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Introduction

. Let x=(x1) xz; Tt xn)y y=(y1’ y2, tt yn)eRn and H=H(m) y): R!n_,R
be a smooth (C~) function. A
We consider a Hamiltonian system of n degrees of freedom

(1) d),"—‘H,‘, ’_I]iz—-H”‘; 1::1, 2’ K
P. Rabinowitz [3] proved that “if an energy surface
H™(e)={(x, ¥) € R*™"; H(z, y)=¢}

is star-shaped, then there exists at least one periodic solution of (1) on it”.

“star-shaped” implies “diffeomorphic to the sphere S>*~'’, but it is
not known whether the condition “star-shaped” can be replaced by “diffeo.
to S=*” or not. This is a generalized Hamiltonian version of the Seifert
Conjecture (Has any sufficiently smooth flow on S® periodic orbit ?) in
the theory of dynamical systems.

Classically, the system (1) is derived from the Lagrangian system
and, in the time-independent case, the Hamiltonian H is the sum of the
kinetic energy and the potential. So we define

DEFINITION. A Hamiltonian H=H{x, y) is called classical if it has
the form

(2) H= 3, a"@wa;+U) ,

where a'/, U: R*— R are smooth functions and for any « € R*, the matrix
(a*(x)) is symmetric and positive definite.

The system (1) with classical Hamiltonian H is called a classical
Hamiltonian system.

In this paper we have
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THEOREM. For classical Hamiltonian systems, there exists at least
one periodic solution on every compact regular emnergy surface.

An energy surface is called regular if there are no critical points of
H on it.

A. Weinstein [8] conjectured that, if a compact energy surface S of
H is contact type (defined in [8]) and HY(S; R)=0, then there may be a
periodic solution on it. It is based on the fact that such type of energy
surface is common to all the situation in which the existence of periodic
solutions has been proved by variational methods.

Our method is a variational one and corresponds to Example 3 in [8]
replacing (7) by (2)’: #(S) is a compact manifold with boundary.

By his method, (¢)’ does not seem to imply contactness.

The Hamiltonian system (1) with the classical Hamiltonian (2) is
equivalent to the following Lagrangian system

d T & .
3 =9 (r-U); i=12, -
(3) dt 9%, oz, )i 1 "

where T'=T(z, £)=23. a,{(x)&&;, 4(a;)=(a*)".

We fix a regular value ¢ of H and consider the compact energy
surface H (e). Using the words of the Lagrangian system (3), a solution
(x(t), y(t)) of (1) on H™'(e) corresponds to the solution x(f) of (3) with

T(x, )+ U(x)=e .
Since T=0, the solution x(¢) lies in the set
M={zxe R"; Uxk)<e}.

Because ¢ is also a regular value of U and H%(e) is compact, M is
a compact smooth manifold with smooth boundary B=0oM={x; U(x)=e}.
H. Seifert [5] proved our theorem for the case M~sD", the n-disk.

For simplicity we only treat Hamiltonian systems on R*. But
Hamiltonian systems can be considered on T*P, where P is a smooth
Riemannian manifold with the canonical symplectic structure [7]. Then
we have: Let H: T*P— R be a Hamiltonian with the form

H(z, e>=%|e|*+ Uw), (x,&)eT*P

where | | is the norm derived from the metric on P and U: P>R is a
smooth function. Then there exists at least one periodic solution of the
Hamiltonian system on every compact regular energy surface.
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In fact, if the set {x e P; U(x)<e} has the boundary, the proof is
almost parallel to one given in the following sections. If the set {U<e}
has no boundary (and is not empty), it means the set coincide with P
(assume that P is connected). In this case P must be compact and
Max{U(x); x € P}<e. So there is a closed geodesic on P w.r. t. the Jacobi
metric (4), which is the periodic solution of the system.

§1. Neighborhood of the boundary.

Although the equation (8) is the Euler equation of the variational
problem for the Lagrangian T—U, we employ the principle of least
action of Maupertuis-Jacobi. We state the principle using the words
of geometry as follows.

We consider a Riemannian metric

(4) |  ds*=(e— Ua))ay(@)dw.de; ,

called Jacobi-metric for e¢. This metric ds is positive. in Int M =.M —B
and degenerates on B.

Then a solution xz(¢) of (8) W1th T(x, )+ U(oc)—-e (along . x(¢), T(a:(t),
(1)) + U(x(t)) is a constant) is a geodesic w.r.t. ds after proper time
change [5]. ([5] treated the analytic case. For C® case, see [4].)

For be B, we denote by z,(t) the solution of (8) with x(0)=% and
#(0)=0 (so T'(x(0), #(0))+ U(x(0))=U(b)=e). If this solution reaches B at a
finite time ¢,>0, then #,(t,)=0 and x,(t), where b,=x,(t,) € B, also reaches
B at t=t, and x;,(f,)=>b by the reversibility of the system (8). Hence this
solution is a periodic solution of (8). (Periodic solutions are not neces-
sarily such type, there may be periodic solutions all the time in Int M.)

' Therefore we seek a smooth curve Y=7(s):[0,1]—M - with '7(0),
7(1) e B and 7(s), 0<s8<1, being a geodesic w.r.t. ds.

Now we introduce a coordinate system near B. :

Since B is an (n—1)-manifold, be B is locally represented by n—1
coordinates

1 L2 -1
B,2, -, 2",

The n-th coordinate of «,(t), t>>0 small, is determined to be the are
length w.r.t. ds of the curve x,(z), 0<7<t. We denote by 2" this n-th
coordinate. Since B is compact, for small 8, 2" can be taken in common
for 0<2z"<4d, differently from z', 2% --., 2*~. 2" plays the role of y, in [5]
with the relation y,=(z")*%.

The curve Y=7(s) represented by
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(5) z'=const. , 2z*=const., ---, 2" '=const.,
z"(8)=s
is a geodesic w.r.t. ds for small 8>0.
We denote by M, the set Int M—{0<2"<é} and put B,=oM,={z"=4d}
for small 6>0. M, is diffeomorphic to M.

In [5], it is proved that any curve (5) intersects with B; perpendicu-
larly. So, if g,; is the component of the metric ds w.r.t. 2, ---, 2",
then we have

(6) 9,=9"=0 if 1=<i<n,
(7) Onn=9""=1.

Therefore a geodesic v=7(s): [0, 1] - M, starting from and reaching
B; orthogonally gives a desired solution, connecting it with the curve
(8).

We close this section by the following argument.

We change the metric ds on 0<2z"<é by multiplying a smooth function
X=X(z")>0. The new metric is denoted by ds.
Then we have

LEMMA 1. A curve

z'=const. , Z*=const., ---, 2" '=const.,
z"(8)=wu(s) s properly given

18 a geodesic w.r.t. ds.

PROOF. Let §.;=X(2")g;; be the component of d¥ and [*, the Chris-
toffel symbol w.r.t. §,;.

For 1=5i1<n,
g I =I% a0,
c —lsnfpd s _ 0 -
an 2g { aznghn azhgrm}
=.l i ——__a_ n
2 3 7(0-2X(=)) (by (6) and (7)

For 1=n,

F Pagig =i+ P an
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in =_1-_~nl 2 a _____a_~
F'nn 2 { aznglm azhgrm}
_Llgmd g
_ Ly
=5 (w)x(u) .

Let u=u(s) be the solution of |
N DT

with 0<#(0)<é and %(0)=1. Then the curve represented in Lemma 1
is a geodesic w.r.t. d3. Q.E.D.

§ 2. Path spaces.

In general, let 2(X; A,, A,) be the set of continuous curves w=w(t):
[0,1] - X with w(®)e A; (1=0,1), endowed with compact open topology
(A,c X).

Put Y=02(M; B, B) and identify b<c B with the constant curve whose
image is b, so B is regarded as a subset of Y.

Then we have

LEMMA 2. H(Y, B; Z)+0 or (Y, B)#0 for some k=1.
Proor. (i) If B is not arcwise connected, then H(Y, B)+0.

In fact, if H(Y, B)=0, then iy.: H(B)—H,(Y) is onto, where iy: BC Y.
Let w:[0,1] > M be a path whose end points belong to different arc
components of B. wecY but the element of H(Y) containing @ does
not belong to Im 4,..

(ii) If B is arcwise connected and Y is not so, then H(Y, B)+0.
This is given by the following exact sequence

H(B)— H(Y)— H(Y, B)— 0.
i k
0 0

(iii) If B and Y are both arcwise connected, then

n(Y, B)#0 for some £k=1.
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We choose a base point pe B and assume 7,(Y, B)=0 for all k=1.
We put Y'=Q2(B; B, B) then BCcY'CY. Since B~Y’, we have by
the assumption

(Y, By=n (Y, Y')=0 for k=1.

Let n:Y—>BXB be the fibration defined by #(w)=(w(0), (1)) and
put F=xn""(p, p)=02M, the loop space.

Also put n'=7my:Y'—>BXxB and F'=n""'(p, p)=2B.

Then we have a commutative diagram of fibration

2B—Y'— BXB
N Ni I
QM — Y — BXB

where 2i: 2Bc2M is induced from the inclusion i: BC M.
This diagram derives the following commutative diagram of long
exact sequence of homotopy groups of fibration (k=1)

T(Y') —> m(BX B) — 7, _,(2B) —> 7, _(Y") — 7,_(BX B)

|+ [ @ |= I

T (Y) — n(BX B) — 7, (M) —> 7, _(Y) — . _(Bx B) .

Since 7,.(Y, Y')=0 for k=1, we have j,: 7, (Y")=n,(Y) for k=1 (recall
that we assumed Y and Y’'~B are arcwise connected).

Hence by the five lemma and the naturality, the following diagram
is obtained (k=1)

(29)x
7w, (2B) = w,_,(2M)

Y o

T (B) — m (M) .

Therefore <,: m.(B)=n,(M) for k=1.

B and M are arcwise connected and CW complexes (compact smooth
manifolds), so 7: BCM is a homotopy equivalence [7.6.24 in 6].

But on the other hand, H,(M, B; Z/2)+0 [6.3.8 in 6].

This is a contradiction. Q.E.D.

Now we put
4,={\:[0, 1] > M,; piecewise smooth with A(0), A(1) € B;}
with the distance as §16 in [2].
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For M e 4;, we define

E=|\rdt

where |A(t)] is the norm w.r.t. ds, that is
IR =(e— TOUEN T, M2)) -

The distance in 4, is defined so that E: 4,—[0, «) is continuous
[§16 in 2]. _ |

As Theorem 17.1 in [2], we can prove A4,=R2(M,; B,, B;)~2(M; B, B),
so we have H,(4,, B,)#0 or 7,(4,, B,)*0 for some k=1 from Lemma 2.

§3. Mini-max principle.

We choose 4,>0 so small that

(8) we can use the coordinate z* for 0<2"<30,, .

(9) for any v=(v", ---,v"™) and 2=(z', ---, 2", 2"), 2'=(2, --+, 2", 2")
with 2", 2" (0, 26,], we have

n—1

%, a, ;RS2 :LE:‘,I a;(Z)vv’
10) U(z)=U(#, -+, 2") is monotone deéreasing in 2" € (0, 20,] (recall that
e is a regular value of U and B={U=e} is compact).
For 0€(0, d,], let
w;: [, 30,] — [0, 30,]
be a smooth function with

1) wy(p)=p if pel24, 3d],

/

Wg

0 & 26, 36
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(12) Wy(0,)=0 ,
(13) 1=sw,(p)<2 if pefd, 26,].
Using this w,, we define a diffeomorphism
¥ My — M,
which is the identity on M,, and on §,=<2"<24,, sends
2+, 2", 2") to (2, +--, 2", wy(z")) .

And define a homeomorphism ¥;: Ay, — A; BY N, € A, > 50N, € 4,
Then we have

(14) E@,\)=4E(\,) for any e, .

In fact, put A(E)=T,(\)(E) =4\ (2)).

It is sufficient to prove that |A(£)[2=<4|\(2).

If 7"1(t) eMzap le(t)|=|).\:(t)|

If \(t)e M, —M,,, let 2'(t), - - -, 2" 7X(t), 2X(t) be the coordinate of it.
Then M\(¢) has the coordinates

2'(t), -+, 270, 2" () =wi(21(1)) ,

and
IX(t)F=:2:g,,(x(t))é‘(t)é"(t)+(z’"(t))2 (by (6) and (7))

=% (e~ UMEMaMEEOH B + (Wy(21($))E1(2))*

<3 (e— U®)2au(M@)#@)# ) (by (9) and (10))
+4@1 (@) (by (13))

=2'F g, @) OF @) +4E @)Y
4@ .

This proves (14).
Now let a, € Hi(4,, B;) or a, €4, B;) for some k=1 be the
nontrivial element.

T, Hy(4,,, B;)) — Hy(4;, B;) or ¥,: (4, B,)) — 7w(4,, B;)
are both isomorphism and we put

Ay=— W',.a,,l or ;= W”aal .
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For the homology case, a;7#0 in Hy(4,, B;) means a, is an arc-component
of A, other than B,.
Then we define

(15) Cs= zinf EO) .

€ay

For the homotopy case, a representative fea, is a continuous
function (D¥ S*')—(4,, B;). So Im f=f(D*) is a compact subset of 4,,
hence E(Im f) attains a maximal value.

In this case we define

(16) Cs= }:15 Max E(Im f) .
Then we have
LEMMA 3. There exists K=1 such that
¢;+1=K for any 6€(0,4d,].

- PROOF. For the homotopy case, by the definition of ¢,, there is
fi€ a,, with Max E(Im f))<c;,+1. Then Z,of, € Tpa;,=a,. So

¢;<Max E(Im ¥, f,)
<4 Max E(Im f,) (by (14))
é 4(051 -+ 1) .

Therefore, if we put K=4c; +5, the lemma is proved. For the homology
case, also putting K=4¢, +5 gives the lemma. Q.E.D.

§4. Curve shortening procedure.

Let 0<0,<0,<0, (the smallness of ¢, is determined in the next
section) and X: [d,, 6,]—[1/2, 1] be a smooth function satisfying

XA\

1

poj—
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amn X(0)=1 for deld, d,],
(18) X(0,)=1

(19) |x(ds)] is sufficiently large so that M, is geodesic convex w.r.t. dg,
where d§ is defined as in §1 and d§=ds on M,,. (This can be done
as §6 in [5].)

We denote by |:|, the norm w.r.t. d§ and put -
Eoy={J\@Rdt for rea,.
0
Then E: A;,—[0, ) is a continuous function and

(20) -;li—E()\.)gE’(x)gE(k) for red,,.
Let d(,) be the Riemannian distance on M, w.r.t. d§ and choose
7>0 so that '

(21) two points x, y e M,, with d(x, yY)<7 is uniquely combined by the
shortest geodesic in M,,

(22) for xe M, with d(x, B,)<7, there is the unique point »(x)e B,
satisfying d(z, r(x))=d(z, B,,).

We put f*={ne 4,; E(\)<a} for a=0 and let N be an integer greater
than (K/7)>. Then for rne A* and 0<¢,<¢,<1 with ¢,—¢,<1/N,

d0e), MeNS | DAL (6 —6) " BO)S 1N K< .

Now we define a deformation 2: 4¥— A* which is employed in [5]
(see also Appendix of [1]), but our procedure is slightly different from
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it at end po1nts . :

For ne A%, we join r()\.(I/N)), M(1/N), M(2/N), +-+, M(1—1/N) and
r(M(1—1/N)) successively by the shortest geodesics, then mark the centers
of the geodesics and join the centers by the shortest geodesics in order.

We denote by 2\ the new curve so constructed. Then &: 4¥— A
is continuous and

(23) < is E-decreasing ,

(24) D =~i;; /£ 1% and the homotopy between & and i, is also K-
decreasing (we denote by 7; the identity map). - :

@5) E(2MN)=E(M)>0,ne 1%, implies that r:[0,1]— M, is a geodesic
w.r.t. d¥ and both end points intersect B, perpendicularly (cf.
[A.1.2. in 1]).

Now we put

(26) &= inf Max E(Im f) .

feasy

By (20), we have

(27) %0,330 =c, -

We prove ¢>0 in the next section. (We only consider the homotopy
case. The homology case can be treated in a similar fashion.)

By the definition (26) of &, for any natural number j, there is f;e€
o, with '

F<Max E(Im f;))<e¢+1/5
<, +1 (by (27))
<K (by Lemma 3) .

So Im f;c A%, hence Zof;¢€ o, by (24). Therefore
&<Max E(Im(Z - f;))<MaxE(Im f;)<¢ +1/7 .

Let 2\;, where \; € Im f;, be the element of Im(=Z '+ f;) which attains
the maximal value. Then

e<E( @) E0n)sMax E(Im f)<¢+1/5 .

Thus we have a sequence {\;};-,.. in A% with
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lim E(2\;) =ljim EQM\)=¢ .

J—ro0

Then, as A.1.3 in [1], there exists . € A% with
EQ)=E(2n\)=¢ .

By (25), Ne:[0,1]—M,, is a geodesic w.r.t d3 starting from and
reaching B;, orthogonally.
d§=ds on M,, and according to Lemma 1, a curve

z'=const., z*=const., --+, 2""'=const. ,
0,=2" <0,

is a geodesic w.r.t. both ds and d3. So this ). seems to give the desired
geodesic. But we have not avoided the possibility that after entering
M;,,, n.. intersects B;, not orthogonally.

Hence we use a little trick in the next section.

§ 5. Proof of the Theorem.

We assume that there are no periodic solutions on the regular energy
surface H'(e¢) and derive a contradiction. In particular the solution x,(¢)
cannot reach B for all be B, that is z,(t)e Int M for 0<t<c. By Satz
3 in §5 of [5], the arc length of z,(t), 0<t< o, w.r.t. ds is also .

For be B, let 0,=0,(8):[0,1] - M be the curve which is reparame-
terized from z,(t) so that ¢,(0)=>b and o,(s), 0<s8<1, is a geodesic w.r.t.
ds and whose arc length w.r.t. ds is equal to KY*4-9,.

By the assumption at the beginning of this section, o,(s) never reach
B and B is compact, hence we can choose d,€ (0, 4,) so small that o, all
the time lies in M,, after once it enters in M, for any be B.

The arc length of the curve o,(s), 8,<s8=<1, where s,>0 is the first
time at which o4(s) € B;, is K.

We choose §, arbitrarily in (0, é,).

Let A=X\(s): [0, 1]—M,, be the geodesic w.r.t. d¥ constructed in §4.
The part of ).

z'=const., 2’=const., ---, 2" '=const.,
0;=2"<0, (s€]0, 8;] for some 3§,>0)
is coincide with the part o,(s), s€[s,, 8,], for some be B and some small

0<8,<8, With 6,(s,) € B,, and 0,(s,) € B;,, by Lemma 1.
Since A\, € 4%, the arc length of the curve A.(3), §,<s=<1, w.r.t. d3 is
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less than K'2,

d¥=ds on M,, so A\, coincide with o, as long as \.(s)€ M,,. By the
determination of §,, g,, after it enters M,, for the first time, lies in M,,
as long as the arc length of oy, is less than K'2. Hence Aeo(l) € M,,.
This is the contradiction proving the Theorem.

Finally we prove ¢>0.

We consider A¢, where ¢=82. Then for e 1,

EN\<4E(\) (by (20)
<40} .

Hence the are length of A w.r.t. ds<29,.
Let 2*(t) be the n-th coordinate of A(t). Then

[ lrwiaes{koias Gy ©)
=20, .
Since z"(0)=2z"(1)=4d,, we have

Max z"(t)<0,+0,<20, .
ostst
Therefore, by (8), the curve ne 4° is “projected” to B,, by 2"(t)—d,
homotopically (preserving other coordinates z', ---, z"™"), and after that
the curve on B,, is contracted to the center of it homotopically.
Thus we have

(28) the inclusion i°: B,,C4° is a homotopy equivalence.
Then we have
(29) c=e>0.

In fact, consider j%: 7.(4s, Bs,) — T4, A°), where j*: (455 Bs) (4, 4.
By (28), 7% is an isomorphism.

If &<e, then there is an fe a, with Max EIm f)=<e.

So Im(j*f)c4e, hence j%a,,, which is represented by j*of, is the
trivial element of x,(4,, 4°).

Since j% is an isomorphism and «,, has been taken to be nontrivial
in m,(4,, B;,), this is a contradiction.

This completes the proof of (29).
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