On Normal Integral Bases

Fuminori KAWAMOTO

Gakushuin University
(Communicated by T. Mitsui)

Introduction

Let k be a number field, and K/k a finite Galois extension with Galois group G. Let o_k and o_K be the rings of integers in k and K. We denote by $o_k G$ the group ring of G over o_k . o_K can be regarded as an $o_k G$ -module by the action $r \cdot \alpha = \sum_{s \in G} a_s s \alpha$ for $\alpha \in o_K$, $r = \sum_{s \in G} a_s s \in o_k G$. These notations will be used throughout this paper. K/k is said to have a normal integral basis (abbr. n.i.b.) when there is an element $\alpha \in o_K$ such that $\{s\alpha\}_{s \in G}$ is a relative integral basis of K/k, and α is called a generator of this basis. It is known that a finite Galois extension with n.i.b. is tamely ramified ([4], Chapter 9, Theorem (1, 2)).

In case where k is the field Q of rational numbers, every tamely ramified abelian field has an n.i.b. (Hilbert-Speiser), so that when k=Q and G is abelian, K/k has an n.i.b. if and only if K/k is tamely ramified ([4], Chapter 9, Theorem (3, 4)). Furthermore, Fröhlich [2] has given a necessary and sufficient condition for K/k to have an n.i.b., when K/k is a Kummer extension. On the other hand, Okutsu [8] has shown that when $k=Q(\zeta_l)$, $\zeta_l=\exp(2\pi i/l)$, l: odd prime, and $K=k(\sqrt[l]{a})$, $a\in Z$, K/k has always a relative integral basis and given an explicit form of this basis. After preparations in §1, giving in particular a more precise form to the results of [2], we shall apply them in §2 to obtain a necessary and sufficient condition for K/k to have an n.i.b. for the case where k and K are as in [8]. We shall also give explicitly a generator of n.i.b. when this exists. In the final §3, we shall construct many examples of normal extensions K/k with n.i.b.'s where $k\neq Q$, and K/k are tamely ramified. We shall also mention an example of such K/k without n.i.b..

ACKNOWLEDGEMENT: The author wishes to thank Dr. K. Okutsu for his kind advice and encouragement. He also wishes to thank Mr. S. Nakano for his kind advice.

§1. Preparations.

Let K/k be tamely ramified. For each prime ideal $\mathfrak p$ of k, let $k_{\mathfrak p}$ be the $\mathfrak p$ -adic completion of k and $\mathfrak o_{\mathfrak p}$ be the valuation ring of $k_{\mathfrak p}$. $k_{\mathfrak p}$ -algebra $K_{\mathfrak p}$ is defined by $k_{\mathfrak p} \otimes_k K$. Then $k_{\mathfrak p}$ and K are naturally embedded in $K_{\mathfrak p}$. We define $\mathfrak o_{\mathfrak p}$ -algebra $\mathfrak o_{K,\mathfrak p}$ by $\mathfrak o_{\mathfrak p} \otimes_{\mathfrak o_k} \mathfrak o_{K}$. As $\mathfrak o_{\mathfrak p}$ is a flat $\mathfrak o_k$ -module, $\mathfrak o_{K,\mathfrak p}$ is also naturally embedded in $K_{\mathfrak p}$. Consequently $\mathfrak o_{\mathfrak p}$ and $\mathfrak o_{K}$ are naturally embedded in $\mathfrak o_{K,\mathfrak p}$. $M_{\mathfrak p}$ denotes $\mathfrak o_{\mathfrak p} \otimes_{\mathfrak o_k} M$ for an $\mathfrak o_k$ -submodule M of K. If M is an $\mathfrak o_k$ -lattice of the k-vector space K, then

$$M = K \cap (\bigcap_{\flat} M_{\flat}),$$

where $\mathfrak p$ ranges over all prime ideals of k ([10], Theorem (5, 3)). Since a finite Galois extension K/k has a normal basis and $\mathfrak o_K$ is a projective $\mathfrak o_k G$ -module, $\mathfrak o_{K,\mathfrak p}$ and $\mathfrak o_{\mathfrak p} G$ are isomorphic as $\mathfrak o_{\mathfrak p} G$ -modules for any prime $\mathfrak p$ of k (Swan [9], Corollary 6, 4). Hence there is an element $\beta_{\mathfrak p} \in \mathfrak o_{K,\mathfrak p}$ such that $\{s\beta_{\mathfrak p}\}_{s\in G}$ is an $\mathfrak o_{\mathfrak p}$ -basis of $\mathfrak o_{K,\mathfrak p}$. We call this $\beta_{\mathfrak p}$ a generator of local normal basis for $\mathfrak p$. $b\in K$ is a generator of global basis if and only if $\{sb\}_{s\in G}$ is a k-basis of K.

In the remainder of this section, we assume as in [2] K/k to be a finite tamely ramified Kummer extension of exponent n with Galois group G. \widehat{G} denotes the character group of G. If A is an abelian group, let $M(\widehat{G},A)$ be the set of maps from \widehat{G} into A. If we define the product of maps $f_1, f_2: \widehat{G} \to A$ by $f_1 f_2(X) = f_1(X) f_2(X)$ for $X \in \widehat{G}$, $M(\widehat{G},A)$ becomes an abelian group. For a map $f: \widehat{G} \to K_p$, define $f^*(s)$ by $(1/|G|) \sum_{X \in \widehat{G}} \chi(s) f(X)$ for $s \in G$, where |G| is the order of G. Since k contains a primitive n-th root of unity, f^* is the map from \widehat{G} into K_p . Let J_k be the idele group of k and U_k be $\prod_{p: \text{finite}} \mathfrak{o}_p^{\times} \times \prod_{p_{\infty}} k_{p_{\infty}}^{\times}$, where p ranges over all finite primes and p_{∞} all infinite primes of k. (For a ring R, R^{\times} means the unit group of R.)

DEFINITION. For each prime ideal \mathfrak{p} of k, let $M_0(\mathfrak{p})$ be the set of maps $f_{\mathfrak{p}} \colon \widehat{G} \to \mathfrak{o}_{\mathfrak{p}}^{\times}$ satisfying $\operatorname{Im} f_{\mathfrak{p}}^* \subset \mathfrak{o}_{\mathfrak{p}}$. We define $M_0(\widehat{G}, U_k)$ to be the set of maps $f = (f_{\mathfrak{p}}) \in M(\widehat{G}, U_k)$ satisfying $f_{\mathfrak{p}} \in M_0(\mathfrak{p})$ for all prime ideals \mathfrak{p} .

It is easily seen that $M_0(\mathfrak{p})$ is a group and consequently $M_0(\widehat{G}, U_k)$ is a subgroup of $M(\widehat{G}, J_k)$. Let $\beta_{\mathfrak{p}} \in \mathfrak{o}_{K,\mathfrak{p}}$ be a generator of local normal basis for each \mathfrak{p} and $b \in K$ be a generator of global normal basis. For an element $\alpha \in K_{\mathfrak{p}}$ and $\chi \in \widehat{G}$, define $(\alpha | \chi) = \sum_{s \in G} \overline{\chi}(s) s \alpha$. Put $\varphi_{\mathfrak{p}}(\chi) = (\beta_{\mathfrak{p}} | \chi)/(b | \chi)$. Then $\varphi_{\mathfrak{p}}(\chi)$ is an element of $k_{\mathfrak{p}}^{\times}$. Putting $\varphi(\chi) = (\cdots, \varphi_{\mathfrak{p}}(\chi), \cdots) \in \prod_{\mathfrak{p}} k_{\mathfrak{p}}^{\times}$ for each $\chi \in \widehat{G}$, we have $\varphi \in M(\widehat{G}, J_k)$. The residue class of φ in the finite abelian group $M(\widehat{G}, J_k)/M(\widehat{G}, k^{\times})M_0(\widehat{G}, U_k)$ does not

depend upon the choice of generators of global and local normal bases. The following lemma is proved in [2], §7, 7.2.

LEMMA 1. Suppose that $\mathfrak p$ is a prime ideal of k and $f_{\mathfrak p}$ is a map from \widehat{G} into $k_{\mathfrak p}$. Set $\alpha_{\mathfrak p} = (1/|G|) \sum_{\chi \in \widehat{G}} f_{\mathfrak p}(\chi)(\beta_{\mathfrak p}|\chi)$. Then $\alpha_{\mathfrak p}$ is a generator of local normal basis for $\mathfrak p$ if and only if $f_{\mathfrak p} \in M_0(\mathfrak p)$.

THEOREM 1. A necessary and sufficient condition for K/k to have an n.i.b. is that φ lies in $M(\hat{G}, k^{\times})M_0(\hat{G}, U_k)$. If $\varphi = gf$, $f = (f_{\mathfrak{p}}) \in M_0(\hat{G}, U_k)$ and $g \in M(\hat{G}, k^{\times})$, then $(1/|G|) \sum_{\chi \in \hat{G}} g(\chi)(b|\chi)$ generates an n.i.b. of K/k.

PROOF. If K/k has an n.i.b., it is a local normal basis for each $\mathfrak p$ and a global normal basis at the same time. Hence we obtain $\varphi=1$. Conversely, if φ has the above decomposition, we have for all $\mathfrak p$ and all $\mathfrak X\in \hat G$

$$(2) f_{\mathfrak{p}}^{-1}(\chi)(\beta_{\mathfrak{p}}|\chi) = g(\chi)(b|\chi).$$

Let $\alpha_{\mathfrak{p}}$ be $(1/|G|) \sum_{\chi \in \hat{G}} f_{\mathfrak{p}}^{-1}(\chi)(\beta_{\mathfrak{p}}|\chi)$. Since $M_0(\mathfrak{p})$ is a group, we have $f_{\mathfrak{p}}^{-1} \in M_0(\mathfrak{p})$. Therefore $\alpha_{\mathfrak{p}}$ is a local normal basis for \mathfrak{p} by Lemma 1. But $\alpha_{\mathfrak{p}}$ is independent of each \mathfrak{p} by (2). So we may set $\alpha_{\mathfrak{p}} = \alpha = (1/|G|) \sum_{\chi \in \hat{G}} g(\chi)$ $(b|\chi)$. Then for all \mathfrak{p} ,

$$\mathfrak{o}_{K,\mathfrak{p}} = \bigoplus_{s \in G} \mathfrak{o}_{\mathfrak{p}} s \alpha = (\bigoplus_{s \in G} \mathfrak{o}_{k} s \alpha)_{\mathfrak{p}}.$$

Hence, by (1), we have $\mathfrak{o}_{\kappa} = \bigoplus_{s \in G} \mathfrak{o}_{k} s \alpha$. This proves our theorem.

§2. In case
$$k=Q(\zeta_l)$$
, $K=k(\sqrt[l]{a})$.

In this §, we consider as in [8] the case $k=Q(\zeta_l)$, $K=k(\sqrt[l]{a})$ where l is an odd prime, ζ_l is a primitive l-th root of unity, $a(\neq \pm 1)$ is a rational integer without l-th power factor. a has the decomposition $\prod_{i=1}^{l-1} a_i^i$, where the a_i 's are square-free integers and $(a_i, a_j)=1$ $(i\neq j)$. Put $\omega=(\sqrt[l]{a}-a)/(1-\zeta_l)$ and $b_m=\prod_{i=1}^{l-1} a_i^{(im/l)}$ $(0\leq m\leq l-1)$, where [x] is the greatest integer $\leq x$ as usual. The following theorem is proved in [8].

OKUTSU'S THEOREM. $(1-\zeta_l)\mathfrak{o}_k$ is unramified in K/k if and only if $a^{l-1}\equiv 1 \bmod l^2$. Furthermore $\{\omega^m/b_m\}_{0\leq m\leq l-1}$ is a relative integral basis of K/k when $(1-\zeta_l)\mathfrak{o}_k$ is unramified. And the discriminant of K/k is $\prod_{l=1}^{l-1} a_l^{l-1}$.

Now assume K/k is tamely ramified extension, i.e. $a^{l-1} \equiv 1 \mod l^2$. Let σ be a fixed generator of G, say $\sigma \sqrt[l]{a} = \sqrt[l]{a} \xi_l$ and χ be a fixed generator of \widehat{G} , say $\chi(\sigma) = \zeta_l^{-1}$. We write $\zeta = \zeta_l$. LEMMA 2. Suppose that α is an element of \mathfrak{o}_K and write $\alpha = \sum_{m=0}^{l-1} u_m(\omega^m/b_m)$ $(u_m \in \mathfrak{o}_k)$. Therefore there exists a matrix A in $M_l(\mathfrak{o}_k)$ such that $(\alpha, \sigma\alpha, \dots, \sigma^{l-1}\alpha) = (1, \omega/b_1, \dots, \omega^{l-1}/b_{l-1})$ A. Then

$$(3) \qquad (\alpha | \chi^{j}) = \frac{l}{(\zeta - 1)^{l-1}} \frac{(-\sqrt[l]{a})^{l-j}}{b_{l-j}} \varepsilon_{l-j} \qquad (1 \leq j \leq l)$$

and

(4)
$$\det A = \zeta^{l(l-1)(l+1)/6} \cdot \prod_{i=2}^{l-1} t_i^{l-i} \prod_{j=0}^{l-1} \varepsilon_j,$$

where
$$t_i = (\zeta^i - 1)/(\zeta - 1)$$
 and $\varepsilon_j = \sum_{m=j}^{l-1} (\zeta - 1)^{l-1-m} \binom{m}{j} (a^{m-j}b_j/b_m)u_m$.

REMARK. The t_i 's are units of k. Since $b_m|a$ $(0 \le m \le l-1)$, the $a^{m-j}b_j/b_m$'s are rational integers. So we note that the ε_j 's are elements of o_k .

PROOF OF LEMMA 2. We shall calculate $(\alpha|\chi^j)$ in the first place.

$$\begin{split} (\alpha|\chi^{j}) &= \sum_{i=0}^{l-1} \overline{\chi}^{j}(\sigma^{i}) \sum_{m=0}^{l-1} \frac{u_{m}}{b_{m}(1-\zeta)^{m}} (\sigma^{i} \sqrt[l]{a} - \alpha)^{m} \\ &= \sum_{m=0}^{l-1} \frac{u_{m}}{b_{m}(1-\zeta)^{m}} \sum_{i=0}^{l-1} \overline{\chi}^{j}(\sigma^{i}) \sum_{p=0}^{m} \binom{m}{p} (\sigma^{i} \sqrt[l]{a})^{p} (-a)^{m-p} \\ &= \sum_{m=0}^{l-1} \frac{u_{m}}{b_{m}(1-\zeta)^{m}} \sum_{p=0}^{m} \binom{m}{p} (-a)^{m-p} (\sqrt[l]{a}^{p} | \chi^{j}) . \end{split}$$

And

$$\sqrt[k]{a}^p | \chi^j = \sqrt[k]{a}^p \sum_{i=0}^{l-1} \zeta^{i(j+p)} = \begin{cases} l \sqrt[k]{a}^p & \text{if} \quad l \mid j+p \\ 0 & \text{if} \quad l \nmid j+p \end{cases}.$$

Since l|j+p| is equivalent to j+p=l, we have

$$\begin{split} (\alpha|\chi^{j}) &= \sum_{m=l-j}^{l-1} \frac{u_{m}}{b_{m}(1-\zeta)^{m}} \binom{m}{l-j} (-a)^{m-(l-j)} l \sqrt[l]{a}^{l-j} \\ &= l(-\sqrt[l]{a})^{l-j} \sum_{m=l-j}^{l-1} \frac{u_{m}}{b_{m}(\zeta-1)^{m}} \binom{m}{l-j} a^{m-(l-j)} \\ &= \frac{l}{(\zeta-1)^{l-1}} \frac{(-\sqrt[l]{a})^{l-j}}{b_{l-j}} \varepsilon_{l-j} \; . \end{split}$$

For $\alpha_0, \dots, \alpha_{l-1} \in K$, put $\Delta_{K/k}(\alpha_0, \dots, \alpha_{l-1}) = \det (\sigma^i \alpha_j)_{0 \le i, j \le l-1}$. Then

(5)
$$\Delta_{K/k}(\alpha, \sigma\alpha, \dots, \sigma^{l-1}\alpha) = \Delta_{K/k}\left(1, \frac{\omega}{b_1}, \dots, \frac{\omega^{l-1}}{b_{l-1}}\right) \det A.$$

Put $\theta = \sqrt[k]{a} - a$ and $\Delta = (-1)^{l(l-1)/2} \cdot \prod_{1 \le i < j \le l} (\zeta^i - \zeta^j)$. By $\sigma^i \theta - \sigma^j \theta = \sqrt[k]{a} (\zeta^i - \zeta^j)$, we have

$$\Delta_{K/k}\left(1, \frac{\omega}{b_{1}}, \cdots, \frac{\omega^{l-1}}{b_{l-1}}\right) = \left\{(1-\zeta)^{l(l-1)/2} \prod_{m=1}^{l-1} b_{m}\right\}^{-1} \Delta_{K/k}(1, \theta, \cdots, \theta^{l-1}) \\
= \left\{(1-\zeta)^{l(l-1)/2} \prod_{m=1}^{l-1} b_{m}\right\}^{-1} a^{(l-1)/2} \Delta.$$

By using orthogonality relations of the character group of a finite abelian group, we obtain ([2], $\S7$, (7, 2))

$$\prod_{j=1}^{l} (\alpha | \chi^{j}) = \det (\sigma^{i} \sigma^{-j} \alpha)_{0 \leq i, j \leq l-1} = (-1)^{(l-1)/2} \Delta_{K/k}(\alpha, \sigma \alpha, \cdots, \sigma^{l-1} \alpha).$$

Therefore by (3),

(7)
$$\Delta_{K/k}(\alpha, \sigma\alpha, \cdots, \sigma^{l-1}\alpha) = \left\{ (\zeta - 1)^{l(l-1)} \prod_{j=0}^{l-1} b_j \right\}^{-1} l^l \alpha^{(l-1)/2} \prod_{j=0}^{l-1} \varepsilon_j.$$

By (5), (6), (7), we have

$$\det A = (-1)^{l(l-1)/2} l^l (\zeta - 1)^{-(l(l-1)/2)} \Delta^{-1} \prod_{j=0}^{l-1} \varepsilon_j \ .$$

Since $\Delta^2 = (-1)^{l(l-1)/2} \prod_{i=1}^l f'(\zeta^i) = (-1)^{l(l-1)/2} l^l \ (f(x) = x^l - 1)$, we have $\det A = \zeta^{l(l-1)(l+1)/6} \cdot \prod_{i=2}^{l-1} t_i^{l-i} \prod_{j=0}^{l-1} \varepsilon_j$. This proves our lemma.

THEOREM 2. Suppose that l is an odd prime and $a(\neq \pm 1)$ is a rational integer without l-th power factor such that $a^{l-1} \equiv 1 \mod l^2$. Then a necessary and sufficient condition for $\mathbf{Q}(\zeta_l, \sqrt[l]{a})/\mathbf{Q}(\zeta_l)$ to have an n.i.b. is that there are units u_j $(j=0, \dots, l-1)$ of $\mathbf{Q}(\zeta_l)$ such that

$$(8) \qquad \qquad \sum_{j=0}^{l-1} {l-1 \choose j} \zeta_l^{ij} u_j a^{l-1-j} b_j \equiv 0 \bmod l$$

for any $i=0, \dots, l-1$.

Furthermore, if there are such u_j 's, then $(1/l) \sum_{i=0}^{l-1} u_j^{-1} ((-\sqrt[l]{a})^j/b_j)$ generates an n.i.b. of $\mathbf{Q}(\zeta_l, \sqrt[l]{a})/\mathbf{Q}(\zeta_l)$.

PROOF. As we are used to in this section, we write $k = Q(\zeta)$ and $K = Q(\zeta)$, $\sqrt[L]{a}$. Let $\beta_{\mathfrak{p}} \in \mathfrak{o}_{K,\mathfrak{p}}$ be a generator of local normal basis for each prime ideal \mathfrak{p} of k and $b \in \mathfrak{o}_{K}$ be a generator of global normal basis of K/k. We write $b = \sum_{m=0}^{l-1} u_m(\omega^m/b_m)(u_m \in \mathfrak{o}_k)$. We note that $\{\omega^m/b_m\}_{0 \leq m \leq l-1}$ is

also an $\mathfrak{o}_{\mathfrak{p}}$ -basis of $\mathfrak{o}_{K,\mathfrak{p}}$. Hence we can write $\beta_{\mathfrak{p}} = \sum_{m=0}^{l-1} u_{m,\mathfrak{p}}(\boldsymbol{\omega}^m/b_m)(u_{m,\mathfrak{p}} \in \mathfrak{o}_{\mathfrak{p}})$. Then we can hold the results for $\beta_{\mathfrak{p}}$ similar to the calculations of Lemma 2. Therefore, if we put $\varepsilon_{j,\mathfrak{p}} = \sum_{m=j}^{l-1} (\zeta-1)^{l-1-m} \binom{m}{j} (a^{m-j}b_j/b_m)u_{m,\mathfrak{p}}$, we obtain for each \mathfrak{p} and $j=1, \dots, l$, by (3),

$$\varphi_{\mathfrak{p}}(\chi^{j}) = \frac{(\beta_{\mathfrak{p}}|\chi^{j})}{(b|\chi^{j})} = \frac{\varepsilon_{l-j,\mathfrak{p}}}{\varepsilon_{l-j}}.$$

Now we put $f_{\mathfrak{p}}(\chi^{j}) = \varepsilon_{l-j,\mathfrak{p}}$ and $g(\chi^{j}) = \varepsilon_{l-j}^{-1}$. Since $\beta_{\mathfrak{p}}$ and b are local and global normal bases, we have $f = (f_{\mathfrak{p}}) \in M(\hat{G}, U_{k})$ and $g \in M(\hat{G}, k^{\times})$ by (4). Let $\varphi = g'f'$, $f' \in M(\hat{G}, U_{k})$ and $g' \in M(\hat{G}, k^{\times})$ be another decomposition of φ . Then it is easy to see that there is $u \in M(\hat{G}, \mathfrak{o}_{k}^{\times})$ such that f' = uf and $g' = u^{-1}g$. Hence, by Theorem 1, K/k has an n.i.b. if and only if there is $u \in M(\hat{G}, \mathfrak{o}_{k}^{\times})$ such that $uf_{\mathfrak{p}} \in M_{0}(\mathfrak{p})$ for every prime ideal \mathfrak{p} of k. Since $(uf_{\mathfrak{p}})^{*}(\sigma^{i}) = (1/l) \sum_{j=0}^{l-1} \zeta^{ij} u(\chi^{l-j}) \varepsilon_{j,\mathfrak{p}}$ $(0 \le i \le l-1)$, it is sufficient to show $uf_{\mathfrak{p}} \in M_{0}(\mathfrak{p})$ only for a prime ideal of k dividing l for proving that $uf_{\mathfrak{p}} \in M_{0}(\mathfrak{p})$ takes place for all \mathfrak{p} 's. Now let $\mathfrak{p}|l$. Putting $u_{0,\mathfrak{p}} = \cdots = u_{l-2,\mathfrak{p}} = 0$ and $u_{l-1,\mathfrak{p}} = b_{l-1}$, by $l \nmid a$, we have $\varepsilon_{j,\mathfrak{p}} = \binom{l-1}{j} a^{l-1-j} b_{j} \in \mathfrak{o}_{\mathfrak{p}}^{\times}$ $(0 \le j \le l-1)$. Therefore $\beta_{\mathfrak{p}} = \omega^{l-1}$ generates a local normal basis for \mathfrak{p} by (4). Then

$$(uf_{\mathfrak{p}})^*(\sigma^i) = \frac{1}{l} \sum_{j=0}^{l-1} {l-1 \choose j} \zeta^{ij} u(\chi^{l-j}) a^{l-1-j} b_j \qquad (0 \leq i \leq l-1) .$$

Setting $u_j = u(\chi^{l-j})$, the first part of the theorem is established. By (3)

$$\frac{1}{|G|} \sum_{j=1}^{l} u^{-1} g(\chi^{j})(b|\chi^{j}) = \frac{1}{(\zeta-1)^{l-1}} \sum_{j=0}^{l-1} u_{j}^{-1} \frac{(-\sqrt[l]{a})^{j}}{b_{j}}.$$

This gives a generator of the n.i.b. by Theorem 1. Since $(\zeta-1)^{l-1}/l \in \mathfrak{o}_k^{\times}$, $(1/l) \sum_{j=0}^{l-1} u_j^{-1} ((-\sqrt[l]{a})^j/b_j)$ is also a generator and the proof is completed.

Now we examine the case in which (8) holds for $u_j=b_j=1$ $(j=0,\cdots,l-1)$. Let $\mathfrak{p}=(\zeta-1)\mathfrak{o}_k$. Since $\sum_{j=0}^{l-1} {l-1 \choose j} \zeta^{ij} a^{l-1-j} = (a+\zeta^i)^{l-1} = (a+1+\zeta^i-1)^{l-1}$ and $l=\mathfrak{p}^{l-1}$, (8) implies $a\equiv -1 \bmod l$. By the definition, $b_j=1$ $(j=0,\cdots,l-1)$ means that a is a square-free integer. Furthermore $a^{l-1}\equiv 1 \bmod l^2$ and $a\equiv -1 \bmod l$ mean $a\equiv -1 \bmod l^2$, and since l is an odd prime, we have $k(\sqrt[k]{a})=k(\sqrt[k]{-a})$. By Theorem 2, we obtain the following theorem.

THEOREM 3. Suppose that l is odd prime and $a \neq \pm 1$ is square-free rational integer such that $a \equiv \pm 1 \mod l^2$. Then $\alpha = (1/l) \sum_{j=0}^{l-1} (-\sqrt[l]{\varepsilon a})^j$ generates an n.i.b. of $\mathbf{Q}(\zeta_l, \sqrt[l]{a})/\mathbf{Q}(\zeta_l)$, where

$$arepsilon = egin{cases} 1 & if & a \equiv -1 mod l^2 \ -1 & if & a \equiv 1 mod l^2 \end{cases}.$$

COROLLARY. Let l, a and α be as in Theorem 3. Then $\zeta_l \alpha$ generates an n.i.b. of the non-abelian extension $\mathbf{Q}(\zeta_l, \sqrt[l]{a})/\mathbf{Q}$.

PROOF. Since $Q(\zeta_l, \sqrt[l]{a}) = Q(\zeta_l, \sqrt[l]{-a})$, we may prove in case where $a \equiv -1 \mod l^2$. Put $\Gamma = \operatorname{Gal}(K/Q)$. Let σ , τ be fixed elements of Γ , say $\sigma \zeta = \zeta$, $\sigma \sqrt[l]{a} = \sqrt[l]{a} \zeta$, $\tau \zeta = \zeta^g$ and $\tau \sqrt[l]{a} = \sqrt[l]{a}$, where g is a primitive root mod l. Then we have $\Gamma = \{\sigma^i \tau^j | i = 0, \cdots, l-1, j=1, \cdots, l-1\}$. By Theorem 3, we obtain $\mathfrak{o}_K = \bigoplus_{i=0}^{l-1} \mathfrak{o}_k \sigma^i \alpha$ and also $\mathfrak{o}_k = \bigoplus_{j=1}^{l-1} \mathbf{Z} \tau^j \zeta$. Consequently, we have $\mathfrak{o}_K = \bigoplus_{i=0}^{l-1} \bigoplus_{j=1}^{l-1} \mathbf{Z} \sigma^i \alpha \tau^j \zeta$. Since α has the explicit form given above, we have $\sigma^i \tau^j (\zeta \alpha) = \sigma^i \alpha \tau^j \zeta$. Hence we have $\mathfrak{o}_K = \bigoplus_{i=0}^{l-1} \bigoplus_{j=1}^{l-1} \mathbf{Z} \sigma^i \tau^j (\zeta \alpha)$ and this proves our corollary.

§3. Examples of K/k with or without n.i.b..

We can construct many examples of normal extensions K/k with n.i.b., $k \neq Q$, using our theorem 3, its corollary and Hilbert-Speiser's theorem in the abelian extensions of Q on ground of the following lemma 3.

NOTATIONS. For an extension K/k, $d_{K/k}$, $D_{K/k}$ mean the discriminant and the different of K/k, respectively. Let K/k be of degree n. If $\alpha_1, \dots, \alpha_n \in K$, $d_{K/k}(\alpha_1, \dots, \alpha_n)$ denotes the discriminant of $\alpha_1, \dots, \alpha_n$.

LEMMA 3. Suppose that K_1/k is a Galois extension of degree n and K_2/k is an extension of degree m, where $K_1 \cap K_2 = k$. Let L be the composite field of K_1 and K_2 . Suppose $(d_{K_1/k}, d_{K_2/k}) = 1$.

- (i) If $\{\alpha_i\}_{i=1,...,n}$ is a relative (normal) integral basis of K_1/k , then it is also a relative (normal) integral basis of L/K_2 .
- (ii) If $\{\alpha_i\}_{i=1,\dots,n}$ and $\{\beta_j\}_{j=1,\dots,m}$ are relative integral bases of K_1/k and K_2/k , then $\{\alpha_i\beta_j\}_{i=1,\dots,n,j=1,\dots,m}$ is a relative integral basis of L/k.

PROOF. (ii) is well-known (Cf. Lang [3], Chapter III, Proposition 17). Through (i) seems also known, a proof of (i) will be given here, as no reference for it is known to the author.

As $(d_{K_1/k}, d_{K_2/k})=1$, we have $D_{K_1/k}=D_{L/K_2}$ (Cf. Lang [3], Chapter III, Proposition 17). Since K_1/k and L/K_2 are Galois extensions of degree n, $d_{K_1/k}=D_{K_1/k}^n$ and $d_{L/K_2}=D_{L/K_2}^n$. Hence $d_{K_1/k}=d_{L/K_2}$. By the hypothesis, $d_{K_1/k}=d_{K_1/k}(\alpha_1, \cdots, \alpha_n)$ (Mann [5], Theorem 1). Therefore $d_{L/K_2}=d_{L/K_2}(\alpha_1, \cdots, \alpha_n)$. Consequently $\{\alpha_i\}_{i=1,\dots,n}$ is a relative integral basis of L/K_2 (Mann [5], Theorem 1 Corollary).

In the following proposition, suppose that l_i is an odd prime and $a_i(\neq \pm 1)$ is a square-free rational integer such that $a_i \equiv \pm 1 \mod l_i^2$ and put $\alpha_i = (1/l_i) \sum_{j=0}^{l-1} (-\frac{l_i}{\sqrt[l]{\varepsilon_i a_i}})^j$, where

$$arepsilon_i = egin{cases} -1 & ext{if} & a_i \equiv 1 mod l_i^2 \ 1 & ext{if} & a_i \equiv -1 mod l_i^2 \end{cases} \quad (1 \leqq i \leqq s) \; .$$

PROPOSITION 1. (I) Let k be an abelian extension of \mathbf{Q} whose conductor n is odd and square-free (i.e. k/\mathbf{Q} is tamely ramified). Let K be a number field such that $(d_{K/\mathbf{Q}}, n) = 1$. Then $\mathrm{Tr}_{\mathbf{Q}(\zeta_n)/k}(\zeta_n)$ generates an n.i.b. of the abelian extension kK/K. $(\mathrm{Tr}_{\mathbf{Q}(\zeta_n)/k}(\zeta_n))$ denotes the trace of ζ_n in $\mathbf{Q}(\zeta_n)/k$ and ζ_n is a primitive n-th root of unity.)

- (II) Let k be as in (I) and $a_1, \dots, a_s, l_1, \dots, l_s$ be pairwise prime and suppose $(n, \prod_{i=1}^s a_i l_i) = 1$. Then $\prod_{i=1}^s \alpha_i \cdot \zeta_{l_1 \dots l_{s_i}} \cdot \operatorname{Tr}_{Q(\zeta_n)/k}(\zeta_n)$ generates an n.i.b. of the non-abelian extension $k(\sqrt[l]{a_1}, \dots, \sqrt[l]{a_s}, \zeta_{l_1 \dots l_s})/Q$.
- (III) Let k be a number field and $a_1, \dots, a_s, l_1, \dots, l_s$ be pairwise prime and suppose $(d_{k/Q}, \prod_{i=1}^s a_i l_i) = 1$. Then $\prod_{i=1}^s \alpha_i \cdot \zeta_{l_1 \dots l_s}$ generates an n.i.b. of the non-abelian extension $k(\sqrt[l]{a_1}, \dots, \sqrt[l]{a_s}, \zeta_{l_1 \dots l_s})/k$.
- (IV) Let n be the product of all the distinct primes among l_1, \dots, l_s . Let k be a number field which contains ζ_n and m be an odd and square-free integer. Suppose a_1, \dots, a_s are pairwise prime and $(l_i, a_j) = 1$ $(1 \leq i, j \leq s)$. Suppose $(m, n \prod_{i=1}^s a_i) = 1$, $(d_{k/Q(\zeta_n)}, m \prod_{i=1}^s a_i) = 1$ and $Q(\sqrt[l]{l_1}, \dots, \sqrt[l]{l_s}, \zeta_{mn}) \cap k = Q(\zeta_n)$. Then $\prod_{i=1}^s \alpha_i \zeta_m$ generates an n.i.b. of the abelian extension $k(\sqrt[l]{l_1}, \dots, \sqrt[l]{l_s}, \zeta_{mn})/k$.
- PROOF. (I) Since ζ_l generates an n.i.b. of $Q(\zeta_l)/Q$ (l: odd prime), ζ_n generates, by Lemma 3 (ii), an n.i.b. of $Q(\zeta_n)/Q$. Hence $\mathrm{Tr}_{Q(\zeta_n)/k}(\zeta_n)$ generates an n.i.b. of k/Q ([4], Chapter 9, Theorem (3, 4)). As $(d_{K/Q}, n) = 1$, we have $K \cap k = Q$. Therefore, by Lemma 3 (i), $\mathrm{Tr}_{Q(\zeta_n)/k}(\zeta_n)$ generates an n.i.b. of kK/K.
- (II) We note $d_{Q(\zeta_{l_i}, {}^{l_i/\overline{a_i}})/Q(\zeta_{l_i})} = (a_i^{l-1})$ by Okutsu's theorem. Hence only prime divisors of $a_i l_i$ ramify in $Q(\zeta_{l_i}, {}^{l_i}\sqrt{a_i})/Q$. Therefore, since $a_1, \dots, a_s, l_1, \dots, l_s$ are pairwise prime, $\prod_{i=1}^s \alpha_i \zeta_{l_1 \dots l_s}$ generates, by Corollary of Theorem 3 and Lemma 3 (ii), an n.i.b. of $Q(\sqrt[l]{a_1}, \dots, \sqrt[l]{a_s}, \zeta_{l_1 \dots l_s})/Q$. As $(n, \prod_{i=1}^s a_i l_i) = 1$, we have $k \cap Q(\sqrt[l]{a_1}, \dots, \sqrt[l]{a_s}, \zeta_{l_1 \dots l_s}) = Q$. In (I), we have seen that $\operatorname{Tr}_{Q(\zeta_n)/k}(\zeta_n)$ generates an n.i.b. of k/Q. Consequently, by Lemma 3 (ii), $\prod_{i=1}^s \alpha_i \cdot \zeta_{l_1 \dots l_s} \cdot \operatorname{Tr}_{Q(\zeta_n)/k}(\zeta_n)$ generates an n.i.b. of k/Q.
- (III) As $(d_{k/Q}, \prod_{i=1}^s a_i l_i) = 1$, we have $k \cap Q(\sqrt[l]{a_1}, \dots, \sqrt[l]{a_s}, \zeta_{l_1 \dots l_s}) = Q$. Hence, using Lemma 3 (i) in place of Lemma 3 (ii) which is used in (II), we can show that $\prod_{i=1}^s \alpha_i \cdot \zeta_{l_1 \dots l_s}$ generates an n.i.b. of $k(\sqrt[l]{a_1}, \dots, \sqrt[l]{a_s})$

 $\sqrt[l_s]{a_s}$, $\zeta_{l_1\cdots l_s}/k$.

(IV) In the first place, we shall show by induction in s that $\prod_{i=1}^s \alpha_i$ generates an n.i.b. of $\mathbf{Q}(\sqrt[l]{a_1}, \cdots, \sqrt[l]{a_s}, \zeta_n)/\mathbf{Q}(\zeta_n)$. Let n_r be the product of all the distinct primes among l_1, \cdots, l_r $(1 \le r \le s)$. The case s=1 is just Theorem 3 $(n=n_s=l_1)$. To prove that $\prod_{i=1}^s \alpha_i$ generates an n.i.b. of $\mathbf{Q}(\sqrt[l]{a_1}, \cdots, \sqrt[l]{a_s}, \zeta_{n_s})/\mathbf{Q}(\zeta_{n_s})$ for s=r+1 assuming it true for s=r, we put $F_1 = \mathbf{Q}(\zeta_{n_r}, \sqrt[l]{a_1}, \cdots, \sqrt[l]{a_r})$, $F_2 = \mathbf{Q}(\zeta_{n_r})$, $F_3 = \mathbf{Q}(\zeta_{n_{r+1}}, \sqrt[l]{a_1}, \cdots, \sqrt[l]{a_r})$,

 $\begin{array}{lll} F_4 = \mathbf{Q}(\zeta_{n_{r+1}}), & F_5 = \mathbf{Q}(\zeta_{l_{r+1}}), & F_6 = \mathbf{Q}(\zeta_{n_{r+1}}, \sqrt[l_1]{a_1}, \cdots, \sqrt[l_{r+1}]{a_{r+1}}), & F_7 = \mathbf{Q}(\zeta_{n_{r+1}}, \sqrt[l_1]{a_1}, \cdots, \sqrt[l_{r+1}]{a_{r+1}}), & F_7 = \mathbf{Q}(\zeta_{n_{r+1}}, \sqrt[l_1]{a_1}, \cdots, \sqrt[l_{r+1}]{a_{r+1}}), & F_8 = \mathbf{Q}(\zeta_{n_{r+1}}, \sqrt[l_1]{a_{r+1}}), & F_8 = \mathbf{Q}(\zeta_{n_{r+1}}, \sqrt[l_1]{$ an n.i.b. of F_3/F_4 . If $l_{r+1} \nmid n_r$, we have $n_{r+1} = n_r l_{r+1}$. By Okutsu's theorem, prime ideals ramified in F_1/F_2 divide $\prod_{i=1}^r a_i$. And only prime divisors of l_{r+1} ramify in F_4/F_2 . As $(l_{r+1}, \prod_{i=1}^r a_i) = 1$ we have $(d_{F_1/F_2}, \dots, d_{F_1/F_2})$ d_{F_4/F_2})=1 and $F_1 \cap F_4 = F_2$. Hence, by the hypothesis of induction and Lemma 3 (i), $\prod_{i=1}^{r} \alpha_i$ generates an n.i.b. of F_3/F_4 . As $(n_{r+1}/l_{r+1}, a_{r+1})=1$, we have $(d_{F_4/F_5}, d_{F_8/F_5}) = 1$ and $F_4 \cap F_8 = F_5$. Consequently, by Lemma 3(i), α_{r+1} generates an n.i.b. of F_7/F_4 . Prime ideals ramified in F_3/F_4 divide $\prod_{i=1}^r a_i$ and prime ideals ramified in F_7/F_4 divide a_{r+1} . As $(\prod_{i=1}^r a_i, a_{r+1})=1$, we have $(d_{F_3/F_4}, d_{F_7/F_4})=1$ and $F_3 \cap F_7 = F_4$. By Lemma 3 (ii), $\prod_{i=1}^{r+1} \alpha_i$ generates an n.i.b. of F_6/F_4 . Thus, we have proved that $\prod_{i=1}^s \alpha_i$ generates an n.i.b. of $Q(\sqrt[l]{a_1}, \cdots, \sqrt[l]{a_s}, \zeta_n)/Q(\zeta_n)$. As $(m, n) = 1, \zeta_m$ generates, by Lemma 3 (i), an n.i.b. of $Q(\zeta_{mn})/Q(\zeta_n)$. As $(\prod_{i=1}^s a_i, m) = 1$, we have $Q(\zeta_{mn}) \cap L = Q(\zeta_n)$ $\text{and} \quad (d_{\boldsymbol{Q}(\zeta_{\boldsymbol{m}\boldsymbol{n}})/\boldsymbol{Q}(\zeta_{\boldsymbol{n}})}, \ d_{L/\boldsymbol{Q}(\zeta_{\boldsymbol{n}})}) = 1, \quad \text{where} \quad \text{we} \quad \text{put} \quad L = \boldsymbol{Q}(\sqrt[l_1]{a_1}, \ \cdots, \sqrt[l_s]{a_s}, \ \zeta_n).$ Consequently, by Lemma 3 (ii), $\prod_{i=1}^s \alpha_i \zeta_m$ generates an n.i.b. of $Q(\sqrt[l]{a_1}, \cdots, \sqrt[l]{a_s}, \zeta_{mn})/Q(\zeta_n)$. Since $(d_{k/Q(\zeta_n)}, m \prod_{i=1}^s a_i) = 1$ and $k \cap$ $Q({}^{l}\sqrt[l]{a_{1}}, \cdots, {}^{l}\sqrt[l]{a_{s}}, \zeta_{mn}) = Q(\zeta_{n}), \quad \prod_{i=1}^{s} \alpha_{i}\zeta_{m} \quad \text{generates, by Lemma 3 (i), an n.i.b. of } k({}^{l}\sqrt[l]{a_{1}}, \cdots, {}^{l}\sqrt[l]{a_{s}}, \zeta_{mn})/k. \quad \text{This proves our proposition.}$

In general, it is not easy to construct a Galois extension without n.i.b. by applying Theorem 2. For l=3, the unit group of quadratic field k is $\langle -1, \zeta_3 \rangle$ and no distinct elements of this group are pairwise

congruent modulo 3. Consequently, we can check that $Q(\zeta_3, \sqrt[3]{a})/Q(\zeta_3)$ always has an n.i.b. $(a^2 \equiv 1 \mod 9)$.

The following proposition shows on the other hand that there are infinitely many tamely ramified extensions K/k $(k \neq Q)$ without n.i.b..

PROPOSITION 2. Let m, n be square-free rational integers. Suppose that $m, n \equiv 3 \mod 4, m < -1, n < 0 \text{ and } (m, n) = 1.$ Then $\mathbf{Q}(\sqrt{m}, \sqrt{n})/\mathbf{Q}(\sqrt{m})$ is a tamely ramified quadratic extension without n.i.b..

PROOF. Put $K=Q(\sqrt{m},\sqrt{n})$ and $k=Q(\sqrt{m})$. By the hypothesis, $\{1,(\sqrt{m}+\sqrt{n})/2\}$ is an \mathfrak{o}_k -basis of \mathfrak{o}_K (Bird and Parry [1], Theorem I) and $\{1,\sqrt{m},(\sqrt{m}+\sqrt{n})/2,(1+\sqrt{mn})/2\}$ is Z-basis of \mathfrak{o}_K (Williams [11]). Let α be an element of \mathfrak{o}_K and $\alpha=a+b\sqrt{m}+c(\sqrt{m}+\sqrt{n})/2+d(1+\sqrt{mn})/2$ $(a,b,c,d\in Z)$. Noting $\sqrt{m}\sqrt{n}=-\sqrt{mn}$, we obtain

$$\begin{pmatrix} \alpha \\ \alpha' \end{pmatrix} = A \begin{pmatrix} 1 \\ (\sqrt{m} + \sqrt{n})/2 \end{pmatrix} , \quad A = \begin{pmatrix} a + b\sqrt{m} + d(1+m)/2 & c - d\sqrt{m} \\ a + (b+c)\sqrt{m} + d(1-m)/2 & -(c - d\sqrt{m}) \end{pmatrix} ,$$

where α' is the conjugate element of α in K/k. Hence, we have

$$\det A = -(c - d\sqrt{m})\{(2a + d) + (2b + c)\sqrt{m}\}.$$

 α generates an n.i.b. of K/k if and only if det $A \in \mathfrak{o}_k^{\times}$, i.e. if and only if there exist $a, b, c, d \in \mathbb{Z}$ such that

$$(2a+d)^2-m(2b+c)^2=\pm 1$$

(10)
$$c^2 - md^2 = \pm 1.$$

Since -m>1, we have $2a+d=\pm 1$, 2b+c=0, $c=\pm 1$ and d=0 from (9), (10). Therefore we obtain $2a=\pm 1$. So the simultaneous Diophantine equation (9), (10) has no solution and K/k has no n.i.b.. Since 2 is unramified in $Q(\sqrt{mn})/Q$, K/k is tamely ramified. This proves our assertion.

References

- [1] R. H. BIRD and C. J. PARRY, Integral bases for bicyclic biquadratic fields over quadratic subfields, Pacific J. Math., 66 (1976), 29-36.
- [2] A. Fröhlich, The module structure of Kummer extensions over Dedekind domains, J. Reine Agnew. Math., 209 (1962), 39-53.
- [3] S. LANG, Algebraic Number Theory, Addison Wesley, Reading Ma., 1970.
- [4] R. Long, Algebraic Number Theory, Marcel Dekker, New York, 1977.
- [5] H.B. MANN, On integral bases, Proc. Amer. Math. Soc., 9 (1958), 167-172.
- [6] K. Okutsu, Construction of integral basis I-IV, Proc. Japan Acad., 58 A (1982), 47-49, 87-89, 117-119, 167-169.
- [7] K. Okutsu, On extensions of Dedekind domains I, II, preprint.

- [8] K. Okutsu, Construction of relative integral basis of $\mathbf{Q}(\sqrt[l]{a}, \zeta_l)$ over $\mathbf{Q}(\zeta_l)$ (in Japanese), Seisūron kenkyūshūkai hōkokushū in Kyushu University, 1982.
- [9] R. G. SWAN, Induced representations and projective modules, Ann. of Math., 71 (1960), 552-578.
- [10] I. Reiner, Maximal Orders, Academic Press, London, 1975.
- [11] K. S. WILLIAMS, Integers of biquadratic fields, Canad. Math. Bull., 13 (1970), 519-526.

Present Address:
DEPARTMENT OF MATHEMATICS
GAKUSHUIN UNIVERSITY
MEJIRO, TOSHIMA-KU, TOKYO 171