg(X'). Since m,(ub(S))+*
my(ub(S)), Bs(X’) satisfies (1). Suppose that f be in L~ (= C(X)) with
| fll<1l. Then fb(S) is in L= with || fb(S)|/<1, where b(S) is the com-
plex conjugate of 5(S). From (2) for H>, there exists « in U(L”) such
that f6(S)—w is in H*. Hence f——ub(S):gb(S) for some g in H*. That
gb(S) is in By(X’) implies (2). Therefore the unit ball of Bg(X') is the
norm closed convex-hull of U(Bs(X’)).

We remark that if w is an inner function of Bs, then by Frosteman’s
theorem [8, p. 176], u is the limit of the Blaschke products u;=(u— A/ —Nu)
for ne D, as A»—0. These Blaschke products are in Bs. Indeed, by the
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definition of Bs(X'), there exists F' in the uniform algebra B on X’ such
that v*(F)=p(u) and || F||<1, because 7* is isometric. Since 1—XFeB
satisfies ||1—(1—XF)||<1, the element 1—X-F is invertible in B. There-
fore 1/(1—X-u) is in B((X’). Hence a Blaschke product u, is in B,. This
completes the proof.

THEOREM 4. An analytic subalgebra By(X') is U*-invariant.

PROOF. Let g be in Bs. Then there is a G in B such that
T*(G)=p(g) and U*(g) is in H> because of the U*-invariance of H*. As
Y=BN—N is a closed subset of the fiber M,, we have that

O(U*(g)=T*@) |y =0 lr— gONA=7*(G—gO)) -
This implies that U*(g) is in Bs.

§2. Answer to Problem P,.

We introduce the algebras QC, defined by QC=(H=+C(T)N
(H>+C(T)), and QA, defined by QA=H=NQC; here the bar denotes the
complex conjugation.

First we quote a lemma from [5] which gives a necessary and suf-
ficient condition for the linear span E+F of two closed subspaces E and
F of a general Banach space B to be closed. Let || || be the norm in

B, if FE is any subspace of B, and let f € B. Then the distance of f to
E is given by

d(f, B)=inf {|| f—gll, gc E} .

LEMMA 3 (Davie, Gamelin and Garnett [5]). If E and F are arbitrary
closed subspaces of a Banach space B, then the following assertions are
equivalent:

(1) There is a constant K>0 such that

dif, EnF)=K-d(f,E), VfeF.
(2) E+F i3 a closed subspace of B.

The next lemma due to D. Sarason [14], together with Lemma 3,
shows that the linear span B+ C(T) is a closed subspace of L=, when B
is an analytic subalgebra.

LEMMA 4 (Sarason [14]). For every f in C(T),
a(f, A)=d(f, H~) .
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We can now give an answer to Problem P,, posed in the in-
troduction. The next theorem is independently obtained by T. Nakazi
[12].

THEOREM 5. Let B be an analytic subalgebra. The linear span
B+C(T) is a closed subalgebra of L™ if and only if B is U*-invariant.

Proor. If B is U*-invariant, then z"B is in B+C(T) for any = in
N. The subspace UU=,z"B is an algebra; its closure is also an algebra
and contains B+C(T). Since B+C(T) is closed, it must equal the closure
of Uz, 2B, and therefore B+C(T) is an algebra. Suppose B+C(T) be
an algebra. Then for feB and zeC(T), zZ(f—f(0)) is written as
2(f — f(0))=g+c for some function g+¢ in B+C(T). f—f(0)—zg (=zc)
in is BNC(T), namely, it is in A. From the U*-invariance of A, we
have f—f(0)—zg=z2k for some k in A. Hence Z(f—f(0))=k—g is in B.
This shows the U*-invariance of B.

COROLLARY. If B is a U*-invariant analytic subalgebra, then B is
maximal in the algebra B+ C(T).

PROOF. Suppose B is a closed subalgebra of B+C(T) with B&B.
Then there is he B—B, which is written as h=f+c for feB and
ceC(T). That h—f is in (BNC(T))— B implies BoC(T) by the Wermer’s
maximality theorem. Therefore we conclude B=B-+C(T).

In [1], Adamiyan, Arov and Krein give an example of a function
v € C(T') which has no nearest element in A, i.e., d(v, A)<d(v, g), Vg€ A.
Their example can be used to show that AGQA. However we prove
" this fact as a consequence of the above theorem.

LEMMA 5. QA is U*-invariant.

PROOF. Let g be in QA. Then g—g(0) can be written as f+é for
some fe€H> and c€C(T). Hence Z(f+@) is in H=+C(T), namely,
U*(9)=7(g9(2)—g(0)) is in QA.

COROLLARY. QA properly contains A.

PROOF. We must remark that the mapping; B— B+C(T), from the
family of analytic subalgebras B to the family of the linear span B+C(T)
is injective. Algebras A and QA are U*-invariant. From Theorem 5
we have that [A4, Z]=C(T) and [QA4, Z]=QA+C(T) (=QC). If A=QA4,
then C(T)=QC. This contradicts the fact C(T)&QC.
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§$3. Non-U*-invariant analytic subalgebras.

It would be interesting whether every analytic subalgebra is U*-
invariant. However Theorem 7 shows that this question has a negative
answer. D. Stegenga reports in [16] the similar result to Theorem 7
but, to my knowledge, the details have not been published. We shall
indicate the proof for the sake of completeness.

Let » be an inner function. The support of u, suppu, is the set
of points ne T, for which there is a sequence {z.} of points in D such
that z,—\ and u(z,)—0. Clearly supp« is closed in T. A linear span
uH>+ A is an algebra lying between 4 and H*™. Concerning the closed-
ness of uH"+ A and of uH>+C(T), we quote a corollary in [17].

LEMMA 6 (Stegenga [17]). Let u be an inner function. A necessary
and sufficient condition for the linear spans uH *+C(T) and uH*+ A
to be closed is that either supp u has Lebesgue measure zero or supp u="T.

We give here some properties of a class of analytic subalgebras of
(uH>+ A)-type.

LEMMA 7. Let u be an inner function. The algebra wH=+A
coincides with H> if and only if w is a finite Blaschke product, i.e.,
suppu=9.

PROOF. The proof of sufficiency is due to Muto [11]. We now prove
the necessity. Let us suppose that w is not a finite Blaschke product.
Then suppu is nonempty set. By passing to a subsequence, we may
assume that there is an interpolating sequence S={z,} in D such that
2,—\ for some ) esupp « and u(z,)—0. Identify n in N with z, in D.
Then we obtain an embedding of gN into M(H>), by which BN—N
corresponds to a closed subset ¥ of M,. As S is an interpolating
sequence, i.e.,

H*|s=12(8)=C(BN) ,

P —
we have that H”|,=C(Y). On the other hand, uH>+ A|, contains no
fuuction which is not constant. It follows that wH *+ASH*”, when
suppu*o.

THEOREM 6. Suppose uH“+A i3 an analytic subalgebra with
suppu# . Then uH"+ A is8 neither QA mor H*NC; for any Douglas
algebra B.

Proor. R. A. Douglas remarks in [6] that an inner function in QA
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is a finite Blaschke product. Hence we have uH*+A+#QA from the
above lemma.

If uH>+A=H*NC; for some Douglas algebra B, then for any g in
H= with ||g||<1, there exists a unimodular function v in (g-@+H>)NC;
(see Corollary 2.2 in [4]). Therefore v can be written as v=gu#+h for
some he€ H>, i.e., g=vu—hu. From uH>CC,, g is in Cz, namely, H> is
contained in C,. This contradicts the assumption that uH>+ASH™.
This completes the proof.

We now return to the characterization of U*-invariant analytic
subalgebras. To check the U*-invariance of an algebra uwH>+ A, the
following lemma is useful.

LEMMA 8 (Muto [11]). Let uH>+ A be an analytic subalgebra. Then
uH>+A 18 U*-invariant if and only if U*(u) is in uH>+ A.

THEOREM 7. An algebra uH>+A is U*-invariant analytic sub-
algebra if and only if supp u has Lebesgue measure zero.

PROOF. From Lemma 6, uH>~+ A is analytic subalgebra if and only
if the Lebesgue measure of suppw is 0 or 1. T. Muto [11] shows that
if supp u has Lebesgue measure zero, then U*(u) is in uH*+ A. Hence,
by Lemma 8, uH*+A is U*-invariant. Now we shall show that if
supp =T, then U*(w) is not in uH*+ A. It will be done by contradic-
tion. We remark by Privaloff’s theorem [8, p. 58] that if supp « has
positive measure, then uH*N A={0}. Suppose now that suppu=T and
U*(w)euH>+A. Then U*(u) can be written as

U*(u)=e"*-(u(e*) —u(0))=(u+ h,+ h,)(e*)
for some h,€ H” and some h,c A. So the function
u(e*)(1—e*- h,(e'%)) =u(0) + e - hy(e®)

is in ANw-H>. Therefore we have that 1—¢*“-h,(e*)=0 on T, namely
e is invertible in H*=. This is a contradiction. Hence for an inner
function v with suppu=7T, the analytic subalgebra uH>+ A is not U*-
invariant. This completes the proof.

We remark that Theorem 7 can be stated as follows; an algebra
wH>+ A is an analytic subalgebra which is not U*-invariant, if and only
if suppu="T.

Theorem 7, together with Theorem 5, shows that the linear space
wH>+C(T) is not an algebra when suppu=7, i.e., uH*+C(T)S[uH"+
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A, Z]. In the following corollary, we shall give a concrete form to the

algebra [uH~+A,Z], and show that the maximality of uH*+4 in

[uH=+ A, Z] fails, in contrast with the first corollary of Theorem 5.
For f and g in L~ and A a point in T, we define a local distance;

dist; (f, g)=ess. limsup | (e*)—g(e”)| .
e%0—2

If we extend f and g harmonically to D, then we also have

dist, (f, 9)=lim sup | f(2)—9(2)] -

For f in L~ and for a closed subset B in L, we define
dist, (f, B)=inf {dist,(f, h): he B} .

It is clear that dist;(f, 9)<| f—g]|, and that the function dist,(f, H*)
is upper semi-continuous with respect to A. So this function attains a
maximum on 7. We quote a lemma from [15].

LEMMA 9 (Sarason [15]). If f 18 im L, then
d(f, H*+C(T))=max {dist, (f, H): [n|=1}.

COROLLARY. Let u be an inner function with suppu=7T. Then the
closed subalgebra [uH>-+ A, Z] 18 nothing but w(H>+C(T))+C(T). More-
over there exists a closed subalgebra w(H=+C(T))+ A satisfying

wH*+ ASu(H*+C(T)+ASu(H"+C(T)+C(T) .

ProOF. First we shall show that (a) implies (b);
(a) there is an ¢>0 such that dist, (@, H*+C(T))=¢ for all A on T,

(b) w(H=+C(T))+C(T) is closed.
By the above lemma, we have that for any ¢’ in C(T),
dist (iic’, H*+C(T))=max {dist, (#c’, H*): [n|=1}
el .
Thus we know that w(H=-+C(T))NC(T)={0}.

Let g be in C(T). Suppose that g(A)+#0, ne€T and that h+c in
H>4+C(T). Then for z in T,

g\ |- | #(2) — (b +e)(2) | = (g(N) — 9(2)) - 1i(2) — g(N)(h + €)(2) + g(2)%(2) |
<lgW)—g@ |+l g—gMulh+o) || .

Therefore
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g(\)-dist, (@, H*+C(T))=d(g, w(H~+C(T))) .

d(g, w(H=+C(T)H)NC(T)=||g]|
=(1/e)d(g, w(H*+C(T)) ,
the linear span w(H>+C(T))+C(T) is closed, from Lemma 3.

Now we must show that (a) is valid. In fact, for A+c in H+C(T),
we have

Since

dist; (@, h+c)=ess. 11m sup |(E—h—c)(e”) ]

=ess. hm sup |1 —u(e®)-(h+c)(e*)|
=1.

Once we know that w(H=+C(T))+C(T) is closed, it is easy to prove
that this is an algebra generated by Z and by uH*+A. In fact, for
any n in N, the subspace 2 "(uH >+ A) is contained in w(H>+C(T))+4C(T).
The subspace U,z "(uH”+A) is an algebra, and its closure is also
algebra and contains «#(H*+C(T))+C(T). Hence the closure of
Uz, 2z "(uH>+A) is equal to w(H>+C(T))+C(T).

(a) implies that the subspace w(H>+C(T))+ A is closed. And it is
easy to see that this is a desired algebra.

§4. Answer to Problem P,.

We shall be concerned in the remainder of this paper with Problem
P, posed in the introduction.

The following theorem shows that every analytic subalgebra uH*+ A
which is not U*-invariant can always have a superalgebra of uH>+ A
in L which does not contain C(T).

THEOREM 8. Let u be an inner function with suppu=T. And let
E be a closed, nmowhere demse subset of T, whose Lebesgue measure s
positive, and X; be the characteristic function of E. Then the closed
subalgebra [uH*+ A, Xz] of L does not contain C(T).

PrROOF. The functions X;-k+g¢g are dense in [uH>+ A, Xz], where k.
and g are in uH+A. We have

dist; (Z, Xz-k+g)=dist;(Z,g) for A in T—F,

=dist, (z, f+uh) for g=f+uh,
=lim sup |1— zf—-zuhlzhmsupll z2f |

22, |z| <1

=[1-2f(N)] .



168 KIYOKO NISHIZAWA

Hence
HE—(XE-k+y)IIzZ§;I_% [1=AfF(N)] .

By using here the continuity of zf on T and the fact that zf is not
invertible in A, we have

Sup [1-Af()[=1—2f[|=1 .

This shows that Z is not in [uH>+ A, Xg], as is to be proved.

We can now obtain the main result of this paper, which is an answer
to P,.

THEOREM 9. Let B be an analytic subalgebra which contains an
ideal uH* of H*™, where u i3 an inner function with suppuET. Then
every closed superalgebra B of B in L™ satisfying BZ H> contains C(T).

PrROOF. From uH~cB, we have H c@B and Bc#B. The closed
subspace B is not necessarily an algebra. However, from the property
H~.-BciuiB, we see that the algebra [H>, B] generated by H* and B is
contained in %B. Since H>+C(T) is the minimum superalgebra of H*
in L*, H*+C(T) is contained in [H=, B] and so in #B. Therefore C(T)
is contained in #B, namely, uC(T)cB. The condition supp «& T implies
that «C(T)NC(T) is not contained in A. Hence BNC(T) contains A
properly. By the Wermer’s maximality theorem we conclude that C(T)
is contained in B.

The author is indebted to K. Izuchi for the proof of the above theo-
rem. The original proof by the author has an obscure point and is more

complicated.
Applying this theorem to certain U*-analytic subalgebras, we have
the following results.

COROLLARY. Let B be any superalgebra of By(X') in L™ with Bg H*.
Then B contains the analytic subalgebra Bg(X')+C(T).

PROOF. By(X’) contains an ideal b(S)-H> by the definition and is
U*-invariant by Theorem 4. Therefore we can apply Theorems 5 and 9
to Bs(X') to obtain By(X")+C(T)< B.

COROLLARY. Let uH=+ A be an analytic subalgebra. Then a neces-
sary and sufficient condition for a superalgebra B of uH*+A in L~
with BZ H> to contain C(T) is that supp v has Lebesgue measure zero.
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PROOF. We see by Lemma 6 that suppw« has measure zero or

suppu=T. In the first case, we can apply Theorem 9 to uH~+A. In
t~he second case, Theorem 8 shows that there exists a superalgebra
B (=[uH>+A, X;]) of wuH*+ A such that B¢ H~ and C(T)¢ B.
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