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Introduction

Let £ be a number field, and K/k a finite Galois extension with
Galois group G. Let o, and o, be the rings of integers in k¥ and K.
We denote by 0,G the group ring of G over o,. 0x can be regarded as an
0,G-module by the action r-a=3sa.5a for ac€og, r=>,.;0a,8€0,G.
These notations will be used throughout this paper. K/k is said to
have a mnormal integral basis (abbr. n.i.b.) when there is an element
a €0, such that {sa},.,; is a relative integral basis of K/k, and « is called
a generator of this basis. It is known that a finite Galois extension
with n.i.b. is tamely ramified ([4], Chapter 9, Theorem (1, 2)).

In case where &k is the field @ of rational numbers, every tamely
ramified abelian field has an n.i.b. (Hilbert-Speiser), so that when k=@
and G is abelian, K/k has an n.i.b. if and only if K/k is tamely ramified
([4], Chapter 9, Theorem (8, 4)). Furthermore, Frohlich [2] has given a
necessary and sufficient condition for K/k to have an n.i.b., when K/k
is a Kummer extension. On the other hand, Okutsu [8] has shown that
when k=Q(,), {,=exp (2ri/l), I: odd prime, and K=k(¥ a), acZ, Kk
has always a relative integral basis and given an explicit form of this
basis. After preparations in §1, giving in particular a more precise form
to the results of [2], we shall apply them in §2 to obtain a necessary
and sufficient condition for K/k to have an n.i.b. for the case where &k
and K are as in [8]. We shall also give explicitly a generator of n.i.b.
when this exists. In the final §3, we shall construct many examples of
normal extensions K/k with n.i.b.’s where k+Q, and K/k are tamely
ramified. We shall also mention an example of such K/k without n.i.b..
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§1. Preparations.

Let K/k be tamely ramified. For each prime ideal p of %, let k, be
the p-adic completion of %k and o, be the valuation ring of k,. k,-algebra
K, is defined by k, @, K. Then k, and K are naturally embedded in K,.
We define o,-algebra ox, by 0, &, 0. As o, is a flat o,-module, o, is
also naturally embedded in K,. Consequently o, and o are naturally
embedded in og,. M, denotes o, ®, M for an o,-submodule M of K. If
M is an o,-lattice of the k-vector space K, then

(1) M=KO(QM,),

where p ranges over all prime ideals of k& ([10], Theorem (5, 3)). Since
a finite Galois extension K/k has a normal basis and oy is a projective
0,G-module, 0., and 0,G are isomorphic as o,G-modules for any prime p
of £ (Swan [9], Corollary 6, 4). Hence there is an element B, € 0g,, such
that {88,},c¢ is an o,-basis of o,,. We call this B, a generator of local
normal basis for p. be K is a generator of global basis if and only if
{sb},cc is a k-basis of K.

In the remainder of this section, we assume as in [2] K/k to be a
finite tamely ramified Kummer extension of exponent n» with Galois group
G. G denotes the character group of G. If A is an abelian group, let
M(G, A) be the set of maps from G into A. If we define the product
of maps f,, f.: G—A by f.f,\(0)=f0fX) for LeG, MG, A) becomes an
abelian group. For a map f: G—K,, define f*(s) by (1/|G]) Szes X(8)f(x)
for seG, where |G| is the order of G. Since k contains a primitive
n-th root of unity, f* is the map from G into K,. Let J, be the idele
group of & and U, be II,. auie 0 X IL,.. k)., Where p ranges over all finite
primes and p. all infinite primes of k. (For a ring R, R* means the
unit group of R.)

DEFI}gTION. For each prime ideal p of k, let Mo(p) be the set of
maps f,: G—o} satisAfying Im f*co,. We define M(G, U,) to be the set
of maps f=(f,) € M(G, U,) satisfying f, e M,(p) for all prime ideals p.

It is easily seen that M(p) is a group and consequently Mo(@, U, is
a subgroup of M(G,J,). Let B, €0k, be a generator of local normal
basis for each p and be K be a generator of global normal basis. For
an element acK, and Xe@, define (@X)=2ec X(8)sa. Put o,X)=
(B,1X)/(b]X). Then @,(X) is an element of kY. Putting @X)=(---, #,X),
--)eTIl, kX for each Xe G, we have pe M(G, J,). The residue class
of @ in the finite abelian group M(G, J,)/M(G, )M G, U,) does not
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depend upon the choice of generators of global and local normal bases.
The following lemma is proved in [2], §7, 7.2.

LEAMMA 1. Suppose that p is a prime ideal of k and f, is a map
from G into k,. Set a,=1/|G|) 316 F,(X)(B,X). Then a, is a generator
of local normal basis for p if and only if f, € My®).

THEOREM 1. A necessaryA and suﬁicient condition for K|k to have
an n.i.b. is that @ lies in M(G, k*)M,G, U,). If p=gf, f=(f,) eM(G U,
and ge M(G, k), then 1/|G]) Dixet 9(X)(B|X) generates an n.i.b. of Klk.

Proor. If K/k has an n.i.b., it is a local normal basis for each p
and a global normal basis at the same time. Hence we obtain ¢=1.
Congersely, if » has the above decomposition, we have for all p and all
XeG

(2) S (0B X) =g()BIX) .

Let a, be (1/|G]) Zxes [, X)(B,|X). Since My(p) is a group, we have f;'e
M,(p). Therefore o, is a local normal basis for p by Lemma 1. But a,
is independent of each p by (2). So we may set a,=a=1/|G|) Sizee 9(X)
(b|X). Then for all p,

= @} o,sa=(”ﬂe% 0,3), .
Hence, by (1), we have 0,=6D,.;0;8¢. This proves our theorem.

§2. In case k=Q(,), K=k(¥ a).

In this §, we consider as in [8] the case k=Q((,), K=k(¥ a) where
l i3 an odd prime, {, is a primitive [-th root of unity, a(#+*1) is a
rational integer without I-th power factor. « has the decomposition
IIiciaf, where the a,’s are square-free integers and (a,, a;)=1 (¢#7). Put
o=(¥a—a)/1-C) and b= al™" 0=<m=l—1), where [x] is the
greatest integer <z as usual. The following theorem is proved in [8].

OKUTSU’S THEOREM. (1—{)o, 18 unramified in K/k if and only if
a''=1mod®. Furthermore {®™/b,}sm<i_: i8 a relative integral basis of
K/k when (1—C)o, is unramified. And the discriminant of K|k 1is

isiam.

Now assume K/k is tamely ramified extension, i.e. a’ ‘=1 mod 2.
Let o be a fixed generator of G, say ¥ a=%a& and X be a fixed
generator of G, say X(0)=C'. We write {=0,.
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LEMMA 2. Suppose that a is an element of or and write a=
Ll Um(@™[b,) (Um€0,). Therefore there exists a matric A in M (o,)
such that (a, oa, ---, ' 'a)=Q1, @/b,, -+, @"/b,_,) A. Then

| R

(3) (et = b L Vo), asisy
1—3

and

(4) det A=Cta-vu+nse, i]:[:: - i:I: &

where t,=('~D/C—1) and &= C—1 (" )@ b,/b ).

REMARK. The ¢,’s are units of k. Since b,la (0=m=l—1), the
a™7b;/b,’s are rational integers. So we note that the ¢;’s are elements
of 0.

Proor OF LEMMA 2. We shall calculate («|X?) in the first place.

(alX?)= ZX” (%) Z _(T_C)-’"—( Ya—a)
_l J ot m 1L/ \D(_ p\m—p
mz_“omgx ),§,< )(0 Ya)y(—a

ll m
S & () erEm .

And
o LY a? if l|j+p
A px_:,__:L 4 i(a+p)=
Valli=Vae 2t {o it Ui+ .

Since l|j+p is equivalent to j+p=I, we have

—1

(alt)= 3, ——“-m—< )( Q)= 4 g
l—3

n<T5 b, (1—0)™
=T S Ym [ M\ m-a-p
=i~ ¥V'a) mg‘-ibm(c—l)"’<l—-’i)a

For a,, - --, a;_, € K, put dgulay, -, o;_,)=det (a‘aj)OSi,:iSl—l' Then
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(5) (e, 0@, -, 00)=den(1, 2, -

Put §=%a—a and 4=(-1)""""".[[iqy @ —C). By o0'9—oif=
¥ a((—Ci), we have

(6)  xa(L, 2, ., £2)= =007 17 ) "ttt 6, -+, 87
1 -1

bz-1 ) det A .

— {(1_@1(1—1)/2 1:[ bm}_la(l—l)ﬂd .
m=1

By using orthogonality relations of the character group of a finite
abelian group, we obtain ([2], §7, (7, 2))

JH; (alX)=det (‘079 )ss;, j51-1 = (— 1) dg(et, 0, - -+, ') .
Therefore by (3),
(1) dxale, 0a, -, o) ={C-1" [T 5} tat>" e, .
By (5), (6), (7), we have
det A=(—1)!¢-02}(L—1)- -2 g-1 ;l_[:[:sj .

Since A2___( 1)1(1—1)/2 Hl—l f’(Ci)=(_1)l(l—1)/2ll (f(x):xl_l), we have det A=
gra-va+ne . Tt ¢l-t 1T} ¢;. This proves our lemma.

THEOREM 2. Suppose that | is an odd prime and a(*=x1l) is a
rational integer without l-th power factor such that a'*'=1mod!*>. Then
a mecessary and sufficient condition for Q(, ¥ @)/Q) to have an n.i.b.
18 that there are units u; (j=0, ---,1—1) of Q) such that

i=

(8) Z:,) <l; >C”u a'"1=3b, =0 mod !

for any 1=0, , 1—1. .
erthefrmo're, if there are such wu;’s, then (/1) D2 ui'((— ¥ a)i/b;)
generates an n.i.b. of Q&, ¥ @)/QE,).

PrOOF. As we are used to in this section, we write £k=Q() and
K=Q(, ¥ a). Let B,e0x, be a generator of local normal basis for each
prime ideal b of & and beo, be a generator of global normal basis of
K/k. We write b= u,.(@™/b,) (U, €0,). We note that {®™/b,.}osms<i—1 iS
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also an o,-basis of og,. Hence we can write 8,=3"12 u,,(@™/b,)(Un,, € D,).
Then we can hold the results for g, similar to the calculations of Lemma

2. Therefore, if we put ¢; ,=> 02 ({—1)*- "‘( .)(a"‘"'b,-/b,,.)u,,,,,, we obtain
for each p and j=1, ---, 1, by 3), ,

J —(Ble) sl =3,
POO="00) e

Now we put f,(X9)=¢,_;, and g(X’)=¢&;. Since B, and b are local and
global normal bases, we have f (f,)eM(G U, and g e M(G, k*) by 4).
Let o=¢'f', f'e M(G, U,) and ¢’ e M(G, k*) be another decomposition of
®. Then it is easy to see that there is ue M(G, o}) such that fr=uf
and ¢'=u"'g. Hence, by Theorem 1, K/k has an n.i.b. if and only if
there is u e M(G, o) such that uf, € My(p) for every prime ideal p of k.
Since (uf,)*(0)=@Q/1) 3= CHu(XP9)e;, (0=1=<1-—1), it is sufficient to show
uf, € My(p) only for a prime ideal of &k dividing ! for proving that uf, e

M(p) takes place for all p’s. Now let p|l. Putting u,,=---=u;_,,=0

and w_,,=b,_., by lta, we have ¢;,= (l 31) 1-ip e ox (0=j=l—1).

Therefore B,=w'* generates a local normal basis for p by (4). Then

(uf (=1 2( —,1>C"'u(x‘”")a“‘“"b,- O<i<i—1) .
j=0 ]

Setting w;=u(X'"7), the first part of the theorem is established. By (8),

-1 x; bXJ — _.1('_'\/“)’
a7 B w0 = S
This gives a generator of the n.i.b. by Theorem 1. Since ({—1)'"le
o, (/1) k3 ui'((— ¥ @)i/b;) is also a generator and the proof is completed.

Now we examine the case in which (8) holds for wu;=b;,=1
(=0, -+-,1—1). Let p=(—1)p,. Since 3} (Z;I)C"’a““’ﬁ(a+C‘)"1=
(a+1+C*—1)"" and I=p'?, (8) implies a=—1modl. By the definition,
b,=1 (=0, ---,1—1) means that a is a square-free integer. Further-
more a'"'=1mod[* and a=-—1 mod! mean a= —1 mod {2, and since [ is an
odd prime, we have k(¥ a)=k(%¥—a ). By Theorem 2, we obtain the
following theorem.

'THEOREM 3. Suppose that l i3 odd prime and a (#=x1) is square-
Jree rational integer such that a==+1 mod 2. Then a=@1/l) 3k (— ¥ea)
generates an n.i.b. of Q&,;, ¥ a)/Q&,), where
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e 1 if a=—1mod?
-1 tf a=1modI?.

COROLLARY. Letl, a and a be as in Themla_m 3. Then { & generates
an n.i.b. of the non-abelian extension Q(, ¥ @)/Q.

PROOF. Since Q(, ¥ a)=Q(, ¥—a), we may prove in case where
a=—1modl’. Put I'=Gal (K/Q). Let o,  be fixed elements of I, say
ol=C, 0¥ a=¥al,7{=¢and t¥a=%a, where g is a primitive root
modl. Then we have I'={o'z?li=0, ---,1—1, j=1,--.,1—1}. By
Theorem 3, we obtain 0, =@!z} 0,0'a and also 0, =P;z1 Zr'{. Consequently,
we have o,=@i} Dizl Zo'ar’l. Since a has the explicit form given
above, we have o'ti({a)=0'ar¢. Hence we have 0x =iz Dzt Zo'tiCa)
and this proves our corollary.

§3. Examples of K/k with or without n.i.b..

We can construct many examples of normal extensions K/k with n.i.b.,
k+Q, using our theorem 38, its corollary and Hilbert-Speiser’s theorem
in the abelian extensions of Q on ground of the following lemma 3.

NOTATIONS. For an extension K/k, dy,, Dx, mean the discriminant
and the different of Kk, respectively. Let K/k be of degree =n. If
QA -, @, €K, deplay, - -+, a,) denotes the discriminant of a,, SR,

LEMMA 3. Suppose that K,/k is a Galois extension of degree n and
K./k is an extension of degree m, where K NK,=k. Let L be the com-
posite field of K, and K,. Suppose (@xyny Qi) =1.

(1) If {a}ies,...,n 18 @ relative (normal) integral basis of K,/k, then
it 18 also a relative (normal) integral basis of L/K,.

(i) If {@}ies,...;n and {B;}jer,...m are relative imtegral bases of Kk
and K.k, then {®,8;}i1, .. n j=1,....n 18 @ relative integral basis of L/k.

PROOF. (ii) is well-known (Cf. Lang [38], Chapter III, Proposition 17).
Through (i) seems also known, a proof of (i) will be given here, as no
reference for it is known to the author.

As (dgyx dg,n)=1, We have Dy, =D/, (Cf. Lang [3], Chapter III,
Proposition 17). Since K,/k and L/K, are Galois extensions of degree n,
dx,=D% ,, and drx,=Di/k,. Hence dg,=d. . By the hypothesis,
Ae=0g (0, +++, a,) (Mann [5], Theorem 1). Therefore iz, =1/,
(a, -+, &,). Consequently {a,},_, ..., is a relative integral basis of L/K,
(Mann [5], Theorem 1 Corollary).
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In the following proposition, suppose that I, is an odd prime and
a,(#=+x1) is a square-free rational integer such that a,=+1mod!/ and
put a,=(1/1) Sk} (—'V&a,)!, where

{—1 if a,=1modl}
e:
¢ 1 if a,=—1modl

PrROPOSITION 1. (I) Let k be an abelian extension of Q whose
conductor n is odd and square-free (i.e. k/Q i8 tamely ramified). Let
K be a number field such that (dge, m)=1. Then Troc, i (C.) generates
an n.i.b. of the abelian extension kK/K. (Troc, . (C.) denotes the trace
of &, in QC)/k and C, is a primitive n-th root of unity.)

(II) Let k be as in (I) and a,, ---, a, l,, -+, 1, be pairwise prime
and suppose (n, [liz al)=1. Then Li-a.- Czl 1, Trown (.) genmerates
an n.i.b. of the non-abelian extension k( Va,, -+, ¥a,, C,l 1,)/Q.

(III) Let k be a number field and a,, ---, a,,l <o+, l, be pairwise
prime and suppose (diq, Ili-ial)=1. Then Hi_l a; - C,I 1, gemerates
an n.i.b. of the non-abelian extension k(Va,, ---, Va,, &, ,)/k

(IV) Let n be the product of all the dzst'mct pmmes among 1, ---,1,.
Let k be a number field which contains £, and m be an odd and square-
free integer. Suppose a,, ---,a, are pairwise prime and (I, a;)=1
A=s, .7<s) Suppose (m, n IIi-,a)=1, (Aroc, mIli-1a)=1 and
Q'¥Va,, ---, Va,, ,,.,.)nk Q(C,,) Then TIi-,al. generates an n.i.b. of
the abelmn extension k(¥Va,, -+, ¥a,, Can)lk.

Proor. (I) Since {, generates an n.i.b. of Q(,)/Q (I: odd prime),
¢, generates, by Lemma 3 (ii), an n.i.b. of Q({,)/Q. Hence Tro.,): (§.)
generates an n.i.b. of k/Q ([4], Chapter 9, Theorem (3, 4)). As (dgj, 7)=1,
we have KNk=Q. Thevefore, by Lemma 3 (i), Tro., (£,) generates

an n.i.b. of kK/K.
(II) We note dog,, vaprew, y=(ai™") by Okutsu s theorem. Hence only

prime divisors of al ramlfy in QE,, Y @)/Q. Therefore, since

a, -+, a,l, -+, 1, are pairwise prime, J]i- 1aziC,1 1, generates, by Corol-
lary of Theorem 38 and Lemma 3 (ii), an n.i.b. of Q( Va. a, -, Va,, &1yt )/Q.
As (n, T[i- al)=1, we have kNQW¥a,, ---, Va,, {ia)= Q In (I), we

have seen that Tre.,. ({.) generates an n.i.b. of %/Q. Consequently,
by Lemma 38 (ii), IIi-i &y, TToc,n (C.) generates an n.ib. of
k(valy . Va’a; cll l)/Q

A0 As (due i add=1, we have kNQUVa, -+, Var, Cus)=Q.
Hence, using Lemma 3 (i) in place of Lemma 3 (ii) Whlch is used in (II),
we can show that I[i_,a,-C,.. generates an n.i.b. of X Va,, -



INTEGRAL BASES 229

Vay, Gl
(IV) In the first place, we shall show by induction in s that I]i., a,

generates an n.i.b. of Q¥a,, ---, Va,, Cn)/Q(Qn) Let n, be the product

of all the distinet primes among ll, -+, 1, A=r=s). The case g=1 is

Just Theorem 3 (n=mn,=l,). To prove that TI:-. «; generates an n.i.b. of

Q¥a,, - {/a.,Cn,)/Q(C ) for s=r+1 assuming it true for s= =7, We

put F,= Q(Cn,.; %/au : ‘/a/r): F Q(Cn,), F,= Q(Cn,_ﬂy {/a, : \/a )s
F, 3

-
]

F, Fy

F 5 =QC,,.), Fi=Q(,,), F,=Q@,,., Va,, -, "Va), Fr=Q(C.,..
’ \/:_1) and FS_Q(CI,._H[) H—‘\/ r1)e If I,..n,, we have n,,=mn,, Fy=F,
and F,=F,. Then, by the hypothesis of induction, JJi_, @, generates
an n.i.b. of F,/F,. If l.../n,, we have mu,,,=n,l.,. By Okutsu’s theo-
rem, prime ideals ramified in F,/F, divide J];-;a.. And only prime
divisors of 1,,, ramify in F,/F,. As (., Ili-c;a)=1 we have (dz/r,
dryr,)=1 and F,NF,=F, Hence, by the hypothesis of induction and
Lemma 3 (i), [[;-.«; generates an n.i.b. of F}/F,. As (n,.,/l,, a,+,)=1, We
have (dr s, dryr)=1 and F,N Fy=F;. Consequently, by Lemma 3(i), «,,,
generates an n.i.b. of F,/F,. Prime ideals ramified in F}/F, divide []i-, a,
and prime ideals ramified in F,/F, divide a,.,. As (Ili-; ¢, @,1)=1, wWe
have (dryr, dr,r)=1 and F,N F,=F,. By Lemma 3 (ii), [IiZi a; generates
an n.i.b. of F,/F,. Thus, we have proved that [[i-, a; generates an n.i.b.

of Q¥a,, ---, Va,, £)/QCE). As (m,n)=1, {, generates, by Lemma 3
(i), an n.i.b. of Q((,..)/Q(.). As (Ili-;a, m)=1, we have Q(CM)OL Q)
and  (dow,.ecws Grocy) =1, where we put L=Q(Wa, ---, Va,, ).
Consequently, by Lemma 3 (i), IIi-,a.l,. generates an n i.b. of
Q(z%/gl’ ° {/ Z, Cmn)[Q(E,)- Since  (di/qr,s ™ iz a;) = and kN
Q¥Va,, - Va,,cm)—Q(Cn), II:-. @, generates, by Lemma 3 (i), an
n.i.b. of k( 'Va,, -+, ¥a,, C.)/k. This proves our proposition.

In general, it is not easy to construct a Galois extension without
n.i.b. by applying Theorem 2. For !=38, the unit group of quadratic
field k is (—1, &> and no distinct elements of this group are pairwise
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congruent modulo 3. Consequently, we can check that Q(, ¥ a)/Q()
always has an n.i.b. (a*’=1mod9). v

The following proposition shows on the other hand that there are
infinitely many tamely ramified extensions K/k (k+Q) without n.i.b..

PROPOSITION 2. Let m, n be square-free rational integers. Suppose
that m, n=3mod4, m< —1, n<0and (m, n)=1. Then QV'm, V' 7)/QV m)
18 a tamely ramified quadratic extemsion without n.i.b..

PROOF. Put K=Q(1/m,V'n) and k=Q(1’m). By the hypothesis,
{1, 'm +1v"n)/2} is an o,basis of o, (Bird and Parry [1], Theorem I)
and {1, V'm, V'm +v 0)/2, 1+V'mn)/2} is Z-basis of o, (Williams [11]).
Let a be an element of ox and a=a+b1"m +c(V'm +1"7)/2+d(1 +1/ mn)/2
(a,b,¢c,deZ). Noting V'mv' n=—1v"mn, we obtain

(a)__A< 1 ) A__(a+bl/7—n—+d(1+m)/2 c—dv'm
o) T\Wm+v )2 T \a+ G+ m+d(l—m)/2 —(c—dl/ﬁ)>’

where o' is the conjugate element of a in K/k. Hence, we have

det A=—(c—dv'm){(2a+d)+@b+ec m} .

a generates an n.i.b. of K/k if and only if det Acoj, i.e. if and only
if there exist a, b, ¢, d € Z such that

(9) Ca+d)*—m(2b+c)*==x1
(10) ¢ —md*==+1.

Since —m>1, we have 2a+d==+1, 2b+¢=0, ¢c=+1 and d=0 from 9),
(10). Therefore we obtain 2a==+1. So the simultaneous Diophantine
equation (9), (10) has no solution and K/k has no n.i.b.. Since 2 is un-
ramified in Q' mn)/Q, K/k is tamely ramified. This proves our assertion.
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