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In this paper we consider some properties of exposed points in the
unit ball of function algebras. In §1 we give some characterizations of
exposed points in the unit ball U of certain function algebras. Also we
consider conditions so that U can be equal to the closed convex hull of
exposed points of U. In §2, some examples are given.

Introduction

Let X be a compact Hausdorff space and A a function algebra on
X, i.e., a uniformly closed subalgebra of C(X) that contains the constants
and separates points of X, where C(X) denotes the Banach algebra of
complex-valued continuous functions on X with the supremum norm. By
U we denote the unit ball of A4, i.e., U={f e A:| fl|S1}. We recall the
notion of exposed points of U. A function f in U is called an exposed
point of U if there exists L in A* such that L(f)=1=|| L] and Re L(g)<1
for g e U, g=<f, where Re L(g) is the real part of L(g). It is clear that
every exposed point is an extreme point but the converse is not always
true.
- Characterizations of exposed points have been investigated in [1],
[3], [7], [8], [9] and so on. Especially, Phelps [7] gave some interesting
results on logmodular algebras. Moreover Fisher [3] and Serizawa [8]
gave extensions of the Phelps’ results. In this paper we give some
generalizations of Phelps’ and Fisher’s results.

We here assume the following condition.

(*) There exist (pairwise disjoint) closed sets X, in X (i=1, 2, -- -)'
such that Alx, is closed in C(X,) and U, X, is dense in X. :

For each 4, we denote by A, the restriction of A to X,. MA’- and
M,, will denote the maximal ideal space of A and A,, respectively. Then
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A, is a function algebra on a compact Hausdorff space X, and there is
a representing measure m, for @, in M,, which is supported on X, ([6;
Chap. 7, p. 166]).

§1. The main results.

We say that A, has the condition (a) if no non-zero function in A,
vanishes on a set F in X, with m(&)>0.

THEOREM 1.1. Let A be a function algebra on a compact Hausdorff
space X with the condition (*). Let A, and m, be as above for each i.
Suppose each A, has the condition (a). If feU and m(FNX)>0 for
1=1,2, ---, then f is an exposed point of U, where F={xec X: |f(x)|=1}.

PRrROOF. Since m,(FNX,)>0 for each i, we define L,c A* by

1
m(FNX,)

Then L.(f|z)=1=|L,|. Now if L(g)=1=]| L,| for ge A, ||g||=<1, then

L(g)= Sm .. gflzdm, (geA).

S gflx;dmc=m¢(FﬂXi) .
FNXqy

Since gf[r,eC(X,) and |gflys|<1 on X, gfls=1 a.e. on FNX. So
g=f a.e. on F(X,. By the condition (a) of A, g=f on X,. Hence
S lx,is an exposed point of the unit ball of A, for each i. Furthermore
if we put

Lo)= 35 Liolx) (@ed),

then Le A* and L(f)=1=||L]|l. For any ge A with ||g||<1 and g=<f,
g=<f on X; for some j, 1=j<co. In fact, if g=f on X, for all 7, g=f
on X because of the density of U, X, in X. So for the bounded linear
functional L; as above,

ReLi(g|Xj)<1 .

Then Re L(g)=Re X%, (1/29)L(g|x,)<1l. Consequently, f is an exposed
point of the unit ball U of A.

Next we consider conditions so that U can be the closed convex hull
of its exposed points.

THEOREM 1.2. Let A be a function algebra, generated by its inner
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Sunctions, on a compact Hausdorf space X with the condition (*). Let
A, and m, be as above for each i. Suppose each A, has the condition
(a). Then U 18 the closed convex hull of its exposed points.

PrROOF. Since A is generated by inner functions, a theorem in [2]
(Theorem 2.2) implies that U is the closed convex hull of its inner
functions. Now by Theorem 1.1, every inner function is an exposed
point and thus the assertion holds.

A representing measure m for ¢ ¢ M, is said to be dominant if any
representing measure for ¢ is absolutely continuous with respect to m
([4; Chap. 2, p. 44)).

In particular, we consider Theorem 1.2 under the following condition

(**)'

(**) There exists a finite family {X.};-, of maximal antisymmetric
sets of A with X=Ur, X..

Then we obtain the following result.

THEOREM 1.8. Let A be a function algebra on a compact Hausdorff
space X with the condition (**). Let A,=A|x,. Let m, be a dominant
representing measure for @, e M,, 1=i=n). Suppose each A, has the
condition (). Then U 18 the closed convex hull of its exposed points.

PROOF. Let U, be the unit ball of A, and exp U, be the set of ex-
posed points of U, for each ¢. A same method as Fisher [3; Theorem 3}
shows that U, is the closed convex hull of expU,. For any ge U, then
glx,€ U, for each i. Given ¢>0. We can choose the functions f*, ---,
{8 eexpU, and the constants A{”, ---, A{%, such that A{"=0, D9 AP =1
and

k(%)

lolx— S s

=1

<e,

for 1=1,2, ---, n. (The number k(i) depends on index .) Define the

functions f;..; and the constants v;..; as follows:

(1)

i) on X
ffl"'-‘in—

(n)

im on X,

and

—_3 1 .2\
l)jl...jn-—-):_,'l )\:,“ ’
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where 1<j,<k(1), -+, and 1<j,<k(n). Then f..;, eC(X) and fj..; |z €
A, for 1<i<n. So fj..;,eA and || f;..; [I<1. Furthermore f;.., |r,
are in exp U, for each 7. Thus f,1 .i, are exposed points of U. (This
can be showed by the same argument as the proof of Theorem 1.1.)
On the other hand, v;..; are positive constants and 3; .
So

T ”,'1...,'“:1-

2”:1 Jnf.u J”IX{ 2”51 *in “)
— W £
’2:317\': fi

Hence

g — 3 vspesaFigeeeiall ggx‘ag: 19— vseesuFipominll 2,
<e.

As ¢ is arbitrary, the theorem holds.

We obtain the Fisher’s theorem as a special case of Theorems 1.1
and 1.3.

COROLLARY 1.4 ([3]). Let A be a function algebra on a compact
Hausdorff space X and m a dominant representing measure for @ € M,.
Suppose that m({g=0})>0, ge A, implies g=0. Then a function feU
with m({| f|=1})>0 i8 an exposed point of U and U is the closed convex
hull of exposed points of U.

Proor. It is sufficient to show that A is an antisymmetric algebra,
i.e., every real-valued function in A is constant. If ge A is real on X,
then g is real on the closed support S, of m. By the antisymmetric
property of S, ([6; Chap. 3, Theorem 6]), g is constant on S,. By the
assumption, g is constant on X. Thus A is antisymmetric and so this
case is reduced to Theorems 1.1 and 1.3 where 7=1.

If m is dominant, Serizawa’s condition is equivalent to Fisher’s.
There is an algebra with a dominant representing measure which does
not satisfy Serizawa’s condition. (E.g., Example 2 in §2.)

Under the condition (**) we consider the converse of Theorem 1.1.

PROPOSITION 1.5. Let A be a function algebra on a compact Hausdorff
space X with the condition (**). Let A,;=Al|x,. Let m, be a representing
measure for ¢,€ M,,. Assume the property: if p is a measure on X,
orthogonal to A, pt is absolutely continuous to m, for each i. Then, if
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feU is an exposed point of U, m(FNX)>0 for 1=<i<n, where F=
e Xt | f(x)|=1}.

PROOF. Suppose m (FNX;)=0 for some j, 1=j=n. Let p¢ be a
measure on X; orthogonal to A;. Then p(FNX;)=0. So if f is an ex-
posed point of U, for f|;;e A; there is a function ge A; such that g=f
on FNX;, g==f on X; and |l gl|=|flraz;ll (5. Now let L(f)=1=| Ll
for Le A*. Then there is a non-negative Baire measure » on X such
that v(X)=1,

Lk)= L hfdy  (heAd),

where the closed support S of v is contained in F. Put

_ {g on X;
" (f otherwise .

Then heC(X) and hlr,€Alr, 1=i=n. So heA, |r]=1 and h=<f on
X. On the other hand,

L(h)= Sshfdu
=¢5:"‘1 Ssnx; hfdy
=f§5 Ssnx; | fldy+ Ssnx,- g.fdv
=\ 1rav=1.

Consequently, f is not an exposed point of U.

NoOTE. In Theorem 1.1, suppose that X is separable and A=C(X).
Then, there is a countable dense set {%,.), %@, -+ -} in X. Let X,={x.u},
A,=C(X)|g,=C(X,) and m, be the unit point mass at x,,. HEach X, isa
maximal set of antisymmetry of A. Then, if feC(X) is a unimodular
function, f is an exposed point of U and so f is an extreme point. On
the other hand, Phelps [7] established the following: if there is a diffuse
measure on X, the sets of extreme points and exposed points of U are
equal. Indeed, in this case, p=32, (1/29m, is a diffuse measure. More-
over, if there is a diffuse measure on X, the unit ball of C(X) is the
closed convex hull of its exposed points.
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§2. Examples.

ExAMPLE 1. Let A be the disk algebra or R(K), where K is a
compact subset of C and its interior is connected. By the theorems and
proposition in §1, exposed points of both algebras can be completely
characterized.

ExXAMPLE 2 ([7]). Let X, ={z:|2|=1}, X,={z:|2—38|=1} and X=X, X,.
Let A be the algebra of functions which are continuous on X having
continuously analytic extensions to {z:|z|<1}{J{z:]2—8|<1}. Let m, and
m, be a representing measure on X for z=0 and z=838, respectively.
Then each X, is a maximal set of antisymmetry of A, because X, is
the closed support of m, for ¢=1,2. So a function fe A with || f||=1
is exposed point if and only if m/(FNX)>0 for ¢=1,2, where F=
{z: |f()|=1}. And the unit ball of A is the closed convex of its exposed
points.

ExXAMPLE 3. Let X={(z,t):|2|=1,0=t<1} and A be a function alge-
bra generated by z, ¢ (|z|=1,0<t<1). It is known that X,={(z, t.): |2|=1}
is a maximal set of antisymmetry of A for each ¢, 0<t,<1. As the
interval [0, 1] is separable, there exists a countable dense set {t..), tuw»
--+}in [0, 1]. Put X,={(, t.w): |2|=1}. Then U, X, is dense in X. Let
A,=A|x, and m, be a (unique) representing measure for (0, t,.,) for each
1. So X satisfies the condition (*) and each A, has the condition ().
Thus Theorem 1.1 holds. And we can easily see that A is generated
by inner functions z, ¢ and ¢ *(|z|=1,0<t<1). Thus Theorem 1.2 also
holds.

EXAMPLE 4. Let X ,={z:|2|=1}, X,={2:2<2<8}and X=X,JX,. Let
A be the algebra of functions which are continuous on X and can be
extended to be analytic in {z: |2|<1}). There is a countable dense set
{taws tas -} in X,. Now put K ={z: |z|=1} and K,={t,,} (¢=1). Then
each K, (:=0) is a maximal set of antisymmetry of A and U, K, is
dense in X. So X has the condition (*). Let A;=A|g, m, the normalized
Lebesgue measure and m, the unit point mass at ¢,, (¢=1). Each A,
has the condition (a). Now put the functions w, (1=<¢<6) as follows:
w,=2 on X, and w,=1 on X,, w,=2 on X, and w,=—1 on X,, w;=1 on
X, and w;=¢* on X,, w,=—1 on X, and w,=¢* on X,, w,=1 on X, and
w;=e* on X;, we=—1 on X, and wy,=e¢"* on X,. Then A is generated
by inner functions w,, ¢=1, ---,6. So Theorems 1.1 and 1.2 hold.

ExXAMPLE 5. Let X ,={(2,0):|2|=1}, X,={(0,?):0<t<1} and X=X,UX,.
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Let A be the algebra of functions which are continuous on X and which
can be extended to be analytic in {(z, 0): |2|<1}. Then A is a function
algebra on X. Since [0, 1] is separable, there is a countable dense set
{tzw)y taw, ***} in [0, 1], where ¢,,=0. Then put

K1={(z; 0): |zl=1}U{(0, ta(l))}
K2={(0, ta(z))}

---------

We can see that each K, is a maximal set of antisymmetry of A and
Uz, K; is dense in X. So X has the condition (*). Let A,=Al|g,. Let
m, be a (unique) representing measure for (a, 0) in M,, 05|a|<1 and m;,
(4=2) the point mass at (0, f,,). Then each A, has the condition (a).
Thus Theorem 1.1 holds. But the unit ball of A is not the closed
convex hull of its exposed points ([7]). In this case, if fe A is inner,
f must be a constant of modulus 1 on X;. A is not generated by inner
functions.

ExXAMPLE 6. Let (X, %, m) be a probability measure space. Recall
that a weak-*Dirichlet algebra A is an algebra of L~(m) such that (i)
the constant functions lie in A; (ii) A+ A is weak-*dense in L*(m); (iii)
m is multiplicative on A. Let H>(m) be the weak-*closure of A in
L=(m). As H>(m) is antisymmetric, we can apply the same method as
Theorems 1.1 and 1.2 in §1 for ¢=1. Then our statement is: Let A
be a weak-*Dirichlet algebra such that (8) no non-zero function in H>(m)
vanishes on a set of positive measure. For fe H=(m) with | f|=1,
m{| f|=1})>0 implies that f is an exposed point of the unit ball U of
H=(m). Moreover U is the closed convex hull of its exposed points (cf.
[1op.

The assumption (@) of H>(m) is necessary. Let A be the algebra
of continuous functions on the torus T?={(z, w): [2|=1, |w|=1} which are
uniform limits of polynomials in z"w™, where (n, m)e {(n, m): m>0}U
{(n, 0): n=0}. Denote by m the normalized Haar measure on T". Then
A is a weak-*Dirichlet algebra of L=(m) that does not satisfy the as-
sumption (8). Now take a function g=zw in H*(m) and a subset E of
T® with 0=m(E)=1. Let X; be a characteristic function of E. We put
F=2Xzg. Then f lies in the unit ball of H>(m) and m({| f|=1})>0. But
f is not an exposed point (indeed, not an extreme point).
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