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Introduction

Let (X, d) be a compact metric space and f be a homeomorphism
from X onto itself. s is called expansive if there exists ¢>0 such that
d(f~(x), f"y))<e for all ne Z implies x=y. The number e is called an
expansive constant of f. A sequence {x;},.z of X is a d-pseudo orbit of
F if d(f(x,), x.+,) <6 for all 1€ Z. We say that x € X e-traces a sequence
{x}iez of X if d(f*(x), x,)<e for all 2€ Z. f is called to have the pseudo
orbit tracing property (abbrev. P.0O.T.P.) if for any €>0 there exists
0>0 such that every d-pseudo orbit of f is e-traced by a point of X.
These properties of f are independent of metrics for X compatible with
original topology.

A typical example of expansive homeomorphisms with P.O.T.P. is
given in [1, 2]; it is shown that expansive group automorphisms of
solenoidal groups have P.O.T.P. though in general group automorphisms
with P.O.T.P. are not expansive. Another example is obtained from an
expanding map g: X— X, that is, g is an onto open map and there are
0>0 and A>1 such that d(x, ¥)<é implies d(g(x), g(¥))=nd(x, ¥). Such
maps become homeomorphisms through inverse limit and it is known
that these homeomorphisms are expansive and have P. 0. T.P.. As these
examples show, we can construct easily examples of expansive homeo-
morphisms with P.O.T.P. and they form a larger class than that of
Anosov diffeomorphisms. It was posed as a problem in topological dynamics
whether every expansive homeomorphism of a torus satisfying P.O.T. P.
is topologically conjugate to a toral automorphism, and the technique in
this paper is important to solve this problem ([6]).

Ja. G. Sinai constructed in [9] Markov partitions for Anosov diffeo-
morphisms of compact C* manifolds. After that R. Bowen [3, 5] con-
structed the same partitions for basic sets of Axiom A diffeomorphisms
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by following the Sinai’s paper. In [8], D. Ruelle stated that Markov
partitions could be constructed for certain homeomorphisms of compact
metric spaces in a topological setting.

The purpose of this paper is to construct Markov partitions for expan-
sive homeomorphisms with P. O. T. P. by following the ideas of R. Bowen.
More precisely we can state the result as follows.

THEOREM. If f: X—X is an expansive homeomorphism with P.O.T.P.,
then X has Markov partitions with arbitrary small diameter.

A Markov partition of (X, f) induces a subshift (J, o) of finite type
and a surjective continuous map #: ¥ —X such that for=mwoco where ¢
is the shift homeomorphism (p. 84 of [6]). Then from the same proof as
in [4] it follows that there is a positive number d such that card(z~'(z))<
d for all xe X.

If the number N, of the fixed points of f™ for m>0Q is finite, the
zeta function {; of f is the formal power series deflned by {,(z)=
exp(Ce-, (N./m)z™). We have the following corollary by the same proof
as in [T7].

COROLLARY. If f: X — X 1is as in Theorem, then the zeta function
of f is rational.

§1. Definitions and lemmas.

Let f: X— X be as in Theorem and ¢>0 be an expansive constant
of f. Put and fix ¢,=¢/4. For any x€ X and ¢>0, we set

Wi(x)={y € X|d(f(x), f*(¥))<e, n=0},
Wix)={y € X|d(f"(x), f*(¥))Se, n<0} .

LEMMA 1. There exists 0<0,<&, such that W:(x)N Wyi(y) consists of
one point for any x, y € X with d(x, y) <é,.

PrOOF. Since f has P.O.T.P., there exists 0<d§,<¢&/2 such that
any d,-pseudo orbit is ¢/2-traced by a point of X. For z, y € X we assume
d(z, y)<0,. Then a sequence {z},,z of X defined by x,= f(x) for =0 and
2,=fy) for 1<0 is d,-pseudo orbit of f. Hence there is z € X such that
d(f4(2), 2;)<e&/2 for i€ Z. Then ze W}, (x)c W;(x) and ze W (y) since
d(x, y)<s,/2. Therefore W.(x)N W;(y) is non-empty. By expansiveness
of f, the conclusion is obtained.

Let d, be as in Lemma 1 and put 4(5,)={(z, ¥) € X X de(x, Y) <0,}.
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Then we can define a map [, ]: 4(6,) - X by assigning [z, y]e we(x)N
Wiy) to (x, y) € 4(5,).

LemmaA 2. [, ]: 400,)— X is a continuous map satisfying [, x]=x and

[z, ¥], 21=[x, 2], [, [y, z]l]l=Ix, 2]

when the two sides of these relations are defined.

PROOF. We assume that a sequence {(z,, ¥,)}>, of 4(6,) converges to
(x, y) € 4(0,). Put z,=[zx,, ¥,]. Since X is compact, there is a subsequence
{z.;}i of {z.}7., such that {z,]}7, converges to a point ze X. By the
definition of [, ], A(f (@), f(2,;) e, for every ¢=0 and =;. Hence
d(f(x), fi(z))<¢, and z e Wi (x). Similarly, ze€ WX(y) and z=[z, y]. This
shows that {z,}3., converges to [z, y].

It is clear that [x, x]=ux for all xe X. Since [z, y] e Wi (x), [[x, y], 2] €
Wi (®)N Wi(z). By expansiveness of f,[[x, ¥], z]=[z, z]. Similarly,
[z, [y, z]]=[z, 2].

PROPOSITION 3 (Local product structure). Let f: X—X be as in
Theorem. Then under the above motations there exist 0<5,<6,/2 and 0<
0<0, such that for any x e X the sets

Wiee(x) ={y € W.(x)|d(x, y) <},
Wio(x)={y € Wi(x)|d(®, y)<d},

and
Na; = [ Wl%c(x)y Wlaoa(w)]

have the following properties;
(@) N, i3 an open subset of X and diam(N,)<$,,
(b) [, ]:Wiix)x W.(x)— N, is a homeomorphism,
(¢) N,DB,(x) where B,(x)={y ¢ X|d(z, y)<p}.

PROOF. The map g,: Xx 4(6,) >R defined by g,(x, (y, 2))=d(x, [y, z])
for (z, (¥, 2)) € Xx 4(9,) is continuous and g,(x, (x, ))=0 by Lemma 2. By
compactness of X there is 0<4,<d,/2 such that diamf{x, y, 2} <26, implies
- d(w, [y, 2)<60/8. If (y, z) € Wi (x)x Wio(x), then d(z, [y, 2z])<6,/3 and so
diam(N,)<d,. Suppose we N,. Then there are ye Wi (x) and ze Wi ()
with w=[y, z]. Since d(x, w)<4,/8, we can define the maps P,: B;s(w) —
We(w) and P,: By (w)—Wi(x) by P,(v)=[v, x] and P,(v)=[x, v] for ve
B,ys(w). Then by Lemma 2, P, and P, are continuous, P,(w)=[y, z]=v
and P,(w)=z. Hence there is a neighborhood U of w in X such that
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P(U)c Wi(x) and P,(U)c Wi(x). If ve U, then veN, since v=[[v, z],
[z, v]] by expansiveness. This implies that N, is open in X and so a)
holds.

Define h: N,— Wg. () x Wi.(2) by h(w)=(w, z], [¢, w]) for w € N,.
Clearly kb is continuous by Lemma 2. In fact k is the inverse map of
[,]:We.(x)x Wi (x)— N,. Therefore we have b).

The map g,: 4(5,)— R defined by g,(x, y)=diam{z, [y, ], [x, ¥} (=, ¥) €
4(8,)) is continuous and g.(x, £)=0 by Lemma 2. Hence by compactness
of X there is 0<p<34, such that d(z, y) < p implies g,(z, 9¥)<0,. This shows
that [y, z] € W.(x) and [x, y]e Wi.(x). Hence y=[[y, ], [, y]l€ N, and
the proof is completed.

Hereafter we fix the numbers 4, and o that are chosen in Proposition
3. Let W.(x), Wi.(x) and N, be as in Proposition 3. We claim that for
any x€ X, N,5v, z implies [y, z]€ N,. Indeed, by the definition of N,,
there exist u, u,€ Wi.(x) and v, v, € Wi, (x) such that y=[u, ] and z=
[u., v,]. Hence we have [y, z]=[[u,, v.], [4s, v.]]=[u,, v.] € N,.

For x, ye X we put D?,=Wt.(x)NN, and D;,= Wi..(x)NN,.

LEMMA 4. Foy z, y € X with d(x, y)<p, D, i8 an open neighborhood
of = in Wi.(x) for o=u, s and the maps [, y]: D:,— D;}., [9, I: D;y— D,
are homeomorphisms.

PROOF. Since N, is open in X by a) of Proposition 8, D;, is open
in Wi.(x). Since z e B,(y)N, by ¢) of Proposition 3, € D;,, and so Dz,
is an open neighborhood of x in Wi (x). If zeD;,, then [z, yle Wi(y)
since ze N, and [z, y] € N, since ze W.(x)CN, and y € B,(x)CN,. Hence
(2, y] € D},. Similarly ze D}, implies [z, ]€ D;,. Hence [D;,, yl=D;.
and by Lemma 2 the map [, y]: D¥,— D}, is a homeomorphism with the
inverse map [,z): Df.—Dx,. Similarly [y, D:;,]=D;., and the map
[y, 1: D;,,— D;,, is a homeomorphism.

LEMMA 5. Foy any x€ X,
(@) F(Wh(x) N Wi (f(x) i8 open in Wi(f(x)),
(®) FHWE@) N Wi(f (%) 18 open in Wi (f'(x)).

ProOF. If we f(N,)N Wi(f(x)), then f(w)eN,. So there exist
ye Wr(x) and ze Wi (x) with f(w)=[y, 2]. Then f~'(w)e W;(2) and
w e Wh(f @) Wi (f(2)). By expansiveness of S, fY(w)=2z and we
F(Wi(x)). Therefore we have f(N,)N Wi(f (@)= f(Wi.(2)) N Wi.(f(x)).
Since N, is open in X by Proposition 8, we have (a). Similarly, (b) holds.

A subset R of X is called a rectangle if diam(R)<p and if [z, y]e R
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for #, yc R. In this definition, we note that [z, y] € Wi.(x) N W~.(¥) since
©<0;. For AcX, cl(A) denotes the closure of A in X. It is clear that
if R is a rectangle, then cl(R) is also a rectangle. When R is a rectangle
and xe R, we define W*(z, R) and W*(x, R) by Wi.(x)NR and Wi.(x)NR
respectively. intW*(x, R) and int W*(x, R) denote the interior of W*(x, R)
in W/,(x) and the interior of W*(x, R) in W.(x) respectively. We put
oW*(x, R)= W*(x, R\int W*(x, RB) and é W*(%, R)= W*(x, R)\int W*(z, R).

Hereafter R denotes a rectangle.

LEMMA 6. For x, ye R,

(a) R=[W“(x, R), W'z, R)],

(b) [oW*(x, R), W*(x, R)]=[0 W*(y, R), W*(y, R)],
(¢) [W*(=z, R), 0W*(x, R)]=[W*(y, R), aW*(y, R)].

PROOF. First we show (a). Since R is a rectangle, [W*(x, R),
W'z, R)]JcR. If zeR, then [z, x]e RN Wi(x)=W*, R) and [z, 2] €
Wi(x, R). Hence z=[[z, ), [x, 2]] € [W*(x, R), W*(x, R)]. Next we show
(b). Since diam(R)<p and yeR, RCcB,(y)cN, and so W*(z, R)c D;,.
Similarly, W*(y, R)c D},. Since [W*(x, R), y]= W*(y, R), by Lemma 4
we have [0W*(x, R), y]=6 W*(y, B). Hence

[0 W*(z, R), W'(xz, R)]=[[dW*(x, R), ¥], [y, W*(x, R)]1=[6 W*(y, R), W*(y, R)] .
In the similar way (¢) holds. '

We define 0°R=[o0 W*(z, R), W*(z, R)] and “R=[W"(x, R), d W*(z, R)].
Then these do not depend on x€ R by Lemma 6 and 'R, 9*RCR since
R is a rectangle. int(R) denotes the interior of R in X. We put oR=
R\int(R).

LEMMA 7. Under the above notations,
(@) int(R)=[intW*(x, R), int W*(x, R)],
(b) OR=4"RUG"R.

PROOF. Since RcCN,, the interior of R in N, is equal to int(R).
Since R=[W*(x, R), W*(z, R)] by (a) of Lemma 6, (a) follows from (b) of
Proposition 3. By (b) of Proposition 8, we have dR=R\int(R)=[W*(z, R),
We(x, R)\[int W*(x, R), int W*(x, R)]=6"R U 5*“R.

Notice that int(R) is also a rectangle by (a) of Lemma 7.

LEMMA 8. Ifint(R)+# @ and x € int(R), then int W’(x, R)=W°(x, int(R))
for o=u, s.
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PrOOF. Since int(R) is open in X, clearly W*(z, int(R)) is open in
We(x) and so We(z, int(R))cintW*(x, R). Similarly, W*(x, int(R))c
intW*(x, R). Hence zcintW*(z, R). If zeintW*(x, R), then z=[x, z].
By (a) of Lemma 7, zcint(R). Therefore ze W*(x, int(R)) and so we have
intW*(x, R)= W*(x, int(R)). Similarly, we can show the lemma for g=u.

LEMMA 9. clWz, R)= W°(x, cl(R)) for c=wu, s.
PrROOF. Since cl(R) is a rectangle,
[, cl(R)] ccl(R) N Wi(x)= W*(x, cl(R)) .

If ze W', cl(R)), then ze W.(x) and so z=[x, 2] €[z, cl(R)]. Hence
We(z, cl(R))=[x, cl(R)]. Since [z, cl(R)] is closed in X by Lemma 2, we
have clW*z, R)C W*(z, cl(R)). Similarly, clW*(x, R)c W*(x, cl(R)). By
(a) of Lemma 6, R=[ W*(x, R), W*(x, R)] and so R is contained in [clW*(z, R),
clW*(x, R)] which is closed in X by Lemma 2. Hence ci(R)C[clW*(z, R),
el We(z, R)]C[W*(x, cl(R)), W*(x, cI(R))]=cl(R). By (b) of Proposition 3 we
obtain the conclusion.

R is called proper if R=cl(int(R)).

DEFINITION. A Markov partition is a finite cover {R, ---, R,} of X
consisting of proper rectangles such that
(a) intR,Nint R;=@ for ¢+#7,
(b) fW'(x, R)c W*(f(z), R;) and
f Wz, R)D W*(f(x), R;) when xeint RN f~'(int R;) .

§ 2. Construction of rectangles.

In order to construct Markov partitions for expansive homeomorphisms
with P.O. T.P., we state here the ideas stated by R. Bowen to construct
Markov partitions for basic sets of Axiom A diffeomorphisms. Let
f: X— X be as in Theorem and as before 4, and o0 be as in Proposition
3. Let B be a positive number with 8=<p/2 such that d(f(x), f(¥))<5é,
and d(f'(=), f~(y))<d, when d(z, y)<B. Since f has P.O.T.P., let
0<a<pB/2 be a number such that any a-pseudo orbit is B/2-traced by
a point of X. Choose 0<<v<a/2 such that d(f(z), f(¥)) <a/2 when
dz, y)<v. Let P={P, ---, P} be a 7v-dense subset of X and X(P)=
{(g;) e TIZ=Pld(f(g;), 95+ <, j€ Z}. Then for each ge 3 (P) there is a
unique 6(g) € X which g/2-traces ¢. Conversely for any xe€X there
exists ge J(P) with x=6(q). We can find a map ¢ from J(P) onto X



MARKOV PARTITIONS 225

such that fof=6o¢ where a:3(P)— 3(P) is the shift homeomorphism,
ie., 0(¢);=q;,, for any qeX(P) and jeZ Let T, ={6(q)|q € Z(P),
¢=P}s=1, :--, 7). Then diam(T,)<p and T={T, ---, T,} is a covering
of X. For fixed s with 1<s<r, if =, y € T,, then there exist q, ¢’ € I(P)
such that x=6(q), y=6(¢’) and ¢,=q;=P,. Define ¢*=]q, 1€ 2(P)byqt=gq;
for j=0 and ¢f=¢q; for <0. By the definition of ¢, we have

d(fi(6(g*), fie@)<B for ;=0,
a(fie@*), fi@N<B for jF=<0.

Hence [z, y]1=[0(q), 6(¢")]=0(¢*) & T, and so T, is a rectangle. Since fis
expansive, clearly @ is eontinuous (cf. see p. 80 of [5]). Hence T, (1<
8 = r) are closed in X.

For ze X, let T(x)={T;c Tlxe T;} and T*(x)={T.e T|T.N T;#@ for
some T;e T(x)}. Put Z=X\Uj.,8T;. Then Z is open dense in X. Let
Z*={re X|Wi(x)No*'Ty=2, Wi(x)N§"T,= for every T, e T*(x)}. Then
zZ*cZ by (b) of Lemma 7. :

LEMMA 10. Z* is dense in X.

PROOF. For ze€ X we put o'= Urgers0' Ty and 8% = U, ero(®)0* T
Since diam(T},)<B, we have that Urpersy I3 CBo.(®) CN,. Hence we have

[a;’ x]"—— UTkeT*(z)[a‘Tk’ x]
= Urgeranl0 W*(Ys, Ti), €] Wi (x)

where y,e T,. Since W¥(y,, T\)cD;,,, by Lemma 4 [0W*(y,, Tu), x] is
nowhere dense in D}, and so is in W (x). Hence [3:, ] is nowhere dense
in Wi.(x). Similarly, [z, %] is nowhere dense in Wix). If xeZ, then
there exists an open neighborhood U,(cN,) of # in X such that for any
ye U, T(y)=T(x) and so 3;=02 for o=u,s. Put U.= U, N[ Wi.(e)\[o3, x],
Wi(@\[z, 9z]1. Then, by (b) of Proposition 3, U. is dense in U,. If
y<c U,;, then there exist y,e Wr(x)\[3:, ] and y,e Wi.(x)\[z,3"] with
y=Iy, vl. If ze Wi.(y)N0:# D, then y,=[y, ax]=[[y, 2], x]=[z, «] €[5, ]
which is a contradiction. Hence W;:.(y)Nd:=¢. In the same way,
Wi(y)Noz:=@. This tells us that ye U, implies ye Z*. Hence Z* is
dense in Z. Since Z is dense in X, the conclusion is obtained.

For T;, T, e T with T;NT,# 2@, we define the sets

Tip={ze T\Wi@NTi#Q, Wi()NT,#=2}=T,NT;,
T},k:{x € Tj' W;:c(x) ﬂ Tk¢ @y Wlsoc(x) n Tk= @} ’
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T;",k: {x € TJI W’l‘a‘)c(x) ﬂ Tk= @y W,‘,,,,(x) ﬂ Tk$ ®} ’
T;,k:-'{x € T]‘ Wl’c‘)c(x) n Tk = @y Wl'oc(x) n Tk= @} ’

Clearly T;=UA.,T}: is a disjoint union. Itis clear that T}, is a rectangle.
If ,ye T, then ze We.)NT.#= @ and W..@)NT.,=2. Since z=
[2, ¥]=I[z [z, ¥]] and d(z, [z, ¥])<28<8d, z€ Wi (x, YDNTi>=2. If 2'¢
Wz, YN To#D, then 2'=[[x, y], Z1=[x, 2’]. Since d(z', 2)<28<9,,
¢ Wi(x)NT,+@ which is a contradiction. Hence Wi.(z, yDNT,=92
and [z, y] € T::,. This shows that T}, is a rectangle. Similarly, T}, and
T}. are rectangles.

LEMMA 11. For T, T, e T with T;NT,#2 and any =,

int T?,={x € T; .l Wi ()N (@ T;U0'TW)=0 ,
Wl‘c‘m(x) ﬂ (3" T,' U a" Tk) = ®} .

PROOF. Suppose zc€int T7, and ze Wi (@)N@T;UoT)+2. If ze
Wi (x)No'T;, then by the definition of 8*T; there exist 2, coW*(x, T;) and
z,€e Wiz, T;,) with z=[z, z]. Since z=[2, 2], 2= [z %), [2 2]]l=
2,€0'T;. This contradicts x €int T; by (b) of Lemma 7. If ze Wi.(x)N
o'T,, by the definition of 4*T, there exist z,€dW*(2, T}) and z, € W*(z, T})
with z=[z, 2,]. Since z=[z,, 2, 2=[[2, 2], [2,, z]]=2, and so ze dW*(2, Ts).
Since d(zx, 2)<p, by Lemma 4 we can consider the homeomorphism
[,2]: D*,—D!,. Then [z, 2z]=2. Since D;.,NTj, is a neighborhood of
¢ in D,, there exists veD;,NT}, such that [v, 21¢ W*(z, T}). If
we Wi wNT.+«0, then [v, 2z]l=[[w, v], z1=[w, z] € W*(z, T,) which is a
contradiction. Hence we have Wi.(w)NT,=@. This contradicts the fact
that z and v belong to the same set T},. Therefore xcint T7, implies
Wi(x)N (@' T;U8*T,)=2. In the similar way, x €int 77, implies Wi(2)N
(@0*T;UoTy)=0D.

Next we suppose z€d' T}, and Wi(2)N (@ T;U6'T,)=. Then z¢€
OW*(x, T?y). If x€dW*(x, Ty), then 2 €*T; and so Wi () No*T;+ D which
is a contradiction. Hence ze€intW+*(z, T;). Since d(z, #.)<pP (Y. € T%), by
Lemma 4 we can consider the homeomorphism [, ¥.]: D, — Dy,... Since
Wi @) ' Te= 2, Whe(@) NdW*(¥,, Tv)=2. Hence [2, ] & dW*(ys, Ti). Since
T, is a closed set, by Lemma 9 W*(y,, T.) is closed in X. Since W*(y,, T.C
Dy, ., 9W*(ys, T:) is the boundary of W*(y,, T:) in D}, .. Hence there
exists a neighborhood U*(c W*(x, T;)) of = in D;,, such that [UZ, y.]C
W, Ti) or [UZ, vl DL, \W*Ws, Th), ie., Wi (v)NT,#=@ for all ve U;
or Wi (w)NT,=@ for all ve U*. On the other hand, Wi.(v)NT,+@ for
all ve U* or We.w)NT,=@ for all ve Uy since Uyc W, T;). Hence
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U:C T This contradicts 2 € 9 W*(w, T}.). Therefore, for z € T2, Wi.(x) N
(0°T;Uo'T,)=© implies x¢ 4°T},. Similarly Wi(2)N(@*T;U0*Ty)=Q im-
plies ¢ 6*T;,. By using (b) of Lemma 7 we obtain the conclusion.

For xeZz*, if T;NT,+© for T;e T(x) and T,c T, then xcint T?:
for some n (Lemma 11). For ze Z* we define

R@)=N{int T7.|T; e T(x), ;N T,#2(T, e T) and zeint T?: .

Then E(x) is an open rectangle. Assume y € R(x). Then Tx)cT(y). If
T.eT(y) and T;e T(x), then ye T,NT,#@. Hence yec R(x)c T}, and
T.e€ T(x). Therefore we have T(y)=T(x). By the definition of R(x) and
Lemma 11, ye Z* and R(y)=R(x). Since T is finite, {R(z)|x € Z*} is finite.
Therefore there exist points ,,- - -, 2,, € Z* such that Z* =R(x)U -+ UR(,)
is a disjoint union. '

LEMMA 12. If e R(x)Nf(R@®,) %D, then
(@) SfW'(x, R(x))c W*(f(x), R(z,)),
(b) fW*(x, R(x))D W*(f(x), R(x;)).

PrROOF. For ve X, there exist ge 3J(P) with v=0(¢g). Assume q,=P,
and ¢,=P,. For we W*v, T,), there exists ¢’c I(P) such that w=46(¢")
and ¢=P,. Hence w=[v, w]=[0(q), 6(¢)]1=6(q, ¢']), so that flw)=
Sfo0(lg, D)=6-0([g, ¢'D) € T,. Since d(v, w)<B, we have f(w)e W (f(v)).
Hence f(w)e W*(f(v), T,); i.e.,

(1) SWe(v, T)c W*(f(v), T}) -
In the similar way FW*(f(v), T,)c W*(», T,); i.e.,
(2) SWH, T,)D>W(f(v), T) .

Assume y € W*(x, R(z,). Then y e W;.(x) and R(y)=R(z)=R(z,). First
we show T(f(x)=T(f(y)). If f(x)eT; and f(x)=0-0(q) with ¢,=PF;,
¢=2P,, then x=0(q)e T,. By (1), f(y)e fW, T,)C W'(f(x), T;). Hence
f(y)e T,;. Similarly f(y)e T; implies f(x)e T;,. Next we prove that f(x)
and f(y) belong to the same set T3, when T;e T(f(x))=T(f(y)) and T;n
T.+#2(TyeT). Since fly) e W*(f(x), T,), f(x) and f(y) belong to T:,UT:,
or T;,UT3,. Now we assume that W:.(f(¥)N T,=@ and Wr(f(®) N T,
@. And we derive a contradiction. This assumption is equivalent to

(3) W (f@), TH)NTe=2, f(2)e W*(f(x), THNTW#D .
Let f(x)=6(q) with ¢,=P;, ¢,=P,. By (2), f(2) € W*(f (&), T)cf W*(x, T.,)
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and so ze Wz, T,). Let f(z)=0-°0(¢') where ¢i=T, and ¢,=T,. Then
zeT,. Hence T, e Tx)=T(y) and ze T,NT,#@. Since ze W*(x, T,)N
T.«@ and x, ¥ belong to the same set T7,, it follows that Wii.(») N T,# Q.
This is equivalent to 2z’'e W*(y, T)NT,+#@. Then 2"=[z yl=[z, 2']€
Wiz, T,). By 1), f(z'")e W*f(2), T.). Since f(z) and f(y) belong to

T; and f is expansive, we have f(2")=[f(2), f(¥)le W*(f(¥), T;). This
contradicts (3).

Let us put

R(f@) =N{T3.|T;€ T(f(@), T;NTW# @ (TweT) and f(x)€Tju}-

Then int R(f(x)) = R(f(x)) = R(x;). Since diam R(x,) < g, fW*(x, B(x,))C
We.(f(x)). Hence f W*(z, R(x,))< W*(f(x), R(f(x))") by the above argument.
On the other hand, f W*(z, R(x,)) is open in W, (f(x)) by Lemma 5. There-
fore fW'(z, R(x,))CintW*(f(z), R(f(x)))=W*(f(x), R(x;)) by Lemma 8.
Similarly, we have fW*(x, R(x,)D W*(f(x), R(x;)).

§ 3. Proof of Theorem.

For the proof we use the above notations. Put R;=cl R(x,) for 1<
i<m. Then it is enough to prove that {R,, ---, R,} is a Markov partition
of X. By Lemma 10, {R, ---, R,} is a covering of X. Clearly R, are
proper rectangles, diam B,<g8 and int R,Nint R;=@ for ¢=*j. IfintR,N
flint R;# @, then there exists xzeR(z)Nf(R(x)). And then
fWe(x, R(x;))c W*(f(zx), R(x;)) by Lemma 12. Hence fW'(x, R)C
W*(f(x), B;) by Lemma 9. If yeR,Nf'(R;), then fW*'(y, R)=
fly, W, R)=[f(w), fFW', R)Clf(y), W(f(x), BR)l=W'(f(y), R;).
Similarly fW*(y, R)D W*(f(%), R;). The proof of the Theorem is com-
pleted.
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