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It often happens that the existence of a function on a riemannian
manifold satisfying some condition gives informations about the topolo-
gical, differentiable or riemannian structure of the manifold. In fact,
in 1962, Obata characterized the euclidean sphere of radius $1/\sqrt{k}$ as the
only complete riemannian manifold which has a nontrivial solution for
the differential equation

(1) Hess $f+kfg=0$

with a positive constant $k$ , where Hess $f$ is a symmetric $(0,2)$-tensor called
the hessian of $f$ defined by $(Hessf)(X, Y)=(\nabla_{X}df)(Y)=XYf-(\nabla_{X}Y)f$ for
any vector fields $X$ and $Y$, and $g$ is the metric tensor: that is

THEOREM A (Obata [3, 4]). Let $k>0$ . For a $C^{\infty}$ complete riemannian
manifold $(M, g)$ of dimension $n(\geqq 2)$ , there is a $C^{\infty}$ nontrivial function
$f$ on $M$ satisfying (1), if and only if $(M, g)$ is isometric to the euclidean
n-sphere $(S^{n}, (1/k)g_{0})$ of radius $1/\sqrt{k}$ , where $ g_{0}denote\epsilon$ the canonical
metric on $S^{n}$ with constant curvature 1.

Also there is a work by Tanno [5] in which he investigated effects
of some differential equations of order three on riemannian and k\"ahlerian
manifolds.

In this article we give necessary and sufficient conditions for the
existence of a nontrivial function $f$ on $(M, g)$ which satisfies (1) with a
nonpositive constant $k$ . A manifold is assumed to be of $C^{\infty}$ and con-
nected, unless otherwise indicated. Also all tensors (including functions,
vector fields, etc.) are assumed to be $C^{\infty}$ , unless otherwise indicated.

The case $k=0$ is reduced to the following trivial theorem:
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THEOREM B. A complete riemannian manifold $(M, g)$ of dimension
$n(\geqq 2)$ has a nontrivial function $f$ on $M$ satisfying

Hess $f=0$ ,

if and only if $(M, g)$ is the riemannian product $(\overline{M},\overline{g})\times(R, g_{0})$ of a
complete riemannian manifold $(\overline{M},\overline{g})$ and the real line $(R, g_{0})$ , where $g_{0}$

denotes the canonical metric of $R$ .
A proof of Theorem $B$ will be found in e.g. [7].
It is easily verified that every nontrivial function satisfying (1) with

$k>0$ has critical points and that any nontrivial function satisfying (1)
with $k=0$ does not have critical points. But the case $k<0$ is divided
into following two theorems:

THEOREM C. Suppose that $(M, g)$ is a complete riemannian manifold
of dimension $n(\geqq 2)$ , and that $k<0$ . Then there is a nontrivial function
$f$ on $M$ with a critical point which satisfies (1), if and only if $(M, g)$

is the simply connected complete riemannian manifold $(H^{n}, -(1/k)g_{0})$ of
constant curvature $k$ , where $g_{0}$ is the canonical metric on the hyperbolic
space of constant curvature $-1$ .

THEOREM D. Let $(M, g)$ and $k$ be as in Theorem C. Then there is
a function $f$ on $M$ without critical points which satisfies (1), if and only
if $(M, g)$ is the warped product $(\overline{M},\overline{g})_{\xi}\times(R, g_{0})$ of a complete riemannian
manifold $(\overline{M},\overline{g})$ and the real line $(R, g_{0})$ , warped by a function $\xi:R\rightarrow R$

such that $\xi+k\xi=0,$ $\xi>0$ , where $g_{0}$ denotes the canonical metric on $R$ ;
$g_{0}=dt^{2}$ .

The notion of warped products shall be reviewed in \S 1, and proofs
of Theorem $C$ and Theorem $D$ are given in \S 2 and \S 3, respectively.

By noting that the simply connected complete n-dimensional rieman-
$structedasthewarpedproduct(R^{n-1}, g_{0})_{\text{\’{e}}}\times(R|g_{0})with\xi=e^{\pm\sqrt{}^{\frac{i}{-k}}}nianmanifold(H^{n},-(1/k)g_{0})ofconstantcurvaturek(n\geqq 2, k<0)stcon-(see$

Lemma 3 in \S 1), we conclude from Theorem $C$ and Theorem D.

COROLLARY E. Let $(M, g)$ and $k$ be as in Theorem C. Then there
is a nontrivial function $f$ on $M$ satisfying (1), if and only if $(M, g)$ is
the warped product $(\overline{M},\overline{g})_{\xi}\times(R, g_{0})$ of a complete riemannian manifold
$(\overline{M},\overline{g})$ and the real line $(R, g_{0})$ , warped by a function $\xi;R\rightarrow R$ such that
$\xi+k\xi=0,$ $\xi>0$ .

Combining the theorems mentioned above and Lemma 3 in \S 1, we have
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COROLLARY F. Suppose that $(M, g)$ is a complete riemannian mani-
fold of dimension 2 and that $k$ is any constant. If there is a nontrivial
function $f$ on $M$ which satisfies (1), then $(M, g)$ is of constant curvature
$k$ .

In \S 4, we will briefly discuss conformal vector fields on a riemannian
manifold as an application of the above theorems, and generalize a
theorem of Yano and Nagano [7] for (not necessarily complete) conformal
vector fields on a complete Einstein manifold.

The author thanks Prof. M. Obata for his valuable suggestions.

\S 1. Warped products.

In this section, we review briefly the fundamental formulas for
warped products (see, for detail, Bishop-O’Neill [1]).

Let $I$ be an open interval in $R$ . For a riemannian manifold $(\overline{M},\overline{g})$

and a function $\xi;I\rightarrow R$ with positive values, the warped product $(M, g)=$
$(\overline{M},\overline{g})_{\xi}\times(I, g_{0})$ of $(\overline{M},\overline{g})$ and the interval (I, $g_{0}$) warped by $\xi$ , is defined by

$M=\overline{M}\times I$ , $g=\xi^{2}\overline{g}+g_{0}$ ,

where $g_{0}$ is the canonical metric of $I$. Note that any vector field $X$ on
$\overline{M}$ is lifted onto $M$ uniquely. Unless confusions may happen, the lift of
$X$ is also denoted by the same symbol $X$. Let $\nabla$ and V be the rieman-
nian connections of $(M, g)$ and $(\overline{M},\overline{g})$ , respectively. Then the following
lemma is easily verified, where $T$ denotes the lift of the vector field
$d/dt$ on $I$.

LEMMA 1. For any vector fields $X,$ $Y$ on $\overline{M}$,
(a) $\nabla_{X}Y=\overline{\nabla}_{X}Y-\xi\dot{\xi}\overline{g}(X, Y)T$

(b) $\nabla_{T}X=\nabla_{X}T=(\dot{\xi}/\xi)X$

(c) $\nabla_{T}T=0$ .

A proof is found in [1]. This lemma implies

COROLLARY 2. For any riemannian manifold $(\overline{M},\overline{g})$ , the warped
product $(M, g)=(\overline{M},\overline{g})_{\xi}\times(R, g_{0})$ with $\xi-\xi=0,$ $\xi>0$ , has a solution of the
equation Hess $f- fg=0$ without critical points.

PROOF. Take a function $F:R\rightarrow R$ as $\xi\dot{F}-\xi F=0$ . Then the function
$f:\overline{M}\times R\rightarrow R$ defined by $f(\overline{p}, t)=F(t)(\overline{p}\in\overline{M}, t\in R)$ is a solution of the
above equation without critical points.

Next, we calculate the curvature tensor and the Ricci curvature of a
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warped product. Let $R$ be the curvature tensor of $(M, g)=(\overline{M},\overline{g})_{\epsilon}\times(I, g_{0})$

and $\overline{R}$ the curvature tensor of $(\overline{M},\overline{g})$ (here we adopt the sign convention
$R(X, Y)=[\nabla_{X}, \nabla_{Y}]-\nabla_{[X,Y]})$ . Also let Ric and $\overline{Ric}$ be the Ricci tensors of
$(M, g)$ and $(\overline{M},\overline{g})$ , respectively.

LEMMA 3. For any vector fields $X,$ $Y$ and $Z$ on $\overline{M}$, the following
hold:

(a) $R(X, Y)Z=\overline{R}(X, Y)Z+\dot{\xi}^{2}\{\overline{g}(X, Z)Y-\overline{g}(Y, Z)X\}$

(b) $R(X, Y)T=0$
(c) $g(R(T, X)T,$ $Y$) $=\ddot{\xi}\xi\overline{g}(X, Y)$ .
LEMMA 4. If $X$ is a vector field on $\overline{M}$, then the following hold:
(a) Ric(X, $X$) $=\overline{Ric}(X, X)-\{\dot{\xi}/\xi+(n-1)(\dot{\xi}/\xi)^{2}\}g(X, X)$

(b) $Ric(T, T)=-n(\ddot{\xi}/\xi)$

where $n$ is the dimension of $\overline{M}$.
Proofs are found in [1].

\S 2. Proof of Theorem C.

In this section, we give a proof of Theorem C. We begin with the
following lemma.

LEMMA 5. Suppose that $(N, g)$ is a (not necessarily complete) rieman-
nian manifold of dimension $n(\geqq 2)$ , and that $f$ is a function on $(N, g)$

without critical points. If $f$ satisfies the equation

(2) Hess $f-- fg=0$ ,

then the following hold:
(a) If $\nu$ is the vector field on $N$ defined by $\nu=(1/|gradf|)gradf$,

then $\nabla_{\nu}\nu=0$ , i.e., any integral curve of $\nu$ is a geodesic.
(b) Every hypersurface $f^{-1}(a)$ is totally umbilic; in fact, if $h$ is

the second fundamental form of $f^{-1}(a)$ with $\nu$ as its unit normal vector
field, then $h=-$ ($f/|$ grad $f|$ ) $g$ .

PROOF. To prove (a) it suffices to show that $V,..df$ grad $f$ is linearly
dependent on grad $f$. By the definition of the hessian, we have $(Hessf)$

(X, grad $f$) $=$ \langle $\nabla_{gradf}$ grad $f,$ $ X\rangle$ for any tangent vector $X$, where $ g=\langle\cdot, \cdot\rangle$ .
This implies, with (2), that $\nabla_{gradf}$ grad $f=f$ grad $f$. Thus we have (a).

Next we prove (b). For any vector fields $X,$ $Y$ tangent to $f^{-1}(a)$ ,
we have, by Weingarten’s formula for hypersurfaces, that
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$-h(X, Y)=\langle\nabla_{X}\nu, Y\rangle=-\langle\nu, \nabla_{X}Y\rangle=-\frac{1}{|gradf|}(\nabla_{X}Y)f$ .

On the other hand, (2) implies that $(\nabla_{X}Y)f+f\langle X, Y\rangle=0$ . Thus we con-
clude (b).

PROOF OF THEOREM C. It suffices to prove Theorem $C$ with $k=-1$ .
Also it is obvious that $(H^{n}, g_{0})$ , the simply connected n-dimensional com-
plete riemannian manifold of constant curvature $-1$ , has a nontrivial
function $f$ with a critical point which satisfies Hess $f-fg_{0}=0$ . In fact,
if we choose any point $p$ in $H^{n}$ , the function $f$ on $H^{n}$ defined by $f(q)=$

cosh $r$ , where $\gamma=dist(p, q)$ , is a nontrivial solution of the above equation
with a critical point $p$ . Now we shall show that the converse is also
true. Let $(M, g)$ be a complete riemannian manifold of dimension $n(\geqq 2)$ ,
and $f$ a nontrivial function on $(M, g)$ with a critical point which satisfies

(3) Hess $f- fg=0$ .
Note that if $\gamma;R\rightarrow M$ is a geodesic with unit speed, then the equation
(3) is written down, on $\gamma$ , as

(4) $\frac{d^{2}}{dt^{2}}(f\circ\gamma)-f\circ\gamma=0$ .

This is a second order ordinary differential equation, so $ f\circ\gamma$ is determined
uniquely by the values $f\circ\gamma(0)$ and $df\circ\gamma(0)$ . Without loss of generality,
we may assume $f(p)=1$ and $df(p)=0$ . Also we have easily that

(5) $f(q)=\cosh|X|$ for $q=\exp_{p}X$

by (4). On the other hand, by joining $p$ and $q$ by a minimizing geodesic,
we have

(6) $ f(q)=\cosh\gamma$ , where $\gamma=dist(p, q)$ .
By (5) and (6), any geodesic through $p$ is minimizing, and therefore,

(7) $\exp_{p}:T_{p}M\rightarrow M$ is bijective.

Let $\gamma;[0, \infty$ ) $\rightarrow M$ be an arbitrary geodesic such that $\gamma(0)=p,$ $\gamma\equiv 1$ , and
$J$ a Jacobi field along $\gamma$ such that $J(O)=0,$ $|j(0)|=1$ and that $\langle J,\dot{\gamma}\rangle\equiv 0$ .
We shall show that

(8) $|J(\gamma)|=\sinh r$ , for all $ r\in[0, \infty$ ).

Fix $r\in(O, \infty)$ . Then $\overline{M}=f^{-1}(\cosh\gamma)$ is a hypersurface in $M$, and $\nu$ , the
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restriction of ( $1/|$ grad $f|$ )$gradf$ to $\overline{M}$, is a unit normal vector field of
$\overline{M}$. Note that $J(r)$ is tangent to $\overline{M}$. Let $h$ be the second fundamental
form of $\overline{M}$. Then, by Lemma 5 and Weingarten’s formula, we have

$\frac{1}{2}\frac{d}{dt}|_{=r}\langle J, J\rangle=\langle J, \nabla_{\nu}J\rangle|_{t=r}=\langle J, \nabla_{J}\nu\rangle|_{=r}$

$=-h(J(r), J(r))=\frac{f}{|gradf|}\langle J, J\rangle|_{t=r}=\frac{\cosh r}{\sinh r}\langle J, J\rangle|_{t=r}$ .

Thus (8) holds. By (8), we conclude that $\gamma$ has no conjugate points of
$p=\gamma(O)$ . Combining this fact with (7), we have

(9) $\exp_{p}:T_{p}M\rightarrow M$ is a diffeomorphism.

(8) and (9) show that $M\backslash \{p\}$ is isometric to the warped product $(S^{n-1}, g_{0})_{\text{\’{e}}}\times$

(I, $g_{0}$) with $I=(O, \infty),$ $\xi(t)=\sinh t$ . In fact, identifying $(S^{n-1}, g_{0})$ with
$\{X\in T_{p}M:|X|=1\}$ , we can construct an isometry of $(S^{n-1}, g_{0})_{\xi}\times(I, g_{0})$ onto
$(M, g)$ by (X, $t$) $\mapsto\exp_{p}tX,$ $x\in T_{p}M,$ $|X|=1;t\in I$. But, by Lemma 3,
$(S^{n-1}, g_{0})_{\xi}\times(I, g_{0})$ is of constant curvature $-1$ , and therefore, $M\backslash \{p\}$ is of
constant curvature $-1$ . Because of the continuity of the curvature, $M$

is of constant curvature $-1$ . Thus, with (9), we conclude that $(M, g)$

is isometric to $(H^{n}, g_{0})$ . This completes the proof of Theorem C.

\S 3. Proof of Theorem D.

In this section, we give a proof of Theorem D. Without IOSEI of
generality, we may assume $k=-1$ .

PROOF OF THEOREM D. We have already seen in Corollary 2 that a
half of Theorem $D$ holds. So it is sufficient to show that the converse
is also true.

Suppose that $(M, g)$ is a complete riemannian manifold of dimension
$n(\geqq 2)$ , and that $f$ is a function on $M$ without critical points which
satisfies (3). We shall show that $(M, g)$ is isometric to the warped product
$(\overline{M},\overline{g})_{\xi}\times(R, g_{0})$ of some complete riemannian manifold $(\overline{M},\overline{g})$ and the real
line $(R, g_{0})$ warped by a function $\xi;R\rightarrow R$ with $\xi>0,$ $\xi-\xi=0$ . Put $\nu=$

$(1/|gradf|)gradf$. Fix aeR so that $\overline{M}=f^{-1}(a)\neq\emptyset$ , and let $\overline{g}$ be the
induced metric of $\overline{M}$. Also let $\varphi$ be the flow of $\nu$ and define the map
$\Psi:\overline{M}\times R\rightarrow M$ by $\Psi(\overline{p}, t)=\varphi_{t}(\overline{p})$ for peM and $t\in R$ . It is obvious that
$\Psi$ is a diffeomorphism. So $\overline{M}$ is connected. Moreover $ X\cdot$ \langle$gradf$, grad $ f\rangle$ $=$

$2(Hessf)$ ($X$, grad $f$) $=0$ for any tangent vector $X$ of $\overline{M}$, so grad $f|$ is
constant on $\overline{M}$. Since the value of $f$ at $\Psi(\overline{p}, t)$ is determined by the
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values of $f$ and $df$ at $\overline{p},$ $f$ is given by

(10) $f\circ\Psi(\overline{p}, t)=Ae^{t}-Be^{-t}$ , $\overline{p}\in\overline{M}$ , $teR$ ,

where $A$ and $B$ are constants such that $A,$ $B\geqq 0,$ $A^{2}+B^{2}\neq 0$ . Put $\xi(t)=$

$(Ae^{t}+Be^{-t})/(A+B)$ . Now we prove that $\Psi$ is an isometry from $($lil, $\overline{g})_{\text{\’{e}}}\times$

$(R, g_{0})$ onto $(M, g)$ . To see this, it suffices to show that for each fixed
$reR,$ $\psi=\Psi|_{M\times\{r\}}-$ maps $(\overline{M},\overline{g})$ into $(M, g)$ in such a way that
(11) $\{\xi(r)\}^{2}\overline{g}=\psi^{*}g$ .
Fix $\overline{p}e\overline{M}$ and put $\gamma(t)=\Psi(\overline{p}, t),\overline{p}e\overline{M},$ $teR$ . Recall that $\gamma$ is a geodesic
in $M$. Let $J$ be a Jacobi field along $\gamma$ such that $J(O)$ is tangent to $\overline{M}$.
Then, by Weingarten’s formula, Lemma 5 and (10), we have

$\frac{1}{2}\frac{d}{dt}|_{t=r}\langle J, J\rangle=\langle J, \nabla_{J}\nu\rangle|_{t=r}=-h(J(r), J(r))$

$=\frac{f}{|gradf|}\langle J, J\rangle|_{t=r}=\frac{Ae^{\prime}-Be^{-r}}{Ae^{r}+Be^{-r}}\langle J, J\rangle|_{t=r}$ ,

where $h$ is the second fundamental form of the hypersurface $f^{-1}(f\circ\gamma(r))$ .
Thus $|J(r)|^{2}=\{\xi(r)\}^{2}|J(0)|^{2}$ , and, therefore, $|\psi_{*}J(0)|^{2}=|J(r)|^{2}=\{\xi(r)\}^{2}|J(0)|^{2}$ .
Thus (11) holds. This completes the proof of Theorem D.

\S 4. Conformal vector fields.

In [7], Yano and Nagano established the fact that if a complete
Einstein manifold of dimension $n(\geqq 3)$ admits a complete nonhomothetic
conformal vector field then the manifold is isometric to a sphere of
constant curvature. Recall that a vector field $V$ on a riemannian mani-
fold $(M, g)$ is said to be conformal if it satisfies

(12) $L_{V}g=2fg$

with some function $f$ on $M$, where $L_{V}g$ denotes the Lie derivative of $g$

with respect to $V$. Especially if (12) holds for a constant function $f$

(resp. $f\equiv 0$), then $V$ is said to be homothetic (resp. isometric). Also a
vector field on a manifold $M$ is said to be complete if its flow $\varphi_{t}(p),$ $p\in M$,
is defined for all $teR$ and $p\in M$. In this section, we investigate con-
formal vector fields which is not necessarily complete. We begin with
some examples.

EXAMPLES. (1) Let $f$ be a nontrivial function on a riemannian
manifold $(M, g)$ satisfying (1) with $k\neq 0$ . Since $L_{gradf}g=2$ Hess $f$, the



150 MASAHIKO KANAI

gradient vector field grad $f$ is nonhomothetic and conformal. But for
$k<0$ , grad $f$ is not complete even if $(M, g)$ is complete (cf. [7]).

(2) A vector field $V$ on the $n(\geqq 2)$ dimensional euclidean space
$(R^{n}, g_{0})$ defined by

$V=x^{n}(x^{1}\frac{\partial}{\partial x^{1}}+\cdots+x^{n-1}\frac{\partial}{\partial x^{n-1}})+\frac{1}{2}(x^{n})^{2}\frac{\partial}{\partial x^{n}}$

is nonhomothetic and conformal, where $(x^{1}, \cdots, x^{n})$ is the canonical co-
ordinates. But $V$ is not complete.

THEOREM G. An $n(\geqq 3)$ dimensional complete Einstein manifold
$(M, g)$ with scalar curvature $n(n-1)k$ admits a (not necessarily complete)

nonhomothetic comformal vector field if and only if one of the following
conditions holds:

(i) $k>0$ and $(M, g)$ is isometric to the euclidean n-sphere $(S^{n}, (1/k)g_{0})$

of radius $1/\sqrt F$ .
(ii) $k=0$ and $(M, g)$ is isometric to the n-dimensional euclidean

space $(R^{n}, g_{0})$ .
(iii) $k<0$ and $(M, g)$ is isometric to the warped product $(\overline{M},\overline{g})_{\xi}\times$

$(R, g_{0})$ of a complete Einstein manifold $(\overline{M},\overline{g})$ of scalar curvature
$4(n-1)(n-2)kC_{1}C_{2}$ and the real line $(R, g_{0})$ , warped by $\xi(t)=C_{1}e^{1\overline{-k}t}+$

$C_{2}e^{-1\overline{-k}t}$ , where $C_{1}$ and $C_{2}$ are nonnegative constants.

PROOF. It is an immediate consequence of Theorem $A$ , Corollary $E$

and the above examples that $(M, g)$ admits a nonhomothetic conformal
vector field if (i), (ii) or (iii) holds. So we shall prove that the converse
is also true. Let $V$ be a nonhomothetic conformal vector field on $(M, g)$

with $L_{\gamma}g=2fg$ . Since $(M, g)$ is an Einstein manifold with $Ric=(n-1)kg$ ,
we have Hess $f+kfg=0$ (see [6], pp. 160-161). We continue the proof
dividing into three cases.

(a) $k>0$ : In this case, $(M, g)$ is isometric to $(S^{n}, (1/k)g_{0})$ , by Theo-
rem A.

(b) $k<0$ : If $f$ has a critical point, then Theorem $C$ implies that
$(M, g)$ is isometric to $(H^{n}, -(1/k)g_{0})=(R^{n-1}, g_{0})_{\xi}\times(R, g_{0}),$ $\xi(t)=e$‘

$\sqrt{-k}t$ and
therefore, the condition (iii) holds. Now, suppose that $f$ has no critical
points. Since $(M, g)$ has a nontrivial function $f$ satisfying Hess $f+kfg=0$ ,
$(M, g)$ is isometric to a warped product $(\overline{M},\overline{g})_{\xi}\times(R, g_{0})$ with $\xi+k\xi=0$ , by
Theorem D. Let Ric and $\overline{Ric}$ be the Ricci tensors of $(M, g)$ and $(\overline{M},\overline{g})$ ,
respectively. $(M, g)$ is an Einstein manifold with $Ric=(n-1)kg$ and,
hence, we have $\overline{Ric}=(n-2)(k\xi^{2}+\xi^{2})\overline{g}$ , by Lemma 4.

(c) $k=0$ : Since Hess $f=0$ holds, $(M, g)$ is isometric to a riemannian
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product $(\overline{M},\overline{g})\times(R, g_{0})$ and $f$ is defined by $f(\overline{p}, t)=At+B,\overline{p}e\overline{M},$ $t\in R$ , by
Theorem B. Decompose $V$ as $V=\overline{V}+W$, where $V|_{\overline{H}\times\{t\}}$ is tangent to $\overline{M}\times\{t\}$

and $W|_{\{\overline{p}\}\times R}$ is tangent to $\{\overline{p}\}\times R$ for each fixed $\overline{p}\in\overline{M},$ $t\in R$ . Then for
each fixed $t$ and any vector fields $X,$ $Y$ tangent to $\overline{M}\times\{t\},$ $(L_{V}^{-}\overline{g})(X, Y)=$

$2(At+B)\overline{g}(X, Y)$ . Hence $\overline{M}\times\{t\}$ admits a nonisometric homothetic vector
field $\overline{V}|_{M\times\{t\}}-$ , for each fixed $t$ such that $At+B\neq 0$ . It is known that a
complete riemannian manifold which admits a nonisometric homothetic
vector field is isometric to the euclidean space ([2]). So $(M, g)$ is isometric
to $(R^{n-1}, g_{0})\times(R, g_{0})=(R^{n}, g_{0})$ . This completes the proof of Theorem G.

ADDED IN PROOF. Just before this article comes to be published, I
was announced by Prof. Y. Tashiro that our results (especially Theorem
$C$ and Theorem $D$ mentioned in the introduction) had been already es-
tablished in his paper [8; Theorem 2] where he investigated equations
more general than those considered here. But his treatments seem to
be different from ours in some points. I express my gratitude to Prof.
Tashiro for his kind suggestions.
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