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Introduction

Let $D$ be the open unit disc in the complex plane $C,\overline{D}$ its closure
and $T$ its boundary, the unit circle. The basic algebras appearing in this
paper are the algebra $C(T)$ of continuous functions on $T$ , and the algebra
$L^{\infty}$ of essentially bounded, measurable functions with respect to the
normalized Lebesgue measure $ d\theta/2\pi$ on $T$ . These are Banach algebras
under the supremum and essential supremum norms, respectively. We
denote by $A$ and $H^{\infty}$ the closed subalgebras of $C(T)$ and $L^{\infty}$ , respectively,
whose Fourier coefficients with negative indices vanish. Let $M(B)$ be
the maximal ideal space of a uniform algebra $B$ , and $\partial(B)$ be the Silov-
boundary. We recall that $L^{\infty}$ is isometrically isomorphic to $C(M(L^{\infty}))$

and that $\partial(H^{\infty})=M(L^{\infty})$ . Let us denote $M(L^{\infty})$ by $X$.
The closed subalgebras of $L^{\infty}$ , called Douglas algebras, which contain

$H^{\infty}$ properly, are studied in connection with Toeplitz operators. There is
a smallest such algebra, namely, the closed subalgebra of $L^{\infty}$ generated
by $H^{\infty}$ and $C(T)$ , which is denoted by $[H^{\infty}, C(T)]$ . This algebra turns
out to be equal to $H^{\infty}+C(T)$ , the linear span of $H^{\infty}$ and $C(T)([14])$ .
A. Chang [3] and D. E. Marshall [10] showed that every Douglas algebra
$B$ is characterized as an algebra $B=H^{\infty}+C_{B}$ , where $C_{B}$ is the $C^{*}$-algebra
generated by the inner functions invertible in $B$ . This fact inspired
our interest in characterizing or classifying closed subalgebras of $H^{\infty}$

containing $A$ , which will be called hereafter analytic subalgebras in this
paper. The algebras $H^{\infty}\cap C_{B}$ , defined in [4] is only well-known class of
analytic subalgebras, which are associated with the Douglas algebras
$H^{\infty}+C_{B}$ . The first thing for this purpose, we shall construct in \S 1 a
new class of analytic subalgebras and seek common properties for these
algebras, hopefully, for all the analytic subalgebras. Second, we shall
be concerned in \S 2 and \S 4 with two problems, which will be mentioned
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below. We denote the independent variable on $T$ by $z$ or by $e^{\theta}$ , accord-
ing to convenience. For $f$ in $L^{\infty}$ , the harmonic extention of $f$ into $D$ is
defined by the Poisson’s formula. If $f$ is in $H^{\infty}$ , this coincides with
the analytic extention of $f$ to $D$ . The restricted backward shift operator
is the operator $U^{*}$ on $H^{\infty}$ defined by $U^{*}(f)(e^{\theta})=e^{-i\theta}\cdot(f(e^{t\theta})-f(O))$ , where
$ f(O)=(1/2\pi)\int_{T}f(e^{i\theta})d\theta$ . Algebras $A,$ $H^{\infty}$ and $H^{\infty}\cap C_{B}$ are invariant under
$U^{*}$ . The key observation needed to solve the following problems is the
$\sigma*$-invariance of an analytic subalgebra. Section 3 is devoted to the
existence of analytic subalgebras which are not $U^{*}$-invariant.

D. Stegenga generalized in [17] the fact that $H^{\infty}+C(T)$ is closed,
by replacing $H^{\infty}$ by an $w^{*}$-closed, shift-invariant subspace $M$. In view
of this, we shall attempt to generalize the fact by replacing $H^{\infty}$ by an
analytic subalgebra $B$ ;

PROBLEM $P_{1}$ : Find necessary and sufficient conditions for an analytic
subalgebra $B$ to satisfy, in order that the linear span $B+C(T)$ is a closed
subalgebra of $L^{\infty}$ , or in other words, that $B+C(T)$ coincides with the
closed subalgebra $[B, C(T)]$ .

Theorem 5 in \S 2 is an answer to $P_{1}$ .
J. Wermer [8] showed that if $B$ is a closed subalgebra of $C(T)$ and

contains $A$ properly, then $B=C(T)$ . This fact is often called Wermer’s
maximality theorem. K. Hoffman and I. M. Singer [8] showed that if $B$

is a closed subalgebra of $L^{\infty}$ containing $H^{\infty}$ properly, then $C(T)\subset B$,
namely, $H^{\infty}$ is maximal in the algebra $H^{\infty}+C(T)$ . D. Sarason [15] asks
the possibility of getting a common generalization which contains the
both maximality theorems as special cases. Let $B$ be a closed subalgebra
of $L^{\infty}$ such that $A\subsetneqq B\not\subset H^{\infty}$ . He gives a sufficient condition for $B$ to
contain $C(T)$ and also gives an example of such $B$ satisfying $C(T)\not\subset B$ .
We will consider this question as a problem for analytic subalgebras;

PROBLEM $P_{2}$ . Find sufficient conditions for an analytic subalgebra
$B$ to satisfy, in order that any closed superalgebra $\tilde{B}$ of $B$ in $L^{\infty}$ with
$\tilde{B}\not\subset H^{\infty}$ contains $C(T)$ .

Theorem 9 in \S 4 is an answer to $P_{2}$ .
A convenient reference book for the basic facts about closed sub-

algebras of $L^{\infty}$ is K. Hoffman [8].

\S 1. Subalgebras $B_{s}(X’)$ .
At first we review the definition and some properties of the algebras
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$B_{A}$ and $B_{c}$ obtained in [13]. By the separability of $\overline{D}$ , there exists a
countable, dense subset $\{x:i\in N\}$ of $\overline{D}$ , where $N$ is the set of natural
numbers. Let $\alpha$ be a mapping from $N$ into $\overline{D}$ defined by $\alpha(n)=x_{n}$ . By
the Cech-compactification $\beta N$ of $N,$ $\alpha$ can be extended to a unique con-
tinuous mapping from $\beta N$ onto $\overline{D}$ , which we also denote by $\alpha$ . Further
$\alpha$ maps the growth $N^{*}=\beta N-N$ onto $\overline{D}$ by the compactness of $\beta N-N$.
Fix an interpolating sequence $S=\{z_{n}:z_{n}\in D\}$ for $H^{\infty}$ , which converges to
$\lambda$ of $T$ . Identify $n$ in $N$ with $z_{n}$ in $D$ . Then we obtain an embedding
of $\beta N$ into $M(H^{\infty})$ , by which $N^{*}$ corresponds to a compact, totally dis-
connected subset $Y$ of the fiber $M_{\lambda}=\{m\in M(H^{\infty}):m(z)=\lambda\}$ . Thus given
a mapping $\gamma$ from $Y$ onto $\overline{D}$ , the mapping $\gamma^{*}$ of $C(\overline{D})$ into $C(Y)$ is defined
by $\gamma^{*}(f)=f\circ\gamma$ . It is clear that $\gamma^{*}$ is isometric.

We denote by $\rho$ the restriction mapping of $H^{\infty}$ into $C(Y)$ , via the
Gelfand transform $\hat{f}$ of $f;\rho(f)=\hat{f}|_{Y}$ for $f$ in $H^{\infty}$ . As $S$ is interpolating,
$\rho$ is surjective. Define $B_{A}$ and $B_{c}$ to be $\rho^{-1}\circ\gamma^{*}(A)$ and $\rho^{-1}\circ\gamma^{*}(C(\overline{D}))$ ,
respectively. $B_{A}$ and $B_{c}$ are closed subalgebras satisfying the conditions
$A\subsetneqq B_{A}\subsetneqq B_{C}\subsetneqq H^{\infty},$ $M(B_{A})=M(B_{c})$ . The above is shown in [13].

LEMMA 1 (Newmann [8, p. 179]). For $m$ in $M(H^{\infty})$ , the following
three conditions are equivalent;

(a) $m$ is in the Silov-boundary,
(b) $|m(b)|=1$ for all Blaschke products $b$ ,
(c) $m(b)\neq 0$ for all Blaschke products $b$ .
PROPOSITION 1. The Silov-boundaries of $B_{A}$ and $B_{c}$ are equivalent

to the Silov-boundary of $H^{\infty}$ . $B_{A}$ and $B_{c}$ are not logmodular on $X$.
PROOF. Define $y\sim y$

’ for $y,$ $y^{\prime}$ in $Y$ by $\gamma(y)=\gamma(y^{\prime})$ . We can identify
$M(B_{c})$ with $(M(H^{\infty})-Y)\cup(Y/\sim)$ and we have $Y/\sim\cong\overline{D}$ . Lemma 1 says
that the Silov-boundary $X$ of $H^{\infty}$ is disjoint with $Y$, since the inter-
polating Blaschke product $b(S)$ is zero on $Y$ but its modulus is 1 on $X$,
where $b(S)$ is associated with $S$ and defined by

$b(S)(z)=\prod\frac{|z_{n}|}{z_{n}}\frac{z_{n}-z}{1-\overline{z}_{n}z}$ .

Therefore $X$ is embedded in $M(B_{c})$ . Hence $X$ is a boundary for $B_{A}$ and
for $B_{c}$ .

It remains to show that $X$ is minimal one. For any open set $U$ in
$X$, there exists $g$ in $H^{\infty}$ such that

$\max_{r-U}|\hat{g}(m)|\leqq\Vert g\Vert$ .
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Since the product $g\cdot b(S)$ is zero on $Y$ in the case of $g\not\in B_{A},$ $g\cdot b(S)$ is in
$B_{4}$ and it satisfies

$\underline{\max_{x\iota r}}|\hat{g}b(S)\wedge|=\underline{\max_{XU}}|\hat{g}|\leqq\Vert g\Vert=\Vert g\cdot b(S)||$ .

Hence $X$ is the Silov-boundary of $B_{4}$ and $B_{c}$ .
Further we shall show that $B_{A}$ and $B_{c}$ are not logmodular on $X$.

In fact, it is sufficient to remark that $H^{\infty}$ is logmodular on $X$ and that
the mapping from $Y$ onto $\overline{D}$ is not injective. The last assertion is clear,
because $Y$ is disconnected and, in contrast, $\overline{D}$ is connected. Let $y$ and
$y$

’ be in $Y$ with $y\sim y^{\prime}$ . Then for $y$ (resp. $y’$) there exists a unique re-
presenting measure $\mu$ (resp. $\mu’$) supported on $X$. Hence we have at
least two different representing measures for $[y]$ in $Y/\sim$ . This implied
that neither of two algebras $B_{A}$ and $B_{c}$ is logmodular on $X$. The proof
of Proposition 1 is complete.

Let $X^{\prime}$ be a separable, connected, compact, Hausdorff space. Then
we define an analytic subalgebra $B_{s}(X^{\prime})$ in the same manner as we did
for $B_{A}$ and for $B_{c}$ ; by fixing an arbitrary uniform algebra $B$ on $X’$ ,
replacing $\overline{D}$ with $X^{\prime}$ and regarding $\gamma^{*}$ as a mapping from $C(X^{\prime})$ into
$C(Y)$ , we define

$B_{s}(X’)=\rho^{-1}\circ\gamma^{*}(B)$ .
When $X^{\prime}=\overline{D}$ , the analytic subalgebras $B_{A}$ and $B_{\sigma}$ are nothing but $A_{s}(\overline{D})$

$(=\rho^{-1}\circ\gamma^{*}(A))$ and $C(\overline{D})_{S}(\overline{D})(=\rho^{-1}\circ\gamma^{*}(C(\overline{D})))$ , respectively. For notational
convenience, we shall often use $B_{s}$ instead of $B_{s}(X^{\prime})$ .

THEOREM 1. The Silov-boundary of $B_{s}(X’)$ is X. $B_{s}(X’)$ is not
logmodular.

PROOF. The proof is exactly the same as the proof of Proposition
1 with $\overline{D}$ replaced by $X$’ and with $B_{c}$ (or $B_{A}$) replaced by $B_{s}(X’)$ .

By Theorem 1, the class of analytic subalgebras $B_{s}(X’)$ is of different
type from the class of $H^{\infty}\cap C_{B}$ , because $H^{\infty}\cap C_{B}$ is logmodular on $\partial(H^{\infty}\cap C_{B})$

$(=M(C_{B}))$ and $M(C_{B})\neq M(C_{B^{\prime}})$ if $C_{B}\neq C_{B^{\prime}}$ .
We can characterize $\partial(B_{s}(X^{\prime}))$ in analogous way as for $H^{\infty}$ in Lemma 1.

THEOREM 2. For $m$ in $M(B_{s}(X’))$ , the following conditions are
equivalent;

(a) $m$ is in $\partial(B_{s})$

(b) $|m(b)|=1$ for all Blaschke products in $B_{s}$

(c) $m(b)\neq 0$ for all Blaschke products in $B_{s}$ .
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PROOF. By Lemma 1 and by Theorem 1, it is clear that (a) implies
(b). That (b) implies (c) is trivial. Now suppose (c). So we may assume
that $m(b(S))=1$ for the interpolating Blaschke product $b(S)$ . Now define
a complex homomorphism $\tilde{m}$ from $H^{\infty}$ into $C$ such that $\tilde{m}(f)=m(f\cdot b(S))$

for any $f$ in $H^{\infty}$ . This mapping $\tilde{m}$ is well-defined because of $b(S)\cdot H^{\infty}\subset B_{s}$ ,
and $\tilde{m}$ is in $M(H^{\infty})$ (details are given in [13]). For any Blaschke product
$b^{\prime}$ in $H^{\infty},\tilde{m}(b’)$ is not zero, since $m(b^{\prime}\cdot b(S))\neq 0$ by (c). Hence by Lemma
1, nt is in $X$. Since $X\cap Y=\emptyset,\tilde{m}$ is identified with $m$ (see [13]). Thus
(c) implies (a). This completes the proof.

We remark that the equivalence of (a) and (b) in Theorem 2 is also
true for the case $H^{\infty}\cap C_{B}$ (see [4]).

The following theorem for the case $A$ was proved by Fisher [7],

for $H^{\infty}$ by Marshall [9] and for a general $H^{\infty}\cap C_{B}$ by Chang and
Marshall [4].

LEMMA 2 (Bernard, Garnett and Marshall [2]). Let $B$ be a uniform
algebra on a compact Hausdorff space $\tilde{X}$ , and let $U(B)$ be $\{u\in B;|u(x)|=1$

on $\tilde{X}$}. If $B$ satisfies the following conditions
(1) the elements of $U(B)$ separate the points of $ X\sim$’

(2) for $f$ in $C(\tilde{X})$ with 1 $f\Vert<1$ , there is $g$ in $C(X)$ such that $|g|=1$

and $f-g$ is in $B$ ,
then the unit ball of $B$ is the norm closed convex-hull of $U(B)$ .

THEOREM 3. The closed unit ball of $B_{s}(X’)$ is the norm closed convex-
hull of the Blaschke products in $B_{s}(X^{\prime})$ .

PROOF. First we remark that $H^{\infty}$ satisfies (1) and (2) in Lemma 2
by considering $H^{\infty}$ as a uniform algebra on $X$. By Theorem 1, $ B_{s}(X’\rangle$

is considered as a uniform algebra on $X$, via the Gelfand transform. $B_{s}$

satisfies the conditions (1) and (2). In fact, for $m_{1}$ and $m_{2}$ in $X$, we
choose $u$ in $U(H^{\infty})$ such that $m_{1}(u)\neq m_{2}(u)$ . If $u$ is not in $U(B_{s}(X’))$ ,
then we only consider the function $ub(S)$ in $B_{s}(X’)$ . Since $ m_{1}(ub(S))\neq$

$m_{2}(ub(S)),$ $B_{s}(X’)$ satisfies (1). Suppose that $f$ be in $L^{\infty}(=C(X))$ with
$\Vert f\Vert<1$ . Then $f\overline{b}(S)$ is in $L^{\infty}$ with $||f\overline{b}(S)\Vert<1$ , where $\overline{b}(S)$ is the com-
plex conjugate of $b(S)$ . From (2) for $H^{\infty}$ , there exists $u$ in $U(L^{\infty})$ such
that $f\overline{b}(S)-u$ is in $H^{\infty}$ . Hence $f-ub(S)=gb(S)$ for some $g$ in $H^{\infty}$ . That
$gb(S)$ is in $B_{s}(X^{\prime})$ implies (2). Therefore the unit ball of $B_{s}(X’)$ is the
norm closed convex-hull of $U(B_{s}(X’))$ .

We remark that if $u$ is an inner function of $B_{s}$ , then by Frosteman’s
theorem [8, p. 176], $u$ is the limit of the Blaschke products $u_{\lambda}=(u-\lambda)/(1-\overline{\lambda}u)$

for $xeD$ , as $\lambda\rightarrow 0$ . These Blaschke products are in $B_{s}$ . Indeed, by the
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definition of $B_{s}(X^{\prime})$ , there exists $F$ in the uniform algebra $B$ on $X$’ such
that $\gamma^{*}(F)=\rho(u)$ and $||F||\leqq 1$ , because $\gamma^{*}$ is isometric. Since $1-\overline{\lambda}F\in B$

satisfies $||1-(1-\overline{\lambda}F)||<1$ , the element $1-\overline{\lambda}\cdot F$ is invertible in $B$. There-
fore $1/(1-\overline{\lambda}\cdot u)$ is in $B_{s}(X’)$ . Hence a Blaschke product $u_{\lambda}$ is in $B_{s}$ . This
completes the proof.

THEOREM 4. An analytic subalgebra $B_{s}(X^{\prime})$ is $U^{*}$-invariant.
PROOF. Let $g$ be in $B_{s}$ . Then there is a $G$ in $B$ such that

$\gamma^{*}(G)=\rho(g)$ and $U^{*}(g)$ is in $H^{\infty}$ because of the $U^{*}$-invariance of $H^{\infty}$ . As
$Y=\beta N-N$ is a closed subset of the fiber $M_{\lambda}$ , we have that

$\rho(U^{*}(g))^{\wedge}=U^{*}(g)|_{1^{\prime}}=(\hat{g}|_{r}-g(0))/\lambda=\gamma^{*}((G-g(0))/\lambda)$ .
This implies that $U^{*}(g)$ is in $B_{s}$ .

\S 2. Answer to Problem $P_{1}$ .
We introduce the algebras $QC$, defined by $ QC=(H^{\infty}+C(T))\cap$

$\overline{(H^{\infty}+C(T))}$ , and $QA$ , defined by $QA=H^{\infty}\cap QC$; here the bar denotes the
complex coniugation.

First we quote a lemma from [5] which gives a necessary and suf-
ficient condition for the linear span $E+F$ of two closed subspaces $E$ and
$F$ of a general Banach space $B$ to be closed. Let $||$ $||$ be the norm in
$B$, if $E$ is any subspace of $B$, and let $f\in B$. Then the distance of $f$ to
$E$ is given by

$ d(f, E)=\inf$ {II $f-g||,$ $geE$}.

LEMMA 3 (Davie, Gamelin and Garnett [5]). If $E$ and $F$ are arbitrary
closed subspaces of a Banach space $B$, then the following assertions are
equivalent:

(1) There is a constant $K>0$ such that

$d(f, E\cap F)=K\cdot d(f, E)$ , $\forall f\in F$ .
(2) $E+F$ is a closed subspace of $B$.
The next lemma due to D. Sarason [14], together with Lemma 3,

shows that the linear span $B+C(T)$ is a closed subspace of $L^{\infty}$ , when $B$

is an analytic subalgebra.

LEMMA 4 (Sarason [14]). For every $f$ in $C(T)$ ,

$d(f, A)=d(f, H^{\infty})$ .
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We can now give an answer to Problem $P_{1}$ , posed in the in-
troduction. The next theorem is independently obtained by T. Nakazi
[12].

THEOREM 5. Let $B$ be an analytic subalgebra. The linear span
$B+C(T)$ is a closed subalgebra of $L^{\infty}$ if and only if $B$ is $U^{*}$-invariant.

PROOF. If $B$ is $U^{*}$-invariant, then $\overline{z}^{n}B$ is in $B+C(T)$ for any $n$ in
$N$. The subspace $\bigcup_{i=1}^{\infty}\overline{z}^{n}B$ is an algebra; its closure is also an algebra
and contains $B+C(T)$ . Since $B+C(T)$ is closed, it must equal the closure
of $\bigcup_{i=1}^{\infty}\overline{z}^{n}B$, and therefore $B+C(T)$ is an algebra. Suppose $B+C(T)$ be
an algebra. Then for $f\in B$ and $7\in C(T),$ $\overline{z}(f-f(O))$ is written as
$\overline{z}(f-f(O))=g+c$ for some function $g+c$ in $B+C(T)$ . $f-f(O)-zg(=zc)$

in is $B\cap C(T)$ , namely, it is in $A$ . From the $U^{*}$-invariance of $A$ , we
have $f-f(O)-zg=zk$ for some $k$ in $A$ . Hence $\overline{z}(f-f(O))=k-g$ is in $B$ .
This shows the $U^{*}$-invariance of $B$ .

COROLLARY. If $B$ is a $U^{*}$-invariant analytic subalgebra, then $B$ is
maximal in the algebra $B+C(T)$ .

PROOF. Suppose $\tilde{B}$ is a closed subalgebra of $B+C(T)$ with $B\subsetneqq\tilde{B}$.
Then there is $h\in\tilde{B}-B$ , which is written as $h=f+c$ for $f\in B$ and
$c\in C(T)$ . That $h-f$ is in $(\tilde{B}\cap C(T))-B$ implies $\tilde{B}\supset C(T)$ by the Wermer’s
maximality theorem. Therefore we conclude $\tilde{B}=B+C(T)$ .

In [1], Adamiyan, Arov and Krein give an example of a function
$v\in C(T)$ which has no nearest element in $A$ , i.e., $d(v, A)<d(v, g),$ $\forall g\in A$ .
Their example can be used to show that $A\subsetneqq QA$ . However we prove
this fact as a consequence of the above theorem.

LEMMA 5. $QA$ is $U^{*}$-invariant.

PROOF. Let $g$ be in $QA$ . Then $g-g(O)$ can be written as $\overline{f}+\overline{c}$ for
some $f\in H^{\infty}$ and $c\in C(T)$ . Hence $\overline{z}(\overline{f}+\overline{c})$ is in $\overline{H^{\infty}+C(T)}$ , namely,
$U^{*}(g)=\overline{z}(g(z)-g(O))$ is in $QA$ .

COROLLARY. $QA$ properly contains $A$ .
PROOF. We must remark that the mapping; $B\rightarrow B+C(T)$ , from the

family of analytic subalgebras $B$ to the family of the linear span $B+C(T)$

is injective. Algebras $A$ and $QA$ are $U^{*}$-invariant. From Theorem 5
we have that $[A, \overline{z}]=C(T)$ and $[QA, \overline{z}]=QA+C(T)(=QC)$ . If $A=QA$ ,
then $C(T)=QC$. This contradicts the fact $C(T)\subsetneqq QC$.
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\S 3. Non-U*-invariant analytic subalgebras.

It would be interesting whether every analytic subalgebra is $U^{*}-$

invariant. However Theorem 7 shows that this question has a negative
answer. D. Stegenga reports in [16] the similar result to Theorem 7
but, to my knowledge, the details have not been published. We shall
indicate the proof for the sake of completeness.

Let $u$ be an inner function. The support of $u$ , supp $u$ , is the set
of points $\lambda\in T$, for which there is a sequence $\{z_{n}\}$ of points in $D$ such
that $ z_{n}\rightarrow\lambda$ and $u(z_{n})\rightarrow 0$ . Clearly supp $u$ is closed in $T$. A linear span
$uH^{\infty}+A$ is an algebra lying between $A$ and $H^{\infty}$ . Concerning the closed-
ness of $uH^{\infty}+A$ and of $uH^{\infty}+C(T)$ , we quote a corollary in [17].

LEMMA 6 (Stegenga [17]). Let $u$ be an inner function. A necessary
and sufficient condition for the linear spans $uH^{\infty}+C(T)$ and $uH^{\infty}+A$

to be closed is that either supp $u$ has Lebesgue measure zero or supp $u=T$.
We give here some properties of a class of analytic subalgebras of

$(uH^{\infty}+A)- type$ .
LEMMA 7. Let $u$ be an inner function. The algebra $uH^{\infty}+A$

coincides with $H^{\infty}$ if and only if $u$ is a finite Blaschke product, i.e.,
supp $ u=\emptyset$ .

PROOF. The proof of sufficiency is due to Muto [11]. We now prove
the necessity. Let us suppose that $u$ is not a finite Blaschke product.
Then suppu is nonempty set. By passing to a subsequence, we may
assume that there is an interpolating sequence $S=\{z.\}$ in $D$ such that
$ z_{n}\rightarrow\lambda$ for some $\lambda$ esuppu and $u(z_{n})\rightarrow 0$ . Identify $n$ in $N$ with $z_{n}$ in $D$ .
Then we obtain an embedding of $\beta N$ into $M(H^{\infty})$ , by which $\beta N-N$

corresponds to a closed subset $Y$ of $M_{\lambda}$ . As $S$ is an interpolating
sequence, i.e.,

$H^{\infty}|_{s}=l^{\infty}(S)=C(\beta N)$ ,

we have that $\wedge H^{\infty}|_{Y}=C(Y)$ . On the other hand, $uH^{\infty}+A\wedge|_{Y}$ contains no
fuuction which is not constant. It follows that $uH^{\infty}+A\subsetneqq H^{\infty}$ , when
supp $ u\neq\emptyset$ .

THEOREM 6. Suppose $uH^{\infty}+A$ is an analytic subalgebra with
supp $ u\neq\emptyset$ . Then $uH^{\infty}+A$ is neither $QA$ nor $H^{\infty}\cap C_{B}$ for any Douglas
algebra $B$ .

PROOF. R. A. Douglas remarks in [6] that an inner function in $QA$
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is a finite Blaschke product. Hence we have $uH^{\infty}+A\neq QA$ from the
above lemma.

If $uH^{\infty}+A=H^{\infty}\cap C_{B}$ for some Douglas algebra $B$, then for any $g$ in
$H^{\infty}$ with $\Vert g\Vert<1$ , there exists a unimodular function $v$ in $(g\cdot\overline{u}+H^{\infty})\cap C_{B}$

(see Corollary 2.2 in [4]). Therefore $v$ can be written as $v=g\overline{u}+h$ for
some $h\in H^{\infty},$ $i.e.,$ $g=vu-hu$ . From $uH^{\infty}\subset C_{B},$ $g$ is in $C_{B}$ , namely, $H^{\infty}$ is
contained in $C_{B}$ . This contradicts the assumption that $uH^{\infty}+A\subsetneqq H^{\infty}$ .
This completes the proof.

We now return to the characterization of $U^{*}$-invariant analytic
subalgebras. To check the $U^{*}$-invariance of an algebra $uH^{\infty}+A$ , the
following lemma is useful.

LEMMA 8 (Muto [11]). Let $uH^{\infty}+A$ be an analytic subalgebra. Then
$uH^{\infty}+A$ is $U^{*}$-invariant if and only if $U^{*}(u)$ is in $uH^{\infty}+A$ .

THEOREM 7. An algebra $uH^{\infty}+A$ is $U^{*}$-invariant analytic sub-
algebra if and only if supp $u$ has Lebesgue measure zero.

PROOF. From Lemma 6, $uH^{\infty}+A$ is analytic subalgebra if and only
if the Lebesgue measure of supp $u$ is $0$ or 1. T. Muto [11] shows that
if supp $u$ has Lebesgue measure zero, then $U^{*}(u)$ is in $uH^{*}+A$ . Hence,
by Lemma 8, $uH^{*}+A$ is $U^{*}$-invariant. Now we shall show that if
supp $u=T$ , then $U^{*}(u)$ is not in $uH^{*}+A$ . It will be done by contradic-
tion. We remark by Privaloff’s theorem [8, p. 58] that if supp $u$ has
positive measure, then $uH^{\infty}\cap A=\{0\}$ . Suppose now that supp $u=T$ and
$U^{*}(u)\in uH^{\infty}+A$ . Then $U^{*}(u)$ can be written as

$U^{*}(u)=e^{-i\theta}\cdot(u(e^{i\theta})-u(0))=(u\cdot h_{1}+h_{2})(e^{i\theta})$

for some $h_{1}\in H^{\infty}$ and some $h_{2}\in A$ . So the function
$u(e^{i\theta})(1-e^{i\theta}\cdot h_{1}(e^{i\theta}))=u(0)+e^{t\theta}\cdot h_{2}(e^{i\theta})$

is in $A\cap u\cdot H^{\infty}$ . Therefore we have that $1-e^{i\theta}\cdot h_{1}(e^{i\theta})=0$ on $T$ , namely
$e^{i\theta}$ is invertible in $H^{\infty}$ . This is a contradiction. Hence for an inner
function $u$ with supp $u=T$ , the analytic subalgebra $uH^{\infty}+A$ is not $U^{*}-$

invariant. This completes the proof.

We remark that Theorem 7 can be stated as follows; an algebra
$uH^{\infty}+A$ is an analytic subalgebra which is not $U^{*}$-invariant, if and only
if suppu $=T$ .

Theorem 7, together with Theorem 5, shows that the linear space
$uH^{\infty}+C(T)$ is not an algebra when supp $u=T$ , i.e., $uH^{\infty}+C(T)\subsetneqq[uH^{\infty}+$
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$A,\overline{z}]$ . In the following corollary, we shall give a concrete form to the
algebra $[uH^{\infty}+A, \overline{z}]$ , and show that the maximality of $uH^{\infty}+A$ in
$[uH^{\infty}+A, \overline{z}]$ fails, in contrast with the first corollary of Theorem 5.

For $f$ and $g$ in $L^{\infty}$ and $\lambda$ a point in $T$, we define a local distance;

$dist_{\lambda}(f, g)=ess$ . $\lim_{\theta\rightarrow\lambda}$

$sup|f(e^{i\theta})-.g(e^{i\theta})|$ .

If we extend $f$ and $g$ harmonically to $D$ , then we also have

$dist_{\lambda}(f, g)=\lim_{\iota\rightarrow\lambda}.\sup_{\iota eD}|f(z)-g(z)|$ .
For $f$ in $L^{\infty}$ and for a closed subset $B$ in $L^{\infty}$ , we define

$dist_{\lambda}(f, B)=\inf\{dist_{\lambda}(f, h):h\in B\}$ .
It is clear that $dIst_{\lambda}(f, g)\leqq\Vert f-g\Vert$ , and that the function $dist_{\lambda}(f, H^{\infty})$

is upper semi-continuous with respect to N. So this function attains a
maximum on $T$ . We quote a lemma from [15].

LEMMA 9 (Sarason [15]). If $f$ is in $L^{\infty}$ , then

$d(f, H^{\infty}+C(T))=\max\{dist_{\lambda}(f, H^{\infty}):|\lambda|=1\}$ .
COROLLARY. Let $u$ be an inner function with supp $u=T$. Then the

closed subalgebra $[uH^{\infty}+A, \overline{z}]$ is nothing but $u(H^{\infty}+C(T))+C(T)$ . More-
over there exists a closed subalgebra $u(H^{\infty}+C(T))+A$ satisfying

$uH^{\infty}+A\subsetneqq u(H^{\infty}+C(T))+A\subsetneqq u(H^{\infty}+C(T))+C(T)$ .
PROOF. First we shall show that (a) implies (b);
(a) there is an $\epsilon>0$ such that $dist_{\lambda}(\overline{u}, H^{\infty}+C(T))\geqq\epsilon$ for all $\lambda$ on $T$ ,
(b) $u(H^{\infty}+C(T))+C(T)$ is closed.

By the above lemma, we have that for any $c^{\prime}$ in $C(T)$ ,

dist $(\overline{u}c’, H^{\infty}+C(T))=\max\{dist_{\lambda}(\overline{u}c^{\prime}, H^{\infty}):|\lambda|=1\}$

$\geqq||c||$ .
Thus we know that $u(H^{\infty}+C(T))\cap C(T)=\{0\}$ .

Let $g$ be in $C(T)$ . Suppose that $g(\lambda)\neq 0,$ $\lambda\in T$ and that $h+c$ in
$H^{\infty}+C(T)$ . Then for $z$ in $T$ ,

$|g(\lambda)|\cdot|\overline{u}(z)-(h+c)(z)|=|(g(\lambda)-g(z))\cdot\overline{u}(z)-g(\lambda)(h+c)(z)+g(z)\overline{u}(z)|$

$\leqq|g(\lambda)-g(z)|+||g-g(\lambda)u(h+c)\Vert$ .
Therefore
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$g(\lambda)\cdot dist_{\lambda}(\overline{u}, H^{\infty}+C(T))\leqq d(g, u(H^{\infty}+C(T)))$ .
Since

$ d(g, u(H^{\infty}+C(T))\cap C(T))=||g\Vert$

$\leqq(1/\epsilon)d(g, u(H^{\infty}+C(T))$ ,

the linear span $u(H^{\infty}+C(T))+C(T)$ is closed, from Lemma 3.
Now we must show that (a) is valid. In fact, for $h+c$ in $H+C(T)$ ,

we have
$dist_{\lambda}(\overline{u}, h+c)=ess$ . $\lim_{i\theta_{\rightarrow\lambda}}$

$sup|(\overline{u}-h-c)(e^{i\theta})|$

$=ess$ . lim $sup|1-u(e^{i\theta})\cdot(h+c)(e^{i\theta})|$

$\geqq 1$ .
Once we know that $u(H^{\infty}+C(T))+C(T)$ is closed, it is easy to prove

that this is an algebra generated by 2 and by $uH^{\infty}+A$ . In fact, for
any $n$ in $N$, the subspace $z^{-n}(uH^{\infty}+A)$ is contained in $u(H^{\infty}+C(T))+C(T)$ .
The subspace $\bigcup_{i=n}^{\infty}z^{-n}(uH^{\infty}+A)$ is an algebra, and its closure is also
algebra and contains $u(H^{\infty}+C(T))+C(T)$ . Hence the closure of
$\bigcup_{i=n}^{\infty}z^{-n}(uH^{\infty}+A)$ is equal to $u(H^{\infty}+C(T))+C(T)$ .

(a) implies that the subspace $u(H^{\infty}+C(T))+A$ is closed. And it is
easy to see that this is a desired algebra.

\S 4. Answer to Problem $P_{2}$ .
We shall be concerned in the remainder of this paper with Problem

$P_{2}$ posed in the introduction.
The following theorem shows that every analytic subalgebra $uH^{\infty}+A$

which is not $U^{*}$-invariant can always have a superalgebra of $uH^{\infty}+A$

in $L^{\infty}$ which does not contain $C(T)$ .
THEOREM 8. Let $u$ be an inner function with supp $u=T$ . And let

$E$ be a closed, nowhere dense subset of $T$, whose Lebesgue measure is
positive, and $\chi_{B}$ be the characteristic function of E. Then the closed
subalgebra $[uH^{\infty}+A, \chi_{B}]$ of $L^{\infty}$ does not contain $C(T)$ .

PROOF. The functions $\chi_{B}.k+g$ are dense in $[uH^{\infty}+A, \chi_{B}]$ , where $k$ .
and $g$ are in $uH^{\infty}+A$ . We have

$dist_{\lambda}(\overline{z}, x_{B}\cdot k+g)=dist_{\lambda}(\overline{z}, g)$ for $\lambda$ in $T-E$ ,
$=dist_{\lambda}(\overline{z}, f+uh)$ for $g=f+uh$ ,
$=\lim_{z\rightarrow\lambda,|}\sup_{z|<1}|1-zf$-zuh $|\geqq\lim_{\iota\rightarrow\lambda,|}\sup_{z|<1}|1-zf|$

$=|1-\lambda f(\lambda)|$ .
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Hence
$||\overline{z}-(\chi_{B}.k+g)||\geqq\sup_{\lambda eT-B}|1-\lambda f(\lambda)|$ .

By using here the continuity of $zf$ on $T$ and the fact that $zf$ is not
invertible in $A$ , we have

$\grave{\sup_{\lambda eT-E}}|1-\lambda f(\lambda)|=||1-zf\Vert\geqq 1$ .
This shows that 7 is not in $[uH^{\infty}+A, \chi_{B}]$ , as is to be proved.

We can now obtain the main result of this paper, which is an answer
to $P_{2}$ .

THEOREM 9. Let $B$ be an analytic subalgebra which contains an
ideal $uH^{\infty}$ of $H^{\infty}$ , where $u$ is an inner function with supp $u\subsetneqq T$. Then
every closed superalgebra $\tilde{B}$ of $B$ in $L^{\infty}$ satisfying $\tilde{B}\not\subset H^{\infty}$ contains $C(T)$ .

PROOF. From $uH^{\infty}\subset B$, we have $H^{\infty}\subset\overline{u}\tilde{B}$ and $\tilde{B}\subset\overline{u}\tilde{B}$. The closed
subspace $\overline{u}\tilde{B}$ is not necessarily an algebra. However, from the property
$H^{\infty}\cdot\tilde{B}\subset\overline{u}\tilde{B}$, we see that the algebra $[H^{\infty},\tilde{B}]$ generated by $H^{\infty}$ and $\tilde{B}$ is
contained in a $\tilde{B}$. Since $H^{\infty}+C(T)$ is the minimum superalgebra of $H^{\infty}$

in $L^{\infty},$ $H^{\infty}+C(T)$ is contained in $[H^{\infty},\tilde{B}]$ and so in $\overline{u}\tilde{B}$. Therefore $C(T)$

is contained in $\overline{u}\tilde{B}$, namely, $uC(T)\subset\tilde{B}$. The condition supp $u\subsetneqq T$ implies
that $uC(T)\cap C(T)$ is not contained in $A$ . Hence $\tilde{B}\cap C(T)$ contains $A$

properly. By the Wermer’s maximality theorem we conclude that $C(T)$

is contained in $\tilde{B}$.
The author is indebted to K. Izuchi for the proof of the above theo-

rem. The original proof by the author has an obscure point and is more
complicated.

Applying this theorem to certain $U^{*}$-analytic subalgebras, we have
the following results.

COROLLARY. Let $\tilde{B}$ be any 8uperalgebra of $B_{s}(X)$ in $L^{\infty}$ with $\tilde{B}\not\subset H^{\infty}$ .
Then $\tilde{B}$ contains the analytic subalgebra $B_{s}(X^{\prime})+C(T)$ .

PROOF. $B_{s}(X’)$ contains an ideal $b(S)\cdot H^{\infty}$ by the definition and is
$\sigma*$-invariant by Theorem 4. Therefore we can apply Theorems 5 and 9
to $B_{s}(X^{\prime})$ to obtain $B_{s}(X^{\prime})+C(T)\subseteqq\tilde{B}$.

COROLLARY. Let $uH^{\infty}+A$ be an analytic subalgebra. Then a neces-
sary and sufficient condition for a superalgebra $\tilde{B}$ of $uH^{\infty}+A$ in $L^{\infty}$

with $\tilde{B}\not\subset H^{\infty}$ to contain $C(T)$ is that supp $u$ has Lebesgue measure zero.
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PROOF. We see by Lemma 6 that supp $u$ has measure zero or
supp $u=T$ . In the first case, we can apply Theorem 9 to $uH^{\infty}+A$ . In
the second case, Theorem 8 shows that there exists a superalgebra
$\tilde{B}(=[uH^{\infty}+A, \chi_{E}])$ of $uH^{\infty}+A$ such that $\tilde{B}\not\subset H^{\infty}$ and $C(T)\not\subset\tilde{B}$.
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